JP2005183650A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005183650A
JP2005183650A JP2003421958A JP2003421958A JP2005183650A JP 2005183650 A JP2005183650 A JP 2005183650A JP 2003421958 A JP2003421958 A JP 2003421958A JP 2003421958 A JP2003421958 A JP 2003421958A JP 2005183650 A JP2005183650 A JP 2005183650A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor element
bonding member
bonding
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003421958A
Other languages
Japanese (ja)
Other versions
JP4026590B2 (en
Inventor
Shosaku Ishihara
昌作 石原
Seiichi Tsuchida
誠一 槌田
Koji Serizawa
弘二 芹沢
Tadaaki Kariya
忠昭 苅谷
Satoshi Matsuyoshi
松吉  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003421958A priority Critical patent/JP4026590B2/en
Publication of JP2005183650A publication Critical patent/JP2005183650A/en
Application granted granted Critical
Publication of JP4026590B2 publication Critical patent/JP4026590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint material for semiconductor device that is low in environmental load, inexpensive and superior in heat resistance, and to provide a semiconductor device using it, and its manufacturing method. <P>SOLUTION: The semiconductor device has a structure wherein a semiconductor element and a copper member are joined. The semiconductor element and the copper member are joined with each other at a melting point of 250°C or higher by a first bonding member made mainly of zinc (Zn), and the bonding member is formed in an area near to a boundary surface with the semiconductor element in a manner that nickel (Ni) may be inclined and spread. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体装置用接合部材、これを用いた半導体装置、およびその製造方法に関し、さらに詳しくは、高耐圧用半導体装置に関するものである。   The present invention relates to a bonding member for a semiconductor device, a semiconductor device using the same, and a method for manufacturing the same, and more particularly to a high voltage semiconductor device.

現在、部品内部接続および高耐熱の接続には、高融点の高Pbはんだが用いられている。特に、高耐圧用半導体装置の場合には、製造工程において200℃の耐熱温度が要求されるため、半導体素子の接続には固相線が300℃付近の高Pbはんだ、例えば95Pb5Sn(固相線300℃液相線314℃)、98Pb2Sn(固相線316℃液相線322℃)、98Pb2Ag(固相線304℃液相線305℃)、97.5Pb1.5Ag1Sn(固相線309℃液相線309℃)などのPb 含有量が多いはんだが接続に使用される。   Currently, high-melting-point, high-Pb solder is used for component internal connections and high heat resistance connections. In particular, in the case of a semiconductor device for high withstand voltage, a heat resistant temperature of 200 ° C. is required in the manufacturing process. Therefore, a high Pb solder having a solid phase line near 300 ° C., for example, 95Pb5Sn (solid phase line) 300 ° C liquid phase line 314 ° C), 98Pb2Sn (solid phase line 316 ° C liquid phase line 322 ° C), 98Pb2Ag (solid phase line 304 ° C liquid phase line 305 ° C), 97.5Pb1.5Ag1Sn (solid phase line 309 ° C liquid phase Solder with high Pb content such as wire (309 ° C.) is used for connection.

このような高耐圧用半導体装置の例としては、IGBT、ダイオード、GTO、トランジスタ等のパワー半導体素子及びこれらを用いたパワー半導体モジュール(以下、これらを総称して半導体装置という)がある。   Examples of such high voltage semiconductor devices include power semiconductor elements such as IGBTs, diodes, GTOs, and transistors, and power semiconductor modules using these (hereinafter collectively referred to as semiconductor devices).

特開平10−125856号公報JP-A-10-125856

特開平7−161877号公報JP-A-7-161877 特開2002−142424号公報JP 2002-142424 A 特開2002−261210号公報JP 2002-261210 A 特開2002−359328号公報JP 2002-359328 A

しかしながら、近年環境保護の観点から、環境負荷が大きいPbを排除し、他の代替接続材料を使用した半導体装置、その他接続構造体が要求されるようになってきている。   However, in recent years, from the viewpoint of environmental protection, there has been a demand for semiconductor devices and other connection structures using other alternative connection materials by eliminating Pb which has a large environmental load.

接続構造体及びそれに用いる接続材料については要求される条件は様々であるが、高耐圧用半導体装置に用いる接続材料の場合には、製造工程において200℃前後の耐熱温度が要求される。   There are various requirements for the connection structure and the connection material used therefor, but in the case of a connection material used for a high voltage semiconductor device, a heat resistance temperature of about 200 ° C. is required in the manufacturing process.

そこで本発明の目的は、環境負荷が小さく低コストで、耐熱性等に優れる半導体装置用接合材料材及びこれを用いた半導体装置及びその製造方法を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a bonding material for a semiconductor device that has a low environmental load and is low in cost and excellent in heat resistance, a semiconductor device using the same, and a method for manufacturing the same.

上記目的を達成するために、本発明では、半導体素子と銅部材とが接合された構成を有する半導体装置において、半導体素子と銅部材とは、融点が250℃以上で亜鉛(Zn)を主成分とする第1の接合部材で接合されており、この接合部材は半導体素子との界面に近い領域において、ニッケル(Ni)が傾斜拡散している構成とした。   In order to achieve the above object, according to the present invention, in a semiconductor device having a configuration in which a semiconductor element and a copper member are joined, the semiconductor element and the copper member have a melting point of 250 ° C. or higher and contain zinc (Zn) as a main component. In this case, nickel (Ni) is inclined and diffused in a region close to the interface with the semiconductor element.

また、上記目的を達成するために、本発明では、半導体素子が部材に金属接合された構成を有する半導体装置において、半導体素子と部材とは、亜鉛(Zn)を主成分としてアルミニウム(Al)を8重量%以下含有する第1の接合部材で接合されており、第1の接合部材は半導体素子との界面に近い領域にニッケル(Ni)拡散層を有する構成とした。   In order to achieve the above object, according to the present invention, in a semiconductor device having a structure in which a semiconductor element is metal-bonded to a member, the semiconductor element and the member are made of zinc (Zn) as a main component and aluminum (Al). It joined by the 1st joining member containing 8 weight% or less, and the 1st joining member was set as the structure which has a nickel (Ni) diffused layer in the area | region close | similar to the interface with a semiconductor element.

また、上記目的を達成するために、本発明では、半導体素子の一方の面が第1の部材と第1の接合部材で接合され他方の面に第2の部材が第2の接合部材で接合された構成を有する半導体装置において、第1の接合部材と第2の接合部材とは亜鉛又は亜鉛(Zn)を主成分とするアルミニウム(Al)を含有する金属で、第1の接合部材及び第2の接合部材のそれぞれの半導体素子との界面の付近にはニッケル(Ni)の拡散層が形成されている構成とした。   In order to achieve the above object, according to the present invention, one surface of the semiconductor element is bonded to the first member by the first bonding member, and the second member is bonded to the other surface by the second bonding member. In the semiconductor device having the above-described configuration, the first bonding member and the second bonding member are metals containing aluminum (Al) whose main component is zinc or zinc (Zn). In the configuration, a diffusion layer of nickel (Ni) is formed in the vicinity of the interface between each of the two bonding members and the semiconductor element.

また、上記目的を達成するために、本発明では、両面にニッケル(Ni)膜が形成された半導体素子の一方の面に銅(Cu)部材を第1の接合部材で接合し他方の面にリード電極を第2の接合部材で接合した構成を有する半導体装置において、第1の接合部材と第2の接合部材とはアルミニウム(Al)の含有率が異なる亜鉛(Zn)を主成分とする金属であり、第2の接合部材は第1の接合部材よりも融点が高い材料で構成した。   In order to achieve the above object, according to the present invention, a copper (Cu) member is bonded to one surface of a semiconductor element having a nickel (Ni) film formed on both surfaces by a first bonding member, and the other surface is bonded to the other surface. In a semiconductor device having a configuration in which a lead electrode is joined by a second joining member, the first joining member and the second joining member are metals having zinc (Zn) as a main component and different aluminum (Al) contents. The second bonding member is made of a material having a melting point higher than that of the first bonding member.

本発明によれば、Znを主成分とする接合材料を用いることで、環境負荷が小さくまた250℃以上の耐熱性がある高耐圧用半導体装置を得ることができる。   According to the present invention, by using a bonding material containing Zn as a main component, it is possible to obtain a high voltage semiconductor device having a small environmental load and a heat resistance of 250 ° C. or higher.

半導体装置、特に高耐圧用半導体装置に要求される耐熱温度は200℃であることから、接続部の材料組織において部材間の接続に寄与する材料の融点は、耐熱温度が250℃以上であることが必要である。すなわち接続部の組織としては、少なくとも部材間の接続に寄与する組織が溶融しなければ他の部分が溶融しても接続は保持される。さらに、接合材料で半導体素子を接続する際の温度としては、半導体素子の保護の観点から600℃以下で接続することが必要である。これにより、接合材料の主成分となる金属元素の融点は250℃以上600℃以下であることが必要となる。   Since the heat-resistant temperature required for semiconductor devices, particularly high-voltage semiconductor devices, is 200 ° C., the melting point of the material that contributes to the connection between members in the material structure of the connecting portion is 250 ° C. or higher. is required. That is, as the structure of the connection portion, if at least the structure that contributes to the connection between the members does not melt, the connection is maintained even if the other part melts. Furthermore, the temperature at which the semiconductor element is connected with the bonding material needs to be connected at 600 ° C. or lower from the viewpoint of protecting the semiconductor element. Accordingly, the melting point of the metal element that is the main component of the bonding material needs to be 250 ° C. or higher and 600 ° C. or lower.

