JP2005183519A - Optical communication module - Google Patents

Optical communication module Download PDF

Info

Publication number
JP2005183519A
JP2005183519A JP2003419413A JP2003419413A JP2005183519A JP 2005183519 A JP2005183519 A JP 2005183519A JP 2003419413 A JP2003419413 A JP 2003419413A JP 2003419413 A JP2003419413 A JP 2003419413A JP 2005183519 A JP2005183519 A JP 2005183519A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
emitting element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003419413A
Other languages
Japanese (ja)
Inventor
Kazumi Furuta
和三 古田
Yukihiro Ozeki
幸宏 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003419413A priority Critical patent/JP2005183519A/en
Publication of JP2005183519A publication Critical patent/JP2005183519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical communication module which can reduce both electrical and optical crosstalk between an optical element and a photodetector even if these two elements are stored in one and the same package in order to reduce the size. <P>SOLUTION: The optical communication module has such a structure that the photodetector 13 upon which the light from an optical fiber terminal 2 is incident and a light emitting element 14 for emitting the light which will be entered into the optical fiber terminal are stored in one and the same can 18, that the can is located in a housing 10 in such a manner that the photodetector and the light emitting element may face the optical fiber terminal, and that the photodetector and the light emitting element are optically shielded and electrically insulated from each other by an optical shield wall 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信システムにおいて光信号の送信及び受信のために端末に配置される光通信モジュールに関する。   The present invention relates to an optical communication module disposed in a terminal for transmitting and receiving optical signals in an optical communication system.

従来、波長の異なる光による双方向伝送による光通信システムでは、光信号の送受信端末に受光素子や発光素子等からなる光モジュールを配置し、送信・受信の各光をフィルタにより分離している。かかる従来の光モジュールの例を図4に示す。図の光モジュールでは、光ファイバ100からの光がレンズ101で集光され、ビームスプリッタ102で反射して受光素子103に入射することで受信した光信号を分波してモニタするとともに、発光素子104からの光がビームスプリッタ102を透過しレンズ101で集光されて光ファイバ100に入射する。   2. Description of the Related Art Conventionally, in an optical communication system based on bidirectional transmission using light of different wavelengths, an optical module composed of a light receiving element, a light emitting element, or the like is disposed at an optical signal transmission / reception terminal, and each light transmitted and received is separated by a filter. An example of such a conventional optical module is shown in FIG. In the illustrated optical module, the light from the optical fiber 100 is collected by the lens 101, reflected by the beam splitter 102, and incident on the light receiving element 103 to demultiplex and monitor the received optical signal. The light from 104 passes through the beam splitter 102, is collected by the lens 101, and enters the optical fiber 100.

上述の従来方式では、波長の異なる光の送受信の際にフィルタ(ビームスプリッタ)による分離を行っていたが、下記特許文献1は、レンズ上に回折格子を設けて送受信の各光を分離する光モジュールを開示する。即ち、図5のように、ホログラム光学素子111を半導体レーザ110とフォトダイオード120が実装された支持台130と光ファイバ340の端末140との間に配置し、ホログラム光学素子111は基板の一方の面に回折格子160が形成されかつ基板の他方の面にレンズ170が形成されている。図5のような光モジュールによれば、小型化できコストダウンを図ることができる。   In the conventional method described above, separation by a filter (beam splitter) is performed when transmitting and receiving light having different wavelengths. However, Patent Document 1 described below provides light that separates transmitted and received light by providing a diffraction grating on a lens. Disclose the module. That is, as shown in FIG. 5, the hologram optical element 111 is disposed between the support base 130 on which the semiconductor laser 110 and the photodiode 120 are mounted and the terminal 140 of the optical fiber 340, and the hologram optical element 111 is placed on one of the substrates. A diffraction grating 160 is formed on the surface, and a lens 170 is formed on the other surface of the substrate. According to the optical module as shown in FIG. 5, the size can be reduced and the cost can be reduced.

しかし、図4のようにフィルタを用いる場合は、透過光と反射光を区別することにより90°の分離ができるのに対し、図5のように、グレーティングの場合は、回折効率を確保したり偏光依存性が無いような状態にする必要があるため、異次光例えば0次光と1次光の分光では角度0.05ラジアン以内程度にしか分離できない。この分離角は、回折格子からの距離を30mmとすると、1.5mmに相当する。このように、図5のようなグレーティングを用いた光モジュールでは、分離角を大きく確保することが困難であり、このため、光モジュールのパッケージの大型化を避けるためには、半導体レーザ等の発光素子とフォトダイオード等の受光素子とを空間的に近い距離に配置する必要がある。   However, when a filter is used as shown in FIG. 4, the transmitted light can be separated from the reflected light by 90 °, whereas in the case of a grating as shown in FIG. Since it is necessary to be in a state where there is no polarization dependency, it is possible to separate only within an angle of 0.05 radians in the spectrum of the different-order light, for example, the zero-order light and the first-order light. This separation angle corresponds to 1.5 mm when the distance from the diffraction grating is 30 mm. Thus, in the optical module using the grating as shown in FIG. 5, it is difficult to ensure a large separation angle. For this reason, in order to avoid an increase in the size of the optical module package, light emission from a semiconductor laser or the like is required. It is necessary to dispose the element and a light receiving element such as a photodiode at a spatially close distance.

そうすると、発光素子と受光素子との間の電気的、光学的なクロストークが問題となってしまう。一般的には電気的、光学的なクロストーク(40dB必要とされている)を防止するために、発光素子と受光素子とは各々缶(CAN)タイプのパッケージに納められているのが普通であり、フィルタタイプの場合にはこの缶タイプの発光素子と受光素子を用いることが可能であるが、レンズ上にグレーティングを設けたタイプの場合は、缶タイプの発光素子と受光素子を用いることが困難であった。
特開平5−241049号公報
Then, electrical and optical crosstalk between the light emitting element and the light receiving element becomes a problem. Generally, in order to prevent electrical and optical crosstalk (40 dB is required), the light emitting element and the light receiving element are usually housed in a can (CAN) type package. Yes, it is possible to use this can type light emitting element and light receiving element in the case of a filter type, but in the case of a type in which a grating is provided on the lens, it is possible to use a can type light emitting element and a light receiving element. It was difficult.
Japanese Patent Laid-Open No. 5-241049

本発明は、上述のような従来技術の問題に鑑み、小型化のために発光素子と受光素子とを同一パッケージに収めた場合でも発光素子と受光素子との間の電気的及び光学的なクロストークを低減させることのできる光通信モジュールを提供することを目的とする。   In view of the above-described problems of the prior art, the present invention provides an electrical and optical cross between a light emitting element and a light receiving element even when the light emitting element and the light receiving element are housed in the same package for miniaturization. An object of the present invention is to provide an optical communication module capable of reducing talk.

上記目的を達成するために、本発明による第1の光通信モジュールは、光ファイバ端末からの光が入射する受光素子と、前記光ファイバ端末に入射させる光を出射する発光素子と、を同一の缶内に収容し、前記缶を前記受光素子と前記発光素子とが前記光ファイバ端末と対向するように筐体内に配置し、前記受光素子と前記発光素子との間を光学的に遮蔽しかつ電気的に絶縁したことを特徴とする。   In order to achieve the above object, a first optical communication module according to the present invention includes a light receiving element that receives light from an optical fiber terminal and a light emitting element that emits light incident on the optical fiber terminal. Accommodated in a can, the can is disposed in a housing such that the light receiving element and the light emitting element face the optical fiber terminal, and optically shields between the light receiving element and the light emitting element; It is electrically insulated.

