JP2005186565A - Manufacturing method for flexible laminated sheet - Google Patents

Manufacturing method for flexible laminated sheet Download PDF

Info

Publication number
JP2005186565A
JP2005186565A JP2003434026A JP2003434026A JP2005186565A JP 2005186565 A JP2005186565 A JP 2005186565A JP 2003434026 A JP2003434026 A JP 2003434026A JP 2003434026 A JP2003434026 A JP 2003434026A JP 2005186565 A JP2005186565 A JP 2005186565A
Authority
JP
Japan
Prior art keywords
heat
film
resistant adhesive
protective film
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003434026A
Other languages
Japanese (ja)
Other versions
JP4299659B2 (en
Inventor
Takeshi Kikuchi
剛 菊池
Hiroyuki Tsuji
宏之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2003434026A priority Critical patent/JP4299659B2/en
Publication of JP2005186565A publication Critical patent/JP2005186565A/en
Application granted granted Critical
Publication of JP4299659B2 publication Critical patent/JP4299659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a flexible laminated sheet enhanced in appearance and dimensional stability after the removal of a metal foil. <P>SOLUTION: The manufacturing method for the flexible laminated sheet 5 constituted by laminating the metal foil 2 at least on one side of a heat-resistant adhesive film 3 includes a process for thermally laminating the heat-resistant adhesive film 3 and the metal foil 2 between a pair of metal rolls 4 through a protective film 1 and a process for separating the protective film 1, and the heat shrinkage factor of at least one of the heat-resistant adhesive film 3 and the protective film 1 is 0.1% or below at 200°C and 0.4% or below at 300°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱ラミネート工程を有するフレキシブル積層板の製造方法に関し、特に外観および金属箔除去後の寸法安定性を向上させたフレキシブル積層板の製造方法に関する。   The present invention relates to a method for producing a flexible laminate having a heat laminating process, and more particularly to a method for producing a flexible laminate having improved appearance and dimensional stability after removal of a metal foil.

従来から、ポリイミドフィルムなどの耐熱性接着フィルムの少なくとも一面に銅箔などの金属箔を貼り合わせてなるフレキシブル積層板が、携帯電話などの電気機器の中のプリント基板として用いられている。   2. Description of the Related Art Conventionally, a flexible laminate in which a metal foil such as a copper foil is bonded to at least one surface of a heat resistant adhesive film such as a polyimide film has been used as a printed board in an electric device such as a mobile phone.

従来、フレキシブル積層板は、耐熱性接着フィルムに金属箔をアクリル系またはエポキシ系などの接着剤で貼り合わせて製造されていた。しかしながら、近年、上記アクリル系またはエポキシ系などの接着剤を用いずに、耐熱性接着フィルムと金属箔とを熱ラミネートして製造されたフレキシブル積層板が耐熱性および耐久性の観点から注目されている。   Conventionally, flexible laminates have been manufactured by bonding a metal foil to a heat-resistant adhesive film with an acrylic or epoxy adhesive. However, in recent years, a flexible laminate produced by thermally laminating a heat-resistant adhesive film and a metal foil without using an acrylic or epoxy adhesive has attracted attention from the viewpoint of heat resistance and durability. Yes.

上記熱ラミネートして製造されたフレキシブル積層板は、ポリイミド系の接着層を用いることから耐熱性に優れている。また、フレキシブル積層板が折り畳み式携帯電話の折り畳み部のヒンジの箇所に用いられる場合には、接着剤を用いたフレキシブル積層板では約3万回の折り畳みが可能であるのに対して熱ラミネートによるフレキシブル積層板では約10万回の折り畳みが可能となるため耐久性にも優れている。   The flexible laminate produced by thermal lamination is excellent in heat resistance because it uses a polyimide adhesive layer. In addition, when the flexible laminate is used at the hinge portion of the folding part of the foldable mobile phone, the flexible laminate using the adhesive can be folded about 30,000 times, but by thermal lamination. The flexible laminate can be folded about 100,000 times and is excellent in durability.

電気機器の製造工程において、フレキシブル積層板ははんだリフローなどの高温に曝される工程を経るため、フレキシブル積層板の熱的な信頼性を高める観点から、耐熱性接着フィルムとしては、接着層としてガラス転移温度(Tg)が200℃以上のポリイミド系熱融着性層を有するフィルムが一般的に用いられている。したがって、耐熱性接着フィルムと金属箔とを熱ラミネートするためには、接着層となる熱融着性層のTgよりも高い、たとえば300℃以上の温度で熱ラミネートする必要があった。   In the manufacturing process of electrical equipment, the flexible laminate undergoes a process that is exposed to high temperatures such as solder reflow. Therefore, from the viewpoint of enhancing the thermal reliability of the flexible laminate, as a heat-resistant adhesive film, the adhesive layer is made of glass. A film having a polyimide heat-fusible layer having a transition temperature (Tg) of 200 ° C. or higher is generally used. Therefore, in order to thermally laminate the heat-resistant adhesive film and the metal foil, it is necessary to thermally laminate at a temperature higher than the Tg of the heat-fusible layer serving as the adhesive layer, for example, 300 ° C. or higher.

通常、熱ラミネート機は、熱ラミネート時における圧力の不均一性を緩和するために、熱ラミネートに用いられるロールの少なくとも一方にゴムロールが用いられている。しかしながら、ゴムロールを用いて300℃以上の高温で熱ラミネートすることは非常に困難であるため、一対の金属ロールを有する熱ラミネート機が用いられる。しかしながら、一対の金属ロールを用いて熱ラミネートをする場合には、ゴムロールを用いる場合と異なり、熱ラミネート時の圧力の均一性を保持するのが難しく、また、熱ラミネートの際に急激な温度変化が生じることから、フレキシブル積層板の外観にシワが発生してしまい、フレキシブル積層板の外観が悪くなってしまうという問題があった。そこで、耐熱性接着フィルムと金属箔を熱ラミネート機により貼り合わせる際に、一対の熱ロールとの間に保護フィルムを介在させることにより上記外観不良を改良する技術が提案されている(たとえば、特許文献1参照)。この技術によると、金属箔の外側に上記保護フィルムを介在させて金属箔と耐熱性接着フィルムとを熱ラミネートするため、上記保護フィルムによって、金属箔および耐熱性接着フィルムへの熱および圧力の集中を緩和するとともに、金属箔および耐熱性接着フィルムの膨張および収縮を抑制することにより、シワなどの外観不良の発生を抑制するものである。   Usually, in a heat laminating machine, a rubber roll is used as at least one of the rolls used for the heat laminating in order to alleviate the pressure non-uniformity during the heat laminating. However, since it is very difficult to heat laminate at a high temperature of 300 ° C. or higher using a rubber roll, a heat laminator having a pair of metal rolls is used. However, when heat laminating using a pair of metal rolls, unlike using a rubber roll, it is difficult to maintain the uniformity of pressure during heat laminating, and there is a rapid temperature change during heat laminating. Therefore, wrinkles are generated in the appearance of the flexible laminate, and there is a problem that the appearance of the flexible laminate is deteriorated. Therefore, a technique for improving the above-mentioned appearance defect by interposing a protective film between a pair of heat rolls when a heat-resistant adhesive film and a metal foil are bonded together by a heat laminator has been proposed (for example, patents). Reference 1). According to this technique, the metal foil and the heat-resistant adhesive film are heat-laminated by interposing the protective film outside the metal foil, so that the heat and pressure are concentrated on the metal foil and the heat-resistant adhesive film by the protective film. In addition to alleviating the above, the expansion and contraction of the metal foil and the heat-resistant adhesive film are suppressed, thereby suppressing the occurrence of appearance defects such as wrinkles.