まず、このような条件を満たす材料として、従来の鉛(Pb)を主成分とするはんだに代わる接合材料について以下検討していく。   First, as a material satisfying such conditions, a bonding material that replaces a conventional solder mainly composed of lead (Pb) will be examined below.

前記条件を満たす金属元素としてはBi(271.4℃)、Po(254℃)、Cd(321.1℃)、Tl(302.5℃)、Zn(419.6℃)、Te(449.8℃)、At(300℃) 、Pb(327.5℃) がある。これらの金属元素のうち、環境負荷低減、毒性が無いなどの安全性、さらには接合材料としての軟らかさなどを満たす材料となるとZnが最適であり、単一金属元素で接続する場合にも適している。 また、接合材料としては単一金属元素のほかに、融点が250℃以上かつ600℃以下の共晶成分が発生する材料としてもよい。しかしながら、単一金属材料ではなく2成分材料系を用いる場合には、はんだ接続部の組成不均一さを考慮すると、少なくとも接続部に供給される接合材料の成分中に融点が250℃以下の成分が無いことが好ましい。なぜならば、接合材料を用いて接続後にも融点が250℃以下の成分がそのまま残存した組織では、それが溶融して接続の信頼性が低下するからである。   As metal elements satisfying the above conditions, Bi (271.4 ° C.), Po (254 ° C.), Cd (321.1 ° C.), Tl (302.5 ° C.), Zn (419.6 ° C.), Te (449. 8 ° C), At (300 ° C), Pb (327.5 ° C). Of these metal elements, Zn is optimal when it is a material that satisfies the safety of environmental load reduction, non-toxicity, and softness as a bonding material, and is also suitable for connecting with a single metal element. ing. The bonding material may be a material that generates a eutectic component having a melting point of 250 ° C. or higher and 600 ° C. or lower in addition to a single metal element. However, in the case of using a two-component material system instead of a single metal material, in consideration of the compositional non-uniformity of the solder connection portion, at least a component having a melting point of 250 ° C. or less in the component of the bonding material supplied to the connection portion It is preferable that there is no. This is because, in a structure in which a component having a melting point of 250 ° C. or less remains as it is after connection using a bonding material, it melts and the reliability of connection decreases.

したがって、接続のために供給される接合材料中の全成分とも250℃以上の融点であることが好ましい。実際、上述した高Pbはんだの場合、Snを含むものでは組成の不均一さに起因してSnが融点232℃で溶融することがあり、耐熱温度250℃の信頼性が得られない場合が起こるが、融点961℃のAgを含むものではこの問題は起らない。
また共晶組成材料系が共晶組成の融点以下では2相混合となるが、接続部の応力低減の観点から、2相のうち全体の半分以上を占め接続に寄与する組成としては、硬い金属間化合物ではなく軟らかい材料、たとえば単一金属あるいは極少量の異種金属が固溶した金属であることが必要である。このような条件を満たす2成分材料系としては、ZnAl系、ZnCd系、ZnMg系、ZnBi系、ZnSb系などがあるが、BiおよびMg系は硬く、またCdやSb系は有毒であるため、これらの系ではZnAl系が最も好ましく、また大部分を占める金属としては軟らかいZnが適する。
Therefore, it is preferable that all the components in the bonding material supplied for connection have a melting point of 250 ° C. or higher. In fact, in the case of the above-mentioned high Pb solder, Sn containing Sn may melt at a melting point of 232 ° C. due to the non-uniform composition, and reliability at a heat resistant temperature of 250 ° C. may not be obtained. However, this problem does not occur with Ag containing 961 ° C. of melting point.
In addition, although the eutectic composition material system is a two-phase mixture below the melting point of the eutectic composition, a composition that accounts for more than half of the two phases and contributes to the connection from the viewpoint of reducing the stress at the connection part is a hard metal. It is necessary that the material is not an intermetallic compound but a soft material, for example, a metal in which a single metal or a very small amount of different metals are dissolved. As the two-component material system satisfying such conditions, there are a ZnAl system, a ZnCd system, a ZnMg system, a ZnBi system, a ZnSb system, etc., but Bi and Mg systems are hard, and Cd and Sb systems are toxic. Of these systems, the ZnAl system is most preferable, and soft Zn is suitable as the metal occupying the majority.

以上のことは3成分以上の材料系でも同様で、大部分を占める金属としてはZnが適する。すなわち、2成分以上の材料系では、Znを主成分とし、添加される元素としては、融点が250℃以上でまた共晶以下の温度でZnが大部分を占める組織となればどのような元素でも良く、例えば、Al、Cd、Mg、Bi、Mn、Fe、Ni、Cu、Ag、Sbなどを適宜選択し、2成分、3成分等の材料系を形成すればよい。なお、ZnAl系では、還元性雰囲気中でもAlの酸化皮膜が強固なため、濡れにくい場合には酸化皮膜が機械的に破れるよう加圧あるいはスクラブ等により除去するとよい。また、図10に示すZnAl系の2元系合金状態図に示すとおり、所望の融点を得るためには、Alの重量%を適宜変更すればよく、Znよりも低融点を得る場合には、Alは約8重量%以下にすればよい。   The above also applies to a material system having three or more components, and Zn is suitable as the metal occupying most of the material. That is, in a material system of two or more components, Zn is the main component, and as an element to be added, any element can be used as long as the structure occupies most of Zn at a melting point of 250 ° C. or higher and a temperature below the eutectic. However, for example, Al, Cd, Mg, Bi, Mn, Fe, Ni, Cu, Ag, Sb, and the like may be appropriately selected to form a two-component, three-component material system. In the ZnAl system, since the Al oxide film is strong even in a reducing atmosphere, if it is difficult to wet, it may be removed by pressurization or scrubbing so that the oxide film is mechanically broken. Further, as shown in the ZnAl-based binary alloy phase diagram shown in FIG. 10, in order to obtain a desired melting point, the weight percentage of Al may be changed as appropriate. When obtaining a lower melting point than Zn, Al may be about 8% by weight or less.

以上述べたように、耐熱温度が250℃以上でかつ600℃以下の温度で接続する場合の接合部材の材料としては、Zn単体、およびZnを主成分とした2成分以上の系(以下、Zn系の接合材料と記す。)がある。尚、Zn単体の接合材料とは、純Znだけに限られず、実質的にZnからなる接合材料も指し、特性に大きな影響を与えない範囲で微量な含有物があっても構わない。   As described above, the material of the bonding member when the heat-resistant temperature is 250 ° C. or more and 600 ° C. or less is as follows: Zn alone and a two or more component system containing Zn as a main component (hereinafter, Zn (It is referred to as a joining material of the system). Note that the bonding material composed of Zn alone is not limited to pure Zn, but also refers to a bonding material substantially made of Zn, and may contain a minute amount within a range that does not significantly affect the characteristics.

続いて、上記接合部材と半導体素子及びその他の部材との接合について述べる。   Next, the joining of the joining member with the semiconductor element and other members will be described.

Znはほとんどの金属元素と反応するが、半導体素子材料であるSiとは実質的に反応せず、SiとZnとを直接接続するのは非常に困難である。そこで、例えばSi表面にNi膜を形成した後に熱処理し、さらにその上にNi膜を形成する前処理工程が必要となる。これにより、接続時のZnの濡れ性が確保され、結果としてSiとZnの良好な接続が得られる。ただし、表面にNi膜を形成したSiとCuとをZn系の接合部材で接続するような場合には、SiとCuとの熱膨張率差が大きいため、NiZn化合物層が形成されてしまうとこの熱応力に耐え切れず、クラックが生じるなどの問題が起きてしまう。そこで、Ni膜厚、接続温度等を制御し、NiZn化合物層を形成しないようにすることが必要である。   Zn reacts with most metal elements, but does not substantially react with Si which is a semiconductor element material, and it is very difficult to directly connect Si and Zn. Therefore, for example, a pretreatment process is required in which a Ni film is formed on the Si surface and then heat-treated, and further a Ni film is formed thereon. Thereby, the wettability of Zn at the time of connection is ensured, and as a result, a good connection between Si and Zn is obtained. However, in the case where Si and Cu having a Ni film formed on the surface are connected by a Zn-based bonding member, the difference in thermal expansion coefficient between Si and Cu is large, so that a NiZn compound layer is formed. Problems such as cracks occur due to inability to withstand this thermal stress. Therefore, it is necessary to control the Ni film thickness, connection temperature, and the like so that the NiZn compound layer is not formed.