この光通信モジュールによれば、受光素子と発光素子とを同一の缶内に配置し、両者の間を光学的に遮蔽しかつ電気的に絶縁するので、発光素子と受光素子とを同一缶内に収めて小型化でき、光ファイバ端末に対し光が出射しかつ入射する発光素子と受光素子との間の電気的及び光学的なクロストークを低減させることができる。   According to this optical communication module, the light receiving element and the light emitting element are disposed in the same can, and the light shielding element and the light receiving element are optically shielded and electrically insulated from each other. Thus, it is possible to reduce the electrical and optical crosstalk between the light emitting element and the light receiving element that emit and enter the optical fiber terminal.

上記光通信モジュールにおいて前記受光素子と前記発光素子とを同一基板上に配置し、前記受光素子と前記発光素子との間に電気絶縁部を設けることで、発光素子と受光素子との間の電気的クロストークを低減できる。   In the optical communication module, the light receiving element and the light emitting element are disposed on the same substrate, and an electrical insulating portion is provided between the light receiving element and the light emitting element, thereby providing an electrical connection between the light emitting element and the light receiving element. Crosstalk can be reduced.

また、前記受光素子と前記発光素子との間に入射光と出射光とを分離する光遮蔽壁を設けることで、発光素子と受光素子との間の光学的クロストークを低減できる。   Further, by providing a light shielding wall for separating incident light and outgoing light between the light receiving element and the light emitting element, optical crosstalk between the light emitting element and the light receiving element can be reduced.

本発明による第2の光通信モジュールは、光ファイバ端末からの光が入射する受光素子と、前記光ファイバ端末に入射させる光を発する発光素子と、を第1の基板及び第2の基板に別々に配置し、前記受光素子と前記発光素子とが前記光ファイバ端末と対向しかつ前記第1の基板と前記第2の基板とを前記光ファイバ端末の光軸方向にずらして筐体内に配置したことを特徴とする。   In a second optical communication module according to the present invention, a light receiving element on which light from an optical fiber terminal is incident and a light emitting element that emits light incident on the optical fiber terminal are separately provided on a first substrate and a second substrate. And the light receiving element and the light emitting element are opposed to the optical fiber terminal, and the first substrate and the second substrate are disposed in the housing while being shifted in the optical axis direction of the optical fiber terminal. It is characterized by that.

この光通信モジュールによれば、受光素子を配置した第1の基板と、発光素子を配置した第2の基板とが異なる基板であるので、発光素子と受光素子との間の電気的クロストークを低減できる。また、第1の基板と第2の基板とを光ファイバ端末の光軸方向にずらして配置するので、発光素子と受光素子との間の光学的クロストークを低減できる。   According to this optical communication module, since the first substrate on which the light receiving element is disposed and the second substrate on which the light emitting element is disposed are different substrates, electrical crosstalk between the light emitting element and the light receiving element is reduced. Can be reduced. In addition, since the first substrate and the second substrate are shifted in the optical axis direction of the optical fiber terminal, optical crosstalk between the light emitting element and the light receiving element can be reduced.

上記光通信モジュールにおいて前記受光素子及び前記発光素子と前記光ファイバ端末との間に入射光と出射光とを分離する光遮蔽部材を設けることで、発光素子と受光素子との間の光学的なクロストークを効果的に低減できる。   In the optical communication module, by providing a light shielding member for separating incident light and outgoing light between the light receiving element and the light emitting element and the optical fiber terminal, the optical communication between the light emitting element and the light receiving element is achieved. Crosstalk can be effectively reduced.

また、前記光ファイバ端末に対し近い側に配置された前記第1の基板または前記第2の基板に光透過部を設け、遠い側に配置された前記第2の基板または前記第1の基板と前記光ファイバ端末との間に前記光透過部を介して光路が形成されるように構成できる。   Further, the first substrate or the second substrate disposed on the side closer to the optical fiber terminal is provided with a light transmission portion, and the second substrate or the first substrate disposed on the far side An optical path can be formed between the optical fiber terminal and the optical transmission terminal via the light transmission part.

上記第1及び第2の光通信モジュールにおいて前記光ファイバ端末と前記受光素子及び前記発光素子との間に回折格子及び集光レンズを配置することで、受光素子への入射光と、発光素子からの出射光とを分離できる。   In the first and second optical communication modules, by arranging a diffraction grating and a condenser lens between the optical fiber terminal and the light receiving element and the light emitting element, incident light to the light receiving element and Can be separated from the outgoing light.

この場合、前記回折格子を前記集光レンズに形成することで、部品点数が減り、回折格子と集光レンズとの軸合わせが不要となり、光通信モジュールの組み立て性が向上する。また、前記回折格子を前記集光レンズの片側の面もしくは両側の面に形成するようにできる。回折格子を集光レンズの両側に形成することで、回折ピッチが狭い領域では回折効率をさほど低下させずに、回折角を大きくすることができる。   In this case, by forming the diffraction grating on the condensing lens, the number of components is reduced, and the alignment of the diffraction grating and the condensing lens becomes unnecessary, and the assembling property of the optical communication module is improved. The diffraction grating may be formed on one surface or both surfaces of the condenser lens. By forming the diffraction gratings on both sides of the condenser lens, it is possible to increase the diffraction angle without significantly reducing the diffraction efficiency in a region where the diffraction pitch is narrow.

また、前記回折格子で回折された回折光が前記受光素子に入射しかつ前記発光素子からの前記回折格子の0次光が前記光ファイバ端末に入射するように構成することが好ましい。これにより、発光素子と光ファイバ端末との軸合わせが容易となり、光通信モジュールの組み立て性が向上する。   Further, it is preferable that the diffracted light diffracted by the diffraction grating is incident on the light receiving element and the zero-order light of the diffraction grating from the light emitting element is incident on the optical fiber terminal. Thereby, the axis alignment of a light emitting element and an optical fiber terminal becomes easy, and the assembly property of an optical communication module improves.

また、前記受光素子は複数の受光部を備え、前記回折格子による回折角度の異なる回折光がその回折角度に応じて各々の受光部に入射するように構成することで、波長の異なる複数の光信号を受信できる。   In addition, the light receiving element includes a plurality of light receiving portions, and is configured such that diffracted light having different diffraction angles by the diffraction grating is incident on each light receiving portion according to the diffraction angles, whereby a plurality of light having different wavelengths is formed. The signal can be received.

本発明の光通信モジュールによれば、小型化のために発光素子と受光素子とを同一パッケージに収めた場合でも発光素子と受光素子との間の電気的及び光学的なクロストークを低減させることができる。   According to the optical communication module of the present invention, it is possible to reduce electrical and optical crosstalk between the light emitting element and the light receiving element even when the light emitting element and the light receiving element are housed in the same package for miniaturization. Can do.

以下、本発明を実施するための最良の形態について図面を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

〈第1の実施の形態〉   <First Embodiment>

図1は第1の実施の形態による光通信モジュールの内部を縦割にして示す斜視図である。図2は図1の受光素子と発光素子を同一の缶内に収容した具体的構成を示す斜視図(a)及び半割状態で示す斜視図(b)である。   FIG. 1 is a perspective view showing the inside of the optical communication module according to the first embodiment in a vertically divided state. FIG. 2 is a perspective view (a) showing a specific configuration in which the light receiving element and the light emitting element of FIG. 1 are accommodated in the same can, and a perspective view (b) showing a half state.