しかしながら、耐熱性接着フィルムおよび保護フィルムに用いられるポリイミドフィルムは、フィルムの収縮を防止するために端部を固定して加熱、イミド化が行なわれることから、フィルム内に残留応力が存在する。かかるフィルム内の残存応力によりフレキシブル積層板に歪みが生じシワなどの外観不良が生じる場合があった。また、フレキシブル積層板の金属箔の少なくとも一部をエッチングして配線および/または回路を形成する場合に、フィルム内の残存応力によりフレキシブル積層板の金属箔除去後の寸法変化率が大きくなるという問題があった。
特開2001−129918号公報
However, since the polyimide film used for the heat resistant adhesive film and the protective film is subjected to heating and imidization while fixing the ends in order to prevent the film from shrinking, there is residual stress in the film. Such residual stress in the film may cause distortion in the flexible laminate and cause appearance defects such as wrinkles. Also, when forming a wiring and / or circuit by etching at least part of the metal foil of the flexible laminate, the dimensional change rate after removal of the metal foil of the flexible laminate increases due to residual stress in the film. was there.
JP 2001-129918 A

上記問題を解決するため、本発明は、外観および金属箔除去後の寸法安定性を向上させたフレキシブル積層板の製造方法を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a method for producing a flexible laminate having improved appearance and dimensional stability after removal of a metal foil.

本発明は、耐熱性接着フィルムの少なくとも一面に金属箔を貼り合わせてなるフレキシブル積層板の製造方法であって、耐熱性接着フィルムと金属箔とを一対の金属ロールの間において保護フィルムを介して熱ラミネートする工程と、保護フィルムを分離する工程とを含み、耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムの加熱収縮率が、200℃で0.1%以下、かつ300℃で0.4%以下であることを特徴とするフレキシブル積層板の製造方法である。   The present invention is a method for producing a flexible laminate comprising a metal foil bonded to at least one surface of a heat resistant adhesive film, wherein the heat resistant adhesive film and the metal foil are interposed between a pair of metal rolls through a protective film. Including a step of heat laminating and a step of separating the protective film, and the heat shrinkage ratio of at least one of the heat resistant adhesive film and the protective film is 0.1% or less at 200 ° C. and 0.1% at 300 ° C. It is a manufacturing method of the flexible laminated board characterized by being 4% or less.

本発明にかかるフレキシブル積層板の製造方法において、上記耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムの200℃〜300℃における線膨張係数αが、金属箔の200℃〜300℃における線膨張係数をα0とするとき、(α0−10)ppm/℃以上(α0+10)ppm/℃以下であることが好ましい。また、上記耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムが、ポリイミドフィルムであることが好ましい。また、上記耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムは、あらかじめ、200℃〜450℃で1秒間〜300秒間の加熱処理がされていることが好ましい。 In the method for producing a flexible laminate according to the present invention, the linear expansion coefficient α at 200 ° C. to 300 ° C. of at least one of the heat resistant adhesive film and the protective film is the linear expansion at 200 ° C. to 300 ° C. of the metal foil. When the coefficient is α 0 , it is preferably (α 0 −10) ppm / ° C. or more and (α 0 +10) ppm / ° C. or less. Moreover, it is preferable that at least 1 film is a polyimide film among the said heat resistant adhesive film and a protective film. Moreover, it is preferable that at least one film of the heat resistant adhesive film and the protective film is previously heat-treated at 200 to 450 ° C. for 1 to 300 seconds.

上記のように、本発明によれば、外観および金属箔除去後の寸法安定性を向上させたフレキシブル積層板の製造方法を提供することができる。   As mentioned above, according to this invention, the manufacturing method of the flexible laminated board which improved the external appearance and the dimensional stability after metal foil removal can be provided.

以下、本発明の実施の形態について説明する。なお、本願の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   Embodiments of the present invention will be described below. In the drawings of the present application, the same reference numerals denote the same or corresponding parts.

図1に、本発明に用いられる熱ラミネート機の好ましい一例の模式的な概略図を示す。この熱ラミネート機は、金属箔2と耐熱性接着フィルム3とを保護フィルム1を介して熱ラミネートするための一対の金属ロール4と、保護フィルム1を分離するための分離ロール6とを含む。   In FIG. 1, the typical schematic of a preferable example of the heat laminating machine used for this invention is shown. This thermal laminating machine includes a pair of metal rolls 4 for thermally laminating the metal foil 2 and the heat-resistant adhesive film 3 via the protective film 1 and a separation roll 6 for separating the protective film 1.

本発明にかかるフレキシブル積層板の一の製造方法は、図1を参照して、上記ラミネート機において、耐熱性接着フィルム3と金属箔2とが一対の金属ロール4の間で保護フィルム1を介して熱ラミネートされ、図2の拡大断面図に示すような耐熱性接着フィルム3と金属箔2とが貼り合わされてなるフレキシブル積層板5に保護フィルム1がさらに貼り合わされた積層体7が形成され、この積層体7が冷却されながら複数のロールによって搬送される。さらに、分離ロール6によって保護フィルム1が積層体7から分離され、図3の拡大断面図に示すようなフレキシブル積層板5を製造するものである。   One method for producing a flexible laminate according to the present invention is as follows. Referring to FIG. 1, in the laminating machine, a heat resistant adhesive film 3 and a metal foil 2 are interposed between a pair of metal rolls 4 via a protective film 1. A laminate 7 is formed in which the protective film 1 is further bonded to the flexible laminate 5 in which the heat-resistant adhesive film 3 and the metal foil 2 are bonded together as shown in the enlarged sectional view of FIG. The laminated body 7 is conveyed by a plurality of rolls while being cooled. Furthermore, the protective film 1 is separated from the laminated body 7 by the separation roll 6, and the flexible laminated board 5 as shown in the expanded sectional view of FIG. 3 is manufactured.

本発明においては、耐熱性接着フィルム3および保護フィルム1のうち少なくともひとつのフィルムの加熱収縮率が、200℃で0.1%以下、かつ300℃で0.4%以下である。かかる加熱収縮率が小さいフィルムを耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつとして用いることにより、熱ラミネートの際に生じるフレキシブル積層板の内部応力および歪みを低減して、フレキシブル積層板の外観および金属箔除去後の寸法安定性が向上する。かかる観点から、200℃における加熱収縮率は0.08%以下が好ましい。また、300℃における加熱収縮率は0.3%以下が好ましい。   In the present invention, the heat shrinkage of at least one of the heat resistant adhesive film 3 and the protective film 1 is 0.1% or less at 200 ° C. and 0.4% or less at 300 ° C. By using such a film having a low heat shrinkage rate as at least one of a heat resistant adhesive film and a protective film, the internal stress and strain of the flexible laminate produced during thermal lamination can be reduced, and the appearance and metal of the flexible laminate can be reduced. Dimensional stability after foil removal is improved. From this viewpoint, the heat shrinkage at 200 ° C. is preferably 0.08% or less. The heat shrinkage rate at 300 ° C. is preferably 0.3% or less.

本発明において、フィルムの加熱収縮率とは、フィルムを300℃で2時間の加熱処理する前のフィルム長さに対する加熱処理後のフィルム長さの収縮率をいう。かかる加熱収縮率はフィルムの残留応力の指標となるものであり、加熱収縮率が小さいほどフィルムの残留応力が小さいことを示す。   In the present invention, the heat shrinkage rate of the film refers to the shrinkage rate of the film length after the heat treatment relative to the film length before the film is heat treated at 300 ° C. for 2 hours. Such a heat shrinkage is an index of the residual stress of the film, and the smaller the heat shrinkage, the smaller the residual stress of the film.