上記観点から、Ni膜厚は10μm以下、好ましくは5μm以下がよい。このようにNi層の厚さを薄くすると、Zn系の接合部材で接続時にZn系の接合部材中へのNiの供給量が少ないため、Ni成分はZn系の接合部材の界面に近い浅い領域中に拡散するが、ZnNi化合物層を形成するには至らず、結果としてSiとZn系の接合部材との間で良好な接続強度を得ることができる。界面におけるZn系の接合部材層には、Niが密度が界面から次第に小さくなる状態で拡散(傾斜拡散)されており、NiZn合金層は実質的に形成されないような条件で接続されている。   From the above viewpoint, the Ni film thickness is 10 μm or less, preferably 5 μm or less. When the thickness of the Ni layer is reduced in this way, since the amount of Ni supplied into the Zn-based bonding member is small when the Zn-based bonding member is connected, the Ni component is a shallow region close to the interface of the Zn-based bonding member. Although it diffuses in, it does not lead to the formation of a ZnNi compound layer, and as a result, good connection strength can be obtained between Si and a Zn-based bonding member. The Zn-based bonding member layer at the interface is connected under such a condition that Ni is diffused (gradient diffusion) in a state where the density gradually decreases from the interface, and the NiZn alloy layer is not substantially formed.

なお、接続温度を調整することにより、Siと拡散されたNi成分を含むZn系の接合部材との間にNi層を残すようにしてもよい。また、反応のストッパ層としてTi膜層を形成してSi/Ni/Ti/Niという構成にして、Zn系の接合材料と反応するNi膜層の厚さを制御しても良い。さらに、Ni表面にZnの濡れ性確保のため、Au、Agめっきをしても良い。   Note that the Ni layer may be left between Si and the Zn-based bonding member containing the diffused Ni component by adjusting the connection temperature. Alternatively, a Ti film layer may be formed as a reaction stopper layer to form a structure of Si / Ni / Ti / Ni, and the thickness of the Ni film layer that reacts with the Zn-based bonding material may be controlled. Furthermore, Au and Ag plating may be performed on the Ni surface to ensure wettability of Zn.

いずれの場合も、NiZn化合物がZn系の接合部材中に拡散している場合もあり得るが、NiZn化合物を界面の層として残さなければ、特に熱応力に対する観点からSiとZn系の接合部材とは良好な接続を得ることができる。   In any case, the NiZn compound may be diffused in the Zn-based bonding member. However, if the NiZn compound is not left as an interface layer, the Si-Zn-based bonding member and Can get a good connection.

一方、ZnとCu部材との接続性であるが、ZnはCuと容易に反応し化合物を形成し強固な接続が得られ、またZnCu化合物はZnおよびCuとの界面接合強度は十分大きいため、Cu部材に直接Zn系の接合部材を接続しても良い。また表面にNi膜を施し、濡れ性を確保してもよいが、上記した点を考慮し、Ni膜の厚さを例えば10μm以下、好ましくは5μm以下にするなどの対処をした方がよい。   On the other hand, it is the connectivity between Zn and the Cu member, but Zn easily reacts with Cu to form a compound and a strong connection is obtained, and the ZnCu compound has a sufficiently high interfacial bonding strength between Zn and Cu. A Zn-based bonding member may be directly connected to the Cu member. Further, a Ni film may be applied to the surface to ensure wettability, but it is better to take measures such as setting the thickness of the Ni film to 10 μm or less, preferably 5 μm or less in consideration of the above points.

また、先に述べたように半導体素子のSiとCuとでは熱膨張率がそれぞれSiで2.6×10−6/℃、Cuで17×10−6/℃と大きく異なる。したがって、厚いCu部材に直接半導体素子を接続する場合には熱膨張率差に基づく応力が発生し、その応力が半導体素子のSiの強度より大きい場合には、Siにクラックが発生する。このような熱応力を低減するには、半導体素子とCu部材の間に、熱膨張率がSiとCuの間にある応力緩和部材を介在させて接合すれば良い。応力緩和部材としては低熱膨張材のインバーや42アロイをCuで挟んだ3層構造で、低熱膨張材とCuとの厚み比を変えることで全体の熱膨張率を制御できる。このような熱膨張率差緩衝材は表裏面がCuであるので容易にZnとの接続が可能である。さらに濡れ性確保のためにNiめっきをしても良い。尚、応力緩衝部材は前記構造からなる1層に限られず、適宜複数層設けても構わない。 Further, as described above, the thermal expansion coefficients of Si and Cu of the semiconductor element are greatly different from Si of 2.6 × 10 −6 / ° C. and Cu of 17 × 10 −6 / ° C., respectively. Therefore, when a semiconductor element is directly connected to a thick Cu member, a stress based on the difference in thermal expansion coefficient is generated, and when the stress is larger than the Si strength of the semiconductor element, a crack is generated in Si. In order to reduce such thermal stress, a stress relaxation member having a coefficient of thermal expansion between Si and Cu may be interposed between the semiconductor element and the Cu member. The stress relaxation member has a three-layer structure in which a low thermal expansion material Invar or 42 alloy is sandwiched between Cu, and the overall thermal expansion coefficient can be controlled by changing the thickness ratio between the low thermal expansion material and Cu. Such a thermal expansion coefficient difference buffer material can be easily connected to Zn because the front and back surfaces are Cu. Further, Ni plating may be performed to ensure wettability. The stress buffer member is not limited to one layer having the above structure, and a plurality of layers may be provided as appropriate.

さらにZn系の接合部材で接続する際の条件としては、中性または還元性雰囲気が適し、好ましくは窒素に水素を添加した還元性雰囲気が良い。また、中性または還元性雰囲気中でフラックス無しでの接続が可能であるが、フラックスを使用する場合には、炭化物等が残り濡れ性の阻害および接合強度の低下がおこらないように、接続中に完全に飛散するフラックスを使用すればよい。   Furthermore, as a condition for connecting with a Zn-based joining member, a neutral or reducing atmosphere is suitable, and a reducing atmosphere in which hydrogen is added to nitrogen is preferable. In addition, it is possible to connect without flux in a neutral or reducing atmosphere, but when using flux, it is being connected so that carbides do not remain and impede wettability and decrease bonding strength. A flux that completely scatters may be used.

次に溶融冷却後のZnの特性としては、引張強度は高Pbはんだと同等で約50MPa程度、熱伝導率は0.269cal・cm−1・s−1・deg−1( 96.8Kcal・m−1・h−1・deg−1)、また比抵抗は5.9×10−6Ωcmである。これらはPbの0.0838cal・cm−1・s−1・deg−1(30.2Kcal・m−1・h−1・deg−1)および2.08×10−6Ωcmと比較し良好であることから、高Pbはんだが用いられた接続部分をZn系の接合材料で容易に置き換えることが可能であるばかりか、放熱性についてはZn系の接合材料の方が優れていることがわかる。 Next, as the characteristics of Zn after melting and cooling, the tensile strength is about 50 MPa equivalent to that of the high Pb solder, and the thermal conductivity is 0.269 cal · cm −1 · s −1 · deg −1 (96.8 Kcal · m −1 · h −1 · deg −1 ) and the specific resistance is 5.9 × 10 −6 Ωcm. These are good compared with 0.0838 cal · cm −1 · s −1 · deg −1 (30.2 Kcal · m −1 · h −1 · deg −1 ) and 2.08 × 10 −6 Ωcm of Pb. From this, it can be seen that the connection portion using high Pb solder can be easily replaced with a Zn-based bonding material, and that the Zn-based bonding material is superior in terms of heat dissipation.

一方、ZnとCuとの間の化合物層の厚さは、高Pbはんだの場合には1〜3μm形成されるのに対して、Zn系の接合材料の場合にはZnの融点付近の420℃〜460℃の範囲で接続すると数十μm以上となり、Zn系の接合材料の残存部分の厚さが減ることになる。化合物層はCu又はZn系の接合材料と比べて硬く、上下層間の熱膨張率差を吸収しにくいため、接続部での強度を確保すべく、Zn系の接合材料がなるべく多く残存するように供給材の厚さを調整する必要がある。例えば、厚さが1mm程度のZn系の接合部材を用いて半導体素子と厚さ2mm以上のCu部材とを直接接続した場合、接合部分にZn部分が残存し、半導体素子に対する応力は半導体素子強度以下となるため半導体素子にクラックは発生せず、また接合強度の低下も起こらない。   On the other hand, the thickness of the compound layer between Zn and Cu is 1 to 3 μm in the case of high Pb solder, whereas it is 420 ° C. near the melting point of Zn in the case of a Zn-based bonding material. When connected in the range of ˜460 ° C., it becomes several tens μm or more, and the thickness of the remaining portion of the Zn-based bonding material is reduced. The compound layer is harder than the Cu or Zn-based bonding material and hardly absorbs the difference in thermal expansion coefficient between the upper and lower layers, so that as much Zn-based bonding material as possible remains to ensure the strength at the connection portion. It is necessary to adjust the thickness of the feed material. For example, when a semiconductor element and a Cu member having a thickness of 2 mm or more are directly connected using a Zn-based bonding member having a thickness of about 1 mm, the Zn portion remains in the bonding portion, and the stress on the semiconductor element is the strength of the semiconductor element. Therefore, cracks do not occur in the semiconductor element, and the bonding strength does not decrease.

