JP2005183854A - Semiconductor sensor device and method for manufacturing the same - Google Patents

Semiconductor sensor device and method for manufacturing the same Download PDF

Info

Publication number
JP2005183854A
JP2005183854A JP2003426004A JP2003426004A JP2005183854A JP 2005183854 A JP2005183854 A JP 2005183854A JP 2003426004 A JP2003426004 A JP 2003426004A JP 2003426004 A JP2003426004 A JP 2003426004A JP 2005183854 A JP2005183854 A JP 2005183854A
Authority
JP
Japan
Prior art keywords
semiconductor sensor
resin
chip
wiring board
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003426004A
Other languages
Japanese (ja)
Inventor
Takumi Kikuchi
巧 菊池
Akiyoshi Sawai
章能 澤井
Seiji Oka
誠次 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003426004A priority Critical patent/JP2005183854A/en
Publication of JP2005183854A publication Critical patent/JP2005183854A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor sensor device which can be sealed and molded with resin while eliminating the need for a transfer molding die or a bonding pad depressing pin. <P>SOLUTION: In the method for manufacturing a resin sealed semiconductor sensor device, the sensor device includes a wiring board 1 having a pressure sensor chip 8 and an IC chip 3 for arithmetically processing on the basis of a signal from the pressure sensor chip 8 mounted thereon. The manufacturing method comprises the steps of mounting the IC chip 3 on the first surface 1A of the wiring board 1 having a wiring pattern formed thereon; placing a high-fluidity unset resin film 6a on a first surface 1A side of the wiring board 1 having the IC chip 3 mounted thereon, and placing a low-fluidity unset resin film having a cavity 7 previously formed therein on a second surface 1B side of the wiring board 1; resin sealing and molding the first and second surfaces 1A, 1B of the wiring board 1 simultaneously using the unset resin films 6a, 6b; and mounting a semiconductor sensor chip in the cavity 7 of the wiring board 1 on the second surface 1B side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば車両に搭載される圧力センサチップ等を基板に実装して樹脂封止成形した半導体センサ装置及びその製造方法に関するものである。   The present invention relates to a semiconductor sensor device in which, for example, a pressure sensor chip or the like mounted on a vehicle is mounted on a substrate and molded by resin sealing, and a manufacturing method thereof.

従来の車載用の半導体センサ装置として、リードフレーム24にICチップ25を搭載してボンディングワイヤ26で接続する。この状態で熱硬化性樹脂でトランスファー成形して樹脂パッケージ22を形成する。圧力センサチップ30の搭載部分は凹状のセンサマウント部27として形成される。圧力センサチップ30の表面および露出しているリードフレーム24c部分には圧力伝達を妨げない保護用樹脂32がコーティングされる。ケースへの実装時にはターミナル23を溶接した部分を含めてポッティングにより樹脂封止される。このとき、樹脂パッケージ22の形状により、圧力センサチップ30部分とは隔絶されているので、簡単に実装することができる(例えば、特許文献1参照)。   As a conventional in-vehicle semiconductor sensor device, an IC chip 25 is mounted on a lead frame 24 and connected by a bonding wire 26. In this state, the resin package 22 is formed by transfer molding with a thermosetting resin. The mounting portion of the pressure sensor chip 30 is formed as a concave sensor mount portion 27. The surface of the pressure sensor chip 30 and the exposed lead frame 24c are coated with a protective resin 32 that does not prevent pressure transmission. At the time of mounting on the case, the resin is sealed by potting including the portion where the terminal 23 is welded. At this time, the pressure sensor chip 30 is isolated by the shape of the resin package 22 and can be easily mounted (see, for example, Patent Document 1).

また、従来の圧力センサモジュールとして、圧力センサを構成する回路部分や非接触データキャリアの回路部分を構成するICチップ3(チップ部品8)を実装したリードフレーム4を、エポキシ樹脂等によってトランスファー成形を行い、樹脂成形体5を作成する。このとき、樹脂成形体5に、圧力センサチップ2を実装するリードフレーム面を底面に露出させたキャビティ6を形成する。キャビティ6内に圧力センサチップ2を樹脂封止する。そして不要なリードフレーム部分を切除して圧力センサの校正を行い、圧力センサモジュール1を得ている(例えば、特許文献2参照)。   In addition, as a conventional pressure sensor module, a lead frame 4 mounted with an IC chip 3 (chip component 8) constituting a circuit part constituting a pressure sensor or a circuit part of a non-contact data carrier is formed by transfer molding using an epoxy resin or the like. This is done to create the resin molded body 5. At this time, the cavity 6 is formed in the resin molded body 5 with the lead frame surface on which the pressure sensor chip 2 is mounted exposed on the bottom surface. The pressure sensor chip 2 is sealed with resin in the cavity 6. The pressure sensor module 1 is obtained by calibrating the pressure sensor by cutting off an unnecessary lead frame portion (see, for example, Patent Document 2).

特開平10−170380号公報(要約、図1)JP-A-10-170380 (summary, FIG. 1) 特開2000−329632号公報(要約)JP 2000-329632 A (summary)

上記従来の半導体センサ装置または圧力センサモジュールにあっては、パッケージ構造が比較的複雑なために、トランスファー成形を行うに当たって大がかりな金型が必要になる問題があった。特に、上記先行文献では明記されていないが、トランスファー成形法は成形圧力が高く、わずかな隙間から樹脂が染み出すため、樹脂成形後、ワイヤボンドを行うためのボンディングパッドが汚染されやすい。そして、それを防止するためにボンディングパッド部分のリードフレームを裏側からピンで押さえる事が行われており、さらに金型が複雑になる要因になっていた。   In the conventional semiconductor sensor device or pressure sensor module described above, since the package structure is relatively complicated, there is a problem that a large die is required for performing transfer molding. In particular, although not specified in the above-mentioned prior literature, the transfer molding method has a high molding pressure, and the resin oozes out from a slight gap, so that the bonding pad for wire bonding is easily contaminated after the resin molding. In order to prevent this, the lead frame of the bonding pad portion is pressed from the back side with a pin, which further complicates the mold.

この発明は上記のような課題を解決するためになされたものであり、トランスファー成形の金型やボンディングパッドの押えピンを必要とせずに樹脂封止成形することができ、プロセスの簡略化と生産性向上が図れる半導体センサ装置及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can be resin-sealed and molded without the need for transfer molding dies or bonding pad press pins, simplifying the process and producing it. An object of the present invention is to provide a semiconductor sensor device capable of improving the performance and a method for manufacturing the same.