本実施の形態において、耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムの200℃〜300℃における線膨張係数は、前記金属箔の200℃〜300℃における線膨張係数をα0とするとき、(α0−10)ppm/℃以上(α0+10)ppm/℃以下であることが好ましい。耐熱性接着フィルムおよび保護フィルムは、金属箔に直接接した状態で熱ラミネートされるため、耐熱性接着フィルムおよび保護フィルムの線膨張係数αと金属箔の線膨張係数α0との差が大きいとフレキシブル積層板の残留応力および歪みが大きくなる。かかる観点から、耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムの線膨張係数は、(α0−5)ppm/℃以上(α0+5)ppm/℃以下であることがより好ましい。なお、後述のように、耐熱性接着フィルムが2以上のフィルム層によって構成されている場合には、耐熱性接着フィルムの線膨張係数とは、2層以上のフィルム層によって構成される耐熱性接着フィルム全体の線膨張係数をいうものとする。 In the present embodiment, the linear expansion coefficient at 200 ° C. to 300 ° C. of at least one of the heat resistant adhesive film and the protective film is when the linear expansion coefficient of the metal foil at 200 ° C. to 300 ° C. is α 0. , (Α 0 −10) ppm / ° C. or more and (α 0 +10) ppm / ° C. or less is preferable. Since the heat-resistant adhesive film and the protective film are heat-laminated in a state of being in direct contact with the metal foil, the difference between the linear expansion coefficient α of the heat-resistant adhesive film and the protective film and the linear expansion coefficient α 0 of the metal foil is large. Residual stress and strain of the flexible laminate are increased. From this viewpoint, the linear expansion coefficient of at least one of the heat resistant adhesive film and the protective film is more preferably (α 0 −5) ppm / ° C. or more and (α 0 +5) ppm / ° C. or less. As will be described later, when the heat-resistant adhesive film is composed of two or more film layers, the linear expansion coefficient of the heat-resistant adhesive film is a heat-resistant adhesive composed of two or more film layers. The linear expansion coefficient of the whole film shall be said.

本実施の形態において、上記耐熱性接着フィルムおよび保護フィルムには特に制限はないが、耐熱性および耐久性に優れる観点から、耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムが、ポリイミドフィルムであることが好ましい。   In the present embodiment, the heat-resistant adhesive film and the protective film are not particularly limited, but from the viewpoint of excellent heat resistance and durability, at least one of the heat-resistant adhesive film and the protective film is a polyimide film. Preferably there is.

本実施の形態において、耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムは、あらかじめ、200℃〜450℃で1秒間〜300秒間の加熱処理がされていることが好ましい。かかる条件の加熱処理により、フィルムの加熱収縮率が、200℃で0.1%以下、かつ300℃で0.4%以下であるフィルムを容易に得ることができる。加熱処理温度が200℃未満または加熱処理時間が1秒未満であるとフィルム中の残留応力が十分に低減できない可能性があり、加熱処理温度が450℃を超える場合または加熱処理時間が300秒を超える場合はフィルムの物性が熱劣化する可能性がある。   In the present embodiment, it is preferable that at least one of the heat resistant adhesive film and the protective film is previously heat-treated at 200 to 450 ° C. for 1 to 300 seconds. By heat treatment under such conditions, a film having a heat shrinkage rate of 0.1% or less at 200 ° C. and 0.4% or less at 300 ° C. can be easily obtained. If the heat treatment temperature is less than 200 ° C. or the heat treatment time is less than 1 second, the residual stress in the film may not be sufficiently reduced. If the heat treatment temperature exceeds 450 ° C. or the heat treatment time is 300 seconds. If it exceeds, the physical properties of the film may be thermally deteriorated.

また、上記加熱処理の際の耐熱性接着フィルムおよび保護フィルムのうち少なくともひとつのフィルムにかかる張力はできるだけ低いことが好ましい。具体的には、フィルムにかかる張力は、0.01N/cm〜1.5N/cmが好ましく、0.02N/cm〜1.0N/cmがより好ましく、0.05N/cm〜0.8N/cmがさらに好ましい。フィルムにかかる張力が0.01N/cm未満であるとフィルム搬送時にたるみが生じ均一に巻き取れないなどの問題が生じる可能性があり、1.5N/cmを超えるとフィルムに強い張力がかかった状態で高温まで加熱されるため、加熱収縮率が改善されず逆に悪化する可能性がある。   Moreover, it is preferable that the tension | tensile_strength concerning at least 1 film among the heat resistant adhesive films and protective films in the case of the said heat processing is as low as possible. Specifically, the tension applied to the film is preferably 0.01 N / cm to 1.5 N / cm, more preferably 0.02 N / cm to 1.0 N / cm, and 0.05 N / cm to 0.8 N / cm. cm is more preferable. If the tension applied to the film is less than 0.01 N / cm, it may cause problems such as sag during film transport, and the film cannot be wound uniformly. If it exceeds 1.5 N / cm, the film is subjected to strong tension. Since it is heated to a high temperature in the state, the heat shrinkage rate may not be improved and may deteriorate.

なお、後述のように、耐熱性接着フィルムが熱可塑性フィルム層を有する場合には、この熱可塑性フィルムのガラス転位温度未満の温度で加熱処理する必要がある。かかる加熱処理を行なうことにより、耐熱性接着フィルムおよび保護フィルムの残留応力が低減し、フレキシブル積層板の歪みが低減することにより、フレキシブル積層板の外観と金属箔除去後の寸法安定性が向上する。   As will be described later, when the heat-resistant adhesive film has a thermoplastic film layer, it is necessary to perform heat treatment at a temperature lower than the glass transition temperature of the thermoplastic film. By performing such heat treatment, the residual stress of the heat resistant adhesive film and the protective film is reduced, and the distortion of the flexible laminate is reduced, thereby improving the appearance of the flexible laminate and the dimensional stability after removing the metal foil. .

上記条件の加熱処理により、フィルムの加熱収縮率が、200℃で0.1%以下、かつ300℃で0.4%以下であるフィルムを容易に得ることができる。加熱処理温度が200℃未満または加熱処理時間が1秒未満であるとフィルム中の残留応力が十分に低減できない可能性があり、加熱処理温度が450℃を超える場合または加熱処理時間が300秒を超える場合はフィルムの物性が熱劣化する可能性がある。   By the heat treatment under the above conditions, a film having a heat shrinkage ratio of 0.1% or less at 200 ° C. and 0.4% or less at 300 ° C. can be easily obtained. If the heat treatment temperature is less than 200 ° C. or the heat treatment time is less than 1 second, the residual stress in the film may not be sufficiently reduced. If the heat treatment temperature exceeds 450 ° C. or the heat treatment time is 300 seconds. If it exceeds, the physical properties of the film may be thermally deteriorated.

ここで、耐熱性接着フィルム3としては、熱融着性を示す樹脂からなる単層フィルム、熱融着性を示さないコア層の両面または片面に熱融着性を示す樹脂からなる熱融着性層を形成した複数層フィルムなどを用いることができる。ここで、熱融着性を示す樹脂としては、熱可塑性ポリイミド成分で構成される樹脂が好ましく、たとえば、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミドなどを用いることができる。中でも、熱可塑性ポリイミドおよび熱可塑性ポリエステルイミドを用いることが特に好ましい。また、熱融着性を示さないコア層としては、熱融着性を示す樹脂からなる熱融着性層の強度を補強し、耐熱性を保持するものであれば特に限定されず、たとえば非熱可塑性ポリイミドフィルム、アラミドフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリアリレートフィルムまたはポリエチレンナフタレートフィルムなどを用いることができる。しかし、電気的特性(絶縁性)の観点から、非熱可塑性ポリイミドフィルムを用いることが特に好ましい。   Here, as the heat-resistant adhesive film 3, a single-layer film made of a resin showing heat-fusibility, a heat-welding made of a resin showing heat-fusibility on both sides or one side of a core layer not showing heat-fusibility A multi-layer film on which a conductive layer is formed can be used. Here, as the resin exhibiting heat-fusibility, a resin composed of a thermoplastic polyimide component is preferable. For example, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyetherimide, thermoplastic polyesterimide, or the like is used. Can do. Among these, it is particularly preferable to use thermoplastic polyimide and thermoplastic polyesterimide. The core layer that does not exhibit heat-fusibility is not particularly limited as long as it reinforces the strength of the heat-fusible layer made of a resin that exhibits heat-fusibility and retains heat resistance. A thermoplastic polyimide film, an aramid film, a polyether ether ketone film, a polyether sulfone film, a polyarylate film, a polyethylene naphthalate film, or the like can be used. However, it is particularly preferable to use a non-thermoplastic polyimide film from the viewpoint of electrical characteristics (insulating properties).