しかし、半導体装置の放熱性を考慮し、半導体素子とCu部材との間の伝熱特性を良くするためには、間に入れる接合部材の層を接合強度を確保できる範囲でできるだけ薄くした方が良い。そこで、Zn系の接合材料の厚さを0.2mm以下とする場合には、接続するCu部材の厚さを半導体素子の厚さ以下とするか、もしくは応力緩和部材を挿入し、半導体素子への熱応力を低減する構造にすればよい。なお、CuZn化合物層はNiZn化合物層に比べると軟らかく、熱応力を吸収し易いので、化合物層が形成されていてもよいが、NiZn化合物層については、先に述べたように層として形成しない方がよい。また、形成される反応層の厚さを抑えるには、接続時の温度は融点〜融点+50℃の温度範囲で行うのがよい。   However, in consideration of the heat dissipation of the semiconductor device, in order to improve the heat transfer characteristics between the semiconductor element and the Cu member, it is preferable to make the layer of the joining member interposed between them as thin as possible within a range in which the joining strength can be secured. good. Therefore, when the thickness of the Zn-based bonding material is 0.2 mm or less, the thickness of the Cu member to be connected is set to be equal to or less than the thickness of the semiconductor element, or a stress relaxation member is inserted to the semiconductor element. What is necessary is just to make it the structure which reduces the thermal stress of. Since the CuZn compound layer is softer than the NiZn compound layer and easily absorbs thermal stress, the compound layer may be formed. However, the NiZn compound layer is not formed as a layer as described above. Is good. Moreover, in order to suppress the thickness of the reaction layer to be formed, the temperature at the time of connection is preferably in the temperature range of the melting point to the melting point + 50 ° C.

なお、Zn単体を接合部材として用いた時の半導体素子と厚さ2mmのCu板との接合強度は、半導体素子の直径を6mm、Zn単体の厚さを0.2〜1mmにした場合、引張り強度は約320N、半導体素子とCu板との間に応力低減のための応力緩和部材を挿入した場合では400N以上の引張り強度が得られる。またZn単体の代わりにZn系の接合材料として共晶組成系のZn5Alを用いた場合では、半導体素子とCu板の場合で約250N、応力緩和部材を挿入した場合で320N以上の強度が得られる。また、上記したZn単体又はZn5Alを接合部材として用いて応力緩和部材を挿入した場合、熱サイクル試験(−40〜200℃、400サイクル)を行った後でも、初期引張強度の80%以上の強度が確保されることを確認した。   The bonding strength between the semiconductor element and the 2 mm thick Cu plate when using Zn alone as the bonding member is tensile when the diameter of the semiconductor element is 6 mm and the thickness of the Zn element is 0.2 to 1 mm. The strength is about 320 N, and when a stress relaxation member for reducing stress is inserted between the semiconductor element and the Cu plate, a tensile strength of 400 N or more can be obtained. In addition, when eutectic Zn5Al is used as a Zn-based bonding material instead of Zn alone, a strength of about 250 N is obtained in the case of a semiconductor element and a Cu plate, and 320 N or more is obtained when a stress relaxation member is inserted. . In addition, when a stress relaxation member is inserted using the above Zn simple substance or Zn5Al as a bonding member, the strength is 80% or more of the initial tensile strength even after a thermal cycle test (-40 to 200 ° C., 400 cycles). Was confirmed to be secured.

さらに、少なくとも上記Zn系の接合部材で接続された部分を、250℃の耐熱性を満足する樹脂たとえばポリイミド樹脂等で覆うことにより、Zn系接続部の耐環境性が向上するとともに半導体素子と部材との接合強度も向上する。   Furthermore, by covering at least the portion connected by the Zn-based bonding member with a resin satisfying heat resistance of 250 ° C., such as polyimide resin, the environment resistance of the Zn-based connecting portion is improved and the semiconductor element and the member The bonding strength with the material is also improved.

上記検討を踏まえ、高耐圧用半導体装置に上記Zn系の接合部材を適用した例を説明する。   Based on the above examination, an example in which the Zn-based bonding member is applied to a high voltage semiconductor device will be described.

実施例1として、車載用交流発電機に用いる高耐圧用半導体装置に本発明を適用した場合ついて、幾つかの実施の形態を図を用いて説明する。   As a first embodiment, several embodiments will be described with reference to the drawings in the case where the present invention is applied to a high voltage semiconductor device used in an in-vehicle AC generator.

図1は、本発明による半導体装置の実施例1の第1の実施形態を示し、半導体素子1と、応力緩和部材5を介して半導体素子1を支持する支持電極体3と、半導体素子と電気的に接続されるリード電極7と、各々を接続するZn系の接合材料からなる接合部材2、4、6と、支持電極体3の内部を充填する封止材8とを備えて構成されている。本第1の実施の形態の場合、半導体素子1の面と接してZn系の接合部材2、4が接合されており、その間には他の層が存在しない。これにより、耐熱性、耐熱応力性、放熱性に優れた半導体装置を提供することができる。ここで、半導体素子1は、例えばツェナーダイオードなどの整流素子である。   FIG. 1 shows a first embodiment of Example 1 of a semiconductor device according to the present invention. A semiconductor element 1, a support electrode body 3 that supports the semiconductor element 1 via a stress relaxation member 5, a semiconductor element, and an electric circuit. Connected lead electrode 7, bonding members 2, 4, 6 made of Zn-based bonding material for connecting each of them, and sealing material 8 filling the inside of support electrode body 3. Yes. In the case of the first embodiment, Zn-based bonding members 2 and 4 are bonded in contact with the surface of the semiconductor element 1, and no other layer exists between them. Thereby, the semiconductor device excellent in heat resistance, heat stress resistance, and heat dissipation can be provided. Here, the semiconductor element 1 is a rectifying element such as a Zener diode.

本実施形態において、半導体素子1および応力緩和部材5の両面と支持電極体3、リード電極7の接続面は、接合部材の濡れ性を良くするために予め表面をニッケル(Ni)膜がめっきにより薄く形成された状態で接合部材2、4、6により接合されるが、図1に示す接合後の状態では、Niが接合部材2、4、6の中に拡散してしまってNi膜は消失している。   In this embodiment, both surfaces of the semiconductor element 1 and the stress relaxation member 5 and the connection surfaces of the support electrode body 3 and the lead electrode 7 are previously plated with a nickel (Ni) film in order to improve the wettability of the bonding member. Joined by the joining members 2, 4, 6 in a thinly formed state, but in the state after joining shown in FIG. 1, Ni diffuses into the joining members 2, 4, 6 and the Ni film disappears doing.

なお、接合部材2、4、6は、すべて同一組成のZn系の接合材料を用いる必要はなく、下記に詳説する温度階層、応力階層等の観点から各層異なる組成のZn系の接合材料を用いてもよい。また、接合材料は半導体装置全体の放熱特性向上を考慮し、0.1〜0.3mm程度の薄い膜厚で設けるのが好ましい。応力緩和部材5としては、インバーや42アロイをCuで挟んだ3層構造を用いればよい。また、図1では応力緩和部材5を1層のみ設けているが、更に熱応力を緩和すべく複数層設けても構わない。支持電極体3、リード電極7には、熱伝導率の高いCu部材を用いればよい。封止材8は、耐熱性のある樹脂あるいはシリコーンゴム等を用いればよい。   Note that the bonding members 2, 4, and 6 do not need to use Zn-based bonding materials having the same composition, but use Zn-based bonding materials having different compositions from the viewpoint of the temperature hierarchy, stress hierarchy, and the like described in detail below. May be. In addition, the bonding material is preferably provided with a thin film thickness of about 0.1 to 0.3 mm in consideration of improvement in heat dissipation characteristics of the entire semiconductor device. As the stress relaxation member 5, a three-layer structure in which Invar or 42 alloy is sandwiched between Cu may be used. In FIG. 1, only one layer of the stress relaxation member 5 is provided, but a plurality of layers may be provided to further reduce thermal stress. For the support electrode body 3 and the lead electrode 7, a Cu member having a high thermal conductivity may be used. As the sealing material 8, a heat-resistant resin or silicone rubber may be used.

次に、本発明の半導体装置の実施例1の第2の実施形態について、図2を用いて説明する。第2の実施形態の半導体装置は、半導体素子1と、半導体素子1を支持する支持電極体3と、半導体素子と電気的に接続されるリード電極7と、各々を接続するZn系の接合材料からなる接合部材2、4と、支持電極体3の内部を充填する封止材8とを有する。本実施形態の場合、応力緩和部材5を有しないため、熱応力への対応として、半導体素子1と支持電極体3との接合部材4の膜厚を少し厚めの0.3〜0.6mm程度で設けるのが好ましい。   Next, a second embodiment of Example 1 of the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device according to the second embodiment includes a semiconductor element 1, a support electrode body 3 that supports the semiconductor element 1, a lead electrode 7 that is electrically connected to the semiconductor element, and a Zn-based bonding material that connects each of them. And the sealing member 8 filling the inside of the support electrode body 3. In the case of the present embodiment, since the stress relaxation member 5 is not provided, the film thickness of the bonding member 4 between the semiconductor element 1 and the support electrode body 3 is slightly thicker about 0.3 to 0.6 mm as a measure against thermal stress. Is preferably provided.