図1に示すように、第1の実施の形態による光通信モジュールは、光ファイバ1の端部2の近傍に配置され端部2側のレンズ面に回折格子16が形成された集光レンズ11と、集光レンズ11からの光束が入射する受光素子13と、集光レンズ11に入射させるように光束を出射する発光素子14と、受光素子13と発光素子14とを同一面上に配置した円板状の基板15と、受光素子13と発光素子14とを隔離し光学的に遮蔽し基板15上に集光レンズ11側に延びるように設けられた光遮蔽壁12と、を筐体10の内部に形成された空洞17内に備える。円板状の基板15内で受光素子13と発光素子14との間には後述の図2(b)のように電気絶縁部が設けられている。   As shown in FIG. 1, the optical communication module according to the first embodiment includes a condensing lens 11 that is disposed in the vicinity of the end 2 of the optical fiber 1 and has a diffraction grating 16 formed on the lens surface on the end 2 side. The light receiving element 13 on which the light flux from the condenser lens 11 is incident, the light emitting element 14 that emits the light flux so as to be incident on the condenser lens 11, and the light receiving element 13 and the light emitting element 14 are arranged on the same plane. A casing 10 includes a disk-shaped substrate 15, a light shielding wall 12 provided so as to isolate and optically shield the light receiving element 13 and the light emitting element 14 and to extend toward the condenser lens 11 on the substrate 15. It is provided in a cavity 17 formed inside. An electric insulating portion is provided between the light receiving element 13 and the light emitting element 14 in the disk-shaped substrate 15 as shown in FIG.

図1の光通信モジュールは光ファイバ1が延びる光軸方向Pに全体として細長く構成されている。光ファイバ1は光通信システムの光ケーブル網に接続可能になっており、円柱状の保持体3内に貫通して保持され、その端部2が保持体3の端面で露出している。保持体3は筐体10内の空洞に挿入されるようにして部分的に保持されている。   The optical communication module of FIG. 1 is configured to be elongated as a whole in the optical axis direction P in which the optical fiber 1 extends. The optical fiber 1 can be connected to an optical cable network of an optical communication system, is held through the cylindrical holding body 3, and its end 2 is exposed at the end face of the holding body 3. The holding body 3 is partially held so as to be inserted into a cavity in the housing 10.

集光レンズ11の回折格子16が光ファイバ1の端部2に近接しており、光ファイバ1の端部2からの光束が回折格子16で回折され、その1次回折光が集光レンズ11で受光素子13に集光される。また、受光素子13に集光された光束の波長と異なる波長で発光素子14から発した光束が集光レンズ11を介して回折格子16を透過し、0次光として光ファイバ1の端部2に集光される。このように、入射光を回折1次光とし、出射光を0次光とすることで、発光素子14と光ファイバ1の端部2との軸合わせが容易となり、光通信モジュールの組み立て性が向上する。   The diffraction grating 16 of the condensing lens 11 is close to the end 2 of the optical fiber 1, the light beam from the end 2 of the optical fiber 1 is diffracted by the diffraction grating 16, and the first-order diffracted light is reflected by the condensing lens 11. It is condensed on the light receiving element 13. Further, a light beam emitted from the light emitting element 14 at a wavelength different from the wavelength of the light beam condensed on the light receiving element 13 is transmitted through the diffraction grating 16 through the condensing lens 11 and becomes the zero-order light at the end 2 of the optical fiber 1. It is focused on. As described above, the incident light is diffracted primary light and the outgoing light is zero-order light, so that the axis alignment between the light emitting element 14 and the end 2 of the optical fiber 1 is facilitated, and the assembly of the optical communication module is facilitated. improves.

基板15及び光遮蔽壁12が円筒状の缶18内に配置され、基板15上の受光素子13と発光素子14とが缶18内に収容されている。受光素子13は例えばフォトダイオードからなり、発光素子14は例えばレーザダイオードからなり、両者は基板15上に光ファイバ1の中心軸から互いに偏心した位置に所定距離だけ離れて形成されている。   The substrate 15 and the light shielding wall 12 are disposed in a cylindrical can 18, and the light receiving element 13 and the light emitting element 14 on the substrate 15 are accommodated in the can 18. The light receiving element 13 is made of, for example, a photodiode, and the light emitting element 14 is made of, for example, a laser diode. Both of them are formed on the substrate 15 at a predetermined distance away from the central axis of the optical fiber 1.

また、受光素子13と発光素子14とは基板15から缶18の外部に突き出るようにして設けられた複数の端子19に電気的に接続している。缶18は、収容された受光素子13と発光素子14とが光ファイバ1の端部2に対向するように筐体10の端部に固定されている。   The light receiving element 13 and the light emitting element 14 are electrically connected to a plurality of terminals 19 provided so as to protrude from the substrate 15 to the outside of the can 18. The can 18 is fixed to the end of the housing 10 so that the light receiving element 13 and the light emitting element 14 accommodated are opposed to the end 2 of the optical fiber 1.

また、缶18内で受光素子13と発光素子14との間に形成された光遮蔽壁12により、受光素子13への入射光と発光素子14からの出射光とを確実に分離でき、また、発光素子14の出射光が受光素子13に入射することを確実に防止できる。   Further, the light shielding wall 12 formed between the light receiving element 13 and the light emitting element 14 in the can 18 can reliably separate the incident light to the light receiving element 13 and the emitted light from the light emitting element 14, It is possible to reliably prevent the light emitted from the light emitting element 14 from entering the light receiving element 13.

図1の光通信モジュールは、波長分割多重方式による波長の異なる光信号を伝送する光通信システムに適用可能であり、例えば、ユーザのパソコン等の装置端末に使用され、光ファイバ1が光通信システムの光ケーブル網に接続される一方、複数の端子19が例えばルータ等の接続機器の差込口に差し込まれ、パソコン等と接続される。   The optical communication module shown in FIG. 1 can be applied to an optical communication system that transmits optical signals having different wavelengths according to the wavelength division multiplexing method. For example, the optical communication module is used in a device terminal such as a user's personal computer. On the other hand, a plurality of terminals 19 are inserted into an insertion port of a connection device such as a router and connected to a personal computer or the like.

図1の光通信モジュールによれば、光ファイバ1内で伝送されてきた入力光信号が端部2から出射すると、回折格子16で所定の回折角で回折されて屈折した1次回折光が集光レンズ11により受光素子13に集光され、受光素子13で変換された電気信号が端子19から出力する。   According to the optical communication module of FIG. 1, when the input optical signal transmitted in the optical fiber 1 is emitted from the end portion 2, the first-order diffracted light diffracted and refracted by the diffraction grating 16 at a predetermined diffraction angle is collected. An electric signal which is condensed on the light receiving element 13 by the lens 11 and converted by the light receiving element 13 is output from the terminal 19.

一方、受光素子13に入射した光の波長と異なる波長で発光素子14から出射した光が集光レンズ11に入射し回折格子16を透過して0次光として光ファイバ1の端部2に集光され、出力光信号として光ファイバ1内で伝送されていく。   On the other hand, light emitted from the light emitting element 14 at a wavelength different from the wavelength of the light incident on the light receiving element 13 is incident on the condenser lens 11, passes through the diffraction grating 16, and is collected at the end 2 of the optical fiber 1 as zero order light. The light is transmitted and transmitted as an output optical signal in the optical fiber 1.

