JP2005187272A - Dielectric ceramic composition and its production method - Google Patents

Dielectric ceramic composition and its production method Download PDF

Info

Publication number
JP2005187272A
JP2005187272A JP2003431869A JP2003431869A JP2005187272A JP 2005187272 A JP2005187272 A JP 2005187272A JP 2003431869 A JP2003431869 A JP 2003431869A JP 2003431869 A JP2003431869 A JP 2003431869A JP 2005187272 A JP2005187272 A JP 2005187272A
Authority
JP
Japan
Prior art keywords
cooling
dielectric ceramic
ceramic composition
sintering
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003431869A
Other languages
Japanese (ja)
Inventor
Kenichi Chatani
健一 茶谷
Kazumi Tanaka
一美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003431869A priority Critical patent/JP2005187272A/en
Publication of JP2005187272A publication Critical patent/JP2005187272A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dielectric ceramic composition having a very high Qf product, in which the dielectric constant and quality factor Qf product are enhanced; and to obtain a method for producing the same. <P>SOLUTION: The dielectric ceramic composition contains, as main components, ZrO<SB>2</SB>, SnO<SB>2</SB>and TiO<SB>2</SB>, and in the composition, the compositional ratios of the main components are given by following formula: xZrO<SB>2</SB>-ySnO<SB>2</SB>-zTiO<SB>2</SB>(wherein, x+y+z=100 mol%). The compositional ratios are as follows: 31≤x≤42 and 9≤y≤18, and the remainder is TiO<SB>2</SB>. Further, when the addition amounts of La<SB>2</SB>O<SB>3</SB>, NiO and Ta<SB>2</SB>O<SB>5</SB>to the total weight of the main components are defined as u, v and w wt.%, respectively, u is ≥0.1 and ≤0.5, v is ≥0.1 and ≤0.5 and w is ≥0.1 and ≤0.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として携帯電話や無線LANで使用される誘電体フィルタ等に用いるのに好適な誘電体磁器組成物およびその製造方法に関する。   The present invention relates to a dielectric ceramic composition suitable for use in a dielectric filter or the like mainly used in a mobile phone or a wireless LAN, and a method for producing the same.

携帯電話や無線LANなどの高周波伝送技術の進展に伴い、マイクロ波、ミリ波領域におけるフィルタ素子や発振素子に対する高性能化、小型化要求が高まっている。フィルタ素子や発振素子には、誘電体共振器の形態をとるものが多い。よって、誘電体材料の特性向上が高周波素子の性能向上のため、きわめて重要である。誘電体材料に対する技術要求として、下記に示す3つが挙げられる。   With the progress of high-frequency transmission technologies such as cellular phones and wireless LANs, there are increasing demands for high performance and miniaturization of filter elements and oscillation elements in the microwave and millimeter wave regions. Many filter elements and oscillation elements take the form of dielectric resonators. Therefore, improvement of the characteristics of the dielectric material is extremely important for improving the performance of the high frequency device. The technical requirements for the dielectric material include the following three.

1番目に、高い比誘電率を有する誘電体材料が求められている。これは、誘電体共振器の大きさが、誘電体材料が有する比誘電率の平方根の逆数に比例するためである。   First, a dielectric material having a high relative dielectric constant is required. This is because the size of the dielectric resonator is proportional to the reciprocal of the square root of the relative permittivity of the dielectric material.

2番目に、高周波領域で低損失の誘電体材料が求められている。誘電体の損失は、誘電損失tanδであらわされ、この逆数に共振周波数fを乗じた品質係数Qf積が高いほど、高周波素子の低損失化にとって望ましい。   Second, a low-loss dielectric material is required in the high frequency region. The loss of the dielectric is represented by the dielectric loss tan δ, and the higher the quality factor Qf product obtained by multiplying the reciprocal number by the resonance frequency f, the better the loss of the high-frequency element is reduced.

3番目に、誘電体共振器の共振周波数の温度係数がゼロに近く、かつ、任意に制御可能な誘電体材料の開発が求められている。これは環境温度変動に対する素子の周波数特性変化が小さいことが一般に求められるからである。   Thirdly, there is a demand for the development of a dielectric material whose temperature coefficient of the resonance frequency of the dielectric resonator is close to zero and can be arbitrarily controlled. This is because it is generally required that the frequency characteristic change of the element with respect to environmental temperature fluctuation is small.

ここで、現在、比誘電率が約38の誘電体磁器組成物が使用されている。この誘電体磁器組成物において、現在はQf積が37THz位のものが実用化されているが、満足できるものではない。高性能化のためには、Qf積を20%以上改善した誘電体材料が必要となる。さらに、共振周波数の温度係数τfがゼロ付近であることが必要である。それに対して、ZrO2、SnO2、TiO2を主成分とし、添加物としてLa23とZnO(特許文献1)、ZnOとCo23(特許文献2)、MnO2(特許文献3)などを添加した誘電体磁器組成物が知られている。 Here, currently, a dielectric ceramic composition having a relative dielectric constant of about 38 is used. Of these dielectric ceramic compositions, those having a Qf product of about 37 THz have been put into practical use, but this is not satisfactory. For high performance, a dielectric material having a Qf product improved by 20% or more is required. Further, it is necessary that the temperature coefficient τf of the resonance frequency is near zero. On the other hand, ZrO 2 , SnO 2 and TiO 2 are the main components, and La 2 O 3 and ZnO (Patent Document 1), ZnO and Co 2 O 3 (Patent Document 2), and MnO 2 (Patent Document 3) as additives. ) And the like are known.