本実施形態においても前記した第1の実施の形態と同様に、半導体素子1の両面と支持電極体3、リード電極7の接続面は、接合部材の濡れ性を良くするために予め表面をNi膜がめっきにより薄く形成された状態で接合部材2、4、6により接合されるが、図2に示す接合後の状態ではNiが接合部材2、4、6の中に拡散してしまってNi膜は消失している。   Also in this embodiment, as in the first embodiment described above, the surfaces of the semiconductor element 1 and the connection surfaces of the support electrode body 3 and the lead electrode 7 are previously Ni-coated in order to improve the wettability of the bonding member. In the state where the film is thinly formed by plating, it is joined by the joining members 2, 4, 6; however, Ni is diffused into the joining members 2, 4, 6 in the state after joining shown in FIG. The membrane has disappeared.

次に、本発明の半導体装置の実施例1の第3の実施形態について、図3を用いて説明する。第3の実施形態の半導体装置は、半導体素子1と、応力緩和部材5を介して半導体素子1を支持する支持電極体3と、半導体素子と電気的に接続されるリード電極7と、各々を接続するZn系の接合材料からなる接合部材2、4、6及びその界面に設けられたNi層9と、支持電極体3の内部を充填する封止材8とを有する。上記した第1の実施形態との相違点は、第1の実施の形態においては、図1に示したように、Zn系接合部材2、4、6で接合した後には、Ni膜が消失しているのに対して、本実施形態の場合、Zn系接合部材2、4、6で接合した後にも各層間でNi膜が残っている。各層間にNi膜を掲載した状態でZn系接合部材2、4、6で接合するため、製造時の濡れ性が向上し、良好な接続が得られる。本実施形態の場合、各層間でNi膜を形成しているため、製造時の濡れ性が向上し、良好な接続が得られる。例えば、半導体素子1の面に接してNi層9が接合され、Ni層9の面に接してZn系の接合部材2、4が接合されている。この場合も先に述べた理由から、Ni層9とZn系の接合部材2、4との間にNiZn合金層が形成しないようにすることが必要である。なお、図3に示す半導体装置では各層間でNi層9を設けているが、これに限られず、適宜任意の層間ではNi層9を設けない構造にしても構わない。   Next, a third embodiment of Example 1 of the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device according to the third embodiment includes a semiconductor element 1, a support electrode body 3 that supports the semiconductor element 1 via a stress relaxation member 5, and a lead electrode 7 that is electrically connected to the semiconductor element. It has joining members 2, 4, 6 made of a Zn-based joining material to be connected, a Ni layer 9 provided at the interface thereof, and a sealing material 8 filling the inside of the support electrode body 3. The difference from the first embodiment described above is that, in the first embodiment, as shown in FIG. 1, the Ni film disappears after joining with the Zn-based joining members 2, 4, 6. On the other hand, in the case of the present embodiment, the Ni film remains between the respective layers even after bonding with the Zn-based bonding members 2, 4, 6. Since bonding is performed with the Zn-based bonding members 2, 4, 6 in a state where the Ni film is placed between the respective layers, the wettability at the time of manufacture is improved and good connection is obtained. In the case of this embodiment, since the Ni film is formed between the respective layers, the wettability at the time of manufacture is improved and a good connection is obtained. For example, the Ni layer 9 is bonded in contact with the surface of the semiconductor element 1, and the Zn-based bonding members 2 and 4 are bonded in contact with the surface of the Ni layer 9. Also in this case, it is necessary to prevent the NiZn alloy layer from being formed between the Ni layer 9 and the Zn-based joining members 2 and 4 for the reason described above. In the semiconductor device shown in FIG. 3, the Ni layer 9 is provided between the respective layers. However, the present invention is not limited to this, and a structure in which the Ni layer 9 is not provided between arbitrary layers may be employed.

次に、本発明の半導体装置の実施例1の第4の実施形態について、図4を用いて説明する。第4の実施形態の半導体装置は、半導体素子1と、半導体素子1を支持する支持電極体3と、半導体素子と電気的に接続されるリード電極7と、各々を接続するZn系の接合材料からなる接合部材2、4及びその界面に設けられたNi層9と、支持電極体3の内部を充填する封止材8とを有する。応力緩和部材5がない点以外は第3実施形態とほぼ同じであるが、それに伴い、熱応力への対応として、半導体素子1と支持電極体3との接合部材4の膜厚を少し厚めの0.3〜0.6mm程度で設けるのが好ましく、また接合部材4の両面に設けられたNi層9は他のNi層よりも薄い膜厚にするのが好ましい。なお、第3の実施形態同様、適宜任意の層間ではNi層9を設けない構造にしても構わない。   Next, a fourth embodiment of Example 1 of the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device of the fourth embodiment includes a semiconductor element 1, a support electrode body 3 that supports the semiconductor element 1, a lead electrode 7 that is electrically connected to the semiconductor element, and a Zn-based bonding material that connects each of them. And the Ni layer 9 provided at the interface thereof, and the sealing material 8 filling the inside of the support electrode body 3. The third embodiment is almost the same as the third embodiment except that the stress relaxation member 5 is not provided. Accordingly, as a measure against thermal stress, the thickness of the bonding member 4 between the semiconductor element 1 and the support electrode body 3 is slightly increased. The Ni layer 9 provided on both surfaces of the bonding member 4 is preferably thinner than the other Ni layers. Note that, similarly to the third embodiment, a structure in which the Ni layer 9 is not appropriately provided between arbitrary layers may be employed.

次に、本実施例における半導体装置の第1の製造方法について、図1に示す半導体装置を例にとり、図5を用いて説明する。   Next, a first method for manufacturing a semiconductor device according to the present embodiment will be described with reference to FIG. 5, taking the semiconductor device shown in FIG. 1 as an example.

まず、半導体素子1の表面及び裏面にNi膜9を形成(ステップ601)した後、半導体素子1の一方の面とリード電極7とを還元雰囲気中でZn系の接合部材2により接合する(ステップ602)。ここで、Ni膜9はめっきによって形成すればよいが、接合後NiZn合金層を形成しないように10μm以下、好ましくは5μm以下の膜厚にするとよい。これにより、図1のように、半導体素子1の直上にZn(Ni成分が拡散されたZn)層を形成することができ、NiZn合金層が形成されないため、良好な接続を得ることができる。なお、Ni層9を残した図3の半導体装置を製造する場合には、上記Niの膜厚に制約される必要はないが、NiZn合金層を形成させないように、接合環境・温度調整をすればよい。   First, the Ni film 9 is formed on the front surface and the back surface of the semiconductor element 1 (step 601), and then one surface of the semiconductor element 1 and the lead electrode 7 are bonded to each other by a Zn-based bonding member 2 in a reducing atmosphere (step). 602). Here, the Ni film 9 may be formed by plating, but the film thickness may be 10 μm or less, preferably 5 μm or less so as not to form the NiZn alloy layer after bonding. As a result, as shown in FIG. 1, a Zn (Zn in which Ni component is diffused) layer can be formed immediately above the semiconductor element 1, and a NiZn alloy layer is not formed, so that a good connection can be obtained. In the case of manufacturing the semiconductor device of FIG. 3 with the Ni layer 9 left, it is not necessary to be restricted by the Ni film thickness, but the bonding environment and temperature should be adjusted so as not to form the NiZn alloy layer. That's fine.

一方、表面にNi膜を形成した支持電極体3にZn系の接合部材6を供給し(ステップ603)、リフローにより支持電極体3と応力緩和部材5とをZn系の接合部材6で接合する(ステップ604)。その後、前記半導体素子1とリード電極7とを接合してなる接続構造体と、前記支持電極体3と応力緩和部材5とを接合してなる接続構造体とをZn系の接合部材4で接合し(ステップ605)、前記半導体素子1が接合された支持電極体3の内部を耐熱性の樹脂あるいはシリコーンゴム等によりモールドして完成する(ステップ606)。なお、Zn系の接合材料の供給方法としては、板状、箔状、めっき、ペースト等が考えられ、必要に応じて適宜選択すればよい。   On the other hand, a Zn-based bonding member 6 is supplied to the support electrode body 3 having a Ni film formed on the surface (step 603), and the support electrode body 3 and the stress relaxation member 5 are bonded by the Zn-based bonding member 6 by reflow. (Step 604). Thereafter, a connection structure formed by bonding the semiconductor element 1 and the lead electrode 7 and a connection structure formed by bonding the support electrode body 3 and the stress relaxation member 5 are bonded by a Zn-based bonding member 4. Then, the inside of the support electrode body 3 to which the semiconductor element 1 is bonded is molded with a heat-resistant resin or silicone rubber or the like (step 606). In addition, as a supply method of a Zn-based bonding material, a plate shape, a foil shape, plating, a paste, or the like can be considered, and may be appropriately selected as necessary.