以上のようにして、図1の光通信モジュールにより波長の異なる光信号が同じ光ファイバ1内で上り及び下りの双方向に伝送されることで、パソコン等によりインターネット等を介して通信を行うことが可能となる。   As described above, optical signals having different wavelengths are transmitted in both the upstream and downstream directions within the same optical fiber 1 by the optical communication module of FIG. Is possible.

上述のように図1の光通信モジュールは、受光素子13と発光素子14とを同一の缶18内に収容しコンパクトに構成でき、缶18と回折格子16の形成された集光レンズ11とを光ファイバ1の端部2から光軸方向Pに離れるようにして筐体10内に配置することで、入射光と出射光とを分離可能にするとともに小型化及び低コスト化を達成している。   As described above, the optical communication module of FIG. 1 can accommodate the light receiving element 13 and the light emitting element 14 in the same can 18 to be compact, and the can 18 and the condensing lens 11 on which the diffraction grating 16 is formed. By disposing in the housing 10 away from the end portion 2 of the optical fiber 1 in the optical axis direction P, it is possible to separate the incident light and the emitted light, and achieve miniaturization and cost reduction. .

また、上述の小型化のために受光素子13と発光素子14との基板15上の距離が比較的短くなっても、光信号を送信・受信する際に基板15上の光遮蔽壁12により入射光と出射光が確実に分離され、また発光素子14からの光が受光素子13に入射することを防止するので、発光素子と受光素子との間の電気的及び光学的なクロストークを低減させることができる。このため、安定した光通信が可能となる。   Even if the distance between the light receiving element 13 and the light emitting element 14 on the substrate 15 is relatively short due to the above-described miniaturization, the light shielding wall 12 on the substrate 15 is incident when an optical signal is transmitted / received. Since the light and the emitted light are reliably separated and the light from the light emitting element 14 is prevented from entering the light receiving element 13, the electrical and optical crosstalk between the light emitting element and the light receiving element is reduced. be able to. For this reason, stable optical communication is possible.

また、回折格子16を集光レンズ11に形成し、両者を一体化することで、部品点数が減り、両者の軸合わせが不要となり、光通信モジュールの組み立て性が向上する。なお、回折格子16を集光レンズ11の光ファイバ1の端部2と反対側のレンズ面に形成してもよい。また、集光レンズ11の両レンズ面に回折格子を形成することで、回折角を大きくすることができる。また、集光レンズ11のレンズ面の一方に分光用回折格子を形成し、他方に楕円状パターンの回折格子を形成することで、光通信モジュールにおける結合効率を向上させることができる。   Further, by forming the diffraction grating 16 on the condensing lens 11 and integrating the two, the number of parts is reduced, the alignment of both is not required, and the assembly of the optical communication module is improved. The diffraction grating 16 may be formed on the lens surface of the condenser lens 11 opposite to the end 2 of the optical fiber 1. Further, by forming diffraction gratings on both lens surfaces of the condenser lens 11, the diffraction angle can be increased. Further, by forming a spectral diffraction grating on one of the lens surfaces of the condenser lens 11 and forming an elliptical pattern diffraction grating on the other, the coupling efficiency in the optical communication module can be improved.

次に、図1の発光素子と受光素子の具体的構成について図2を参照して説明する。図2(a)、(b)のように、受光素子13と発光素子14とは缶18内に収容され、缶18内で基板15から直立して設けられた光遮蔽壁12で遮られている。   Next, a specific configuration of the light emitting element and the light receiving element in FIG. 1 will be described with reference to FIG. As shown in FIGS. 2A and 2B, the light receiving element 13 and the light emitting element 14 are accommodated in a can 18 and blocked by a light shielding wall 12 provided upright from a substrate 15 in the can 18. Yes.

受光素子13は、図2(a)のように、アレー状に並べられた複数の受光部13a、13b、13cを備え、回折格子16による回折角度の異なる回折光がその回折角度に応じて各受光部13a、13b、13cに入射するようになっている。   As shown in FIG. 2A, the light receiving element 13 includes a plurality of light receiving portions 13a, 13b, and 13c arranged in an array, and diffracted light beams having different diffraction angles by the diffraction grating 16 are arranged in accordance with the diffraction angles. The light is incident on the light receiving portions 13a, 13b, and 13c.

また、図2(b)のように、受光素子13は基板15に設けられた受光素子領域15a上に形成されており、基板15内部で受光素子領域15aと基板15との間に電気絶縁樹脂材料からなる電気絶縁部15bが設けられている。   2B, the light receiving element 13 is formed on the light receiving element region 15a provided on the substrate 15, and an electrically insulating resin is provided between the light receiving element region 15a and the substrate 15 inside the substrate 15. An electrically insulating portion 15b made of a material is provided.

また、発光素子14は、光遮蔽壁12の壁面に略半円のすり鉢状に形成された穴12aの底部に設けられている。このため、発光素子14が穴12aの底部に配置されても、発光素子14からの光がけられてしまうおそれはない。   The light emitting element 14 is provided at the bottom of a hole 12 a formed in a substantially semicircular mortar shape on the wall surface of the light shielding wall 12. For this reason, even if the light emitting element 14 is arrange | positioned at the bottom part of the hole 12a, there is no possibility that the light from the light emitting element 14 may be scattered.

また、基板15上には、発光素子14からの光を受光するためにフォトダイオード等からなるモニタ用受光素子14aが配置されている。モニタ用受光素子14aの受光信号をフィードバックすることで、発光素子14の発光光量が一定になるように制御される。   On the substrate 15, a monitor light-receiving element 14 a made of a photodiode or the like is disposed for receiving light from the light-emitting element 14. By feeding back the light reception signal of the monitor light receiving element 14a, the light emission amount of the light emitting element 14 is controlled to be constant.

上述のように、受光素子13と発光素子14とを缶18内で遮る光遮蔽壁12及び基板15内で受光素子13と発光素子14とを電気的に絶縁する電気絶縁部15bにより受光素子13と発光素子14との間の光学的及び電気的クロストークを効果的に低減できる。   As described above, the light receiving element 13 is provided by the light shielding wall 12 that shields the light receiving element 13 and the light emitting element 14 within the can 18 and the electrical insulating portion 15b that electrically isolates the light receiving element 13 and the light emitting element 14 within the substrate 15. The optical and electrical crosstalk between the LED and the light emitting element 14 can be effectively reduced.

また、図1の光ファイバ1の端部2からの波長の異なる光は回折格子16で各波長に応じて回折角が変化し、各受光部13a〜13cにそれぞれ入射する。このため、光多重信号の各波長は、例えば、発光素子14からの出射光波長λ0が1.31μm、光ファイバ1の端部2から入射する光の波長がλ1=1.47μm、λ2=1.49μm、λ3=1.51μmであるが(後述の図6(a)参照)、かかる波長の異なる複数の光信号を各受光部13a〜13cで別々に受光できる。このように下り波長多重(WDM)通信を行うことで、各波長の光信号に乗せられた種々のデータ、例えば、デジタルテレビ放送、動画、静止画、音声、デジタルデータ通信などを一本の光ファイバを通して受信できる。   In addition, light having different wavelengths from the end portion 2 of the optical fiber 1 in FIG. 1 changes in diffraction angle in accordance with each wavelength at the diffraction grating 16 and enters each of the light receiving portions 13a to 13c. For this reason, the wavelengths of the optical multiplexed signal are, for example, 1.31 μm for the emission light wavelength λ 0 from the light emitting element 14, and λ 1 = 1.47 μm for the light incident from the end 2 of the optical fiber 1, λ 2 = 1. .49 μm and λ3 = 1.51 μm (see FIG. 6A described later), a plurality of optical signals having different wavelengths can be received separately by the light receiving units 13a to 13c. By performing downstream wavelength division multiplexing (WDM) communication in this way, various data, such as digital television broadcasts, moving images, still images, audio, digital data communications, etc., carried on the optical signal of each wavelength can be converted into a single optical signal. Can be received through fiber.