この発明に係る半導体センサ装置の製造方法は、外部環境の状態を検出してセンサ信号を出力する半導体センサチップ(圧力センサチップ等)と、この半導体センサチップから出力されるセンサ信号に基づいて演算処理する集積回路チップ(ICチップ)を配線基板に実装した樹脂封止型の半導体センサ装置の製造方法において、所定の配線パターンを形成した配線基板の第1面に集積回路チップを実装する工程と、集積回路チップを実装した配線基板の第1面側に高流動性の未硬化樹脂フィルムを配置すると共に、配線基板の第2面側にあらかじめキャビティ部を形成した低流動性の未硬化樹脂フィルムを配置する工程と、配線基板の第1面及び第2面を上記未硬化樹脂フィルムを使用して同時に樹脂封止成形する工程と、配線基板の第2面側のキャビティ部に半導体センサチップを実装する工程からなるものである。   A method of manufacturing a semiconductor sensor device according to the present invention includes a semiconductor sensor chip (such as a pressure sensor chip) that detects a state of an external environment and outputs a sensor signal, and an operation based on the sensor signal output from the semiconductor sensor chip. In a method for manufacturing a resin-encapsulated semiconductor sensor device in which an integrated circuit chip (IC chip) to be processed is mounted on a wiring board, a step of mounting the integrated circuit chip on the first surface of the wiring board on which a predetermined wiring pattern is formed; A low-fluidity uncured resin film in which a high-fluidity uncured resin film is disposed on the first surface side of the wiring substrate on which the integrated circuit chip is mounted, and a cavity portion is previously formed on the second-surface side of the wiring substrate. , A step of simultaneously resin-molding the first surface and the second surface of the wiring board using the uncured resin film, and a second of the wiring board It is made of a step of mounting the semiconductor sensor chip to the cavity side.

この発明の半導体センサ装置の製造方法によれば、まず所定の配線パターンを形成した配線基板に集積回路チップ(ICチップ)を実装した後、配線基板両面を2枚の未硬化樹脂フィルムを用いてサンドイッチする様に樹脂封止する。その際、集積回路チップ(ICチップ)は全面モールドされると共に、集積回路チップ(ICチップ)を実装していない側には、未硬化樹脂フィルムをパンチングで打ち抜いた状態で成形することで、半導体センサチップ(圧力センサチップ)の実装部分であるキャビティ部を同時に形成することができる。その場合、2枚の未硬化樹脂フィルムの特性が同じであると、樹脂封止時に半導体回路チップ(ICチップ)のボンディングワイヤに損傷を与えたり、半導体センサチップ(圧力センサチップ)を実装するキャビティ部がうまく形成できないなどの不具合が生じる。そこで、集積回路チップ(ICチップ)をモールドする未硬化樹脂フィルムは成形時(プレス時)に溶融粘度が低くなる高流動性樹脂を使用し、キャビティを形成する側の未硬化樹脂フィルムは、高温でも溶融粘度の低下が小さく、所定のキャビティを形成するのに適した粘度範囲を持つ低流動性樹脂を使う。その結果、1回の樹脂封止成形(プレス成形)で、複雑な構造を有する半導体センサチップパッケージを簡易に製造することができる。   According to the method of manufacturing a semiconductor sensor device of the present invention, first, an integrated circuit chip (IC chip) is mounted on a wiring board on which a predetermined wiring pattern is formed, and then two uncured resin films are used on both sides of the wiring board. Resin-sealed to sandwich. At that time, the integrated circuit chip (IC chip) is molded over the entire surface, and on the side where the integrated circuit chip (IC chip) is not mounted, an uncured resin film is formed by punching to form a semiconductor. A cavity portion which is a mounting portion of the sensor chip (pressure sensor chip) can be formed at the same time. In that case, if the characteristics of the two uncured resin films are the same, the bonding wire of the semiconductor circuit chip (IC chip) may be damaged during resin sealing, or the cavity for mounting the semiconductor sensor chip (pressure sensor chip) There is a problem that the part cannot be formed well. Therefore, the uncured resin film for molding the integrated circuit chip (IC chip) uses a high fluidity resin that has a low melt viscosity at the time of molding (pressing), and the uncured resin film on the side forming the cavity has a high temperature. However, a low-flowing resin having a viscosity range suitable for forming a predetermined cavity is used because the decrease in melt viscosity is small. As a result, a semiconductor sensor chip package having a complicated structure can be easily manufactured by a single resin sealing molding (press molding).

すなわち、未硬化樹脂フィルムを用いて樹脂封止することで、金型を必要とせず、集積回路チップ(ICチップ)のモールドと半導体センサチップ(圧力センサチップ)の実装に必要なキャビティ部の形成を同時に行うことができるため、プロセスの簡略化と生産性向上に寄与する。   That is, by sealing with an uncured resin film, a mold is not required, and a cavity part necessary for mounting an integrated circuit chip (IC chip) mold and a semiconductor sensor chip (pressure sensor chip) is formed. Can contribute to simplification of processes and improvement of productivity.

実施の形態1.
まず、この発明の実施の形態1による半導体センサ装置のパッケージ構造について、図1に基づいて説明する。
Embodiment 1 FIG.
First, the package structure of the semiconductor sensor device according to the first embodiment of the present invention will be described with reference to FIG.

図1に示すように、本実施の形態による半導体センサ装置は、配線基板1の第1面1A及び第2面1Bに配線パターン2が形成されている。配線基板1の第1面1Aには信号処理用のICチップ3がダイボンドされ、このICチップ3と配線パターン2のボンディングパッド5はワイヤボンド4により電気的に接続されている。また、配線基板1の第1面1Aには高流動性樹脂フィルム硬化物6aが形成され、前述のICチップ3やワイヤボンド4などを封止している。一方、配線基板1の第2面1Bには低流動性樹脂フィルム硬化物6bが形成されている。この低流動性樹脂フィルム硬化物6bはあらかじめ所定部分を除去したキャビティ部7を有している。そして、配線基板1の第2面1B上であって、低流動性樹脂フィルム硬化物6bのキャビティ部7には、圧力センサチップ8が実装され、配線パターン2のボンディングパッド5とワイヤボンド4により電気的に接続されている。   As shown in FIG. 1, in the semiconductor sensor device according to the present embodiment, a wiring pattern 2 is formed on the first surface 1A and the second surface 1B of the wiring substrate 1. An IC chip 3 for signal processing is die-bonded to the first surface 1A of the wiring substrate 1, and the IC chip 3 and the bonding pads 5 of the wiring pattern 2 are electrically connected by wire bonds 4. Further, a high fluidity resin film cured product 6a is formed on the first surface 1A of the wiring board 1 and seals the above-described IC chip 3, wire bond 4, and the like. On the other hand, a low-fluidity resin film cured product 6b is formed on the second surface 1B of the wiring board 1. The low fluidity resin film cured product 6b has a cavity portion 7 from which a predetermined portion has been removed in advance. And the pressure sensor chip 8 is mounted on the second surface 1B of the wiring board 1 and in the cavity portion 7 of the low-fluidity resin film cured product 6b, and the bonding pads 5 and the wire bonds 4 of the wiring pattern 2 are used. Electrically connected.