この製造方法の場合、Zn系の接合部材4による接合時に既に接合されたZn系の接合部材2、6が再溶融する恐れがあるため、Zn系の接合部材2、6には、Zn系の接合部材4よりも高い融点をもつ組成のZn系の接合材料を用い、温度階層をつければよい。具体的には、例えば、Zn系の接合部材2,6には、Zn単体を用い、Zn系の接合部材4にはZn5Al系の接合材料を用いればよい。   In the case of this manufacturing method, there is a possibility that the Zn-based bonding members 2 and 6 that have already been bonded at the time of bonding by the Zn-based bonding member 4 may be remelted. A Zn-based bonding material having a composition having a higher melting point than that of the bonding member 4 may be used and a temperature hierarchy may be provided. Specifically, for example, Zn alone may be used for the Zn-based bonding members 2 and 6, and Zn 5 Al-based bonding material may be used for the Zn-based bonding member 4.

次に、本発明の半導体装置の第2の製造方法について、図6を用いて説明する。まず、表面にNi膜を形成した支持電極体3にZn系の接合部材6を供給し(ステップ701)、支持電極体3に応力緩和部材5を還元雰囲気中でZn系の接合部材6で接合する(ステップ702)。次に、前記応力緩和部材5の上にZn系の接合部材4を供給し(ステップ703)、両面にNi膜が形成された半導体素子1と応力緩和部材5とをZn系の接合部材4で接合する(ステップ704)。次に、前記半導体素子1の上にZn系の接合部材2を供給し(ステップ705)、半導体素子1と表面にNi膜が形成されたリード電極7とをZn系の接合部材2で接合する(ステップ706)。最後に、前記半導体素子1が接合された支持電極体3の内部をモールドして完成する(ステップ707)。   Next, a second manufacturing method of the semiconductor device of the present invention will be described with reference to FIG. First, the Zn-based bonding member 6 is supplied to the support electrode body 3 having a Ni film formed on the surface (step 701), and the stress relaxation member 5 is bonded to the support electrode body 3 with the Zn-based bonding member 6 in a reducing atmosphere. (Step 702). Next, the Zn-based bonding member 4 is supplied onto the stress relaxation member 5 (step 703), and the semiconductor element 1 having the Ni film formed on both surfaces and the stress relaxation member 5 are joined with the Zn-based bonding member 4. Joining (step 704). Next, a Zn-based bonding member 2 is supplied onto the semiconductor element 1 (step 705), and the semiconductor element 1 and the lead electrode 7 having a Ni film formed on the surface are bonded by the Zn-based bonding member 2. (Step 706). Finally, the inside of the support electrode body 3 to which the semiconductor element 1 is bonded is molded to complete (step 707).

この製造方法の場合には、Zn系の接合部材6、4、2を順次接合していくため、温度階層を3層つける必要があり、例えば、上記順番での接合の場合、接合部材6にはZn単体、接合材料4にはZn3Al系の接合材料、接合部材6にはZn5Al系の接合材料を用いればよい。   In the case of this manufacturing method, since the Zn-based joining members 6, 4, 2 are sequentially joined, it is necessary to provide three temperature layers. For example, in the case of joining in the above order, Zn may be used, the bonding material 4 may be a Zn3Al-based bonding material, and the bonding member 6 may be a Zn5Al-based bonding material.

次に、本実施例における半導体装置の第3の製造方法について、図7を用いて説明する。   Next, a third manufacturing method of the semiconductor device in this example will be described with reference to FIG.

まず、表面をNiめっきした支持電極体3にZn系の接合部材6を供給し(ステップ801)、前記Zn系の接合部材6の上に応力緩和部材5を供給し(ステップ802)、さらに前記応力緩和部材5の上にZn系の接合部材4を供給する(ステップ803)。さらに、前記Zn系の接合部材4の上に両面にNi膜を形成した半導体素子1を供給し(ステップ804)、前記半導体素子1の上にZn系の接合部材2を供給し(ステップ805)、Zn系の接合部材2の上にリード電極7を供給する(ステップ806)。次に、リフロー処理により、電極支持体3と応力緩和部材5とをZn系の接合部材6で、応力緩和部材5と半導体素子1とをZn系の接合部材4で、半導体素子とリード電極7とをZn系の接合部材2で、一括して接合する(ステップ807)。最後に、前記半導体素子1が接合された支持電極体3の内部をモールドして完成する(ステップ808)。   First, a Zn-based bonding member 6 is supplied to the support electrode body 3 whose surface is Ni-plated (step 801), and a stress relaxation member 5 is supplied on the Zn-based bonding member 6 (step 802). A Zn-based bonding member 4 is supplied on the stress relaxation member 5 (step 803). Further, the semiconductor element 1 having Ni films formed on both surfaces thereof is supplied on the Zn-based bonding member 4 (step 804), and the Zn-based bonding member 2 is supplied on the semiconductor element 1 (step 805). The lead electrode 7 is supplied onto the Zn-based bonding member 2 (step 806). Next, by reflow treatment, the electrode support 3 and the stress relaxation member 5 are bonded with a Zn-based bonding member 6, the stress relaxation member 5 and the semiconductor element 1 are bonded with a Zn-based bonding member 4, and the semiconductor element and the lead electrode 7. Are joined together with the Zn-based joining member 2 (step 807). Finally, the inside of the support electrode body 3 to which the semiconductor element 1 is bonded is molded to complete (step 808).

この製造方法の場合には、各Zn系の接合部材2、4、6を一括接合するため、すべて同じ組成の部材でもよく、また第1及び第2の製造方法のように温度階層を設けなくてもよい。従って、本製造方法の場合、Zn系の接合材料の材料の各組成の軟らかさ、熱抵抗率、熱伝導率等の観点から最適な組合せで階層を設けてもよい。   In the case of this manufacturing method, since the Zn-based bonding members 2, 4, 6 are collectively bonded, all members having the same composition may be used, and no temperature hierarchy is provided unlike the first and second manufacturing methods. May be. Therefore, in the case of this manufacturing method, layers may be provided in an optimum combination from the viewpoints of the softness of each composition of the Zn-based bonding material, thermal resistivity, thermal conductivity, and the like.

本実施例における半導体装置の製造方法について上記の通り、いくつか述べたが、上記実施例には限られず、適宜接合順番を入れ替え、それに伴い最適な接合材料を選択してもよい。   As described above, several methods for manufacturing a semiconductor device according to the present embodiment have been described. However, the present invention is not limited to the above-described embodiment, and the bonding order may be appropriately changed, and an optimal bonding material may be selected accordingly.

尚、上記実施例では、半導体素子1としてツェナーダイオードの例を説明したが、大電力用の整流素子やサイリスタ素子であっても良い。   In the above embodiment, an example of a Zener diode has been described as the semiconductor element 1, but a rectifier element or a thyristor element for high power may be used.

次に、実施例2として、本発明をIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートを持つバイポーラトランジスタ)素子を用いて組み立てるIGBTモジュールに適用した場合を説明する。   Next, as Example 2, the case where the present invention is applied to an IGBT module assembled using an IGBT (Insulated Gate Bipolar Transistor) element will be described.

図8は、IGBT素子を用いて組み立てたIGBTモジュールの一部分の構造を示した図である。図中、1001−1及び2はIGBT素子、1002は絶縁基板、1003−1と1003−2とは絶縁基板1002上に形成された銅配線パターン、1004は銅板、1005はアルミワイヤ、1006は内部配線、1007はケース、1008は蓋、1009は端子であり、IGBT素子1001−1と銅配線パターン1003−1、1003−2とはZn系の接合材料1010で、また、絶縁基板1002と銅板1004とはZn系の接合部材1011で、それぞれ接続されている。Zn系の接合部材1010とZn系の接合部材1011としては、実施例1で説明したものと同様の、Zn単体、又はZn−Al系合金、又はZn−Alに他の金属成分を添加した3元系以上の合金を用いる。また、ケース1007の内部は、シリコンゲルなどの封止材料1012が充填されている。   FIG. 8 is a diagram showing a partial structure of an IGBT module assembled using an IGBT element. In the figure, 1001-1 and 2 are IGBT elements, 1002 is an insulating substrate, 1003-1 and 1003-2 are copper wiring patterns formed on the insulating substrate 1002, 1004 is a copper plate, 1005 is an aluminum wire, and 1006 is an internal The wiring, 1007 is a case, 1008 is a lid, and 1009 is a terminal. The IGBT element 1001-1 and the copper wiring patterns 1003-1 and 1003-2 are made of a Zn-based bonding material 1010, and the insulating substrate 1002 and the copper plate 1004. Are Zn-based bonding members 1011 connected to each other. As the Zn-based bonding member 1010 and the Zn-based bonding member 1011, the same as described in Example 1, Zn alone, Zn—Al alloy, or other metal component added to Zn—Al 3 Use an alloy of the original system or higher. Further, the inside of the case 1007 is filled with a sealing material 1012 such as silicon gel.

この実施例においても、IGBT素子1001−1、1001−2と銅配線パターン1003−1、1003−2とのそれぞれのZn系の接合部材1010で接合する面には、予めNi膜が10μm以下の厚さ、好ましくは5μm以下の厚さで形成されており、このNi膜が形成された面においてZn系の接合部材1010で接合されている。この実施例においても、Zn系の接合部材1010とIGBT素子1001−1、1001−2及び配線パタンとの界面におけるZn系の接合部材層には、Niが密度が界面から次第に小さくなる状態で拡散(傾斜拡散)されており、NiZn合金層は実質的に形成されないような条件で接続されている。   Also in this embodiment, the Ni film has a thickness of 10 μm or less in advance on the surfaces where the IGBT elements 1001-1 and 1001-2 and the copper wiring patterns 1003-1 and 1003-2 are bonded by the respective Zn-based bonding members 1010. The thickness is preferably 5 μm or less, and the surface on which the Ni film is formed is joined by a Zn-based joining member 1010. Also in this embodiment, in the Zn-based bonding member layer at the interface between the Zn-based bonding member 1010 and the IGBT elements 1001-1 and 1001-2 and the wiring pattern, Ni diffuses in a state where the density gradually decreases from the interface. (Inclined diffusion) and the NiZn alloy layers are connected under such a condition that they are not substantially formed.