〈第2の実施の形態〉   <Second Embodiment>

図3は第2の実施の形態による光通信モジュールの内部を縦割にして示す斜視図である。   FIG. 3 is a perspective view showing the inside of the optical communication module according to the second embodiment in a vertically divided manner.

図3に示すように、第2の実施の形態による光通信モジュールは、光ファイバ1の端部2の近傍に配置され端部2側のレンズ面に回折格子36が形成された集光レンズ31と、集光レンズ31からの光束が入射する受光素子33と、集光レンズ31に入射させるように光束を出射し光ファイバ1の端部2に対し受光素子33よりも遠く離れるように配置された発光素子34と、受光素子13への入射光と発光素子14からの出射光とを光学的に分離し遮蔽するように受光素子33と集光レンズ31との間に配置された光遮蔽部材32と、を筐体30の内部に形成された空洞37内に備える。   As shown in FIG. 3, the optical communication module according to the second embodiment includes a condensing lens 31 that is disposed near the end 2 of the optical fiber 1 and has a diffraction grating 36 formed on the lens surface on the end 2 side. And the light receiving element 33 on which the light flux from the condensing lens 31 is incident, and the light flux is emitted so as to be incident on the condensing lens 31, and is disposed farther away than the light receiving element 33 with respect to the end 2 of the optical fiber 1. The light shielding member disposed between the light receiving element 33 and the condensing lens 31 so as to optically separate and shield the incident light to the light emitting element 34 and the light incident on the light receiving element 13 and the light emitted from the light emitting element 14. 32 in a cavity 37 formed inside the housing 30.

図3の光通信モジュールは光ファイバ1が延びる光軸方向Pに全体として細長く構成されている。光ファイバ1は光通信システムの光ケーブル網に接続可能になっており、円柱状の保持体3内に貫通して保持され、その端部2が保持体3の端面で露出している。保持体3は筐体30内の空洞37に挿入されるようにして部分的に保持されている。   The optical communication module of FIG. 3 is configured to be elongated as a whole in the optical axis direction P in which the optical fiber 1 extends. The optical fiber 1 can be connected to an optical cable network of an optical communication system, is held through the cylindrical holding body 3, and its end 2 is exposed at the end face of the holding body 3. The holding body 3 is partially held so as to be inserted into the cavity 37 in the housing 30.

光遮蔽部材32は、中間に隔壁部32aが設けられた円筒状(鏡筒状)に構成され、隔壁部32aには受光素子33への入射光が通過する貫通孔32bと、発光素子34からの出射光が通過する貫通孔32cとが形成されている。   The light shielding member 32 is configured in a cylindrical shape (barrel shape) with a partition wall portion 32 a provided in the middle. The partition wall portion 32 a includes a through hole 32 b through which incident light to the light receiving element 33 passes and a light emitting element 34. Through-hole 32c through which the emitted light passes.

受光素子33は、例えばフォトダイオードからなり、光ファイバ1の端部2に対向しかつ第1の基板35上で光ファイバ1の中心軸から偏心した位置に配置されている。第1の基板35は円板状にかつ光遮蔽部材32と一体に形成されており、空洞37に挿入されるようにして配置されている。また、第1の基板35には受光素子33と反対側の光ファイバ1の中心軸から偏心した位置に透過光40が発光素子34からの出射光が通過するように形成されている。   The light receiving element 33 is made of, for example, a photodiode, and is disposed on the first substrate 35 at a position that is decentered from the central axis of the optical fiber 1 while facing the end 2 of the optical fiber 1. The first substrate 35 is formed in a disc shape and integrally with the light shielding member 32, and is disposed so as to be inserted into the cavity 37. Further, the first substrate 35 is formed such that the transmitted light 40 passes through the light beam emitted from the light emitting element 34 at a position deviated from the central axis of the optical fiber 1 opposite to the light receiving element 33.

発光素子34は、例えばレーザダイオードからなり、光ファイバ1の端部2に対向しかつ円板状の第2の基板38上で光ファイバ1の中心軸から偏心した位置に配置されている。また、受光素子33と発光素子34とは第2の基板38から外部に突き出るようにして設けられた複数の端子39に電気的に接続している。   The light emitting element 34 is made of, for example, a laser diode, and is disposed on a disc-shaped second substrate 38 facing the end 2 of the optical fiber 1 and decentered from the central axis of the optical fiber 1. The light receiving element 33 and the light emitting element 34 are electrically connected to a plurality of terminals 39 provided so as to protrude from the second substrate 38 to the outside.

発光素子34が配置された第2の基板38は円筒状の缶42と一体に構成されている。缶42は、筐体30の空洞37内に挿入されるようにして固定され、複数の端子39が第2の基板38から外部に突き出ている。缶42の空洞37内の先端には円板41が設けられており、円板41には光ファイバ1の光軸から偏心しかつ発光素子34からの出射光が通過する位置にレンズ43が配置されている。発光素子34からの出射光がレンズ43により第1の基板35の透過孔40を通過するように集光される。   The second substrate 38 on which the light emitting element 34 is arranged is formed integrally with a cylindrical can 42. The can 42 is fixed so as to be inserted into the cavity 37 of the housing 30, and a plurality of terminals 39 protrude from the second substrate 38 to the outside. A disc 41 is provided at the tip of the cavity 37 of the can 42, and a lens 43 is disposed on the disc 41 at a position that is eccentric from the optical axis of the optical fiber 1 and through which light emitted from the light emitting element 34 passes. Has been. Light emitted from the light emitting element 34 is condensed by the lens 43 so as to pass through the transmission hole 40 of the first substrate 35.

なお、第1の基板35の透過孔40を比較的小径に構成し、出射光がレンズ43により透過孔40に集光されるように構成することで、出射光が受光素子33に入射し難くなる。   The transmission hole 40 of the first substrate 35 is configured to have a relatively small diameter so that the emitted light is collected by the lens 43 into the transmission hole 40, so that the emitted light is difficult to enter the light receiving element 33. Become.

集光レンズ31の回折格子36が光ファイバ1の端部2に近接しており、ファイバ1の端部2からの光束が回折格子36で回折され、その1次回折光が集光レンズ31で受光素子13に集光される。また、受光素子33に集光された光束の波長と異なる波長で発光素子34から発した光束が、レンズ43等及び集光レンズ31を介して回折格子36を透過し、0次光として光ファイバ1の端部2に集光される。このように、入射光を回折1次光とし、出射光を0次光とすることで、発光素子34と光ファイバ1の端部2との軸合わせが容易となり、光通信モジュールの組み立て性が向上する。   The diffraction grating 36 of the condensing lens 31 is close to the end 2 of the optical fiber 1, the light beam from the end 2 of the fiber 1 is diffracted by the diffraction grating 36, and the first-order diffracted light is received by the condensing lens 31. It is condensed on the element 13. Further, a light beam emitted from the light emitting element 34 at a wavelength different from the wavelength of the light beam condensed on the light receiving element 33 is transmitted through the diffraction grating 36 via the lens 43 and the condensing lens 31, and is optical fiber as 0th order light. 1 is focused on the end 2 of the first. As described above, the incident light is diffracted primary light and the outgoing light is zero-order light, which facilitates the axis alignment between the light emitting element 34 and the end 2 of the optical fiber 1 and facilitates the assembly of the optical communication module. improves.