本発明において、「熱可塑性」とは加熱により可塑性を示し、冷却により可塑性を示さなくなるという特性をいい、特に上記熱ラミネート時において熱融着性を示すことにより後述の金属箔と貼り合わされることが可能となる特性を示すものとする。また、「非熱可塑性」とは熱硬化性ではないがラミネート温度において可塑性を示さない特性をいい、ガラス転位温度が分解温度より高いポリイミドフィルムに加えて、ガラス転位温度が分解温度より低くてもラミネート温度より高いポリイミドフィルムを含むものとする。   In the present invention, the term “thermoplastic” refers to the property of exhibiting plasticity by heating and not exhibiting plasticity by cooling. In particular, it is bonded to a metal foil described later by exhibiting heat-fusibility at the time of thermal lamination. It shall exhibit the characteristics that can be. “Non-thermoplastic” means a property that is not thermosetting but does not exhibit plasticity at the lamination temperature. In addition to a polyimide film having a glass transition temperature higher than the decomposition temperature, the glass transition temperature may be lower than the decomposition temperature. A polyimide film higher than the laminating temperature shall be included.

また、保護フィルム1の25℃における引張弾性率は、2GPa以上10GPa以下であることが好ましい。引張弾性率が2GPa未満であると熱ラミネートの際の張力によって保護フィルムが伸びる可能性があり、10GPaを超えると保護フィルムが硬くなり熱ラミネートの際の金属箔および耐熱性接着フィルムへの熱および圧力の集中を緩和する効果が損なわれる可能性がある。かかる観点から、保護フィルムの25℃における引張弾性率は、4GPa以上6GPa以下であることがより好ましい。   Moreover, it is preferable that the tensile elasticity modulus in 25 degreeC of the protective film 1 is 2 GPa or more and 10 GPa or less. If the tensile elastic modulus is less than 2 GPa, the protective film may be stretched by the tension during thermal lamination, and if it exceeds 10 GPa, the protective film becomes hard and the heat applied to the metal foil and heat-resistant adhesive film during thermal lamination The effect of reducing the concentration of pressure may be impaired. From this viewpoint, the tensile elastic modulus at 25 ° C. of the protective film is more preferably 4 GPa or more and 6 GPa or less.

また、保護フィルム1の厚さは75μm以上であることが好ましい。保護フィルムの厚さが75μm未満であると、熱ラミネートの際の金属箔および耐熱性接着フィルムへの熱および圧力の集中を緩和する効果が小さくなる。かかる観点から、保護フィルムの厚さは125μm以上であることがより好ましい。一方、保護フィルムの厚さは225μm以下であることが好ましい。保護フィルムの厚さが225μmを超えると、熱ラミネートの際に熱ロールからの熱が伝わりにくい、熱ラミネート後の保護フィルム分離の円滑さが損なわれるなどの支障が生じる可能性がある。   Moreover, it is preferable that the thickness of the protective film 1 is 75 micrometers or more. When the thickness of the protective film is less than 75 μm, the effect of alleviating the concentration of heat and pressure on the metal foil and the heat-resistant adhesive film during thermal lamination becomes small. From this viewpoint, the thickness of the protective film is more preferably 125 μm or more. On the other hand, the thickness of the protective film is preferably 225 μm or less. When the thickness of the protective film exceeds 225 μm, there is a possibility that troubles such as difficulty in transferring heat from the heat roll during thermal lamination and impaired smoothness of separation of the protective film after thermal lamination.

また、保護フィルムとしては、特に制限はなく、銅箔、アルミニウム箔、SUS箔などの金属箔の他、ポリイミドフィルムなどが好ましく用いられる。さらに耐熱性、耐久性などのバランスに優れる点から非熱可塑性のポリイミドフィルムが特に好ましく用いられる。   Moreover, there is no restriction | limiting in particular as a protective film, A polyimide film etc. other than metal foils, such as copper foil, aluminum foil, and SUS foil, are used preferably. Furthermore, a non-thermoplastic polyimide film is particularly preferably used from the viewpoint of excellent balance between heat resistance and durability.

金属箔2としては、たとえば、銅箔、ニッケル箔、アルミニウム箔またはステンレススチール箔などが用いられる。金属箔2は単層で構成されていてもよく、表面に防錆層や耐熱層(たとえば、クロム、亜鉛、ニッケルなどのメッキ処理による層)が形成された複数の層で構成されていてもよい。中でも、金属箔2としては、導電性およびコストの観点から、銅箔を用いることが好ましい。また、銅箔の種類としては、たとえば圧延銅箔、電解銅箔またはHTE銅箔などがある。また、金属箔2の厚みが薄いほどプリント基板となるフレキシブル積層板における回路パターンの線幅を細線化できることから、金属箔2の厚みは35μm以下であることが好ましく、18μm以下であることがより好ましい。   As the metal foil 2, for example, a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil is used. The metal foil 2 may be composed of a single layer, or may be composed of a plurality of layers in which a rust prevention layer or a heat-resistant layer (for example, a layer formed by plating treatment of chromium, zinc, nickel, etc.) is formed on the surface. Good. Among these, as the metal foil 2, it is preferable to use a copper foil from the viewpoint of conductivity and cost. Examples of the copper foil include a rolled copper foil, an electrolytic copper foil, and an HTE copper foil. Moreover, since the line width of the circuit pattern in the flexible laminated board used as a printed circuit board can be thinned, so that the thickness of the metal foil 2 is thin, it is preferable that the thickness of the metal foil 2 is 35 micrometers or less, and it is 18 micrometers or less. preferable.

また、金属ロール4による熱ラミネート温度は、耐熱性接着フィルム3の熱融着性を示す樹脂のガラス転移温度よりも50℃以上高い温度であることが好ましく、熱ラミネート速度を上げるためには、耐熱性接着フィルム3のガラス転移温度よりも100℃以上高い温度であることがさらに好ましい。金属ロール4の加熱方式としては、たとえば、熱媒循環方式、熱風加熱方式または誘電加熱方式などがある。   The heat laminating temperature by the metal roll 4 is preferably 50 ° C. or more higher than the glass transition temperature of the resin showing the heat-fusibility of the heat-resistant adhesive film 3, and in order to increase the heat laminating speed, It is more preferable that the temperature is 100 ° C. or more higher than the glass transition temperature of the heat resistant adhesive film 3. Examples of the heating method for the metal roll 4 include a heat medium circulation method, a hot air heating method, and a dielectric heating method.

また、金属ロール4における熱ラミネート時の圧力(線圧)は49N/cm以上490N/cm以下であることが好ましい。熱ラミネート時の線圧が49N/cm未満である場合には線圧が小さすぎて金属箔2と耐熱性接着フィルム3との密着性が弱まる傾向にあり、490N/cmよりも大きい場合には線圧が大きすぎてフレキシブル積層板5に歪みが生じて金属箔2の除去後のフレキシブル積層板5の寸法変化が大きくなることがある。かかる観点から、熱ラミネート時の線圧は98N/cm以上294N/cm以下であることがより好ましい。金属ロール4の加圧方式としては、たとえば、油圧方式、空気圧方式またはギャップ間圧力方式などがある。   Moreover, it is preferable that the pressure (linear pressure) at the time of the thermal lamination in the metal roll 4 is 49 N / cm or more and 490 N / cm or less. When the linear pressure during thermal lamination is less than 49 N / cm, the linear pressure is too small and the adhesion between the metal foil 2 and the heat resistant adhesive film 3 tends to be weakened. In some cases, the linear pressure is too large, and the flexible laminate 5 is distorted, resulting in a large dimensional change of the flexible laminate 5 after the metal foil 2 is removed. From this viewpoint, the linear pressure during thermal lamination is more preferably 98 N / cm or more and 294 N / cm or less. Examples of the pressurizing method for the metal roll 4 include a hydraulic method, a pneumatic method, and a gap pressure method.