また、絶縁基板1002と銅板1004とのそれぞれZn系の接合部材1011で接合する面にも、Ni膜が10μm以下の厚さ、好ましくは5μm以下の厚さで形成されており、このNi膜が形成された面においてZn系の接合部材1011で接合されている。この場合も上記と同様に、Zn系の接合部材1010と絶縁基板1002及び銅板1004との界面におけるZn系の接合材料層には、Niが傾斜拡散された状態になっており、NiZn合金層は実質的に形成されないような条件で接続されている。これにより、耐熱性、耐熱応力性、放熱性に優れたIGBTモジュールを提供することができる。   In addition, a Ni film is formed to a thickness of 10 μm or less, preferably 5 μm or less, on the surfaces where the insulating substrate 1002 and the copper plate 1004 are joined by the respective Zn-based joining members 1011. The formed surface is joined by a Zn-based joining member 1011. In this case, similarly to the above, Ni is inclined and diffused in the Zn-based bonding material layer at the interface between the Zn-based bonding member 1010 and the insulating substrate 1002 and the copper plate 1004, and the NiZn alloy layer is They are connected under such conditions that they are not substantially formed. Thereby, the IGBT module excellent in heat resistance, heat stress resistance, and heat dissipation can be provided.

ここで、銅板1004上への絶縁基板1002の接続と絶縁基板1002上の配線パターン1003−1、1003−2とIGBT素子1001−1及び1001−2との接続を別々に行う場合には、Zn系の接合部材1010とZn系の接合部材1011とは、組成の比率を変えて融点の異なるものを用いればよい。例えば、Zn系の接合部材1010と1011との組合せとしては、1010にZn単体を用いて1011にはZn3AlまたはZn5Alを用いても良く、また1010にZn3Alを用いたときには、1011にZu5Alを用いればよい。   Here, when the connection of the insulating substrate 1002 on the copper plate 1004 and the connection of the wiring patterns 1003-1 and 1003-2 and the IGBT elements 1001-1 and 1001-2 on the insulating substrate 1002 are performed separately, Zn The bonding member 1010 based on the system and the bonding member 1011 based on the Zn may have different melting points by changing the composition ratio. For example, as a combination of the Zn-based bonding members 1010 and 1011, Zn alone may be used for 1010, Zn3Al or Zn5Al may be used for 1011, and when Zn3Al is used for 1010, Zu5Al may be used for 1011. Good.

一方、銅板1004上への絶縁基板1002の接続と絶縁基板1002上の配線パターン1003−1、1003−2とIGBT素子1001−1及び1001−2との接続を同時に行う場合には、Zn系の接合部材1011とZn系の接合部材1011とは同じ組成のもであっても良い。   On the other hand, when the connection of the insulating substrate 1002 on the copper plate 1004 and the connection of the wiring patterns 1003-1 and 1003-2 and the IGBT elements 1001-1 and 1001-2 on the insulating substrate 1002 are performed simultaneously, The bonding member 1011 and the Zn-based bonding member 1011 may have the same composition.

次に、実施例3として、半導体装置について、図9を用いて説明する。実施例3に係る半導体装置は、表面に回路が作りこまれた半導体素子1と、半導体素子1を支持するCu系リードフレーム10と、Cu系リードフレーム10の外部リード11部分と半導体素子1とを電気的に接続するワイヤ12と、少なくとも半導体素子1を封止する封止材8とで構成されている。本実施例においては、半導体素子1の裏面とCu系リードフレーム10とに10μm以下、好ましくは5μm以下の厚さのNi膜が形成された状態で、Zn系の接合部材2で接合されている。そして、上記に説明した実施例1及び実施例2の場合と同様に、Zn系の接合部材層の半導体素子1の裏面およびCu系リードフレーム10との界面にはNiの傾斜拡散層が形成されており、実質的にNiZn合金層が形成されていない。すなわち、先に説明したように、NiZn化合物層を形成させない構造であるが、接合工程では、半導体素子1の裏面にNi膜を設けたのち、Zn系の接合部材2と接合させるため、Zn系の接合部材2はNi成分又はNiZn化合物が拡散された状態となっている。これにより、耐熱性、耐熱応力性、放熱性に優れた半導体装置を提供することができる。封止材8は、耐熱性のある樹脂あるいはシリコーンゴム等を用いればよい。   Next, as Example 3, a semiconductor device will be described with reference to FIG. The semiconductor device according to the third embodiment includes a semiconductor element 1 having a circuit formed on the surface, a Cu-based lead frame 10 that supports the semiconductor element 1, an external lead 11 portion of the Cu-based lead frame 10, and the semiconductor element 1. Are electrically connected to each other, and at least a sealing material 8 for sealing the semiconductor element 1. In this embodiment, the Zn-based bonding member 2 is bonded to the back surface of the semiconductor element 1 and the Cu-based lead frame 10 with a Ni film having a thickness of 10 μm or less, preferably 5 μm or less formed thereon. . In the same manner as in the first and second embodiments described above, an inclined Ni diffusion layer is formed on the back surface of the semiconductor element 1 of the Zn-based bonding member layer and the interface with the Cu-based lead frame 10. The NiZn alloy layer is not substantially formed. That is, as described above, the NiZn compound layer is not formed, but in the bonding step, a Ni film is provided on the back surface of the semiconductor element 1 and then bonded to the Zn-based bonding member 2. The joining member 2 is in a state where the Ni component or NiZn compound is diffused. Thereby, the semiconductor device excellent in heat resistance, heat stress resistance, and heat dissipation can be provided. As the sealing material 8, a heat-resistant resin or silicone rubber may be used.

以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種種変更可能である。   As mentioned above, although the invention made | formed by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, various changes are possible.

また、上記各実施形態に分けて記載した半導体装置及びその製造方法の内容は、各実施形態のみに限定されるものではなく、他の実施形態についても適宜適用されるものである。   Further, the contents of the semiconductor device and the manufacturing method thereof described separately for each of the above embodiments are not limited to only the respective embodiments, but may be applied as appropriate to other embodiments.

本発明の実施例1の第1の実施形態における半導体装置の断面図である。It is sectional drawing of the semiconductor device in 1st Embodiment of Example 1 of this invention. 本発明の実施例1の第2の実施形態における半導体装置の断面図である。It is sectional drawing of the semiconductor device in 2nd Embodiment of Example 1 of this invention. 本発明の実施例1の第3の実施形態における半導体装置の断面図である。It is sectional drawing of the semiconductor device in 3rd Embodiment of Example 1 of this invention. 本発明の実施例1の第4の実施形態における半導体装置の断面図である。It is sectional drawing of the semiconductor device in 4th Embodiment of Example 1 of this invention. 本発明の実施例1における半導体装置の第1の製造方法についての、フロー図である。It is a flowchart about the 1st manufacturing method of the semiconductor device in Example 1 of this invention. 本発明の実施例1における半導体装置の第2の製造方法についての、フロー図である。It is a flowchart about the 2nd manufacturing method of the semiconductor device in Example 1 of this invention. 本発明の実施例1における半導体装置の第3の製造方法についての、フロー図である。It is a flowchart about the 3rd manufacturing method of the semiconductor device in Example 1 of this invention. 本発明の実施例2におけるIGBTモジュールの断面図である。It is sectional drawing of the IGBT module in Example 2 of this invention. 本発明の実施例3における半導体装置の断面図である。It is sectional drawing of the semiconductor device in Example 3 of this invention. ZnAl系合金の状態図である。It is a phase diagram of a ZnAl-type alloy.