また、受光素子33を設けた第1の基板35を光ファイバ1の端部2に対し光軸方向Pに接近して配置し、発光素子34を設けた第2の基板38を光ファイバ1の端部2に対し光軸方向Pに遠く離れるように配置したので、受光素子33と発光素子34とが光軸方向Pに離れるので、両者間の光学的クロストークを低減できる。また、発光素子34を設けた第2の基板38は円板41に覆われており、レンズ43以外からは光が出射せず、かつ、受光素子33が発光素子34と対向しないので、発光素子34からの出射光が受光素子33に入射することが殆どなく、発光素子34と受光素子33との間の光学的クロストークを低減できる。更に、光遮蔽部材32により、受光素子13への入射光と発光素子14からの出射光とを確実に分離できので、光学的クロストークを更に低減できる。   In addition, the first substrate 35 provided with the light receiving element 33 is disposed close to the end 2 of the optical fiber 1 in the optical axis direction P, and the second substrate 38 provided with the light emitting element 34 is disposed on the optical fiber 1. Since the light-receiving element 33 and the light-emitting element 34 are separated in the optical axis direction P because they are arranged far away from the end 2 in the optical axis direction P, optical crosstalk between them can be reduced. Further, the second substrate 38 provided with the light emitting element 34 is covered with the disc 41, and no light is emitted from other than the lens 43, and the light receiving element 33 does not face the light emitting element 34. Light emitted from 34 hardly enters the light receiving element 33, and optical crosstalk between the light emitting element 34 and the light receiving element 33 can be reduced. Furthermore, the light shielding member 32 can reliably separate the light incident on the light receiving element 13 and the light emitted from the light emitting element 14, so that optical crosstalk can be further reduced.

第1の基板35と第2の基板38とは異なる部材であり空間的に離れて配置されるので、発光素子34と受光素子33との電気的クロストークを低減できる。   Since the first substrate 35 and the second substrate 38 are different members and are spaced apart from each other, electrical crosstalk between the light emitting element 34 and the light receiving element 33 can be reduced.

図3の光通信モジュールは、図1と同様に、波長分割多重方式による波長の異なる光信号を伝送する光通信システムに適用可能であり、例えば、ユーザのパソコン等の装置端末に使用され、光ファイバ1が光通信システムの光ケーブル網に接続される一方、複数の端子39が例えばルータ等の接続機器の差込口に差し込まれ、パソコン等と接続される。   The optical communication module of FIG. 3 can be applied to an optical communication system that transmits optical signals with different wavelengths by the wavelength division multiplexing method, as in FIG. While the fiber 1 is connected to an optical cable network of an optical communication system, a plurality of terminals 39 are inserted into an insertion port of a connection device such as a router and connected to a personal computer or the like.

図3の光通信モジュールによれば、光ファイバ1内で伝送されてきた入力光信号が端部2から出射すると、回折格子36で所定の回折角で回折されて屈折した1次回折光が集光レンズ31により、光遮蔽部材32の貫通孔32bを通過して受光素子33に集光され、受光素子13で変換された電気信号が端子19から出力する。   According to the optical communication module of FIG. 3, when the input optical signal transmitted in the optical fiber 1 is emitted from the end 2, the first-order diffracted light diffracted and refracted by the diffraction grating 36 at a predetermined diffraction angle is collected. The lens 31 passes through the through hole 32 b of the light shielding member 32 and is condensed on the light receiving element 33, and an electric signal converted by the light receiving element 13 is output from the terminal 19.

一方、受光素子33に入射した光の波長と異なる波長で発光素子34から出射した光がレンズ43により第1の基板35の透過孔40及び光遮蔽部材32の貫通孔32cを通過し、集光レンズ31に入射し回折格子36を透過して0次光として光ファイバ1の端部2に集光され、出力光信号として光ファイバ1内で伝送されていく。   On the other hand, the light emitted from the light emitting element 34 at a wavelength different from the wavelength of the light incident on the light receiving element 33 passes through the transmission hole 40 of the first substrate 35 and the through hole 32c of the light shielding member 32 by the lens 43 and is condensed. The light enters the lens 31, passes through the diffraction grating 36, is condensed on the end 2 of the optical fiber 1 as zero-order light, and is transmitted as an output optical signal in the optical fiber 1.

以上のようにして、図3の光通信モジュールにより波長の異なる光信号が同じ光ファイバ1内で上り及び下りの双方向に伝送されることで、パソコン等によりインターネット等を介して通信を行うことが可能となる。   As described above, optical signals having different wavelengths are transmitted in both the upstream and downstream directions in the same optical fiber 1 by the optical communication module of FIG. Is possible.

上述のように図3の光通信モジュールは、受光素子33と発光素子34とを光軸方向Pに離して配置するので、筐体30の径は大きくならず、コンパクトに構成できるとともに、入射光と出射光とを分離可能にでき、小型化及び低コスト化を達成している。   As described above, in the optical communication module of FIG. 3, the light receiving element 33 and the light emitting element 34 are arranged apart from each other in the optical axis direction P. And the emitted light can be separated, and miniaturization and cost reduction are achieved.

また、上述の小型化のために受光素子33への入射光の光路と、発光素子34からの出射光の光路との間の、光ファイバの中心軸に対し直交する方向の距離が比較的短くなっても、光信号を送信・受信する際に光遮蔽部材32により入射光と出射光が確実に分離され、また発光素子34からの光が受光素子33に入射することを確実に防止し、受光素子33と発光素子34とが電気的に確実に絶縁できるので、発光素子34と受光素子33との間の電気的及び光学的なクロストークを低減させることができる。このため、安定した光通信が可能となる。   Further, for the downsizing described above, the distance in the direction orthogonal to the central axis of the optical fiber between the optical path of the incident light to the light receiving element 33 and the optical path of the outgoing light from the light emitting element 34 is relatively short. Even when the optical signal is transmitted / received, the light shielding member 32 reliably separates the incident light and the emitted light, and reliably prevents the light from the light emitting element 34 from entering the light receiving element 33, Since the light receiving element 33 and the light emitting element 34 can be electrically and reliably insulated, electrical and optical crosstalk between the light emitting element 34 and the light receiving element 33 can be reduced. For this reason, stable optical communication is possible.

また、回折格子36を集光レンズ31に形成し、両者を一体化することで、部品点数が減り、両者の軸合わせが不要となり、光通信モジュールの組み立て性が向上する。なお、回折格子36を集光レンズ31の光ファイバ1の端部2と反対側のレンズ面に形成してもよい。また、集光レンズ31の両レンズ面に回折格子を形成することで、回折角を大きくすることができる。また、集光レンズ31のレンズ面の一方に分光用回折格子を形成し、他方に楕円状パターンの回折格子を形成することで、光通信モジュールにおける結合効率を向上させることができる。   Further, by forming the diffraction grating 36 on the condensing lens 31 and integrating them, the number of parts is reduced, and the alignment of both is not required, and the assembling property of the optical communication module is improved. The diffraction grating 36 may be formed on the lens surface of the condenser lens 31 opposite to the end 2 of the optical fiber 1. Further, by forming diffraction gratings on both lens surfaces of the condenser lens 31, the diffraction angle can be increased. Further, by forming the spectral diffraction grating on one of the lens surfaces of the condenser lens 31 and forming the elliptical diffraction grating on the other, the coupling efficiency in the optical communication module can be improved.