また、熱ラミネート速度には、特に制限はないが、生産性向上の観点から、0.5m/min以上であることが好ましく、1m/min以上であることがさらに好ましい。   Moreover, although there is no restriction | limiting in particular in the heat | fever lamination speed | rate, from a viewpoint of productivity improvement, it is preferable that it is 0.5 m / min or more, and it is further more preferable that it is 1 m / min or more.

また、熱ラミネート前に、急激な温度上昇を避ける観点から、保護フィルム1、金属箔2および耐熱性接着フィルム3に予備加熱を施すことが好ましい。ここで、予備加熱は、たとえば、保護フィルム1、金属箔2および耐熱性接着フィルム3を熱ロール4に接触させることによって行なうことができる。   Moreover, it is preferable to preheat the protective film 1, the metal foil 2, and the heat resistant adhesive film 3 from the viewpoint of avoiding a rapid temperature rise before heat lamination. Here, the preheating can be performed, for example, by bringing the protective film 1, the metal foil 2, and the heat resistant adhesive film 3 into contact with the heat roll 4.

また、熱ラミネート前に、保護フィルム1、金属箔2および耐熱性接着フィルム3の異物を除去する工程を設けることが好ましい。特に、保護フィルム1を繰り返し用いるためには、保護フィルム1に付着した異物の除去が重要となる。異物を除去する工程としては、たとえば、水や溶剤などを用いた洗浄処理や粘着ゴムロールによる異物の除去などがある。中でも、粘着ゴムロールを用いる方法は、簡便な設備である点から好ましい。   Moreover, it is preferable to provide the process of removing the foreign material of the protective film 1, the metal foil 2, and the heat resistant adhesive film 3 before heat lamination. In particular, in order to repeatedly use the protective film 1, it is important to remove foreign matters attached to the protective film 1. Examples of the step of removing the foreign matter include a cleaning process using water or a solvent, and the removal of the foreign matter with an adhesive rubber roll. Especially, the method using an adhesive rubber roll is preferable from the point of simple equipment.

さらに、熱ラミネート前に、保護フィルム1および耐熱性接着フィルム3の静電気を除去する工程を設けることが好ましい。静電気を除去する工程としては、たとえば除電エアによる静電気の除去などがある。   Furthermore, it is preferable to provide a step of removing static electricity from the protective film 1 and the heat-resistant adhesive film 3 before thermal lamination. As a process of removing static electricity, there is, for example, removal of static electricity by static elimination air.

以下、実施例および比較例に基づいて、本発明をより具体的に説明する。なお、実施例および比較例において、加熱収縮率、線膨張係数、外観、寸法変化率は以下のようにして測定または評価した。   Hereinafter, based on an Example and a comparative example, this invention is demonstrated more concretely. In Examples and Comparative Examples, the heat shrinkage rate, the linear expansion coefficient, the appearance, and the dimensional change rate were measured or evaluated as follows.

[加熱収縮率]
耐熱性接着フィルムおよび保護フィルムの加熱収縮率は、JIS C6481を参考にして以下のように測定・算出した。すなわち、フィルムから200mm×200mmのサンプルを切り出し、このサンプルにおいて150mm×150mmの正方形の四隅に直径1mmの穴を形成した。このサンプルを20℃、60%RHの恒温恒湿室に12時間放置して調湿した後、上記4つの穴の距離を測定した。その後、このサンプルを300℃で2時間加熱処理した後、20℃、60%RHの恒温恒湿室で30分間冷却し、加熱処理前と同様にして、4つの穴の距離を測定した。加熱処理前の各穴の距離の測定値をD1、加熱処理後の各穴の距離の測定値をD2として、下式(1)により加熱収縮率を算出した。この加熱収縮率の値が小さいほど、残留応力が小さいことを示す。
[Heating shrinkage]
The heat shrinkage rate of the heat resistant adhesive film and the protective film was measured and calculated as follows with reference to JIS C6481. That is, a 200 mm × 200 mm sample was cut out from the film, and holes having a diameter of 1 mm were formed in the four corners of a 150 mm × 150 mm square in this sample. The sample was left in a constant temperature and humidity chamber at 20 ° C. and 60% RH for 12 hours to adjust the humidity, and the distance between the four holes was measured. Thereafter, this sample was heat-treated at 300 ° C. for 2 hours, then cooled in a constant temperature and humidity chamber at 20 ° C. and 60% RH for 30 minutes, and the distance between the four holes was measured in the same manner as before the heat treatment. The heat shrinkage rate was calculated by the following equation (1), where D1 is the measured distance between the holes before the heat treatment, and D2 is the measured distance between the holes after the heat treatment. It shows that a residual stress is so small that the value of this heat shrinkage rate is small.

加熱収縮率(%)={(D2−D1)/D1}×100 (1)
[線膨張係数]
線膨張係数とは、圧力一定のもとで、物体が熱膨張する時、その長さの相対変化量の温度変化量に対する割合をいい、本発明においては、ppm/℃の単位を用いて表示する。保護フィルム、耐熱性接着フィルムおよび金属箔の線膨張係数は、セイコーインスツルメント社製熱機械的分析装置(商品名:TMA(Thermomechanical Analyzer)120C)により、窒素気流下、上昇温度10℃/minにて、10℃から330℃の温度範囲で測定した後、200℃〜300℃の範囲内の平均値を求めた。
Heat shrinkage rate (%) = {(D2-D1) / D1} × 100 (1)
[Linear expansion coefficient]
The linear expansion coefficient is the ratio of the relative change amount of the length to the temperature change amount when the object is thermally expanded under a constant pressure. In the present invention, the linear expansion coefficient is expressed in units of ppm / ° C. To do. The linear expansion coefficient of the protective film, the heat-resistant adhesive film, and the metal foil was measured using a thermomechanical analyzer (trade name: TMA (Thermomechanical Analyzer) 120C) manufactured by Seiko Instruments Co. Then, after measuring in a temperature range of 10 ° C to 330 ° C, an average value in a range of 200 ° C to 300 ° C was obtained.

[外観]
フレキシブル積層板の外観は、目視により評価した。特に、フレキシブル積層板1m2あたりに発生したシワの個数を数えることにより、以下の評価基準により評価した。
◎・・・シワが全くない
○・・・1m2あたりにシワが1個以下
×・・・1m2あたりにシワが2個以上
[寸法変化率]
金属箔除去前後の寸法変化率は、JIS C6481を参考にして、以下のように測定・算出した。すなわち、フレキシブル積層板から200mm×200mmのサンプルを切り出し、このサンプルにおいて150mm×150mmの正方形の四隅に直径1mmの穴を形成した。このサンプルを20℃、60%RHの恒温恒湿室に12時間放置して調湿した後、上記4つの穴の距離を測定した。次に、フレキシブル積層板の金属箔をエッチング処理により除去した後、20℃60%RHの恒温室に24時間放置した。その後、エッチング処理前と同様に、4つの穴についてそれぞれの距離を測定した。金属箔除去前の各穴の距離の測定値をD3、金属箔除去後の各穴の距離の測定値をD4として、下式(2)に基づいて寸法変化率を算出した。この寸法変化率の値が小さいほど、寸法安定性に優れていることを示す。
[appearance]
The appearance of the flexible laminate was evaluated visually. In particular, the following evaluation criteria were evaluated by counting the number of wrinkles generated per 1 m 2 of the flexible laminate.
◎ ··· there is no wrinkles ○ wrinkles per ··· 1m 2 wrinkles are two or more per × ··· 1m 2 1 or less
[Dimensional change rate]
The dimensional change rate before and after removing the metal foil was measured and calculated as follows with reference to JIS C6481. That is, a 200 mm × 200 mm sample was cut out from the flexible laminate, and holes with a diameter of 1 mm were formed in the four corners of a 150 mm × 150 mm square in this sample. The sample was left in a constant temperature and humidity chamber at 20 ° C. and 60% RH for 12 hours to adjust the humidity, and the distance between the four holes was measured. Next, after removing the metal foil of the flexible laminate by etching, it was left in a temperature-controlled room at 20 ° C. and 60% RH for 24 hours. Thereafter, the distances of the four holes were measured as before the etching process. The dimensional change rate was calculated based on the following equation (2), where D3 was the measured distance of each hole before removing the metal foil, and D4 was the measured distance of each hole after removing the metal foil. It shows that it is excellent in dimensional stability, so that the value of this dimensional change rate is small.