圧力センサチップ8は、一般に、圧力測定環境下で圧力媒体から受ける圧力によりダイヤフラム部(図示せず)が変位するように構成されている。圧力チップセンサ8のダイヤフラム部にはピエゾ抵抗効果を有する抵抗体が形成されており、ダイヤフラム部の変位に応じて抵抗体の抵抗値が変化する。その抵抗値の変化をブリッジ接続した回路の出力端子から電圧信号として出力する。信号処理用のICチップ3は、圧力センサチップ8の出力信号に基づいて圧力を演算する機能を有する。なお、必要に応じて圧力センサチップ8とICチップ3以外にも各種機能を果たすための電子部品が装着されるが、本実施の形態の場合、それらの電子部品は配線基板1の第1面1Aに実装されることになる。   The pressure sensor chip 8 is generally configured such that a diaphragm portion (not shown) is displaced by a pressure received from a pressure medium in a pressure measurement environment. A resistor having a piezoresistive effect is formed in the diaphragm portion of the pressure chip sensor 8, and the resistance value of the resistor changes according to the displacement of the diaphragm portion. The change in the resistance value is output as a voltage signal from the output terminal of the bridge-connected circuit. The signal processing IC chip 3 has a function of calculating a pressure based on an output signal of the pressure sensor chip 8. In addition to the pressure sensor chip 8 and the IC chip 3, electronic components for performing various functions are mounted as necessary. In the present embodiment, these electronic components are mounted on the first surface of the wiring board 1. It will be mounted on 1A.

次に、本実施の形態1による半導体センサ装置の製造プロセスについて、図2に基づいて説明する。   Next, a manufacturing process of the semiconductor sensor device according to the first embodiment will be described with reference to FIG.

まず、図2(a)において、配線基板1の第1面1A及び第2面1Bに所定の配線パターン2を形成する。そして、配線基板1の第1面に信号処理などを行うICチップ3をダイボンドした後、ワイヤボンド4により、ICチップ3と配線基板1のボンディングパッド5を接続する。そして、配線基板1の第1面1A側に高流動性の未硬化樹脂フィルム60aを配置し、配線基板1の第2面1B側に低流動性の未硬化樹脂フィルム60bを配置する。   First, in FIG. 2A, a predetermined wiring pattern 2 is formed on the first surface 1A and the second surface 1B of the wiring substrate 1. Then, after the IC chip 3 that performs signal processing or the like is die-bonded to the first surface of the wiring substrate 1, the IC chip 3 and the bonding pad 5 of the wiring substrate 1 are connected by the wire bond 4. Then, a high fluidity uncured resin film 60 a is disposed on the first surface 1 </ b> A side of the wiring substrate 1, and a low fluidity uncured resin film 60 b is disposed on the second surface 1 </ b> B side of the wiring substrate 1.

次に、図2(b)において、ICチップ3を実装した配線基板1を前述の未硬化樹脂フィルム60a、60bを用いて樹脂封止成形する。すなわち、ICチップ3を実装した第1面側には未硬化樹脂フィルム60aを硬化させて高流動性樹脂フィルム硬化物6aを、その反対側の第2面側には低流動性の未硬化樹脂フィルム60bを硬化させて低流動性樹脂フィルム硬化物6bを成形する。高流動性樹脂フィルム硬化物6aは、ICチップ3、ボンディングワイヤ4などを覆う形で封止する。一方、低流動性樹脂フィルム硬化物6bの方は、あらかじめパンチング打ち抜きなどの手法で、所定部分の樹脂を除去したキャビティ部7を設けている。このキャビティ部7は、後に圧力センサチップ8を実装する領域となる。また、この場合の樹脂封止成形は、真空プレス成形や真空ラミネートを用いて実施するのが好ましい。   Next, in FIG. 2B, the wiring substrate 1 on which the IC chip 3 is mounted is resin-sealed using the uncured resin films 60a and 60b. That is, the uncured resin film 60a is cured on the first surface side on which the IC chip 3 is mounted, and the high fluidity resin film cured product 6a is formed on the opposite second surface side. The film 60b is cured to form a low flow resin film cured product 6b. The high fluidity resin film cured product 6a is sealed so as to cover the IC chip 3, the bonding wire 4, and the like. On the other hand, the low fluidity resin film cured product 6b is provided with a cavity portion 7 from which a predetermined portion of resin has been removed in advance by a technique such as punching punching. This cavity portion 7 will be a region where the pressure sensor chip 8 will be mounted later. Moreover, it is preferable to implement the resin sealing molding in this case using vacuum press molding or vacuum lamination.

ここで、真空プレス成形とは、プレス系内部を減圧または真空に引きサンプルである配線基板の周囲の雰囲気を減圧または真空にすると同時に、所定の温度及び所定の圧力大気圧によりプレスすることを意味する。また、真空ラミネートは、例えばサンプルである配線基板を搬送用PETフィルムにより挟んだ状態で真空チャンバ内に搬送する。そして、真空チャンバ外周をクランプした後、真空チャンバ内部を減圧または真空に引き、サンプルである配線基板の周囲を減圧または真空にする。最後に、所定の温度および所定の圧力により、ダイヤフラムまたは熱板が搬送用PETフィルムを介してサンプルである配線基板を加圧・成形する。   Here, vacuum press molding means that the inside of the press system is evacuated or evacuated, and the atmosphere around the wiring board as a sample is evacuated or evacuated and simultaneously pressed at a predetermined temperature and a predetermined pressure and atmospheric pressure. To do. In vacuum lamination, for example, a wiring board as a sample is transported into a vacuum chamber in a state of being sandwiched between transporting PET films. Then, after clamping the outer periphery of the vacuum chamber, the inside of the vacuum chamber is evacuated or evacuated, and the periphery of the wiring board as a sample is evacuated or evacuated. Finally, a wiring board as a sample is pressed and molded with a diaphragm or a hot plate through a PET film for conveyance at a predetermined temperature and a predetermined pressure.

次に、図2(c)において、前述の樹脂フィルム6a及び6bで配線基板1を樹脂封止した後、樹脂フィルム6b側(配線基板の第2面1B側)に形成されたキャビティ部7に、圧力センサチップ8をダイボンドし、その後ワイヤボンド4により、圧力センサチップ8と配線基板1のボンディングパッド間を接続する。   Next, in FIG. 2C, after the wiring substrate 1 is resin-sealed with the resin films 6a and 6b described above, the cavity portion 7 formed on the resin film 6b side (the second surface 1B side of the wiring substrate) is formed. Then, the pressure sensor chip 8 is die-bonded, and then the pressure sensor chip 8 and the bonding pad of the wiring substrate 1 are connected by the wire bond 4.