以上のように本発明を実施するための最良の形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1及び図2(a)、(b)では、光遮蔽壁12を缶18から突き出て更に長く構成してもよく、光遮蔽効果が増す。   As described above, the best mode for carrying out the present invention has been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, in FIGS. 1 and 2 (a) and 2 (b), the light shielding wall 12 may protrude from the can 18 and be configured to be longer, which increases the light shielding effect.

また、図3では、第1の基板35に発光素子を配置し、第2の基板38に受光素子を配置するように構成してもよい。   In FIG. 3, a light emitting element may be disposed on the first substrate 35 and a light receiving element may be disposed on the second substrate 38.

また、図3の光通信モジュールの変形例を図6(a)、(b)に示すが、受光素子33は、図6(b)のように、アレー状に並べられた複数の受光部33a、33b、33cを備え、回折格子36による回折角度の異なる回折光がその回折角度に応じて各受光部33a、33b、33cに入射するようになっている。   6A and 6B show a modification of the optical communication module shown in FIG. 3. The light receiving element 33 includes a plurality of light receiving portions 33a arranged in an array as shown in FIG. 6B. , 33b, 33c, and diffracted light beams having different diffraction angles by the diffraction grating 36 are incident on the light receiving portions 33a, 33b, 33c according to the diffraction angles.

また、円筒状の鏡筒32’内に設けられ比較的小型の第1の缶49内に受光素子33が収容され、第1の缶49の上面に設けられた光透過孔49aを通して集光レンズ31からの光が受光素子33に入射する。図6(b)では、隔壁部32a及び貫通孔32b、貫通孔32c、更に第1の缶49、光透過孔49aにより光遮蔽部材を構成し、受光素子33への入射光と発光素子34からの出射光とを光学的に分離し更に効果的に遮蔽できる。   Further, the light receiving element 33 is accommodated in a relatively small first can 49 provided in the cylindrical lens barrel 32 ′, and the condenser lens is passed through a light transmission hole 49 a provided on the upper surface of the first can 49. Light from 31 enters the light receiving element 33. In FIG. 6B, a light shielding member is constituted by the partition wall portion 32a, the through hole 32b, the through hole 32c, the first can 49, and the light transmitting hole 49a, and the incident light to the light receiving element 33 and the light emitting element 34 are used. It is possible to optically separate the light emitted from the light and shield it more effectively.

なお、図6では、図3の発光素子を出射した光を通す透過孔40は省略されている。また、第1の缶49の基板35から受光素子33の電気信号を取り出すための端子35aが延びている。   In FIG. 6, the transmission hole 40 through which the light emitted from the light emitting element of FIG. 3 passes is omitted. Further, a terminal 35 a for taking out an electric signal of the light receiving element 33 from the substrate 35 of the first can 49 extends.

図6(a)、(b)のように、光ファイバ1の端部2からの波長の異なる光は回折格子36で各波長に応じて回折角が変化し、各受光部33a〜33cにそれぞれ入射する。このため、光多重信号の各波長は、例えば、発光素子34からの出射光波長λ0が1.31μmであり、光ファイバ1の端部2から入射する光の波長がλ1=1.47μm、λ2=1.49μm、λ3=1.51μmであるが、かかる波長の異なる複数の光信号を各受光部33a〜33cで別々に受光できる。このように下り波長多重(WDM)通信を行うことで、各波長の光信号に乗せられた種々のデータ、例えば、デジタルテレビ放送、動画、静止画、音声、デジタルデータ通信などを一本の光ファイバを通して受信できる。   As shown in FIGS. 6A and 6B, light having different wavelengths from the end portion 2 of the optical fiber 1 is changed in diffraction angle in accordance with each wavelength by the diffraction grating 36, and the light receiving portions 33 a to 33 c respectively. Incident. Therefore, each wavelength of the optical multiplexed signal is, for example, 1.31 μm at the emission light wavelength λ 0 from the light emitting element 34, and the wavelengths of light incident from the end 2 of the optical fiber 1 are λ 1 = 1.47 μm, λ 2 = 1.49 μm and λ3 = 1.51 μm, but a plurality of optical signals having different wavelengths can be separately received by the light receiving units 33a to 33c. By performing downstream wavelength division multiplexing (WDM) communication in this way, various data, such as digital television broadcasts, moving images, still images, audio, digital data communications, etc., carried on the optical signal of each wavelength can be converted into a single optical signal. Can be received through fiber.

第1の実施の形態による光通信モジュールの内部を縦割にして示す斜視図である。It is a perspective view which shows the inside of the optical communication module by 1st Embodiment vertically. 図2は図1の受光素子と発光素子を同一の缶内に収容した具体的構成を示す斜視図(a)及び半割状態で示す斜視図(b)である。FIG. 2 is a perspective view (a) showing a specific configuration in which the light receiving element and the light emitting element of FIG. 1 are accommodated in the same can, and a perspective view (b) showing a half state. 図3は第2の実施の形態による光通信モジュールの内部を縦割にして示す斜視図である。FIG. 3 is a perspective view showing the inside of the optical communication module according to the second embodiment in a vertically divided manner. 送信・受信の各光をフィルタにより分離する従来の光モジュールを示す断面図である。It is sectional drawing which shows the conventional optical module which isolate | separates each light of transmission and reception with a filter. レンズ上に回折格子を設けて送信・受信の各光を分離する従来の別の光モジュールを示す断面図である。It is sectional drawing which shows another conventional optical module which provides a diffraction grating on a lens, and isolate | separates each light of transmission and reception. 図3の光通信モジュールの変形例を示す図であり、光通信モジュールの内部を縦割にして示す斜視図(a)及び要部を拡大して示す斜視図(b)である。It is a figure which shows the modification of the optical communication module of FIG. 3, and is a perspective view (a) which shows the inside of an optical communication module vertically, and a perspective view (b) which expands and shows the principal part.

符号の説明Explanation of symbols

1 光ファイバ
2 端部(光ファイバ端末)
10 筐体
11 集光レンズ
12 光遮蔽壁
13 受光素子
13a、13b、13c 複数の受光部
14 発光素子
15 基板
15b 電気絶縁部
16 回折格子
18 缶
19 端子
30 筐体
31 集光レンズ
32 光遮蔽部材
32a 隔壁部
32b 貫通孔
32c 貫通孔
33 受光素子
33a,33b,33c 複数の受光部
34 発光素子
35 第1の基板
36 回折格子
37 空洞
38 第2の基板
39 端子
40 貫通孔
40 透過孔(光透過部)
41 円板
42 缶
43 レンズ
49 第1の缶
P 光軸方向

1 optical fiber 2 end (optical fiber terminal)
DESCRIPTION OF SYMBOLS 10 Case 11 Condensing lens 12 Light shielding wall 13 Light receiving element 13a, 13b, 13c Multiple light-receiving part 14 Light emitting element 15 Substrate 15b Electrical insulation part 16 Diffraction grating 18 Can 19 Terminal 30 Case 31 Condensing lens 32 Light shielding member 32a Partition part 32b Through hole 32c Through hole 33 Light receiving element 33a, 33b, 33c Multiple light receiving part 34 Light emitting element 35 First substrate 36 Diffraction grating 37 Cavity 38 Second substrate 39 Terminal 40 Through hole 40 Transmission hole (light transmission) Part)
41 disc 42 can 43 lens 49 first can P optical axis direction

Claims (11)

光ファイバ端末からの光が入射する受光素子と、前記光ファイバ端末に入射させる光を出射する発光素子と、を同一の缶内に収容し、
前記缶を前記受光素子と前記発光素子とが前記光ファイバ端末と対向するように筐体内に配置し、
前記受光素子と前記発光素子との間を光学的に遮蔽しかつ電気的に絶縁したことを特徴とする光通信モジュール。
A light receiving element on which light from an optical fiber terminal enters and a light emitting element that emits light incident on the optical fiber terminal are housed in the same can,
The can is disposed in a housing such that the light receiving element and the light emitting element face the optical fiber terminal,
An optical communication module, wherein the light receiving element and the light emitting element are optically shielded and electrically insulated.
前記受光素子と前記発光素子とを同一基板上に配置し、前記受光素子と前記発光素子との間に電気絶縁部を設けたことを特徴とする請求項1に記載の光通信モジュール。 The optical communication module according to claim 1, wherein the light receiving element and the light emitting element are disposed on the same substrate, and an electrical insulating portion is provided between the light receiving element and the light emitting element. 前記受光素子と前記発光素子との間に入射光と出射光とを分離する光遮蔽壁を設けたことを特徴とする請求項1または2に記載の光通信モジュール。 The optical communication module according to claim 1, wherein a light shielding wall for separating incident light and outgoing light is provided between the light receiving element and the light emitting element. 光ファイバ端末からの光が入射する受光素子と、前記光ファイバ端末に入射させる光を発する発光素子と、を第1の基板及び第2の基板に別々に配置し、
前記受光素子と前記発光素子とが前記光ファイバ端末と対向しかつ前記第1の基板と前記第2の基板とを前記光ファイバ端末の光軸方向にずらして筐体内に配置したことを特徴とする光通信モジュール。
A light receiving element on which light from an optical fiber terminal is incident and a light emitting element that emits light incident on the optical fiber terminal are separately disposed on the first substrate and the second substrate,
The light receiving element and the light emitting element are opposed to the optical fiber terminal, and the first substrate and the second substrate are arranged in the housing while being shifted in the optical axis direction of the optical fiber terminal. Optical communication module.
前記受光素子及び前記発光素子と前記光ファイバ端末との間に入射光と出射光とを分離する光遮蔽部材を設けたことを特徴とする請求項4に記載の光通信モジュール。 The optical communication module according to claim 4, wherein a light shielding member that separates incident light and outgoing light is provided between the light receiving element and the light emitting element and the optical fiber terminal. 前記光ファイバ端末に対し近い側に配置された前記第1の基板または前記第2の基板に光透過部を設け、遠い側に配置された前記第2の基板または前記第1の基板と前記光透過部を介して前記光ファイバ端末との間に光路が形成されるように構成したことを特徴とする請求項4または5に記載の光通信モジュール。 The first substrate or the second substrate disposed on the side closer to the optical fiber terminal is provided with a light transmission portion, and the second substrate or the first substrate disposed on the far side and the light 6. The optical communication module according to claim 4, wherein an optical path is formed between the optical fiber terminal and a transmission part. 前記光ファイバ端末と前記受光素子及び前記発光素子との間に回折格子及び集光レンズを配置したことを特徴とする請求項1乃至6のいずれか1項に記載の光通信モジュール。 The optical communication module according to claim 1, wherein a diffraction grating and a condenser lens are disposed between the optical fiber terminal, the light receiving element, and the light emitting element. 前記回折格子を前記集光レンズに形成したことを特徴とする請求項7に記載の光通信モジュール。 The optical communication module according to claim 7, wherein the diffraction grating is formed on the condenser lens. 前記回折格子を前記集光レンズの片側の面もしくは両側の面に形成したことを特徴とする請求項8に記載の光通信モジュール。 9. The optical communication module according to claim 8, wherein the diffraction grating is formed on one surface or both surfaces of the condenser lens. 前記回折格子で回折された回折光が前記受光素子に入射しかつ前記発光素子からの前記回折格子の0次光が前記光ファイバ端末に入射するように構成したことを特徴とする請求項7,8または9に記載の光通信モジュール。 The diffracted light diffracted by the diffraction grating is incident on the light receiving element, and zero-order light of the diffraction grating from the light emitting element is incident on the optical fiber terminal. The optical communication module according to 8 or 9. 前記受光素子は複数の受光部を備え、前記回折格子による回折角度の異なる回折光がその回折角度に応じて各々の受光部に入射するように構成したことを特徴とする請求項7乃至10のいずれか1項に記載の光通信モジュール。

11. The light receiving element according to claim 7, wherein the light receiving element includes a plurality of light receiving portions, and diffracted lights having different diffraction angles by the diffraction grating are incident on the light receiving portions according to the diffraction angles. The optical communication module according to claim 1.

JP2003419413A 2003-12-17 2003-12-17 Optical communication module Pending JP2005183519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419413A JP2005183519A (en) 2003-12-17 2003-12-17 Optical communication module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419413A JP2005183519A (en) 2003-12-17 2003-12-17 Optical communication module

Publications (1)

Publication Number Publication Date
JP2005183519A true JP2005183519A (en) 2005-07-07

Family

ID=34781316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419413A Pending JP2005183519A (en) 2003-12-17 2003-12-17 Optical communication module

Country Status (1)

Country Link
JP (1) JP2005183519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193002A (en) * 2007-02-07 2008-08-21 Mitsubishi Electric Corp Light transmission/reception module
JP2020057760A (en) * 2018-10-01 2020-04-09 創威光電股▲ふん▼有限公司 Optical sub-assembly module and cap thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193002A (en) * 2007-02-07 2008-08-21 Mitsubishi Electric Corp Light transmission/reception module
JP2020057760A (en) * 2018-10-01 2020-04-09 創威光電股▲ふん▼有限公司 Optical sub-assembly module and cap thereof
US10895700B2 (en) 2018-10-01 2021-01-19 Axcen Photonics Corp. Optical sub-assembly module and cap thereof

Similar Documents

Publication Publication Date Title
US5064263A (en) Multiplexing apparatus for the direct optical reception of a plurality of optical wavelengths
US11624879B2 (en) Multi-channel optical coupler
JP2003294964A (en) Optical communication module
JP2003202463A (en) Wavelength multiplex bidirectional optical transmission module
US20130121651A1 (en) Optical module
US20050084268A1 (en) Optoelectronic transceiver for a bidirectional optical signal transmission
WO2005076883A2 (en) Integrated optical multiplexer and demultiplexer
JP2010061139A (en) Optical module
KR20140112012A (en) Integrated sub-wavelength grating system
JP7230709B2 (en) optical receiver
US20050213981A1 (en) Optical discriminator for transmitting and receiving in both optical fiber and free space applications
JP2017194565A (en) Optical communication module and manufacturing method thereof
US7668422B2 (en) Arrangement for multiplexing and/or demultiplexing optical signals having a plurality of wavelengths
JP2004219523A (en) Optical monitor device
JP4006249B2 (en) Optical transmission / reception module, mounting method therefor, and optical transmission / reception apparatus
JP2008096490A (en) Light receiving assembly
JP2005183519A (en) Optical communication module
KR20170059765A (en) Multi-channel optical module
JP2005183520A (en) Optical communication module
JPS6289008A (en) Module for optical communication
JP2007164109A (en) Optical waveguide having built-in filter, wdm module and optical integrated circuit
TW201905516A (en) Optical module
JP2010039115A (en) Optical module and manufacturing method thereof
JP2931905B2 (en) Bidirectional light receiving / emitting module
JP2009134157A (en) Optical transmission assembly