寸法変化率(%)={(D4−D3)/D3}×100 (2)
(実施例1)
図1に示す熱ラミネート機を用いてフレキシブル積層板を製造した。まず、耐熱性接着フィルム3として非熱可塑性のポリイミドフィルムからなるコア層の両面に熱可塑性ポリイミド樹脂層(ガラス転移温度:240℃)を備え、加熱収縮率が200℃で0.07%、300℃で0.3%、線膨張係数が21ppm/℃、厚さ25μmの三層構造の接着フィルムが巻きつけられているロールと、金属箔2として線膨張係数が19ppm/℃、厚さ18μmの銅箔が巻きつけられているロールと、保護フィルム1として加熱収縮率が200℃で0.08%、300℃で0.2%、線膨張係数が16ppm/℃、引張弾性率が4GPa、厚さ125μmの非熱可塑性ポリイミドフィルムが巻きつけられているロールとを熱ラミネート機に設置した。
Dimensional change rate (%) = {(D4-D3) / D3} × 100 (2)
(Example 1)
The flexible laminated board was manufactured using the heat laminating machine shown in FIG. First, a thermoplastic polyimide resin layer (glass transition temperature: 240 ° C.) is provided on both surfaces of a core layer made of a non-thermoplastic polyimide film as the heat resistant adhesive film 3, and the heat shrinkage is 0.07% at 300 ° C., 300 A roll around which an adhesive film having a three-layer structure having a linear expansion coefficient of 0.3%, a linear expansion coefficient of 21 ppm / ° C., and a thickness of 25 μm is wound, and the metal foil 2 has a linear expansion coefficient of 19 ppm / ° C. A roll around which copper foil is wound, and the protective film 1 has a heat shrinkage of 0.08% at 200 ° C., 0.2% at 300 ° C., a linear expansion coefficient of 16 ppm / ° C., a tensile modulus of 4 GPa, a thickness A roll around which a non-thermoplastic polyimide film having a thickness of 125 μm was wound was placed in a thermal laminator.

次いで、これらのロールを回転させて、除電、異物の除去および予備加熱を行なった後に、接着フィルム、銅箔および非熱可塑性ポリイミドフィルムを一対の金属ロール4にて、熱ラミネート条件(温度:360℃、線圧:196N/cm、熱ラミネート速度:1.5m/min)で熱ラミネートし、接着フィルムの両面に銅箔および非熱可塑性ポリイミドフィルムがこの順序で貼り合わされた五層構造の積層体7を作製した。   Next, after these rolls are rotated to remove static electricity, remove foreign matter, and preheat, the adhesive film, copper foil, and non-thermoplastic polyimide film are heat laminated under a pair of metal rolls 4 (temperature: 360). (5 ° C., linear pressure: 196 N / cm, thermal laminating speed: 1.5 m / min), and a laminate having a five-layer structure in which a copper foil and a non-thermoplastic polyimide film are bonded in this order on both sides of the adhesive film 7 was produced.

そして、積層体7を複数のロールによって徐冷した後、分離ロール6により銅箔から非熱可塑性ポリイミドフィルムを分離して、フレキシブル積層板5を製造した。このフレキシブル積層板の外観評価および寸法測定を行なった。   And after cooling the laminated body 7 with a some roll, the non-thermoplastic polyimide film was isolate | separated from copper foil with the separation roll 6, and the flexible laminated board 5 was manufactured. Appearance evaluation and dimension measurement of this flexible laminate were performed.

さらに、上記フレキシブル積層板の銅箔をエッチング処理により除去し、銅箔除去後の寸法を測定して、金属箔(銅箔)除去前後の寸法変化率(MD方向、TD方向)を算出した。これらの結果を表1に示す。表1に示すように、実施例1のフレキシブル積層板にはシワが全くなく、銅箔除去前後の寸法変化率は、MD方向が−0.03%、TD方向が+0.02%であった。   Furthermore, the copper foil of the said flexible laminated board was removed by the etching process, the dimension after copper foil removal was measured, and the dimensional change rate (MD direction, TD direction) before and behind metal foil (copper foil) removal was computed. These results are shown in Table 1. As shown in Table 1, the flexible laminate of Example 1 had no wrinkles, and the dimensional change rate before and after removing the copper foil was -0.03% in the MD direction and + 0.02% in the TD direction. .

(実施例2)
耐熱性接着フィルムとして、加熱収縮率が200℃で0.07%、300℃で0.3%、線膨張係数が21ppm/℃、厚さ25μmの実施例1と同様の三層構造を有する接着フィルムを用い、保護フィルムとして、加熱収縮率が200℃で0.1%、300℃で0.4%、線膨張係数が12ppm/℃、引張弾性率が6GPa、厚さ125μmの非熱可塑性ポリイミドフィルムを用いた以外は、実施例1と同様にして、フレキシブル積層板を製造し外観評価を行ない、金属箔(銅箔)除去前後の寸法変化率を算出した。結果を表1に示す。実施例2のフレキシブル積層板にはシワが全くなく、銅箔除去前後の寸法変化率は、MD方向が−0.04%、TD方向が+0.03%であった。
(Example 2)
As a heat-resistant adhesive film, an adhesive having a three-layer structure similar to Example 1 having a heat shrinkage of 0.07% at 200 ° C., 0.3% at 300 ° C., a linear expansion coefficient of 21 ppm / ° C., and a thickness of 25 μm. Non-thermoplastic polyimide with a film and a protective film with a heat shrinkage of 0.1% at 200 ° C., 0.4% at 300 ° C., a linear expansion coefficient of 12 ppm / ° C., a tensile modulus of 6 GPa, and a thickness of 125 μm Except for using a film, a flexible laminate was produced and evaluated for appearance in the same manner as in Example 1, and the dimensional change rate before and after removing the metal foil (copper foil) was calculated. The results are shown in Table 1. The flexible laminate of Example 2 had no wrinkles, and the dimensional change rate before and after removing the copper foil was -0.04% in the MD direction and + 0.03% in the TD direction.

(実施例3)
耐熱性接着フィルムとして、加熱収縮率が200℃で0.1%、300℃で0.4%、線膨張係数が22ppm/℃、厚さ25μmの実施例1と同様の三層構造を有する接着フィルムを用い、保護フィルムとして、加熱収縮率が200℃で0.08%、300℃で0.2%、線膨張係数が16ppm/℃、引張弾性率が4GPa、厚さ125μmの非熱可塑性ポリイミドフィルムを用いた以外は、実施例1と同様にして、フレキシブル積層板を製造し外観評価を行ない、金属箔(銅箔)除去前後の寸法変化率を算出した。結果を表1に示す。実施例3のフレキシブル積層板にはシワが全くなく、銅箔除去前後の寸法変化率は、MD方向が−0.04%、TD方向が+0.03%であった。
(Example 3)
As a heat-resistant adhesive film, an adhesive having a three-layer structure similar to Example 1 having a heat shrinkage rate of 0.1% at 200 ° C., 0.4% at 300 ° C., a linear expansion coefficient of 22 ppm / ° C., and a thickness of 25 μm. Non-thermoplastic polyimide with a film and a protective film with a heat shrinkage of 0.08% at 200 ° C, 0.2% at 300 ° C, a linear expansion coefficient of 16 ppm / ° C, a tensile modulus of 4 GPa, and a thickness of 125 µm Except for using a film, a flexible laminate was produced and evaluated for appearance in the same manner as in Example 1, and the dimensional change rate before and after removing the metal foil (copper foil) was calculated. The results are shown in Table 1. The flexible laminate of Example 3 had no wrinkles, and the dimensional change rate before and after removing the copper foil was -0.04% in the MD direction and + 0.03% in the TD direction.