上記のように、本実施の形態の半導体センサ装置及びその製造方法によれば、配線基板1の第1面1AにおいてICチップ3を高流動性樹脂フィルムにより樹脂封止すると同時に、第2面1Bにおいてキャビティ部7を有する低流動性樹脂フィルムを成形することができる。すなわち、一度の樹脂フィルム成形により、信号処理用のICチップ3を樹脂封止できると共に、圧力センサチップ8の実装に必要なキャビティ部7を形成することができ、プロセスの簡略化と生産性向上に寄与する。   As described above, according to the semiconductor sensor device and the manufacturing method thereof of the present embodiment, the IC chip 3 is resin-sealed with the high-fluidity resin film on the first surface 1A of the wiring board 1 and at the same time the second surface 1B. The low fluidity resin film which has the cavity part 7 can be shape | molded. That is, the signal processing IC chip 3 can be resin-sealed by molding the resin film once, and the cavity portion 7 necessary for mounting the pressure sensor chip 8 can be formed, thereby simplifying the process and improving productivity. Contribute to.

同様な構造を持ったパッケージは、トランスファー成形法によっても作製することは可能であるが、トランスファー成形法の場合、比較的大がかりな金型が必要になる。また、トランスファー成形の場合、成形圧力が7〜15MPaと高いため、わずかな隙間から樹脂が染み出す危険性が高く、圧力センサチップを実装するキャビティ部を形成する際に、樹脂の染み出しによるボンディングパッドの汚染を防止するために、ボンディングパッド(リードフレーム)を裏側から押さえるコンタクトピンを金型に形成しなければならず、それも含め金型が複雑になるという問題もある。これに対して、本実施の形態では、大がかりな金型が必要なくなる。また、真空プレス成形、真空ラミネート成形を利用して、成形直前に真空状態(真空に近い減圧状態)にすることにより、成形時に空気の巻き込みによるボイドを抑制することができる。   A package having a similar structure can be manufactured by a transfer molding method, but in the case of the transfer molding method, a relatively large die is required. In the case of transfer molding, since the molding pressure is as high as 7 to 15 MPa, there is a high risk that the resin will ooze out from a slight gap, and when forming the cavity part for mounting the pressure sensor chip, bonding by oozing out of the resin In order to prevent the pad from being contaminated, a contact pin for pressing the bonding pad (lead frame) from the back side must be formed in the mold, and there is a problem that the mold becomes complicated. On the other hand, in this embodiment, a large mold is not necessary. Further, by using vacuum press molding or vacuum laminate molding, a void state due to air entrainment at the time of molding can be suppressed by making a vacuum state (a reduced pressure state close to vacuum) immediately before molding.

本実施の形態のように、未硬化樹脂フィルムによりICチップ3を実装した配線基板1を両面から一括で封止する手法をとることにより、金型を使用しない簡易的な工程で、キャビティ構造を有する圧力センサパッケージの製造が可能になる。また配線基板1を使用することで配線形成の自由度が高くなるため、さらに小型化も可能になるメリットもある。   As in the present embodiment, by adopting a method of collectively sealing the wiring substrate 1 on which the IC chip 3 is mounted with an uncured resin film from both sides, the cavity structure can be formed in a simple process without using a mold. It is possible to manufacture a pressure sensor package having the same. Further, the use of the wiring board 1 increases the degree of freedom in forming the wiring, and thus there is an advantage that further downsizing is possible.

本実施の形態においては、封止に使用する未硬化樹脂フィルムの特性が重要であり、その使い分けが必須となる。特に、樹脂封止時における樹脂粘度の絶対値およびその変化挙動が成形性に大きく影響することが検討の結果明らかとなった。ここで、高流動性樹脂フィルムとしては、成形温度における溶融時の最低粘度が5×10Pa・s以下となるものが望ましい。それ以上の粘度になると、ICチップ3と配線基板1を接続するワイヤボンド4を変形させたり、最悪の場合、ワイヤボンド4を切断させるなどの不具合が生じる。 In this Embodiment, the characteristic of the uncured resin film used for sealing is important, and the proper use is essential. In particular, it has been clarified as a result of examination that the absolute value of the resin viscosity at the time of resin sealing and its changing behavior greatly affect the moldability. Here, as the high fluidity resin film, one having a minimum viscosity at the time of melting at a molding temperature of 5 × 10 3 Pa · s or less is desirable. If the viscosity is higher than that, problems such as deformation of the wire bond 4 connecting the IC chip 3 and the wiring substrate 1 and, in the worst case, cutting of the wire bond 4 occur.

また、キャビティ部7を有する低流動性樹脂フィルムについては、成形温度における溶融時の最低粘度が2×10Pa・s〜5×10Pa・sの範囲にあることが望ましい。2×10Pa・sよりも粘度が下がると、プレス成形時に樹脂の流動が大きくなり、キャビティ部7を所定の形状に保つ事が難しくなるとともに、配線基板1のボンディングパッドを汚染する可能性がある。一方、最低粘度が5×10Pa・s以上になると、キャビティ部7の形成に関しては問題ないが、樹脂内にボイドや巣ができやすくなり、外観及び信頼性の観点から好ましくない。 Moreover, about the low fluidity resin film which has the cavity part 7, it is desirable for the minimum viscosity at the time of the fusion | melting in a molding temperature to exist in the range of 2 * 10 < 4 > Pa * s- 5 * 10 < 5 > Pa * s. If the viscosity is lower than 2 × 10 4 Pa · s, the flow of resin increases during press molding, making it difficult to keep the cavity 7 in a predetermined shape and possibly contaminating the bonding pads of the wiring board 1. There is. On the other hand, when the minimum viscosity is 5 × 10 5 Pa · s or more, there is no problem with the formation of the cavity portion 7, but voids and nests are easily formed in the resin, which is not preferable from the viewpoint of appearance and reliability.

上記樹脂フィルムは、基本的にエポキシをベースレジンとした封止材であり、シリカ等のフィラーを70〜90%含むものである。そして、上記フィラーの量や粒度分布を調整することによって流動性の指標となる粘度を調整する。   The resin film is basically a sealing material using epoxy as a base resin, and contains 70 to 90% of a filler such as silica. And the viscosity used as a parameter | index of fluidity | liquidity is adjusted by adjusting the quantity and particle size distribution of the said filler.

実施の形態2.
この発明の実施の形態2は、上記実施の形態1の半導体センサ装置の製造にあたり更なる生産性向上を図るものである。
Embodiment 2. FIG.
The second embodiment of the present invention is intended to further improve productivity in manufacturing the semiconductor sensor device of the first embodiment.

図3はこの発明の実施の形態2による半導体センサ装置のパッケージの製造プロセスを示す模式図である。   3 is a schematic diagram showing a manufacturing process of a package of a semiconductor sensor device according to Embodiment 2 of the present invention.

まず、図3(a)において、1つの平板状の配線基板1の第1面1A及び第2面1Bに複数組の配線パターン2を形成する。そして、配線基板1の第1面に信号処理などを行うICチップ3を複数組ダイボンドした後、ワイヤボンド4により、それぞれICチップ3と配線基板1のボンディングパッド5を接続する。そして、配線基板1の第1面1Aに高流動性の未硬化樹脂フィルム60aを用意し、配線基板1の第2面1Bに低流動性の未硬化樹脂フィルム60bを用意する。未硬化樹脂フィルム60bには後述の圧力センサチップ8を搭載するためのキャビティ部7が設けられている。   First, in FIG. 3A, a plurality of sets of wiring patterns 2 are formed on the first surface 1A and the second surface 1B of one flat wiring board 1. Then, a plurality of sets of IC chips 3 that perform signal processing or the like are die-bonded on the first surface of the wiring board 1, and then the IC chips 3 and the bonding pads 5 of the wiring board 1 are connected by wire bonds 4. Then, a high fluidity uncured resin film 60 a is prepared on the first surface 1 A of the wiring substrate 1, and a low fluidity uncured resin film 60 b is prepared on the second surface 1 B of the wiring substrate 1. The uncured resin film 60b is provided with a cavity portion 7 for mounting a pressure sensor chip 8 described later.

次に、図3(b)において、ICチップ3を実装した配線基板1を未硬化樹脂フィルム60a、60bにより樹脂封止する。すなわち、ICチップ3を実装した第1面側には未硬化樹脂フィルム60aを硬化させて高流動性樹脂フィルム硬化物6aを、その反対側の第2面側には未硬化樹脂フィルム60bを硬化させて低流動性樹脂フィルム硬化物6bを成形する。この場合の樹脂封止は、熱プレス機を用いて成形を行う。ここで、プレス成形前の真空引き条件は、例えば15〜30秒で、到達真空度は100Pa以下である。また、プレス条件は、樹脂フィルムの仕様により異なるが、通常、硬化温度120℃〜180℃、硬化時間3分〜10分、プレス圧力0.1〜2.0MPa程度の条件を使用する。なお、未硬化樹脂フィルムの特性は、実施の形態1と同様である。   Next, in FIG. 3B, the wiring substrate 1 on which the IC chip 3 is mounted is resin-sealed with uncured resin films 60a and 60b. That is, the uncured resin film 60a is cured on the first surface side where the IC chip 3 is mounted to cure the high fluidity resin film cured product 6a, and the uncured resin film 60b is cured on the opposite second surface side. Thus, the low-fluidity resin film cured product 6b is formed. In this case, resin sealing is performed using a hot press machine. Here, the vacuuming conditions before press molding are, for example, 15 to 30 seconds, and the ultimate vacuum is 100 Pa or less. Moreover, although press conditions change with the specifications of a resin film, normally, conditions with a curing temperature of 120 ° C. to 180 ° C., a curing time of 3 minutes to 10 minutes, and a pressing pressure of about 0.1 to 2.0 MPa are used. The characteristics of the uncured resin film are the same as those in the first embodiment.

次に、図3(c)において、前述の樹脂封止の後、樹脂フィルム6b側(配線基板の第2面1B側)に形成されたキャビティ部7に、圧力センサチップ8をダイボンドし、その後ワイヤボンド4により、圧力センサチップ8と配線基板1のボンディングパッド間を接続する。そして、ダイシングライン10に沿って、個々の装置に切り離して圧力センサパッケージを得ることができる。   Next, in FIG. 3C, after the above-described resin sealing, the pressure sensor chip 8 is die-bonded to the cavity portion 7 formed on the resin film 6b side (the second surface 1B side of the wiring board), and then A wire bond 4 connects between the pressure sensor chip 8 and the bonding pads of the wiring substrate 1. Then, along the dicing line 10, the pressure sensor package can be obtained by being separated into individual devices.

なお、使用する平板状配線基板1は、ガラスエポキシ等の有機系基板材料でもアルミナ等のセラミック基板でも構わない。そのことにより、製造工程の自由度を向上させる事ができる。   The flat wiring board 1 used may be an organic substrate material such as glass epoxy or a ceramic substrate such as alumina. Thereby, the freedom degree of a manufacturing process can be improved.

実施の形態3.
次に、この発明の実施の形態3による半導体センサ装置のパッケージ構造について、図4に基づいて説明する。本実施の形態は、基本的に実施の形態1と同様であるが、配線基板1の代わりにリードフレーム9を使用している。
Embodiment 3 FIG.
Next, the package structure of the semiconductor sensor device according to the third embodiment of the present invention will be described with reference to FIG. The present embodiment is basically the same as the first embodiment, but uses a lead frame 9 instead of the wiring board 1.

図4に示すように、本実施の形態による半導体センサ装置は、実施の形態1の配線基板1の代わりにリードフレーム9が使用され。リードフレーム9の第1面9Aには信号処理用のICチップ3がダイボンドされ、ICチップ3の電極とリードフレーム9はワイヤボンド4により電気的に接続されている。また、リードフレーム9の第1面9Aには高流動性樹脂フィルム硬化物6aが形成され、前述のICチップ3やワイヤボンド4などを封止している。一方、リードフレーム9の第2面9Bには低流動性樹脂フィルム硬化物6bが形成されている。この低流動性樹脂フィルム硬化物6bはあらかじめ所定部分を除去したキャビティ部7を有している。そして、リードフレーム9の第2面9B上であって、低流動性樹脂フィルム硬化物6bのキャビティ部7には、圧力センサチップ8が実装され、リードフレーム9とワイヤボンド4により電気的に接続されている。   As shown in FIG. 4, the semiconductor sensor device according to the present embodiment uses a lead frame 9 instead of the wiring substrate 1 of the first embodiment. The signal processing IC chip 3 is die-bonded to the first surface 9 A of the lead frame 9, and the electrodes of the IC chip 3 and the lead frame 9 are electrically connected by wire bonds 4. Further, a high fluidity resin film cured product 6a is formed on the first surface 9A of the lead frame 9, and seals the above-described IC chip 3, wire bond 4 and the like. On the other hand, a low-fluidity resin film cured product 6b is formed on the second surface 9B of the lead frame 9. The low fluidity resin film cured product 6b has a cavity portion 7 from which a predetermined portion has been removed in advance. A pressure sensor chip 8 is mounted on the second surface 9B of the lead frame 9 and in the cavity portion 7 of the low-fluidity resin film cured product 6b, and is electrically connected to the lead frame 9 and the wire bond 4. Has been.