La23とZnOを加えた場合、Qf積が44THz以下であり、ZnOとCo23を加えた場合は、Qf積が35THz〜55THzであるが、Co23が焼結炉内を汚染するため、専用焼結炉が必要になるという製造上の問題がある。また、MnO2を加えた場合は、Qf積が18THz以下と小さくなることが知られている。これらの公知の誘電体磁器組成物は、前記3つの特性を満足しないという問題点、または安価に製造できないという問題点を有しており、高性能化・小型化が求められる最近の誘電体フィルタヘの適用は困難であった。また、従来の製造方法で誘電体磁器組成物の大きさを、直径20mm以上、高さ20mm以上とすると、Qf積が20以下となってしまう問題点があった。 When La 2 O 3 and ZnO are added, the Qf product is 44 THz or less, and when ZnO and Co 2 O 3 are added, the Qf product is 35 THz to 55 THz, but Co 2 O 3 is contained in the sintering furnace. There is a manufacturing problem that a dedicated sintering furnace is required to contaminate the steel. Further, it is known that when MnO 2 is added, the Qf product becomes as small as 18 THz or less. These known dielectric ceramic compositions have the problem that they do not satisfy the above three characteristics, or the problem that they cannot be manufactured at low cost. Application of was difficult. Further, when the size of the dielectric ceramic composition is 20 mm or more and the height is 20 mm or more in the conventional manufacturing method, there is a problem that the Qf product becomes 20 or less.

また、携帯電話基地局など、無線基地局の誘電体共振器フィルタに用いる焼結体は、中空でない円柱型に換算して直径20mm、高さ20mm以上の大きな体積を有する。このような大型焼結体では、微量元素の蒸発度合いや酸素欠陥の発生頻度などに関して、焼結体表面と内部の焼結状態に差異が生じやすい。これはQf積劣化の原因となる。このため、たとえ高いQf積を有する誘電体磁器組成物を用いて生産を行った場合でも、焼結体が大型になるにつれ、Qf積の劣化が進行するという問題があった。   In addition, a sintered body used for a dielectric resonator filter of a radio base station such as a mobile phone base station has a large volume of 20 mm in diameter and 20 mm in height or more in terms of a hollow cylinder. In such a large-sized sintered body, the difference between the sintered body surface and the internal sintered state tends to occur with respect to the degree of evaporation of trace elements and the frequency of occurrence of oxygen defects. This causes the Qf product deterioration. For this reason, even when production is performed using a dielectric ceramic composition having a high Qf product, there has been a problem that the deterioration of the Qf product proceeds as the sintered body becomes larger.

特開昭52−17699JP 52-17699 特開昭52−17698JP 52-17698 A 特開平6−215626JP-A-6-215626

誘電体材料の一般的性質として、比誘電率が大きくなるとQf積が小さくなってしまうことが知られている。しかし、高周波素子の高性能化のためには、Qf積が高く、かつ、比誘電率が大きく、かつ、誘電体共振器として用いた場合の共振周波数の温度係数の絶対値が小さい誘電体磁器組成物が必要である。ここで、従来のCo2を添加した誘電体磁器組成物は、焼結炉内を汚染するという問題点があった。また、誘電体磁器組成物の大型焼結体(中空でない円柱型に換算して直径20mm以上、高さ20mm以上)を製造する際には、Qf積の劣化が生じやすいので、これを防止し得る、低コストで実現可能な製造方法が必要である。 As a general property of dielectric materials, it is known that as the relative dielectric constant increases, the Qf product decreases. However, in order to improve the performance of a high-frequency device, a dielectric ceramic having a high Qf product, a large relative dielectric constant, and a small absolute value of the temperature coefficient of the resonance frequency when used as a dielectric resonator. A composition is needed. Here, the conventional dielectric ceramic composition to which Co 2 O 3 is added has a problem that the inside of the sintering furnace is contaminated. In addition, when manufacturing a large-sized sintered body of a dielectric ceramic composition (20 mm or more in diameter and 20 mm or more in height when converted to a non-hollow cylindrical shape), the Qf product is likely to deteriorate. There is a need for a manufacturing method that can be obtained at low cost.

本発明の目的は、焼結炉内を汚染することなく、誘電体磁器組成物での大型焼結体にて、比誘電率と品質係数Qf積を増大させ、高Qf積である誘電体磁器組成物及び磁器組成物の製造方法を提供することである。   An object of the present invention is to increase the relative dielectric constant and the quality factor Qf product in a large-sized sintered body with a dielectric ceramic composition without contaminating the inside of the sintering furnace, and to provide a dielectric ceramic having a high Qf product. It is to provide a method for producing the composition and the porcelain composition.

本発明は、ZrO2−SnO2−TiO2系セラミック誘電体において、マイクロ波用誘電体として好適な高い比誘電率とQf積をもたらす主成分配合比と添加物の種類並びに添加量を選択して得た誘電体磁器組成物と、この原料粉末を、あるいは窒素ガス、アルゴンガス、大気などと酸素の混合雰囲気中で焼結温度1300℃から1450℃の範囲で酸素濃度を30%以上として焼結し、また、冷却過程において特定の温度範囲で徐冷を行って形成されたマイクロ波用の誘電体磁器組成物である。 In the ZrO 2 —SnO 2 —TiO 2 ceramic dielectric, the present invention selects a main component blending ratio, a kind of additive, and an addition amount that provide a high relative dielectric constant and a Qf product suitable as a microwave dielectric. The dielectric ceramic composition obtained in this way and this raw material powder or in a mixed atmosphere of nitrogen gas, argon gas, air, etc. and oxygen are sintered at a sintering temperature of 1300 ° C. to 1450 ° C. with an oxygen concentration of 30% or more. In addition, it is a dielectric ceramic composition for microwaves formed by performing slow cooling in a specific temperature range in the cooling process.

詳述すれば、主成分において、ZrO2含有量が42mol%以上または31mol%以下の場合、Qf積が小さ過ぎるので望ましくない。SnO2含有量が9mol%以上の場合、共振周波数の温度係数τfの絶対値が大き過ぎるので望ましくない。また、SnO2含有量が18mol%以下の場合、Qf積が小さ過ぎるので望ましくない。TiO2が55mol%以上または47mol%以下の場合、共振周波数の温度係数τfの絶対値が大き過ぎるので望ましくない。 More specifically, when the ZrO 2 content is 42 mol% or more or 31 mol% or less in the main component, the Qf product is too small, which is not desirable. When the SnO 2 content is 9 mol% or more, the absolute value of the temperature coefficient τf of the resonance frequency is too large, which is not desirable. Further, SnO 2 content of the following cases 18 mol%, undesirably Qf product is too small. When TiO 2 is 55 mol% or more or 47 mol% or less, the absolute value of the temperature coefficient τf of the resonance frequency is too large, which is not desirable.