(実施例4)
耐熱性接着フィルムとして、加熱収縮率が200℃で0.1%、300℃で0.4%、線膨張係数が22ppm/℃、厚さ25μmの実施例1と同様の三層構造を有する接着フィルムを用い、保護フィルムとして、加熱収縮率が200℃で0.1%、300℃で0.4%、線膨張係数が12ppm/℃、引張弾性率が6GPa、厚さ125μmの非熱可塑性ポリイミドフィルムを用いた以外は、実施例1と同様にして、フレキシブル積層板を製造し外観評価を行ない、金属箔(銅箔)除去前後の寸法変化率を算出した。結果を表1に示す。実施例4のフレキシブル積層板にはシワが全くなく、銅箔除去前後の寸法変化率は、MD方向が−0.04%、TD方向が+0.04%であった。
Example 4
As a heat-resistant adhesive film, an adhesive having a three-layer structure similar to Example 1 having a heat shrinkage rate of 0.1% at 200 ° C., 0.4% at 300 ° C., a linear expansion coefficient of 22 ppm / ° C., and a thickness of 25 μm. Non-thermoplastic polyimide with a film and a protective film with a heat shrinkage of 0.1% at 200 ° C, 0.4% at 300 ° C, a linear expansion coefficient of 12 ppm / ° C, a tensile modulus of 6 GPa, and a thickness of 125 µm Except for using a film, a flexible laminate was produced and evaluated for appearance in the same manner as in Example 1, and the dimensional change rate before and after removing the metal foil (copper foil) was calculated. The results are shown in Table 1. The flexible laminate of Example 4 had no wrinkles at all, and the dimensional change rate before and after removing the copper foil was −0.04% in the MD direction and + 0.04% in the TD direction.

(実施例5)
耐熱性接着フィルムとして、加熱収縮率が200℃で0.1%、300℃で0.4%、線膨張係数が22ppm/℃、厚さ25μmの実施例1と同様の三層構造を有する接着フィルムを用い、保護フィルムとして、加熱収縮率が200℃で0.15%、300℃で0.6%、線膨張係数が16ppm/℃、引張弾性率が6GPa、厚さ125μmの非熱可塑性ポリイミドフィルムを用いた以外は、実施例1と同様にして、フレキシブル積層板を製造し外観評価を行ない、金属箔(銅箔)除去前後の寸法変化率を算出した。結果を表1に示す。実施例5のフレキシブル積層板に発生したシワは1m2あたり1個以下であり、銅箔除去前後の寸法変化率は、MD方向が−0.05%、TD方向が+0.04%であった。
(Example 5)
As a heat-resistant adhesive film, an adhesive having a three-layer structure similar to Example 1 having a heat shrinkage rate of 0.1% at 200 ° C., 0.4% at 300 ° C., a linear expansion coefficient of 22 ppm / ° C., and a thickness of 25 μm. Non-thermoplastic polyimide with a film and a protective film with a heat shrinkage ratio of 0.15% at 200 ° C, 0.6% at 300 ° C, a linear expansion coefficient of 16 ppm / ° C, a tensile modulus of 6 GPa, and a thickness of 125 µm Except for using a film, a flexible laminate was produced and evaluated for appearance in the same manner as in Example 1, and the dimensional change rate before and after removing the metal foil (copper foil) was calculated. The results are shown in Table 1. The number of wrinkles generated in the flexible laminate of Example 5 was 1 or less per 1 m 2 , and the dimensional change rate before and after removing the copper foil was −0.05% in the MD direction and + 0.04% in the TD direction. .

(実施例6)
耐熱性接着フィルムとして、加熱収縮率が200℃で0.15%、300℃で0.6%、線膨張係数が23ppm/℃、厚さ25μmの実施例1と同様の三層構造を有する接着フィルムを用い、保護フィルムとして、加熱収縮率が200℃で0.1%、300℃で0.4%、線膨張係数が12ppm/℃、引張弾性率が6GPa、厚さ125μmの非熱可塑性ポリイミドフィルムを用いた以外は、実施例1と同様にして、フレキシブル積層板を製造し外観評価を行ない、金属箔(銅箔)除去前後の寸法変化率を算出した。結果を表1に示す。実施例6のフレキシブル積層板に発生したシワは1m2あたり1個以下であり、銅箔除去前後の寸法変化率は、MD方向が−0.05%、TD方向が+0.04%であった。
(Example 6)
As a heat-resistant adhesive film, an adhesive having a three-layer structure similar to Example 1 having a heat shrinkage of 0.15% at 200 ° C., 0.6% at 300 ° C., a linear expansion coefficient of 23 ppm / ° C., and a thickness of 25 μm. Non-thermoplastic polyimide with a film and a protective film with a heat shrinkage of 0.1% at 200 ° C., 0.4% at 300 ° C., a linear expansion coefficient of 12 ppm / ° C., a tensile modulus of 6 GPa, and a thickness of 125 μm Except for using a film, a flexible laminate was produced and evaluated for appearance in the same manner as in Example 1, and the dimensional change rate before and after removing the metal foil (copper foil) was calculated. The results are shown in Table 1. The number of wrinkles generated in the flexible laminate of Example 6 was 1 or less per 1 m 2 , and the dimensional change rate before and after removing the copper foil was −0.05% in the MD direction and + 0.04% in the TD direction. .

(比較例1)
耐熱性接着フィルムとして、加熱収縮率が200℃で0.15%、300℃で0.6%、線膨張係数が23ppm/℃、厚さ25μmの実施例1と同様の三層構造を有する接着フィルムを用い、保護フィルムとして、加熱収縮率が200℃で0.15%、300℃で0.6%、線膨張係数が16ppm/℃、引張弾性率が6GPa、厚さ125μmの非熱可塑性ポリイミドフィルムを用いた以外は、実施例1と同様にして、フレキシブル積層板を製造し外観評価を行ない、金属箔(銅箔)除去前後の寸法変化率を算出した。結果を表1に示す。比較例1のフレキシブル積層板に発生したシワは1m2あたり2個以上であり、銅箔除去前後の寸法変化率は、MD方向が−0.10%、TD方向が+0.08%であった。
(Comparative Example 1)
As a heat-resistant adhesive film, an adhesive having a three-layer structure similar to Example 1 having a heat shrinkage of 0.15% at 200 ° C., 0.6% at 300 ° C., a linear expansion coefficient of 23 ppm / ° C., and a thickness of 25 μm. Non-thermoplastic polyimide with a film and a protective film with a heat shrinkage ratio of 0.15% at 200 ° C, 0.6% at 300 ° C, a linear expansion coefficient of 16 ppm / ° C, a tensile modulus of 6 GPa, and a thickness of 125 µm Except for using a film, a flexible laminate was produced and evaluated for appearance in the same manner as in Example 1, and the dimensional change rate before and after removing the metal foil (copper foil) was calculated. The results are shown in Table 1. The number of wrinkles generated in the flexible laminate of Comparative Example 1 was 2 or more per 1 m 2 , and the dimensional change rate before and after removing the copper foil was −0.10% in the MD direction and + 0.08% in the TD direction. .

Figure 2005186565
Figure 2005186565

表1の実施例5および実施例6に示すように、耐熱性接着フィルムおよび保護フィルムのいずれかひとつのフィルムの加熱収縮率が200℃で0.1%以下、かつ300℃で0.4%以下であるため、これらの実施例のフレキシブル積層板に発生したシワは1m2あたり1個以下であり、銅箔除去前後の寸法変化率は、MD方向およびTD方向のいずれの方向についても±0.05%の範囲内となった。ここで、銅箔除去前後の寸法変化率が±0.05%の範囲内とは、フレキシブル積層板に微細配線を形成する場合においても寸法精度に問題が生じない範囲である。 As shown in Example 5 and Example 6 of Table 1, the heat shrinkage rate of any one of the heat-resistant adhesive film and the protective film is 0.1% or less at 200 ° C. and 0.4% at 300 ° C. Therefore, the number of wrinkles generated in the flexible laminates of these examples is 1 or less per 1 m 2 , and the dimensional change rate before and after removing the copper foil is ± 0 in both the MD direction and the TD direction. It was within the range of 0.05%. Here, the dimensional change rate before and after removal of the copper foil is within a range of ± 0.05% is a range in which no problem occurs in dimensional accuracy even when fine wiring is formed on the flexible laminate.

さらに、表1の実施例1〜実施例4のように耐熱性接着フィルムおよび保護フィルムの両方のフィルムの加熱収縮率が200℃で0.1%以下、かつ300℃で0.4%以下の場合は、フレキシブル積層板にはシワが全くなく、銅箔除去前後の寸法変化率もさらに低減した。   Further, as in Examples 1 to 4 of Table 1, the heat shrinkage rate of both the heat-resistant adhesive film and the protective film is 0.1% or less at 200 ° C. and 0.4% or less at 300 ° C. In this case, the flexible laminate had no wrinkles, and the dimensional change rate before and after removing the copper foil was further reduced.

なお、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed this time are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

上記のように、本発明は、外観および金属箔除去後の寸法安定性を向上を目的として、フレキシブル積層板の製造方法に広く利用することができる。   As described above, the present invention can be widely used in a method for producing a flexible laminate for the purpose of improving the appearance and the dimensional stability after removal of the metal foil.

本発明に用いられる熱ラミネート機の好ましい一例の概略図である。It is the schematic of a preferable example of the heat laminating machine used for this invention. 本発明に用いられる積層体の模式的な拡大断面図である。It is a typical expanded sectional view of the layered product used for the present invention. 本発明によって製造されるフレキシブル積層板の模式的な拡大断面図である。It is a typical expanded sectional view of the flexible laminated board manufactured by this invention.

符号の説明Explanation of symbols

1 保護フィルム、2 金属箔、3 耐熱性接着フィルム、4 金属ロール、5 フレキシブル積層板、6 分離ロール、7 積層体。   DESCRIPTION OF SYMBOLS 1 Protective film, 2 metal foil, 3 heat resistant adhesive film, 4 metal roll, 5 flexible laminated board, 6 separation roll, 7 laminated body.

Claims (4)

耐熱性接着フィルムの少なくとも一面に金属箔を貼り合わせてなるフレキシブル積層板の製造方法であって、
前記耐熱性接着フィルムと前記金属箔とを一対の金属ロールの間において保護フィルムを介して熱ラミネートする工程と、前記保護フィルムを分離する工程とを含み、
前記耐熱性接着フィルムおよび前記保護フィルムのうち少なくともひとつのフィルムの加熱収縮率が、200℃で0.1%以下、かつ300℃で0.4%以下であることを特徴とするフレキシブル積層板の製造方法。
A method for producing a flexible laminate comprising a metal foil bonded to at least one surface of a heat-resistant adhesive film,
A step of thermally laminating the heat-resistant adhesive film and the metal foil through a protective film between a pair of metal rolls, and a step of separating the protective film,
Of the heat-resistant adhesive film and the protective film, the heat shrinkage rate of at least one film is 0.1% or less at 200 ° C. and 0.4% or less at 300 ° C. Production method.
前記耐熱性接着フィルムおよび前記保護フィルムのうち少なくともひとつのフィルムの200℃〜300℃における線膨張係数αが、前記金属箔の200℃〜300℃における線膨張係数をα0とするとき、(α0−10)ppm/℃以上(α0+10)ppm/℃以下であることを特徴とする請求項1に記載のフレキシブル積層板の製造方法。 When the linear expansion coefficient α at 200 ° C. to 300 ° C. of at least one of the heat resistant adhesive film and the protective film is α 0 , the linear expansion coefficient at 200 ° C. to 300 ° C. of the metal foil is (α The method for producing a flexible laminate according to claim 1, wherein the production rate is 0-10 ) ppm / ° C or more and (α 0 +10) ppm / ° C or less. 前記耐熱性接着フィルムおよび前記保護フィルムのうち少なくともひとつのフィルムが、ポリイミドフィルムであることを特徴とする請求項1または請求項2に記載のフレキシブル積層板の製造方法。   The method for producing a flexible laminate according to claim 1, wherein at least one of the heat resistant adhesive film and the protective film is a polyimide film. 前記耐熱性接着フィルムおよび前記保護フィルムのうち少なくともひとつのフィルムは、あらかじめ、200℃〜450℃で1秒間〜300秒間の加熱処理がされていること特徴とする請求項1〜請求項3のいずれかに記載のフレキシブル積層板の製造方法。   The at least one film among the heat resistant adhesive film and the protective film is preliminarily heat-treated at 200 ° C to 450 ° C for 1 second to 300 seconds. The manufacturing method of the flexible laminated board of crab.
JP2003434026A 2003-12-26 2003-12-26 Method for producing flexible laminate Expired - Lifetime JP4299659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434026A JP4299659B2 (en) 2003-12-26 2003-12-26 Method for producing flexible laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434026A JP4299659B2 (en) 2003-12-26 2003-12-26 Method for producing flexible laminate

Publications (2)

Publication Number Publication Date
JP2005186565A true JP2005186565A (en) 2005-07-14
JP4299659B2 JP4299659B2 (en) 2009-07-22

Family

ID=34791213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434026A Expired - Lifetime JP4299659B2 (en) 2003-12-26 2003-12-26 Method for producing flexible laminate

Country Status (1)

Country Link
JP (1) JP4299659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138422A (en) * 2008-12-09 2010-06-24 Ube Nitto Kasei Co Ltd Metal foil having functional film, flexible metal covered layered plate, electronic component mounting module, and method for manufacturing the same
JP2023011650A (en) * 2020-12-25 2023-01-24 大日本印刷株式会社 Heat-fusible film, valve device with heat-fusible film, power storage device, valve structure for power storage device, and method for manufacturing valve structure for power storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138422A (en) * 2008-12-09 2010-06-24 Ube Nitto Kasei Co Ltd Metal foil having functional film, flexible metal covered layered plate, electronic component mounting module, and method for manufacturing the same
JP2023011650A (en) * 2020-12-25 2023-01-24 大日本印刷株式会社 Heat-fusible film, valve device with heat-fusible film, power storage device, valve structure for power storage device, and method for manufacturing valve structure for power storage device
JP7481409B2 (en) 2020-12-25 2024-05-10 大日本印刷株式会社 Heat-sealable film, valve device with heat-sealable film, and power storage device

Also Published As

Publication number Publication date
JP4299659B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4547336B2 (en) Method for producing flexible laminate
JP4859462B2 (en) Method for producing flexible laminate
JP2013544674A (en) Thick film polyimide metal-clad laminate
JP4500773B2 (en) Method for producing flexible laminate
US10751977B2 (en) Method for manufacturing flexible metal-clad laminated plate
JP4205889B2 (en) Method for producing heat-resistant flexible laminate
JP4299659B2 (en) Method for producing flexible laminate
JP4144660B2 (en) Manufacturing method of heat-resistant flexible substrate
JP2005205731A (en) Flexible laminated sheet and its manufacturing method
JP4231227B2 (en) Method for producing heat-resistant flexible laminate
JP4305799B2 (en) Laminate production method
JP4389627B2 (en) Method for producing flexible metal laminate
JP2011131553A (en) Method for manufacturing flexible laminated plate
JP2005186570A (en) Manufacturing method for flexible laminated sheet
JP2008074037A (en) Manufacturing process of heat-resistant flexible metal laminate
JP2009071021A (en) Method for manufacturing multilayer wiring circuit board
JP2002361744A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP3574092B2 (en) Manufacturing method of heat resistant flexible laminate
JP2001129918A (en) Manufacturing method of laminated sheet
JP2002064259A (en) Method of manufacturing heat-resistant flexible board
JP2002192615A (en) Laminated sheet manufacturing method
JP2003001750A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2005306040A (en) Manufacturing process of heat-resistant flexible substrate
JP2003001709A (en) Method for manufacturing heat-resistant flexible laminate plate
JP2003053836A (en) Method for producing heat resistant flexible laminated plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Ref document number: 4299659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term