次に、本実施の形態による半導体センサ装置の製造プロセスについて、図5に基づいて説明する。   Next, a manufacturing process of the semiconductor sensor device according to the present embodiment will be described with reference to FIG.

まず、図5(a)において、リードフレーム9の第1面9Aに信号処理などを行うICチップ3をダイボンドした後、ワイヤボンド4により、ICチップ3の電極とリードフレーム9を接続する。そして、リードフレーム9の第1面9A側に高流動性の未硬化樹脂フィルム60aを配置し、リードフレーム9の第2面9B側に低流動性の未硬化樹脂フィルム60bを配置する。   First, in FIG. 5A, after the IC chip 3 that performs signal processing or the like is die-bonded to the first surface 9 </ b> A of the lead frame 9, the electrode of the IC chip 3 and the lead frame 9 are connected by the wire bond 4. Then, a high fluidity uncured resin film 60 a is disposed on the first surface 9 A side of the lead frame 9, and a low fluidity uncured resin film 60 b is disposed on the second surface 9 B side of the lead frame 9.

次に、図5(b)において、ICチップ3を実装したリードフレームを前述の未硬化樹脂フィルム60a、60bにより樹脂封止する。すなわち、ICチップ3を実装した第1面側には未硬化樹脂フィルム60aを硬化させて高流動性樹脂フィルム硬化物6aを、その反対側の第2面側には低流動性の未硬化樹脂フィルム60bを硬化させて低流動性樹脂フィルム硬化物6bを成形する。高流動性樹脂フィルム硬化物6aは、ICチップ3、ボンディングワイヤ4などを覆う形で封止する。一方、低流動性樹脂フィルム硬化物6bの方は、あらかじめパンチング打ち抜きなどの手法で、所定部分の樹脂を除去したキャビティ部7を設けている。このキャビティ部7は、後に圧力センサチップ8を実装する領域となる。この場合の樹脂フィルムによる樹脂封止は、真空プレス成形や真空ラミネートを用いて実施するのが好ましい。   Next, in FIG. 5B, the lead frame on which the IC chip 3 is mounted is resin-sealed with the uncured resin films 60a and 60b. That is, the uncured resin film 60a is cured on the first surface side on which the IC chip 3 is mounted, and the high fluidity resin film cured product 6a is formed on the opposite second surface side. The film 60b is cured to form a low flow resin film cured product 6b. The high fluidity resin film cured product 6a is sealed so as to cover the IC chip 3, the bonding wire 4, and the like. On the other hand, the low fluidity resin film cured product 6b is provided with a cavity portion 7 from which a predetermined portion of resin has been removed in advance by a technique such as punching punching. This cavity portion 7 will be a region where the pressure sensor chip 8 will be mounted later. In this case, the resin sealing with the resin film is preferably performed using vacuum press molding or vacuum lamination.

次に、図5(c)において、前述の樹脂フィルム6a及び6bでリードフレームを樹脂封止した後、樹脂フィルム6b側(リードフレーム9の第2面9B側)に形成されたキャビティ部7に、圧力センサチップ8をダイボンドし、その後ワイヤボンド4により、圧力センサチップ8とリードフレーム9を接続する。   Next, in FIG. 5C, after the lead frame is resin-sealed with the resin films 6a and 6b, the cavity 7 formed on the resin film 6b side (the second surface 9B side of the lead frame 9) is formed. The pressure sensor chip 8 is die-bonded, and then the pressure sensor chip 8 and the lead frame 9 are connected by the wire bond 4.

上記のように、本実施の形態の半導体センサ装置及びその製造方法によれば、リードフレーム9の第1面9AにおいてICチップ3を高流動性樹脂フィルムにより樹脂封止すると同時に、第2面9Bにおいてキャビティ部7を有する低流動性樹脂フィルムを成形することができる。すなわち、一度の樹脂フィルム成形により、信号処理用のICチップ3を樹脂封止できると共に、圧力センサチップ8の実装に必要なキャビティ部7を形成することができ、プロセスの簡略化と生産性向上に寄与する。   As described above, according to the semiconductor sensor device and the manufacturing method thereof of the present embodiment, the IC chip 3 is resin-sealed with the high fluidity resin film on the first surface 9A of the lead frame 9, and at the same time, the second surface 9B. The low fluidity resin film which has the cavity part 7 can be shape | molded. That is, the signal processing IC chip 3 can be resin-sealed by molding the resin film once, and the cavity portion 7 necessary for mounting the pressure sensor chip 8 can be formed, thereby simplifying the process and improving productivity. Contribute to.

本実施の形態のように、未硬化樹脂フィルムによりICチップ3を実装した配線基板1を両面から一括で封止する手法をとることにより、金型を使用しない簡易的な工程で、キャビティ構造を有する圧力センサパッケージの製造が可能になる。   As in the present embodiment, by adopting a method of collectively sealing the wiring substrate 1 on which the IC chip 3 is mounted with an uncured resin film from both sides, the cavity structure can be formed in a simple process without using a mold. It is possible to manufacture a pressure sensor package having the same.

なお、本実施の形態における未硬化樹脂フィルムの特性は、上述した実施の形態と同様の特性を有するものとする。   In addition, the characteristic of the uncured resin film in this Embodiment shall have the characteristic similar to Embodiment mentioned above.

本発明は、上記実施の形態にのみ限定されるものではなく、半導体センサチップとして、圧力センサチップ以外に、湿度センサ、光センサ、加速度センサなど外部環境の影響を受ける状態で検出動作を行なうようにした半導体センサ装置全般に適用することができる。   The present invention is not limited to the above embodiment, and the semiconductor sensor chip is configured to perform the detection operation under the influence of the external environment such as a humidity sensor, an optical sensor, and an acceleration sensor in addition to the pressure sensor chip. The present invention can be applied to general semiconductor sensor devices.

この発明の実施の形態1による半導体センサ装置のパッケージ構造を示す断面図である。It is sectional drawing which shows the package structure of the semiconductor sensor apparatus by Embodiment 1 of this invention. この発明の実施の形態1による半導体センサ装置の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the semiconductor sensor apparatus by Embodiment 1 of this invention. この発明の実施の形態2による半導体センサ装置のパッケージの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the package of the semiconductor sensor apparatus by Embodiment 2 of this invention. この発明の実施の形態3による半導体センサ装置のパッケージ構造を示す断面図である。It is sectional drawing which shows the package structure of the semiconductor sensor apparatus by Embodiment 3 of this invention. この発明の実施の形態3による半導体センサ装置の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the semiconductor sensor apparatus by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 配線基板、2 配線、3 ICチップ、4 ボンディングワイヤ、
5 ボンディングパッド、6a 高流動性樹脂フィルム硬化物、
6b 低流動性樹脂フィルム硬化物、7 キャビティ部、8 圧力センサチップ、
9 リードフレーム、10 ダイシングライン、
60a 未硬化樹脂フィルム(高流動性)、60b 未硬化樹脂フィルム(低流動性)。
1 Wiring board, 2 Wiring, 3 IC chip, 4 Bonding wire,
5 Bonding pad, 6a Hardened resin film with high fluidity,
6b cured product of low fluidity resin film, 7 cavity part, 8 pressure sensor chip,
9 Lead frame, 10 dicing line,
60a Uncured resin film (high fluidity), 60b Uncured resin film (low fluidity).

Claims (6)

外部環境の状態を検出してセンサ信号を出力する半導体センサチップと、この半導体センサチップから出力されるセンサ信号に基づいて演算処理する集積回路チップを配線基板に実装した樹脂封止型の半導体センサ装置の製造方法において、
所定の配線パターンを形成した配線基板の第1面に集積回路チップを実装する工程と、
集積回路チップを実装した配線基板の第1面側に高流動性の未硬化樹脂フィルムを配置すると共に、配線基板の第2面側にあらかじめキャビティ部を形成した低流動性の未硬化樹脂フィルムを配置する工程と、
配線基板の第1面及び第2面を同時に上記未硬化樹脂フィルムを使用して樹脂封止成形する工程と、
配線基板の第2面側のキャビティ部に半導体センサチップを実装する工程からなる半導体センサ装置の製造方法。
A resin-encapsulated semiconductor sensor in which a semiconductor sensor chip that detects the state of the external environment and outputs a sensor signal and an integrated circuit chip that performs arithmetic processing based on the sensor signal output from the semiconductor sensor chip are mounted on a wiring board In the device manufacturing method,
Mounting an integrated circuit chip on a first surface of a wiring board on which a predetermined wiring pattern is formed;
A high-fluidity uncured resin film is disposed on the first surface side of the wiring board on which the integrated circuit chip is mounted, and a low-fluidity uncured resin film having a cavity portion formed in advance on the second surface side of the wiring board. Arranging, and
A step of simultaneously resin-molding the first and second surfaces of the wiring board using the uncured resin film;
A method of manufacturing a semiconductor sensor device comprising a step of mounting a semiconductor sensor chip in a cavity portion on the second surface side of a wiring board.
外部環境の状態を検出してセンサ信号を出力する半導体センサチップと、この半導体センサチップから出力されるセンサ信号に基づいて演算処理する集積回路チップをリードフレームに実装した樹脂封止型の半導体センサ装置の製造方法において、
リードフレームの第1面に集積回路チップを実装する工程と、
集積回路チップを実装したリードフレームの第1面側に高流動性の未硬化樹脂フィルムを配置すると共に、リードフレームの第2面側にあらかじめキャビティ部を形成した低流動性の未硬化樹脂フィルムを配置する工程と、
リードフレームの第1面及び第2面を同時に上記未硬化樹脂フィルムを使用して樹脂封止成形する工程と、
リードフレームの第2面側のキャビティ部に半導体センサチップを実装する工程からなる半導体センサ装置の製造方法。
A resin-encapsulated semiconductor sensor in which a semiconductor sensor chip that detects the state of the external environment and outputs a sensor signal and an integrated circuit chip that performs arithmetic processing based on the sensor signal output from the semiconductor sensor chip are mounted on a lead frame In the device manufacturing method,
Mounting an integrated circuit chip on the first surface of the lead frame;
A highly fluid uncured resin film is disposed on the first surface side of the lead frame on which the integrated circuit chip is mounted, and a low fluidity uncured resin film having a cavity portion formed in advance on the second surface side of the lead frame. Arranging, and
A step of resin-sealing molding the first and second surfaces of the lead frame simultaneously using the uncured resin film;
A method of manufacturing a semiconductor sensor device comprising a step of mounting a semiconductor sensor chip in a cavity portion on the second surface side of a lead frame.
第1面側の未硬化樹脂フィルムは、成形時に溶融粘度が低くなる高流動性樹脂であって、その高流動性樹脂の成形温度における溶融粘度の最小値が5×10Pa・s以下であり、第2面側の未硬化樹脂フィルムは、成形時の溶融粘度の低下が小さい低流動性樹脂であって、その低流動性樹脂の成形温度における溶融粘度の最小値が2×10Pa・s〜5×10Pa・sの範囲であることを特徴とする請求項1または請求項2に記載の半導体センサ装置の製造方法。 The uncured resin film on the first surface side is a high fluidity resin that has a low melt viscosity at the time of molding, and the minimum value of the melt viscosity at the molding temperature of the high fluidity resin is 5 × 10 3 Pa · s or less. The uncured resin film on the second surface side is a low-flowing resin with a small decrease in melt viscosity at the time of molding, and the minimum value of the melt viscosity at the molding temperature of the low-flowing resin is 2 × 10 4 Pa. The method of manufacturing a semiconductor sensor device according to claim 1, wherein the semiconductor sensor device has a range of s to 5 × 10 5 Pa · s. 外部環境の状態を検出してセンサ信号を出力する半導体センサチップと、この半導体センサチップから出力されるセンサ信号に基づいて演算処理する集積回路チップを配線基板に実装した樹脂封止型の半導体センサ装置の製造方法において、
複数組の配線パターンを形成した配線基板の第1面に、上記複数組の配線パターンに対応した複数組の集積回路チップを実装する工程と、
集積回路チップを実装した配線基板の第1面側に、高流動性の未硬化樹脂フィルムを配置すると共に、配線基板の第2面側に、あらかじめ上記複数組の配線パターンに対応した複数組のキャビティ部を形成した低流動性の未硬化樹脂フィルムを配置する工程と、
配線基板の第1面及び第2面を上記未硬化樹脂フィルムを使用して同時に樹脂封止成形する工程と、
配線基板の第2面側の上記複数組のキャビティ部ごとに、半導体センサチップを実装する工程と、
上記複数組の配線パターンごとに、上記配線基板および上記樹脂封止成形した樹脂を分離切断する工程からなる半導体センサ装置の製造方法。
A resin-encapsulated semiconductor sensor in which a semiconductor sensor chip that detects the state of the external environment and outputs a sensor signal and an integrated circuit chip that performs arithmetic processing based on the sensor signal output from the semiconductor sensor chip are mounted on a wiring board In the device manufacturing method,
Mounting a plurality of sets of integrated circuit chips corresponding to the plurality of sets of wiring patterns on the first surface of the wiring board on which the plurality of sets of wiring patterns are formed;
A highly fluid uncured resin film is disposed on the first surface side of the wiring board on which the integrated circuit chip is mounted, and a plurality of sets corresponding to the plurality of wiring patterns in advance are disposed on the second surface side of the wiring board. A step of disposing a low-fluidity uncured resin film in which a cavity portion is formed;
A step of simultaneously resin-molding the first and second surfaces of the wiring board using the uncured resin film;
Mounting a semiconductor sensor chip for each of the plurality of sets of cavities on the second surface side of the wiring board;
A method of manufacturing a semiconductor sensor device comprising a step of separating and cutting the wiring substrate and the resin-sealed resin for each of the plurality of sets of wiring patterns.
外部環境の状態を検出してセンサ信号を出力する半導体センサチップと、この半導体センサチップから出力されるセンサ信号に基づいて演算処理する集積回路チップを配線基板に実装した樹脂封止型の半導体センサ装置において、
所定の配線パターンを形成した配線基板と、上記配線基板の第1面に実装された集積回路チップと、上記集積回路チップが実装された上記配線基板の第1面を封止する第1の封止樹脂と、上記配線基板の第2面を封止するキャビティ部を有する第2の封止樹脂と、上記配線基板の第2面の上記キャビティ部に実装された半導体センサチップとを備え、
上記第1の封止樹脂は高流動性樹脂フィルムの硬化物であり、上記第2の封止樹脂は低流動性樹脂フィルムの硬化物であることを特徴とする半導体センサ装置。
A resin-encapsulated semiconductor sensor in which a semiconductor sensor chip that detects the state of the external environment and outputs a sensor signal and an integrated circuit chip that performs arithmetic processing based on the sensor signal output from the semiconductor sensor chip are mounted on a wiring board In the device
A wiring board on which a predetermined wiring pattern is formed, an integrated circuit chip mounted on the first surface of the wiring board, and a first seal for sealing the first surface of the wiring board on which the integrated circuit chip is mounted. A stop resin, a second sealing resin having a cavity portion for sealing the second surface of the wiring substrate, and a semiconductor sensor chip mounted in the cavity portion of the second surface of the wiring substrate,
The semiconductor sensor device according to claim 1, wherein the first sealing resin is a cured product of a high fluidity resin film, and the second sealing resin is a cured product of a low fluidity resin film.
外部環境の状態を検出してセンサ信号を出力する半導体センサチップと、この半導体センサチップから出力されるセンサ信号に基づいて演算処理する集積回路チップをリードフレームに実装した樹脂封止型の半導体センサ装置において、
リードフレームと、上記リードフレームの第1面に実装された集積回路チップと、上記集積回路チップが実装された上記リードフレームの第1面を封止する第1の封止樹脂と、上記リードフレームの第2面を封止するキャビティ部を有する第2の封止樹脂と、上記リードフレームの第2面の上記キャビティ部に実装された半導体センサチップとを備え、
上記第1の封止樹脂は高流動性樹脂フィルムの硬化物であり、上記第2の封止樹脂は低流動性樹脂フィルムの硬化物であることを特徴とする半導体センサ装置。
A resin-encapsulated semiconductor sensor in which a semiconductor sensor chip that detects the state of the external environment and outputs a sensor signal and an integrated circuit chip that performs arithmetic processing based on the sensor signal output from the semiconductor sensor chip are mounted on a lead frame In the device
A lead frame; an integrated circuit chip mounted on a first surface of the lead frame; a first sealing resin for sealing the first surface of the lead frame on which the integrated circuit chip is mounted; and the lead frame A second sealing resin having a cavity portion for sealing the second surface of the lead frame, and a semiconductor sensor chip mounted in the cavity portion of the second surface of the lead frame,
The semiconductor sensor device according to claim 1, wherein the first sealing resin is a cured product of a high fluidity resin film, and the second sealing resin is a cured product of a low fluidity resin film.
JP2003426004A 2003-12-24 2003-12-24 Semiconductor sensor device and method for manufacturing the same Pending JP2005183854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426004A JP2005183854A (en) 2003-12-24 2003-12-24 Semiconductor sensor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426004A JP2005183854A (en) 2003-12-24 2003-12-24 Semiconductor sensor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005183854A true JP2005183854A (en) 2005-07-07

Family

ID=34785652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426004A Pending JP2005183854A (en) 2003-12-24 2003-12-24 Semiconductor sensor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005183854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173640A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Sensor module and manufacturing method thereof
JP2008285655A (en) * 2007-04-18 2008-11-27 Hitachi Chem Co Ltd Film for sealing and semiconductor device using the same
JP2012182383A (en) * 2011-03-02 2012-09-20 Yazaki Corp Wiring board manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173640A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Sensor module and manufacturing method thereof
JP2008285655A (en) * 2007-04-18 2008-11-27 Hitachi Chem Co Ltd Film for sealing and semiconductor device using the same
JP2012182383A (en) * 2011-03-02 2012-09-20 Yazaki Corp Wiring board manufacturing method

Similar Documents

Publication Publication Date Title
JP3393247B2 (en) Optical device and method of manufacturing the same
US20050167790A1 (en) Integrated circuit package with transparent encapsulant and method for making thereof
US20080105941A1 (en) Sensor-type semiconductor package and fabrication
TW201304113A (en) Semiconductor sensor device and method of packaging same
US8293572B2 (en) Injection molding system and method of chip package
CN107527874B (en) Cavity type pressure sensor device
US7060530B2 (en) Semiconductor package having a resin cap member
WO2022111133A1 (en) Barometric pressure sensor assembly and packaging method therefor
JP2005183854A (en) Semiconductor sensor device and method for manufacturing the same
US20070004087A1 (en) Chip packaging process
CN116573605A (en) Packaging method and packaging structure of MEMS pressure sensor
JP2001007256A (en) Semiconductor integrated circuit device and manufacture thereof
US10431514B2 (en) Semiconductor packages having dual encapsulation material
JP6370379B2 (en) Semiconductor device, method for manufacturing the semiconductor device, and sensor using the semiconductor device
US20240170357A1 (en) Two-part molding of device packages with spacers
JPH04299848A (en) Semiconductor device and its manufacture
JP2555931B2 (en) Method for manufacturing semiconductor device
US20210391226A1 (en) Semiconductor device packages having cap with integrated electrical leads
JP2006303413A (en) Optical sensor package and manufacturing method of semiconductor device
US7034383B2 (en) Electronic component and panel and method for producing the same
JPH07249729A (en) Electronic device
KR20220099270A (en) image Sensor / Semiconductor Package and Manufacturing this
JP2002232108A (en) Cap for protecting electronic component, its manufacturing method and electronic apparatus, and its manufacturing method
JPH07130782A (en) Manufacture of package-type semiconductor device having heatsink
JPS61240664A (en) Semiconductor device