添加物において、La23には焼結促進効果があり、主成分総重量に対して0.1wt%以上添加することにより、1400℃以下での焼結が可能となる。NiOには焼結促進効果があり、主成分総重量に対して0.1wt%以上添加することにより、1400℃以下での焼結が可能となり、また、添加しない場合と比較してQf積の向上が顕著である。Ta25にはQf積を上昇させる効果があり、主成分総重量に対して0.1wt%以上添加することにより、Qf積が20%以上向上する。一方、La23、NiO、Ta25各々における添加重が0.5wt%を超えると、Qf積の低下が生ずる。以上により、La23、NiO、Ta25各々の添加量は、0.1wt%以上0.5wt%以下に限定される。この範囲内においてLa23、NiO、Ta23を同時に添加調整することにより、比誘電率が38から42程度となり、共振周波数の温度係数τfがゼロ付近となり、誘電体フィルタに好適な、特に格段に高いQf積が得られる誘電体磁器組成物が得られることを見出した。 In the additive, La 2 O 3 has a sintering promoting effect, and by adding 0.1 wt% or more with respect to the total weight of the main component, sintering at 1400 ° C. or less becomes possible. NiO has a sintering promoting effect. By adding 0.1 wt% or more with respect to the total weight of the main component, it becomes possible to sinter at 1400 ° C. or less, and the Qf product is lower than that in the case where NiO is not added. The improvement is remarkable. Ta 2 O 5 has an effect of increasing the Qf product, and the addition of 0.1 wt% or more with respect to the total weight of the main component improves the Qf product by 20% or more. On the other hand, when the added weight in each of La 2 O 3 , NiO, and Ta 2 O 5 exceeds 0.5 wt%, the Qf product is lowered. As described above, the addition amount of each of La 2 O 3 , NiO, and Ta 2 O 5 is limited to 0.1 wt% or more and 0.5 wt% or less. By simultaneously adding and adjusting La 2 O 3 , NiO, and Ta 2 O 3 within this range, the relative dielectric constant becomes about 38 to 42, and the temperature coefficient τf of the resonance frequency becomes near zero, which is suitable for a dielectric filter. In particular, it has been found that a dielectric ceramic composition capable of obtaining a particularly high Qf product can be obtained.

すなわち、ZrO2、SnO2、TiO2を主成分とする誘電体磁器組成物において、その主成分組成比をxZrO2・ySnO2・zTiO2(x+y+z=100mol%)と表すとき、31mol%≦x≦42mol%、9mol%≦y≦18mol%、残部がTiO2であり、かつ、主成分総重量に対するLa23、NiO、Ta25の添加量をそれぞれu,v,w,wt%と表すとき、0.1wt%≦u≦0.5wt%、0.1wt%≦v≦0.5Wt%、0.1wt%≦w≦0.5Wt%である場合に、目的とする誘電体磁器組成物を得ることができる。 That is, in a dielectric ceramic composition containing ZrO 2 , SnO 2 , and TiO 2 as main components, when the main component composition ratio is expressed as xZrO 2 · ySnO 2 · zTiO 2 (x + y + z = 100 mol%), 31 mol% ≦ x ≦ 42 mol%, 9 mol% ≦ y ≦ 18 mol%, the balance is TiO 2 , and the addition amount of La 2 O 3 , NiO, Ta 2 O 5 with respect to the total weight of the main components is u, v, w, wt%, respectively. Where 0.1 wt% ≦ u ≦ 0.5 wt%, 0.1 wt% ≦ v ≦ 0.5 Wt%, and 0.1 wt% ≦ w ≦ 0.5 Wt%. A composition can be obtained.

また、この誘電体磁器組成物を焼結するにあたって、酸素ガスの単独、あるいは窒素ガス、アルゴンガス、大気などと酸素の混合雰囲気中で酸素濃度を30%以上として1300℃から1450℃の温度範囲で焼結を行うことにより、焼結雰囲気の酸素濃度が21%(大気中)の場合と比較して、より大きな比誘電率が得られることを見出した。   In sintering this dielectric ceramic composition, the temperature range is from 1300 ° C. to 1450 ° C. with an oxygen concentration of 30% or more in an oxygen gas alone or a mixed atmosphere of nitrogen gas, argon gas, air and the like. It has been found that a larger relative dielectric constant can be obtained by sintering at a temperature higher than that in the case where the oxygen concentration in the sintering atmosphere is 21% (in the air).

さらに、本発明における誘電体磁器組成物の大型焼結体(中空でない円柱型に換算して直径20mm以上、高さ20mm以上)を焼結するにあたって、焼結が終了して冷却を行う際に、1150℃以上の温度範囲において、等速冷却に換算して100℃/時間以下に対応する冷却速度で徐冷を行うことにより、安定して高いQf積を得ることができることを見出した。ここでいう徐冷とは、定温保持、あるいは多段冷却、あるいは非等速冷却であってもよい。特に、冷却時に、1225℃以上1300℃以下の温度時間で徐冷温度を緩慢すると、効果が大きいことを見出した。   Further, when sintering a large-sized sintered body of the dielectric ceramic composition according to the present invention (diameter 20 mm or more, height 20 mm or more in terms of a non-hollow cylindrical shape), when sintering is finished and cooling is performed. It has been found that a high Qf product can be stably obtained by performing slow cooling at a cooling rate corresponding to 100 ° C./hour or less in the temperature range of 1150 ° C. or higher in terms of constant speed cooling. The slow cooling here may be constant temperature holding, multistage cooling, or non-constant cooling. In particular, it has been found that the effect is great if the slow cooling temperature is slowed down for a cooling time of 1225 ° C. or higher and 1300 ° C. or lower during cooling.

以上の製造方法を用いることによって、一般には困難な比誘電率とQf積の同時向上を達成できる。また同時に、従来技術では困難であった、円柱型に換算して直径20mm、高さ20mm以上の大型焼結体の製造に際して、Qf積の劣化を防止することができる。焼結体の体積が小さい場合には、誘電体磁器組成物が本来持つQf積を劣化させることなく製造することは容易であり、製造コストが最も小さい大気中焼結が望ましい製造方法である。一方、中空でない円柱型に換算して直径20mm、高さ20mm以上の大型焼結体の製造に際しては、本発明による製造方法により、特殊な焼結炉を必要とせず、低コストでQf積の劣化を防止することができる。   By using the above manufacturing method, it is possible to achieve simultaneous improvement of relative permittivity and Qf product, which is generally difficult. At the same time, it is possible to prevent the deterioration of the Qf product when manufacturing a large sintered body having a diameter of 20 mm and a height of 20 mm or more in terms of a cylindrical shape, which is difficult with the prior art. When the volume of the sintered body is small, it is easy to manufacture without deteriorating the Qf product inherent in the dielectric ceramic composition, and atmospheric sintering with the lowest manufacturing cost is a preferable manufacturing method. On the other hand, when manufacturing a large-sized sintered body having a diameter of 20 mm and a height of 20 mm or more in terms of a non-hollow cylindrical shape, the manufacturing method according to the present invention does not require a special sintering furnace, and can reduce the Qf product at low cost. Deterioration can be prevented.

本発明によれば、ZrO2、SnO2、TiO2を主成分とする誘電体磁器組成物xZrO2・ySnO2・zTiO2(x+y+z=100mol%)において、その組成比が31≦x≦42、9≦y≦18、残部がTiO2であり、かつ、主成分総重量に対するLa23、NiO、Ta25の添加量をそれぞれu,v,w,wt%と表すとき、0.1≦u≦0.5、0.1≦v≦0.5、0.1≦w≦0.5である原料粉末を、酸素ガスの単独あるいは混合雰囲気中で酸素濃度を30%以上として1300℃から1450℃の温度範囲で焼結し、さらに望ましくは焼結終了後に特定の温度区間で徐冷(多段冷却を含む)を行うことにより、比誘電率と品質係数Qf積を増大させることができる。 According to the present invention, in a dielectric ceramic composition xZrO 2 .ySnO 2 .zTiO 2 (x + y + z = 100 mol%) mainly composed of ZrO 2 , SnO 2 and TiO 2 , the composition ratio is 31 ≦ x ≦ 42, When 9 ≦ y ≦ 18, the balance is TiO 2 , and the addition amounts of La 2 O 3 , NiO, and Ta 2 O 5 with respect to the total weight of the main components are expressed as u, v, w, and wt%, respectively, 0. A raw material powder satisfying 1 ≦ u ≦ 0.5, 0.1 ≦ v ≦ 0.5, and 0.1 ≦ w ≦ 0.5 is obtained with an oxygen concentration of 30% or higher in an oxygen gas alone or in a mixed atmosphere. The relative dielectric constant and the quality factor Qf product can be increased by sintering in a temperature range of 1 to 1450 ° C., and more preferably by performing slow cooling (including multi-stage cooling) in a specific temperature interval after the sintering is completed. it can.

本発明によれば、焼結炉内を汚染することなく、誘電体磁器組成物での大型焼結体にて、比誘電率と品質係数Qf積を増大させ、高Qf積である誘電体磁器組成物およびその製造方法を提供することができる。   According to the present invention, a dielectric ceramic having a high Qf product can be obtained by increasing the relative permittivity and the quality factor Qf product in a large sintered body of a dielectric ceramic composition without contaminating the inside of the sintering furnace. Compositions and methods of making the same can be provided.

本発明による誘電体磁器組成物を得るには、例えば、ZrO2、SnO2、TiO2を主成分とする誘電体磁器組成物xZrO2・ySnO2・zTiO2(x+y+z=100mol%)において、その組成比が31≦x≦42、9≦y≦18、残部がTiO2であり、かつ、主成分総重量に対するLa23、NiO、Ta25の添加量をそれぞれu,v,w,wt%と表すとき、0.1≦u≦0.5、0.1≦v≦0.5、0.1≦w≦0.5の組成範囲の原料粉末を配合、湿式混合し、脱水処理の後、1000〜1300℃で2〜10時間の仮焼を行う。粉砕造粒し、その後、所要形状に成形して脱バインダー処理する。これを酸素ガスの単独あるいは混合雰囲気中で酸素濃度を30%以上として1300℃から1450℃の温度範囲で焼結し、また、焼結が終了して冷却を行う際に、1150℃以上の温度範囲において定温保持、もしくは徐冷を行う。ここでいう徐冷とは、1150℃以上の温度領域における多段冷却、もしくは定温保持を含むものである。焼結中に、酸素濃度を30%以上のより高い濃度にするほど、焼結体の比誘電率は上昇する。一方、徐冷は主にQf積の向上に寄与する。 In order to obtain the dielectric ceramic composition according to the present invention, for example, in a dielectric ceramic composition xZrO 2 .ySnO 2 .zTiO 2 (x + y + z = 100 mol%) mainly composed of ZrO 2 , SnO 2 , TiO 2 , The composition ratio is 31 ≦ x ≦ 42, 9 ≦ y ≦ 18, the balance is TiO 2 , and the addition amounts of La 2 O 3 , NiO, Ta 2 O 5 with respect to the total weight of the main components are u, v, w, respectively. , Wt%, 0.1 ≤ u ≤ 0.5, 0.1 ≤ v ≤ 0.5, 0.1 ≤ w ≤ 0.5 compositional raw material powder blended, wet mixed, dehydrated After the treatment, calcination is performed at 1000 to 1300 ° C. for 2 to 10 hours. After pulverization and granulation, it is molded into a required shape and debindered. This is sintered in a temperature range of 1300 ° C. to 1450 ° C. with an oxygen concentration of 30% or more in an oxygen gas alone or in a mixed atmosphere. Keep constant temperature or slowly cool in the range. The slow cooling here includes multi-stage cooling in a temperature region of 1150 ° C. or higher, or constant temperature holding. During sintering, the relative permittivity of the sintered body increases as the oxygen concentration is higher than 30%. On the other hand, slow cooling mainly contributes to the improvement of the Qf product.

本発明においては、焼結時の酸素濃度を30%以上とすることと、焼結後に1150℃以上の温度範囲において定温保持、もしくは徐冷を行うことを組み合わせることが望ましい。これは、焼結中に酸素濃度を30%以上とした場合であって、かつ、焼結後1150℃以上の温度領域での徐冷を行わなかった場合、大気中焼結と比較してQf積が向上しない場合があるためである。この傾向は、特に無線通信基地局用の誘電体フィルタなどに搭載される、焼結後の体積が中空でない円柱型に換算して直径20mm以上、高さ20mm以上の大型焼結体を得るに際して顕著となる。このような場合、本発明が目的とする比誘電率とQf積の同時向上のためには、1150℃以上の温度領域での徐冷が不可欠となる。特に、冷却時に、1225℃以上1300℃以下の温度区間で徐冷速度を緩慢とする条件にて効果が大きいことを見出したので、1225℃から1300℃以外の温度領域を速やかに通過するようにすれば、効率的にQf積の向上を図ることが可能となる。これによって冷却時間の延長による製造コストの増加を最小限にできる。   In the present invention, it is desirable to combine the oxygen concentration during sintering with 30% or more and the constant temperature holding or slow cooling in the temperature range of 1150 ° C. or higher after sintering. This is a case where the oxygen concentration is set to 30% or higher during sintering, and when annealing is not performed in a temperature region of 1150 ° C. or higher after sintering, Qf is compared with sintering in the atmosphere. This is because the product may not improve. This tendency is particularly noticeable when obtaining a large-sized sintered body having a diameter of 20 mm or more and a height of 20 mm or more in terms of a non-hollow cylindrical shape mounted on a dielectric filter or the like for a radio communication base station. Become prominent. In such a case, slow cooling in a temperature region of 1150 ° C. or higher is indispensable for the simultaneous improvement of the relative dielectric constant and the Qf product aimed by the present invention. In particular, during cooling, it has been found that the effect is great under the condition that the slow cooling rate is slow in a temperature range of 1225 ° C. or higher and 1300 ° C. or lower. Then, it becomes possible to improve the Qf product efficiently. This minimizes an increase in manufacturing cost due to an extended cooling time.

主成分原料粉末をxZrO2・ySnO2・zTiO2(x、y、zはmol%、31≦x≦42、9≦y≦18、残部はTiO2)の比で表1に示す通りに配合し、さらに主成分総重量に対してLa23、NiO、Ta25をそれぞれu,v,w,wt%(0≦u≦0.5、0≦v≦0.5、0≦w≦0.5)添加物として表1に示す通り配合し、湿式混合後、脱水処理を行い、大気中で1100℃、4時間の仮焼を行ったのち粉砕造粒した。その後、この粉末を1000kg/cm2の圧力で直径14mm、高さ5.6mmの円盤状になるように加圧成形し、脱バインダー処理の上、大気雰囲気中1375℃で焼結を行った。焼結後の冷却時には、1375℃から1200℃まで100℃/時間で等速冷却とし、以下300℃/時間で等速冷却を行った。得られた焼結体の両面を研磨して空洞共振器法を用いて、共振周波数5GHzにおける比誘電率、Qf積、25℃〜75℃における共振周波数の温度係数τfを求め、表1に示す。 The main component raw material powder is blended as shown in Table 1 in the ratio of xZrO 2 .ySnO 2 .zTiO 2 (x, y, z is mol%, 31 ≦ x ≦ 42, 9 ≦ y ≦ 18, the balance is TiO 2 ). In addition, La 2 O 3 , NiO, and Ta 2 O 5 are respectively u, v, w, and wt% (0 ≦ u ≦ 0.5, 0 ≦ v ≦ 0.5, 0 ≦ with respect to the total weight of the main components). w ≦ 0.5) The additives were blended as shown in Table 1, and after wet mixing, dehydration was performed, followed by calcination at 1100 ° C. for 4 hours in the air, followed by pulverization and granulation. Then, this powder was pressure-molded into a disk shape having a diameter of 14 mm and a height of 5.6 mm at a pressure of 1000 kg / cm 2 , and sintered at 1375 ° C. in an air atmosphere after debinding. At the time of cooling after sintering, constant speed cooling was performed from 1375 ° C. to 1200 ° C. at a rate of 100 ° C./hour, and constant speed cooling was performed at a rate of 300 ° C./hour. Both surfaces of the obtained sintered body are polished, and using a cavity resonator method, a relative dielectric constant at a resonance frequency of 5 GHz, a Qf product, and a temperature coefficient τf of a resonance frequency at 25 ° C. to 75 ° C. are obtained. .

Figure 2005187272
Figure 2005187272

さらに、この焼結体の焼結密度をアルキメデス法により測定した。本発明の範囲内の各試料は、いずれも焼結密度が高く、理論密度に対する到達密度が96%以上の値を示しており、所望の電気特性が安定して得られるだけでなく、緻密な焼結体が得られていることが分かった。一方、表1の組成No.11,No.12のように、NiO,La23の添加量が本発明の範囲外となる場合、1350℃の焼結温度で行っても、焼結密度は理論値の90%以下となり、緻密化しない。 Furthermore, the sintered density of this sintered body was measured by the Archimedes method. Each sample within the scope of the present invention has a high sintered density and a density reaching the theoretical density of 96% or more, and not only can the desired electrical characteristics be stably obtained, but also a dense It was found that a sintered body was obtained. On the other hand, the composition no. 11, no. When the added amount of NiO and La 2 O 3 is out of the range of the present invention as in No. 12, even if the sintering temperature is 1350 ° C., the sintering density is 90% or less of the theoretical value and does not become dense. .

主成分原料粉末をxZrO2・ySnO2・zTiO2(x,y,zはmol%、31≦x≦42、9≦y≦18、残部はTiO2)の比で表2に示す通りに配合し、さらに主成分総重量に対して、それぞれ0.2、0.2、0.3wt%のLa23、NiO、Ta25添加物を配合、湿式混合後、脱水処理を行い、大気中で1100℃、4時間の仮焼を行ったのち粉砕造粒した。 The main component raw material powder is blended as shown in Table 2 in the ratio of xZrO 2 .ySnO 2 .zTiO 2 (x, y, z is mol%, 31 ≦ x ≦ 42, 9 ≦ y ≦ 18, the balance is TiO 2 ). Furthermore, 0.2, 0.2, and 0.3 wt% of La 2 O 3 , NiO, and Ta 2 O 5 additives are blended with respect to the total weight of the main components, respectively, wet mixed, and then dehydrated. After calcination at 1100 ° C. for 4 hours in the air, pulverization and granulation were performed.

その後、この粉末を1000kg/cm2の圧力で直径23mm、高さ23mmの円盤状になるように加圧成形し、脱バインダー処理の上、1375℃で焼結を行った。焼結後の冷却時には、1375℃から1200℃まで100℃/時間で等速冷却とし、以下300℃/時間で等速冷却を行った。焼結、冷却時の雰囲気酸素濃度は21%、30%、60%、100%のいずれかである。得られた直径約20mm、高さ約20mmの円柱状焼結体の高さ方向の中央部から、直径20mm、高さ8mmの測定試料を切りだし、空洞共振器法を用いて、共振周波数2.8GHzにおける比誘電率、Qf積を求めた。その結果を表2に示す。 Thereafter, this powder was pressure-molded at a pressure of 1000 kg / cm 2 so as to form a disk having a diameter of 23 mm and a height of 23 mm, and after debinding, it was sintered at 1375 ° C. At the time of cooling after sintering, constant speed cooling was performed from 1375 ° C. to 1200 ° C. at a rate of 100 ° C./hour, and constant speed cooling was performed at a rate of 300 ° C./hour. The ambient oxygen concentration during sintering and cooling is 21%, 30%, 60%, or 100%. A measurement sample having a diameter of 20 mm and a height of 8 mm is cut out from the center in the height direction of the obtained cylindrical sintered body having a diameter of about 20 mm and a height of about 20 mm, and a resonance frequency of 2 is measured using the cavity resonator method. The relative dielectric constant and Qf product at .8 GHz were obtained. The results are shown in Table 2.

Figure 2005187272
Figure 2005187272

表2によれば、焼結雰囲気の酸素濃度を30%以上とした場合、焼結雰囲気の酸素濃度が21%(大気中)の場合と比較して、全ての試料において比誘電率及びQf積が向上していることがわかる。   According to Table 2, when the oxygen concentration in the sintering atmosphere is 30% or more, the relative permittivity and the Qf product in all samples are compared with the case where the oxygen concentration in the sintering atmosphere is 21% (in the air). It can be seen that is improved.

主成分原料粉末をxZrO2・ySnO2・zTiO2(x,y,zはmol%、31≦x≦42、9≦y≦18、残部はTiO2)の比で表3に示す通りに配合し、さらに主成分総重量に対して、それぞれ0.2、0.2、0.3wt%のLa23、NiO、Ta25添加物を配合、湿式混合後、大気中で1100℃、4時間の仮焼を行ったのち粉砕造粒した。 The main component raw material powder is blended as shown in Table 3 in the ratio of xZrO 2 .ySnO 2 .zTiO 2 (x, y, z is mol%, 31 ≦ x ≦ 42, 9 ≦ y ≦ 18, the balance is TiO 2 ). Further, 0.2, 0.2, and 0.3 wt% of La 2 O 3 , NiO, and Ta 2 O 5 additives are blended with respect to the total weight of the main components, and after wet mixing, 1100 ° C. in the atmosphere. After calcination for 4 hours, pulverization and granulation were performed.

その後、この粉末を1000kg/cm2の圧力で直径23mm、高さ23mmの円盤状になるように加圧成形し、脱バインダー処理の上、焼結雰囲気の酸素濃度を100%として1375℃で焼結を行った。焼結後の冷却時には、1375℃から1300℃、1300℃から1225℃、1225℃から1150℃、1150℃から1075℃、1075℃から1000度の、いずれかの温度範囲では25℃/時間で等速冷却を行い、他の温度範囲は300℃/時間で等速冷却を行った。 Thereafter, this powder was pressure-molded at a pressure of 1000 kg / cm 2 so as to form a disk with a diameter of 23 mm and a height of 23 mm, and after debinding, it was sintered at 1375 ° C. with an oxygen concentration in the sintering atmosphere of 100%. Yui was done. During cooling after sintering, from 1375 ° C to 1300 ° C, from 1300 ° C to 1225 ° C, from 1225 ° C to 1150 ° C, from 1150 ° C to 1075 ° C, from 1075 ° C to 1000 ° C, etc. at 25 ° C / hour, etc. Rapid cooling was performed, and constant temperature cooling was performed at other temperature ranges at 300 ° C./hour.

得られた直径約20mm、高さ約20mmの円柱状焼結体の高さ方向の中央部から、直径20mm、高さ8mmの測定試料を切りだし、空洞共振器法を用いて、共振周波数2.8GHzにおける比誘電率とQf積を求め、表3に示す。これらの試料の比誘電率は、徐冷の温度範囲には依存せず、36.8〜43.9の範囲内に分布した。   A measurement sample having a diameter of 20 mm and a height of 8 mm is cut out from the center in the height direction of the obtained cylindrical sintered body having a diameter of about 20 mm and a height of about 20 mm, and a resonance frequency of 2 is measured using the cavity resonator method. The relative dielectric constant and Qf product at .8 GHz are obtained and shown in Table 3. The relative dielectric constants of these samples did not depend on the temperature range of slow cooling, and were distributed within the range of 36.8 to 43.9.

Figure 2005187272
Figure 2005187272

表3によれば、徐冷を行う温度範囲が1150℃以上である場合には、Qf積は22〜49THzの間に分布し、徐冷を行う温度範囲が1150℃以下である場合には、Qf積は6〜26THzに分布しており、徐冷を行う温度範囲を1150℃以上とすることによりQf積が顕著に向上している。更に、好ましくは、徐冷の温度範囲が1300℃から1225℃の範囲で、Qf積が37から49の範囲となり、最も高い値を示す。   According to Table 3, when the temperature range for performing slow cooling is 1150 ° C or higher, the Qf product is distributed between 22 to 49 THz, and when the temperature range for performing slow cooling is 1150 ° C or lower, The Qf product is distributed in the range of 6 to 26 THz, and the Qf product is remarkably improved by setting the temperature range for performing slow cooling to 1150 ° C. or higher. Further, preferably, the temperature range of slow cooling is in the range of 1300 ° C. to 1225 ° C., and the Qf product is in the range of 37 to 49, indicating the highest value.

主成分原料粉末をxZrO2・ySnO2・zTiO2(x,y,zはmol%、x=33.5、y=16、z=50.5)の重量比で配合し、さらに主成分総重量に対して、それぞれ0.2、0.2、0.3wt%のLa23、NiO、Ta25の添加物を配合、混合後、大気中で1100℃、4時間の仮焼を行った後、粉砕造粒した。その後、この粉末を1000kg/cm2の圧力で直径23mm、高さ23mmの円盤状になるように加圧成形し、脱バインダー処理を行った。 The main component raw material powder is blended in a weight ratio of xZrO 2 .ySnO 2 .zTiO 2 (x, y, z is mol%, x = 33.5, y = 16, z = 50.5), Addition of 0.2, 0.2, and 0.3 wt% of La 2 O 3 , NiO, and Ta 2 O 5 additives to the weight, followed by calcining in air at 1100 ° C. for 4 hours And then pulverized and granulated. Thereafter, this powder was pressure-molded at a pressure of 1000 kg / cm 2 so as to form a disk having a diameter of 23 mm and a height of 23 mm, and a binder removal treatment was performed.

焼結雰囲気の酸素濃度は表4に示すとおりとし、1375℃で焼結を行った。焼結後の冷却時には、1300℃から1150℃の温度範囲で300℃/時間、20℃/時間、100℃/時間、50℃/時間、25℃/時間で等速冷却を行い、他の温度範囲は300℃/時間で等速冷却を行った。得られた直径約20mm、高さ約20mmの円柱状焼結体の高さ方向の中央部から、直径20mm、高さ8mmの測定試料を切り出し、空洞共振器法を用いて、共振周波数2.8GHzにおける比誘電率、Qf積を求め、その結果を表4に示す。   The oxygen concentration in the sintering atmosphere was as shown in Table 4, and sintering was performed at 1375 ° C. During cooling after sintering, cooling is performed at a constant temperature in the temperature range of 1300 ° C to 1150 ° C at 300 ° C / hour, 20 ° C / hour, 100 ° C / hour, 50 ° C / hour, 25 ° C / hour, and other temperatures. The cooling was performed at a constant rate of 300 ° C./hour. A measurement sample having a diameter of 20 mm and a height of 8 mm is cut out from the central portion in the height direction of the obtained cylindrical sintered body having a diameter of about 20 mm and a height of about 20 mm, and a resonance frequency of 2. mm is obtained using the cavity resonator method. The relative dielectric constant and Qf product at 8 GHz were determined, and the results are shown in Table 4.

Figure 2005187272
Figure 2005187272

表4によれば、全ての試料において、焼結雰囲気の酸素濃度が高いほど比誘電率が増大していることがわかる。この増大幅は、冷却速度には依存しなかった。また、冷却速度が100℃/時間以下の場合には、Qf積は32〜43THzの範囲に分布し、冷却速度が100℃/時間よりも大きな場合には、Qf積は21〜30の範囲に分布しており、冷却速度を100℃/時間以下とすることにより、Qf積が顕著に向上している。すなわち、焼結・冷却時の酸素濃度を30%以上とし、かつ、冷却速度を100℃/時間以下とすることにより、大気中焼結の場合と比較して、比誘電率とQf積の両者を同時に向上することができる。   According to Table 4, it can be seen that in all the samples, the relative permittivity increases as the oxygen concentration in the sintering atmosphere increases. This increase was not dependent on the cooling rate. Further, when the cooling rate is 100 ° C./hour or less, the Qf product is distributed in the range of 32 to 43 THz, and when the cooling rate is larger than 100 ° C./hour, the Qf product is in the range of 21 to 30. The Qf product is remarkably improved by setting the cooling rate to 100 ° C./hour or less. That is, by setting the oxygen concentration during sintering / cooling to 30% or more and the cooling rate to 100 ° C./hour or less, both the relative dielectric constant and the Qf product are compared with those in the case of sintering in air. Can be improved at the same time.

Claims (4)

ZrO2、SnO2、TiO2を主成分とし、その主成分組成比をxZrO2・ySnO2・zTiO2(x+y+z=100mol%)とする誘電体磁器組成物であって、組成比が31≦x≦42、9≦y≦18、残部がTiO2であり、かつ、主成分総重量に対するLa23、NiO、Ta25の添加量をそれぞれu,v,w,wt%と表すとき、0.1≦u≦0.5、0.1≦v≦0.5、0.1≦w≦0.5であることを特徴とする誘電体磁器組成物。 A dielectric ceramic composition comprising ZrO 2 , SnO 2 , TiO 2 as main components and a main component composition ratio of xZrO 2 .ySnO 2 .zTiO 2 (x + y + z = 100 mol%), wherein the composition ratio is 31 ≦ x ≦ 42, 9 ≦ y ≦ 18, the balance is TiO 2 , and the addition amount of La 2 O 3 , NiO, Ta 2 O 5 with respect to the total weight of the main components is expressed as u, v, w, wt%, respectively. 0.1 ≦ u ≦ 0.5, 0.1 ≦ v ≦ 0.5, 0.1 ≦ w ≦ 0.5. 請求項1に記載された誘電体磁器組成物において、その焼結後の体積が、中空でない円柱型に換算して直径20mm以上、高さ20mm以上であり、焼結温度1300℃から1450℃の範囲で、焼結雰囲気の酸素濃度が30%以上で焼結され、冷却時に1150℃以上の温度で等速冷却に換算して100℃/時間以下に対応する冷却速度で徐冷あるいは多段冷却あるいは定温保持されて作製され、比誘電率が36〜44、Q・f積が20THz以上の特性を有し、かつ25〜75℃における共振周波数の温度係数τfの絶対値が35ppm/℃以下であることを特徴とする誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein the volume after sintering is 20 mm or more in diameter and 20 mm or more in height when converted to a hollow cylindrical shape, and the sintering temperature is 1300 ° C to 1450 ° C. In the range, the sintered atmosphere is sintered at an oxygen concentration of 30% or more, and is cooled at a temperature of 1150 ° C. or more at the time of cooling at a cooling rate corresponding to 100 ° C./hour or less when converted to constant cooling or multistage cooling or Produced by holding at a constant temperature, the dielectric constant is 36 to 44, the Q · f product is 20 THz or more, and the absolute value of the temperature coefficient τf of the resonance frequency at 25 to 75 ° C. is 35 ppm / ° C. or less. A dielectric ceramic composition characterized by the above. ZrO2、SnO2、TiO2を主成分とする誘電体磁器組成物の製造方法であって、その主成分組成比をxZrO2・ySnO2・zTiO2(x+y+z=100mol%)と表すとき、組成比を31≦x≦42、9≦y≦18、残部をTiO2とし、かつ、主成分総重量に対するLa23、NiO、Ta25の添加量をそれぞれu,v,w,wt%と表すとき、0.1≦u≦0.5、0.1≦v≦0.5、0.1≦w≦0.5とし、前記誘電体磁器組成物の原料を、酸素濃度30%以上の焼結雰囲気中で1300℃から1450℃の温度範囲で焼結することを特徴とする誘電体磁器組成物の製造方法。 A method for producing a dielectric ceramic composition mainly composed of ZrO 2 , SnO 2 , and TiO 2 , wherein the composition ratio is expressed as xZrO 2 .ySnO 2 .zTiO 2 (x + y + z = 100 mol%). The ratio is 31 ≦ x ≦ 42, 9 ≦ y ≦ 18, the balance is TiO 2 , and the addition amounts of La 2 O 3 , NiO, Ta 2 O 5 with respect to the total weight of the main components are u, v, w, wt, respectively. %, 0.1 ≦ u ≦ 0.5, 0.1 ≦ v ≦ 0.5, 0.1 ≦ w ≦ 0.5, and the raw material of the dielectric ceramic composition has an oxygen concentration of 30%. A method for producing a dielectric ceramic composition, comprising sintering in a temperature range of 1300 ° C. to 1450 ° C. in the above sintering atmosphere. 請求項3に記載の誘電体磁器組成物の製造方法において、焼結雰囲気の酸素濃度を30%以上として焼結し、これに引き続いて冷却を行う際に、1150℃以上の温度において、等速冷却に換算して100℃/時間以下に対応する冷却速度で徐冷あるいは多段冷却あるいは定温保持を行うこと特徴とする誘電体磁器組成物の製造方法。   4. The method for producing a dielectric ceramic composition according to claim 3, wherein the sintering is performed at an oxygen concentration of 30% or higher and at a temperature of 1150 [deg.] C. or higher when the sintering is performed and cooling is subsequently performed. A method for producing a dielectric ceramic composition comprising performing slow cooling, multistage cooling, or constant temperature holding at a cooling rate corresponding to 100 ° C./hour or less in terms of cooling.
JP2003431869A 2003-12-26 2003-12-26 Dielectric ceramic composition and its production method Withdrawn JP2005187272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431869A JP2005187272A (en) 2003-12-26 2003-12-26 Dielectric ceramic composition and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431869A JP2005187272A (en) 2003-12-26 2003-12-26 Dielectric ceramic composition and its production method

Publications (1)

Publication Number Publication Date
JP2005187272A true JP2005187272A (en) 2005-07-14

Family

ID=34789747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431869A Withdrawn JP2005187272A (en) 2003-12-26 2003-12-26 Dielectric ceramic composition and its production method

Country Status (1)

Country Link
JP (1) JP2005187272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777116A (en) * 2016-04-13 2016-07-20 苏州子波电子科技有限公司 Microwave dielectric ceramic and preparation method thereof
CN105884351A (en) * 2016-04-13 2016-08-24 苏州子波电子科技有限公司 Microwave dielectric ceramic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777116A (en) * 2016-04-13 2016-07-20 苏州子波电子科技有限公司 Microwave dielectric ceramic and preparation method thereof
CN105884351A (en) * 2016-04-13 2016-08-24 苏州子波电子科技有限公司 Microwave dielectric ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100203515B1 (en) Dielectric ceramic composition for high frequency
JP4506802B2 (en) Dielectric porcelain composition
JP6172706B2 (en) Dielectric ceramic composition based on BaO-MgO-Ta2O5-based oxide, and microwave dielectric resonator having a high Q value manufactured from the composition
JP3995319B2 (en) Dielectric material and manufacturing method thereof
JP3793485B2 (en) Microwave dielectric porcelain composition and method for producing the porcelain
JP4680469B2 (en) Dielectric ceramic composition and dielectric resonator using the same
KR100360974B1 (en) Method for Preparing Dielectric Ceramic Compositions
JP2005187272A (en) Dielectric ceramic composition and its production method
JP2004256360A (en) Microwave dielectric porcelain composition and its manufacturing method
JP3598851B2 (en) Dielectric ceramic composition, method of manufacturing the same, dielectric resonator and dielectric filter using the same
KR100523164B1 (en) Dielectric Ceramic Compositions for High Frequency Applications
JP3376855B2 (en) Dielectric ceramic composition, method of manufacturing the same, dielectric resonator and dielectric filter using the same
JP2007045690A (en) Dielectric porcelain composition
KR101130675B1 (en) Dielectric material and method for fabricating the same
Chen Microwave dielectric properties of x (Mg0. 7Zn0. 3) 0.95 Co0. 05TiO3–(1− x) Ca0. 8Sm0. 4/3TiO3 ceramics with a zero temperature coefficient of resonant frequency
KR100489887B1 (en) Microwave dielectric ceramic compositions and prepartion method thereof
JP4541692B2 (en) Dielectric porcelain composition
JPH06295619A (en) Dielectric porcelain and dielectric oscillator
KR100415983B1 (en) Dielectric Ceramic Compositions for High Frequency Applications
KR0146001B1 (en) Dielectric ceramics
KR100261549B1 (en) Dielectric ceramic composition for microwave
KR0134532B1 (en) Dielectric ceramic composition for high frequency waves
KR101589687B1 (en) Dielectric Ceramic Compositions for High Frequency and the Manufacturing Method of the Same
JP4790885B2 (en) Dielectric resonator and method for manufacturing dielectric material for dielectric resonator
KR100545850B1 (en) High Frequency Dielectric Ceramic Composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070116