符号の説明Explanation of symbols

1・・・半導体素子 2,4,6,1001−1、1001−2・・・Zn系の接合部材 3・・・支持電極体 5・・・応力緩和和材 7・・・リード電極 8・・・封止材 9・・・ Ni層 10・・・Cu系リードフレーム 11・・・外部リード 12・・・ワイヤ 1001−1,1001−2・・・IGBT素子 1003−1,1003−2・・・銅配線パターン 1002−1,1002−2・・・絶縁基板 1004・・・銅板
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 2,4,6,1001-1,1001-2 ... Zn-type joining member 3 ... Support electrode body 5 ... Stress relaxation material 7 ... Lead electrode 8 ··· Sealing material 9 ··· Ni layer 10 ··· Cu-based lead frame 11 ··· External lead 12 · · · Wire 1001-1, 1001-2 · · · IGBT elements 1003-1 and 1003-2 · · ..Copper wiring pattern 1002-1, 1002-2 ... Insulating substrate 1004 ... Copper plate

Claims (14)

半導体素子と銅部材とが接合された構成を有する半導体装置であって、前記半導体素子と前記銅部材とは、融点が250℃以上で亜鉛(Zn)を主成分とする第1の接合部材で接合されており、該接合部材は前記半導体素子との界面に近い領域において、ニッケル(Ni)が傾斜拡散していることを特徴とする半導体装置。   A semiconductor device having a configuration in which a semiconductor element and a copper member are joined, wherein the semiconductor element and the copper member are first joining members having a melting point of 250 ° C. or more and mainly containing zinc (Zn). A semiconductor device characterized in that nickel (Ni) is inclined and diffused in a region close to the interface with the semiconductor element. 前記銅部材は支持部材に亜鉛(Zn)を主成分とする第2の接合部材で接合されていることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the copper member is bonded to the support member by a second bonding member mainly composed of zinc (Zn). 前記銅部材は前記半導体素子と前記支持部材との熱膨張率の差を緩衝するための緩衝材を構成する部材であることを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the copper member is a member constituting a buffer material for buffering a difference in coefficient of thermal expansion between the semiconductor element and the support member. 前記亜鉛を主成分とする第1の接合部材と第2の接合部材とは、アルミニウム(Al)を8重量%以下含有することを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the first bonding member and the second bonding member containing zinc as a main component contain 8% by weight or less of aluminum (Al). 前記亜鉛を主成分とする第1の接合部材と第2の接合部材とは、融点が異なることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the first bonding member mainly containing zinc and the second bonding member have different melting points. 半導体素子が部材に金属接合された構成を有する半導体装置であって、前記半導体素子と前記部材とは、亜鉛(Zn)を主成分としてアルミニウム(Al)を8重量%以下含有する第1の接合部材で接合されており、該第1の接合部材は前記半導体素子との界面に近い領域にニッケル(Ni)拡散層を有することを特徴とする半導体装置。   A semiconductor device having a configuration in which a semiconductor element is metal-bonded to a member, wherein the semiconductor element and the member include zinc (Zn) as a main component and aluminum (Al) in an amount of 8% by weight or less. The semiconductor device is bonded by a member, and the first bonding member has a nickel (Ni) diffusion layer in a region close to the interface with the semiconductor element. 前記ニッケル(Ni)拡散層は、前記半導体素子の表面に形成されたニッケル(Ni)膜が前記第1の接合部材の中に拡散して形成されたものであることを特徴とする請求項7記載の半導体装置。   8. The nickel (Ni) diffusion layer is formed by diffusing a nickel (Ni) film formed on a surface of the semiconductor element into the first bonding member. The semiconductor device described. 前記部材は、亜鉛(Zn)を主成分としてアルミニウム(Al)を8重量%以下含有する第2の接合部材で支持部材に更に金属接続しており、前記第1の接合部材と前記第2の接合部材とは融点が異なることを特徴とする請求項7記載の半導体装置。   The member is further metal-connected to a support member by a second bonding member containing zinc (Zn) as a main component and containing aluminum (Al) in an amount of 8% by weight or less, and the first bonding member and the second bonding member The semiconductor device according to claim 7, wherein the melting point is different from that of the bonding member. 前記半導体素子が整流素子又はIGBT素子の何れかであることを特徴とする請求項1又は6に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is either a rectifying element or an IGBT element. 半導体素子の一方の面が第1の部材と第1の接合部材で接合され他方の面に第2の部材が第2の接合部材で接合された構成を有する半導体装置であって、前記第1の接合部材と前記第2の接合部材とは亜鉛又は亜鉛(Zn)を主成分とするアルミニウム(Al)を含有する金属で、前記第1の接合部材及び前記第2の接合部材のそれぞれの前記半導体素子との界面の付近にはニッケル(Ni)の拡散層が形成されていることを特徴とする半導体装置。   A semiconductor device having a configuration in which one surface of a semiconductor element is bonded to a first member by a first bonding member and a second member is bonded to the other surface by a second bonding member. The joining member and the second joining member are metals containing aluminum (Al) mainly composed of zinc or zinc (Zn), and each of the first joining member and the second joining member A semiconductor device, wherein a nickel (Ni) diffusion layer is formed in the vicinity of an interface with a semiconductor element. 前記第1の接合部材及び前記第2の接合部材のそれぞれのニッケル(Ni)の拡散層は、前記半導体素子との界面に近いほどニッケル(Ni)の密度が高い傾斜拡散をしていることを特徴とする請求項10記載の半導体装置。   Each of the nickel (Ni) diffusion layers of the first bonding member and the second bonding member is inclined and diffused such that the nickel (Ni) density is higher as it is closer to the interface with the semiconductor element. The semiconductor device according to claim 10, wherein: 両面にニッケル(Ni)膜が形成された半導体素子の一方の面に銅(Cu)部材を第1の接合部材で接合し他方の面にリード電極を第2の接合部材で接合した構成を有する半導体装置であって、前記第1の接合部材と前記第2の接合部材とはアルミニウム(Al)の含有率が異なる亜鉛(Zn)を主成分とする金属であり、前記第2の接合部材は前記第1の接合部材よりも融点が高いことを特徴とする半導体装置。   A copper (Cu) member is bonded to one surface of a semiconductor element having nickel (Ni) films formed on both surfaces by a first bonding member, and a lead electrode is bonded to the other surface by a second bonding member. In the semiconductor device, the first bonding member and the second bonding member are metals mainly composed of zinc (Zn) having different aluminum (Al) content, and the second bonding member A semiconductor device having a melting point higher than that of the first bonding member. 前記第1の接合部材と前記第2の接合部材との前記半導体素子との界面の近傍には、前記半導体素子の表面に形成したニッケル膜のニッケルが拡散した領域を有することを特徴とする請求項12記載の半導体装置。   A region in which nickel of a nickel film formed on a surface of the semiconductor element diffuses is provided in the vicinity of the interface between the first bonding member and the second bonding member with the semiconductor element. Item 13. A semiconductor device according to Item 12. 前記半導体素子が整流素子であることを特徴とする請求項10又は12に記載の半導体装置。
The semiconductor device according to claim 10, wherein the semiconductor element is a rectifying element.
JP2003421958A 2003-12-19 2003-12-19 Semiconductor device Expired - Fee Related JP4026590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421958A JP4026590B2 (en) 2003-12-19 2003-12-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421958A JP4026590B2 (en) 2003-12-19 2003-12-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005183650A true JP2005183650A (en) 2005-07-07
JP4026590B2 JP4026590B2 (en) 2007-12-26

Family

ID=34782975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421958A Expired - Fee Related JP4026590B2 (en) 2003-12-19 2003-12-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4026590B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129983A (en) * 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
WO2013129279A1 (en) * 2012-02-28 2013-09-06 日産自動車株式会社 Semiconductor device production method
WO2013129229A1 (en) * 2012-02-28 2013-09-06 日産自動車株式会社 Method for manufacturing semiconductor device
JP2014519719A (en) * 2011-08-02 2014-08-14 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129983A (en) * 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JP2014519719A (en) * 2011-08-02 2014-08-14 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
WO2013129279A1 (en) * 2012-02-28 2013-09-06 日産自動車株式会社 Semiconductor device production method
WO2013129229A1 (en) * 2012-02-28 2013-09-06 日産自動車株式会社 Method for manufacturing semiconductor device
JP5733466B2 (en) * 2012-02-28 2015-06-10 日産自動車株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP4026590B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4479577B2 (en) Semiconductor device
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
EP2312622B1 (en) Power semiconductor device with a power semiconductor element bonded to a substrate by a Sn-Sb-Cu solder and with a terminal bonded to the substrate by a Sn-Ag-based or Sn-Ag-Cu-based solder and manufacturing method therefor
US7964492B2 (en) Semiconductor device and automotive AC generator
TWI336512B (en) Integrated circuit device incorporating metallurigacal bond to enhance thermal conduction to a heat sink
US8593817B2 (en) Power semiconductor module and method for operating a power semiconductor module
CN102917835B (en) Junction material, manufacturing method thereof, and manufacturing method of junction structure
US20110042815A1 (en) Semiconductor device and on-vehicle ac generator
KR102154882B1 (en) Power module
TW200829361A (en) Connecting material, method for manufacturing connecting material, and semiconductor device
KR102154369B1 (en) Power module
KR101932979B1 (en) Thermoelectric power generation module
JP2008205383A (en) Semiconductor module and its manufacturing method
JP2021185615A (en) Semiconductor device and power module
JP6440794B1 (en) Semiconductor device
JP4026590B2 (en) Semiconductor device
WO2016079881A1 (en) Semiconductor power module, method for manufacturing same and mobile object
JP4171355B2 (en) Molded power device
Suganuma Interconnection technologies
US20230126663A1 (en) Layer structure and chip package that includes the layer structure
US8525330B2 (en) Connecting member for connecting a semiconductor element and a frame, formed of an Al-based layer and first and second Zn-based layers provided on surfaces of the Al-based layer
JP2012253242A (en) Joint structure
WO2019207996A1 (en) Semiconductor device and manufacturing method thereof
JP2014123745A (en) Power module for automobile
WO2024029258A1 (en) Semiconductor module and method for manufacturing semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees