JP2009134157A - Optical transmission assembly - Google Patents

Optical transmission assembly Download PDF

Info

Publication number
JP2009134157A
JP2009134157A JP2007311218A JP2007311218A JP2009134157A JP 2009134157 A JP2009134157 A JP 2009134157A JP 2007311218 A JP2007311218 A JP 2007311218A JP 2007311218 A JP2007311218 A JP 2007311218A JP 2009134157 A JP2009134157 A JP 2009134157A
Authority
JP
Japan
Prior art keywords
light
wavelength
incident
emitting element
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007311218A
Other languages
Japanese (ja)
Inventor
Akihiro Hiruta
昭浩 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007311218A priority Critical patent/JP2009134157A/en
Publication of JP2009134157A publication Critical patent/JP2009134157A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission assembly that reduces electric crosstalk. <P>SOLUTION: In the optical transmission assembly, a light emitting device 4 and a light receiving device 5 are mounted on the same substrate 6. The substrate 6 includes a flexible part 6a between the mounting places of the light emitting device 4 and the light receiving device 5, wherein the flexible part 6a is bent, so that the light receiving device 5 faces the incident light transmitting side of a wavelength filter 3 and that the light emitting device 4 faces the wavelength filter 3 from a direction intersecting the incident light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気的クロストークを低減する光伝送アセンブリに関する。   The present invention relates to an optical transmission assembly that reduces electrical crosstalk.

光トランシーバは、形状・寸法が規定された所定のハウジングに発光素子と受光素子を内蔵すると共に、バイアス、プリアンプ、ドライバ等の周辺回路を備え、上位機器からの電気通信信号を光通信信号に変えて出射し、外部からの光通信信号を電気通信信号に変えて上位機器に取り込むものである。外部との間で光通信信号を導く光ガイドは光導波路、光ファイバなどである。   An optical transceiver has a light emitting element and a light receiving element built in a predetermined housing whose shape and dimensions are defined, and has peripheral circuits such as a bias, a preamplifier, and a driver, and converts electrical communication signals from host devices into optical communication signals. The optical communication signal from the outside is converted into an electric communication signal and taken into the host device. A light guide for guiding an optical communication signal with the outside is an optical waveguide, an optical fiber, or the like.

光トランシーバには、出射光と入射光の光ガイドを共通化するために、出射光と入射光の波長を異ならせ内部に置いた波長フィルタで分波するものがある。例えば、図6に示されるように、特許文献1に記載された光伝送アセンブリ61は、光ガイド62と平行に置かれた基板66に発光素子アレイ64と受光素子アレイ65が実装され、発光素子アレイ64の出射方向と受光素子アレイ65の入射方向は共に基板66の実装面に垂直である。この基板66を光トランシーバのハウジング(図示せず)に組み込み、発光素子アレイ64の上部に反射波長λ2の波長フィルタ63aを配置し、受光素子アレイ65の上部に反射波長λ1の波長フィルタ63bを配置する。   In some optical transceivers, in order to share the light guides of the emitted light and the incident light, the wavelengths of the emitted light and the incident light are made different from each other and are demultiplexed by a wavelength filter placed inside. For example, as shown in FIG. 6, the light transmission assembly 61 described in Patent Document 1 includes a light emitting element array 64 and a light receiving element array 65 mounted on a substrate 66 placed in parallel with the light guide 62. Both the emission direction of the array 64 and the incident direction of the light receiving element array 65 are perpendicular to the mounting surface of the substrate 66. The substrate 66 is assembled in an optical transceiver housing (not shown), a wavelength filter 63a having a reflection wavelength λ2 is disposed above the light emitting element array 64, and a wavelength filter 63b having a reflection wavelength λ1 is disposed above the light receiving element array 65. To do.

この光伝送アセンブリ61において、発光素子アレイ64からの波長λ2の出射光は波長フィルタ63aで反射し光ガイド62へ出射する。光ガイド62からの波長λ1の入射光は、波長フィルタ63aは透過して波長フィルタ63bで反射し、受光素子アレイ65に入射する。   In the optical transmission assembly 61, the light emitted from the light emitting element array 64 having the wavelength λ2 is reflected by the wavelength filter 63a and emitted to the light guide 62. The incident light of wavelength λ1 from the light guide 62 is transmitted through the wavelength filter 63a, reflected by the wavelength filter 63b, and incident on the light receiving element array 65.

このように、従来は、波長の異なる出射光と入射光を共通の光ガイド62で導く場合、発光素子と受光素子を光ガイド62と平行な基板66に光ガイド62の延長方向に距離を違えて配置し、それぞれの波長を反射波長とする波長フィルタ63a,63bを出射光軸、入射光軸が光ガイド62の延長軸に交わる位置に配置している。   As described above, conventionally, when the emitted light and the incident light having different wavelengths are guided by the common light guide 62, the light emitting element and the light receiving element are arranged on the substrate 66 parallel to the light guide 62 at different distances in the extending direction of the light guide 62. The wavelength filters 63 a and 63 b having the respective wavelengths as reflection wavelengths are arranged at positions where the outgoing optical axis and the incident optical axis intersect with the extension axis of the light guide 62.

特表2002−534709号公報JP-T-2002-534709

発光素子は、出射光の大きな光エネルギを得るために大きな電力を消費し、ドライバから発光素子に大電流が流れる。一方、受光素子は、入射光から微弱な電流を発生させ、プリアンプにおいてこの電流を増幅する。したがって、従来のように、発光素子と受光素子が接近して配置されるのは、発光素子の駆動電流による輻射が受光素子の受光電流に影響を与えることになるので、望ましくない。   The light emitting element consumes a large amount of power to obtain a large light energy of emitted light, and a large current flows from the driver to the light emitting element. On the other hand, the light receiving element generates a weak current from incident light and amplifies this current in the preamplifier. Therefore, it is not desirable that the light emitting element and the light receiving element are arranged close to each other as in the prior art because radiation due to the driving current of the light emitting element affects the light receiving current of the light receiving element.

しかし、図6の光伝送アセンブリにおいて、発光素子と受光素子の距離を従来より長く取ろうとすると、いくつかの問題が生じる。   However, in the optical transmission assembly of FIG. 6, several problems occur when the distance between the light emitting element and the light receiving element is longer than the conventional one.

受光素子と発光素子の距離を拡げることで輻射の影響を減少させることはできるが、このためには基板の長さを延す必要がある。これに対して、ハウジングの長さは規格に定められており、ハウジングを長くすることはできない。したがって、基板の長さを延ばして発光素子と受光素子の距離を拡げるという改善策は、光伝送アセンブリをハウジングに組み込むことを困難にする。   Although the influence of radiation can be reduced by increasing the distance between the light receiving element and the light emitting element, it is necessary to increase the length of the substrate. On the other hand, the length of the housing is defined in the standard, and the housing cannot be lengthened. Therefore, the improvement measure of extending the distance between the light emitting element and the light receiving element by extending the length of the substrate makes it difficult to incorporate the optical transmission assembly into the housing.

また、光ガイドと波長フィルタの間、発光素子、受光素子と波長フィルタの間にそれぞれレンズがあることにより、波長フィルタ同士の間では光はコリメートされている。しかし、レンズでコリメートをしても拡散の角度が全くゼロとはならないので、光路長が長くなると拡散幅が大きくなる。よって、受光素子と発光素子の距離を拡げると、波長フィルタ同士間の光路長が長くなってそれだけ拡散幅が大きくなる。これを防ぐために途中にレンズを追加するようでは、部品の増加と構造の複雑さを招き、好ましくない。   In addition, since the lenses are provided between the light guide and the wavelength filter, and between the light emitting element and the light receiving element, the light is collimated between the wavelength filters. However, even if the lens is collimated, the diffusion angle does not become zero at all, so that the diffusion width increases as the optical path length increases. Therefore, when the distance between the light receiving element and the light emitting element is increased, the optical path length between the wavelength filters is increased, and the diffusion width is increased accordingly. In order to prevent this, it is not preferable to add a lens in the middle, resulting in an increase in parts and a complicated structure.

このように、従来の光伝送アセンブリは、発光素子の駆動電流による輻射が受光素子の受光電流に影響を与えること(電気的クロストーク)を改善したくとも、好適な改善策が見出されないのが現状である。   As described above, the conventional optical transmission assembly does not find a suitable improvement measure even if it is desired to improve that the radiation due to the driving current of the light emitting element affects the light receiving current of the light receiving element (electrical crosstalk). Is the current situation.

そこで、本発明の目的は、上記課題を解決し、電気的クロストークを低減する光伝送アセンブリを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical transmission assembly that solves the above problems and reduces electrical crosstalk.

上記目的を達成するために本発明は、波長λ2の光信号を出射する発光素子と、上記波長λ2とは異なる波長λ1の光信号を受光する受光素子と、上記波長λ2の出射光と上記波長λ1の入射光とを伝送する光ガイドと、上記波長λ2の出射光と上記波長λ1の入射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、上記光ガイドからの入射光が上記波長フィルタを透過して直進し、この入射光に交わる方向から上記波長フィルタに入る上記発光素子からの出射光が上記光ガイドへ反射される光伝送アセンブリにおいて、上記発光素子と上記受光素子とが同じ基板に実装され、該基板が上記発光素子と上記受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、上記受光素子が上記波長フィルタの入射光透過側に臨み、上記発光素子が入射光に交わる方向から上記波長フィルタに臨んでいるものである。   To achieve the above object, the present invention provides a light emitting element that emits an optical signal having a wavelength λ2, a light receiving element that receives an optical signal having a wavelength λ1 different from the wavelength λ2, an emitted light having the wavelength λ2, and the wavelength. a light guide for transmitting the incident light of λ1, and a wavelength filter for separating the emitted light of the wavelength λ2 and the incident light of the wavelength λ1, and facing the wavelength filter at a predetermined inclination angle with respect to the light guide. By this, the incident light from the light guide passes through the wavelength filter and travels straight, and the light emitted from the light emitting element entering the wavelength filter from the direction intersecting the incident light is reflected to the light guide. In the transmission assembly, the light emitting element and the light receiving element are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the light emitting element and the light receiving element, and the flexible portion is bent. And above Light-receiving element faces the incoming light transmitting side of the wavelength filter, in which the light emitting element faces the said wavelength filter from the direction intersecting the incident light.

上記波長フィルタが両波長λ1,λ2に対して透明な光学ブロック内に収容され、該光学ブロックには、上記受光素子に臨む面に入射用レンズ、上記発光素子に臨む面に出射用レンズ、上記光ガイドに臨む面に入出射用レンズが形成されていてもよい。   The wavelength filter is accommodated in an optical block transparent to both wavelengths λ1 and λ2, and the optical block includes an incident lens on a surface facing the light receiving element, an output lens on a surface facing the light emitting element, An entrance / exit lens may be formed on the surface facing the light guide.

上記基板の上記受光素子が実装されている部分の反対面に、電気コネクタが実装されていてもよい。   An electrical connector may be mounted on the opposite surface of the substrate where the light receiving element is mounted.

また、本発明は、波長λ2の光信号を出射する発光素子と、上記波長λ2とは異なる波長λ1の光信号を受光する受光素子と、上記波長λ2の出射光と上記波長λ1の入射光とを伝送する光ガイドと、上記波長λ2の出射光と上記波長λ1の入射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、上記光ガイドからの入射光が上記波長フィルタでこの入射光に交わる方向に反射され、上記入射光の延長方向から上記波長フィルタに入る上記発光素子からの出射光が上記波長フィルタを透過し直進して上記光ガイドへ入射される光伝送アセンブリにおいて、上記発光素子と上記受光素子とが同じ基板に実装され、該基板が上記発光素子と上記受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、上記発光素子が上記波長フィルタの入射光延長側に臨み、上記受光素子が入射光に交わる方向から上記波長フィルタに臨んでいるものである。   The present invention also includes a light emitting element that emits an optical signal having a wavelength λ2, a light receiving element that receives an optical signal having a wavelength λ1 different from the wavelength λ2, an emitted light having the wavelength λ2, and an incident light having the wavelength λ1. And a wavelength filter that separates the emitted light having the wavelength λ2 and the incident light having the wavelength λ1, and by facing the wavelength filter at a predetermined inclination angle with respect to the light guide, Incident light from the light guide is reflected by the wavelength filter in a direction intersecting with the incident light, and emitted light from the light emitting element entering the wavelength filter from an extension direction of the incident light passes through the wavelength filter and travels straight. In the optical transmission assembly that is incident on the light guide, the light emitting element and the light receiving element are mounted on the same substrate, and the substrate has a flexible portion between the mounting positions of the light emitting element and the light receiving element. The flexible portion is bent, the light emitting element faces the incident optical extension side of the wavelength filter, in which the light receiving element faces the said wavelength filter from the direction intersecting the incident light.

上記基板は、上記発光素子の実装箇所から上記受光素子の実装箇所まで可撓性部分であって、上記発光素子の実装箇所から上記受光素子の実装箇所までの間で曲げられてもよい。   The substrate may be a flexible portion from the mounting position of the light emitting element to the mounting position of the light receiving element, and may be bent from the mounting position of the light emitting element to the mounting position of the light receiving element.

また、本発明は、波長λ2の光信号を受光する受光素子と、上記波長λ2とは異なる波長λ1の光信号を受光する受光素子と、上記波長λ2の入射光と上記波長λ1の入射光とを伝送する光ガイドと、上記波長λ2の入射光と上記波長λ1の入射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、上記光ガイドからの一方の入射光が上記波長フィルタでこの入射光に交わる方向に反射され、他方の入射光が上記波長フィルタを透過し直進する光伝送アセンブリにおいて、上記2つの受光素子が同じ基板に実装され、該基板が上記2つの受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、一方の受光素子が上記波長フィルタの入射光透過側に臨み、他方の受光素子が入射光に交わる方向から上記波長フィルタに臨んでいるものである。   The present invention also includes a light receiving element that receives an optical signal having a wavelength λ2, a light receiving element that receives an optical signal having a wavelength λ1 different from the wavelength λ2, an incident light having the wavelength λ2, and an incident light having the wavelength λ1. And a wavelength filter that separates the incident light having the wavelength λ2 and the incident light having the wavelength λ1, and facing the wavelength filter at a predetermined inclination angle with respect to the light guide. In the optical transmission assembly in which one incident light from the light guide is reflected by the wavelength filter in a direction intersecting with the incident light, and the other incident light passes through the wavelength filter and travels straight, the two light receiving elements are placed on the same substrate. Mounted, the substrate has a flexible portion between the mounting locations of the two light receiving elements, the flexible portion is bent, and one light receiving element faces the incident light transmitting side of the wavelength filter, The other light receiving element There are those faces from a direction intersecting with the incident light to the wavelength filter.

また、本発明は、波長λ2の光信号を出射する発光素子と、上記波長λ2とは異なる波長λ1の光信号を出射する発光素子と、上記波長λ2の出射光と上記波長λ1の出射光とを伝送する光ガイドと、上記波長λ2の出射光と上記波長λ1の出射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、一方の出射光が上記波長フィルタを透過し直進して上記光ガイドへ入射され、この出射光に交わる方向から上記波長フィルタに入る他方の出射光が上記光ガイドへ反射される光伝送アセンブリにおいて、上記2つの発光素子が同じ基板に実装され、該基板が上記2つの発光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、一方の発光素子が上記波長フィルタの上記光ガイドと反対側に臨み、他方の発光素子が上記光ガイドへの出射光に交わる方向から上記波長フィルタに臨んでいるものである。   Further, the present invention provides a light emitting element that emits an optical signal having a wavelength λ2, a light emitting element that emits an optical signal having a wavelength λ1 different from the wavelength λ2, an emitted light having the wavelength λ2, and an emitted light having the wavelength λ1. And a wavelength filter that separates the emitted light having the wavelength λ2 and the emitted light having the wavelength λ1, and by facing the wavelength filter at a predetermined inclination angle with respect to the light guide, In the optical transmission assembly in which the emitted light of the second light passes through the wavelength filter and travels straight and enters the light guide, and the other emitted light that enters the wavelength filter from the direction intersecting the emitted light is reflected to the light guide. Two light emitting elements are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the two light emitting elements, the flexible portion is bent, and one light emitting element is the wavelength filter Of the above light Id and faces the opposite side, the other light emitting element is what faces the said wavelength filter from the direction intersecting the light emitted into the light guide.

また、本発明は、光信号を受光する受光素子と、上記光信号とは偏光角が異なる光信号を受光する受光素子と、上記2つの光信号の入射光を伝送する光ガイドと、上記2つの光信号の入射光を偏光角に応じて分離する偏光分離素子とを備え、上記光ガイドに対して所定の傾斜角で偏光分離素子の偏光分離面を臨ませることにより、上記光ガイドからの一方の偏光角を有する光信号の入射光が上記偏光分離素子でこの入射光に交わる方向に反射され、他方の偏光角を有する光信号の入射光が上記偏光分離素子を透過し直進する光伝送アセンブリにおいて、上記2つの受光素子が同じ基板に実装され、該基板が上記2つの受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、一方の受光素子が上記偏光分離素子の入射光透過側に臨み、他方の受光素子が入射光に交わる方向から上記偏光分離素子に臨んでいるものである。   The present invention also provides a light receiving element that receives an optical signal, a light receiving element that receives an optical signal having a polarization angle different from that of the optical signal, a light guide that transmits incident light of the two optical signals, and the 2 A polarization separation element that separates incident light of one optical signal according to a polarization angle, and by facing the polarization separation surface of the polarization separation element at a predetermined inclination angle with respect to the light guide, Optical transmission in which incident light of an optical signal having one polarization angle is reflected by the polarization separation element in a direction intersecting the incident light, and incident light of an optical signal having the other polarization angle is transmitted through the polarization separation element and travels straight. In the assembly, the two light receiving elements are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the two light receiving elements, and the flexible portion is bent, so that one of the light receiving elements Is the incident light transmission side of the polarization separation element Faces, in which the other light receiving element faces the direction intersecting the incident light on the polarization separation element.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)電気的クロストークを低減することができる。   (1) Electrical crosstalk can be reduced.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光伝送アセンブリ1は、波長λ2の出射光と波長λ1の入射光とを互いに反対方向に導く光ガイド2に対して所定の傾斜角で波長フィルタ3を臨ませることにより、光ガイド2からの入射光が波長フィルタ3を透過して直進し、この入射光に交わる方向から上記波長フィルタ3に入る出射光が光ガイド2へ反射される。   As shown in FIG. 1, an optical transmission assembly 1 according to the present invention includes a wavelength filter 3 at a predetermined inclination angle with respect to a light guide 2 that guides outgoing light of wavelength λ2 and incident light of wavelength λ1 in opposite directions. , The incident light from the light guide 2 passes through the wavelength filter 3 and travels straight, and the emitted light entering the wavelength filter 3 is reflected to the light guide 2 from the direction intersecting the incident light.

本発明の光伝送アセンブリ1は、出射光を発光する発光素子4と入射光を受光する受光素子5とが同じ基板6に実装され、基板6が発光素子4と受光素子5の実装箇所間に可撓性部分6aを有し、可撓性部分6aが曲げられて、受光素子5が波長フィルタ3の入射光透過側に臨み、発光素子4が入射光に交わる方向から波長フィルタ3に臨んでいるものである。   In the optical transmission assembly 1 of the present invention, a light emitting element 4 that emits outgoing light and a light receiving element 5 that receives incident light are mounted on the same substrate 6, and the substrate 6 is between the mounting positions of the light emitting element 4 and the light receiving element 5. It has a flexible portion 6a, the flexible portion 6a is bent, the light receiving element 5 faces the incident light transmitting side of the wavelength filter 3, and the light emitting element 4 faces the wavelength filter 3 from the direction intersecting the incident light. It is what.

ここで、光ガイド2は、光導波路又は光ファイバである。   Here, the light guide 2 is an optical waveguide or an optical fiber.

波長フィルタ3は、光ガイド2から入る波長λ1の入射光を透過し、発光素子4から入る波長λ2の出射光を光ガイド2へ反射するものである。   The wavelength filter 3 transmits incident light having a wavelength λ1 that enters from the light guide 2 and reflects outgoing light having a wavelength λ2 that enters from the light emitting element 4 to the light guide 2.

発光素子4は、波長λ2の出射光を発光するもので、例えば、LD(レーザダイオード)である。発光素子4の近傍には、ドライバ等の周辺回路7が実装されている。発光素子4は、1個でもよく、複数個でもよい。複数個の発光素子4は、紙面に直交する方向に並べてアレイ状に配置するとよい。   The light emitting element 4 emits emitted light having a wavelength λ2, and is, for example, an LD (laser diode). A peripheral circuit 7 such as a driver is mounted in the vicinity of the light emitting element 4. The light emitting element 4 may be one or plural. The plurality of light emitting elements 4 may be arranged in an array in a direction perpendicular to the paper surface.

受光素子5は、波長λ1の入射光を受光するもので、例えば、PD(フォトダイオード)である。受光素子5の近傍には、バイアス、プリアンプ等の周辺回路8が実装されている。受光素子5は、1個でもよく、複数個でもよい。複数個の受光素子5は、紙面に直交する方向に並べてアレイ状に配置するとよい。   The light receiving element 5 receives incident light having a wavelength λ1, and is, for example, a PD (photodiode). A peripheral circuit 8 such as a bias and a preamplifier is mounted in the vicinity of the light receiving element 5. The light receiving element 5 may be one or plural. The plurality of light receiving elements 5 are preferably arranged in an array in a direction perpendicular to the paper surface.

基板6は、可撓性部分6aがフレキ基板で構成され、発光素子実装部分6bがリジッド基板で構成され、受光素子実装部分6cがリジッド基板で構成されるものである。なお、両リジッド基板を多層基板とし、そのうち一層をフレキ基板とし、そのフレキ基板が発光素子実装部分6b、可撓性部分6a、受光素子実装部分6cで一体に繋がるようにしてもよい。   The substrate 6 has a flexible portion 6a made of a flexible substrate, a light emitting element mounting portion 6b made of a rigid substrate, and a light receiving element mounting portion 6c made of a rigid substrate. Note that both rigid substrates may be multilayer substrates, one of which may be a flexible substrate, and the flexible substrate may be integrally connected by the light emitting element mounting portion 6b, the flexible portion 6a, and the light receiving element mounting portion 6c.

リジッド基板は、ガラスエポキシなどの硬い材質からなり、フレキ基板は、組み込みや繰り返し屈曲のため曲がる材料としてポリイミド材などを使用したプリント基板である。そして、フレキ基板とリジッド基板は、スルーホールにより電気的導通を取られている。   The rigid substrate is made of a hard material such as glass epoxy, and the flexible substrate is a printed substrate using a polyimide material or the like as a material that bends due to incorporation or repeated bending. The flexible substrate and the rigid substrate are electrically connected by a through hole.

光ガイド2と波長フィルタ3は、基板6の発光素子実装部分6bに対して平行に配置されており、その光ガイド2の光軸の延長上に受光素子5が位置している。可撓性部分6aを構成するフレキ基板は、発光素子実装部分6bに対して受光素子実装部分6cが直角であるように曲げられている。なお、波長フィルタ3と受光素子5の間、波長フィルタ3と発光素子4の間、波長フィルタ3と光ガイド2の間には、図示しないがそれぞれコリメート用のレンズを配置することにより、光伝送損失を低減することが好ましい。   The light guide 2 and the wavelength filter 3 are arranged in parallel to the light emitting element mounting portion 6 b of the substrate 6, and the light receiving element 5 is located on the extension of the optical axis of the light guide 2. The flexible substrate constituting the flexible portion 6a is bent so that the light receiving element mounting portion 6c is perpendicular to the light emitting element mounting portion 6b. In addition, although not shown, a collimating lens is disposed between the wavelength filter 3 and the light receiving element 5, between the wavelength filter 3 and the light emitting element 4, and between the wavelength filter 3 and the light guide 2. It is preferable to reduce the loss.

発光素子実装部分6bと受光素子実装部分6cは、図示しないハウジングに収納、固定されることによって図1に示した位置関係を保つ。   The light emitting element mounting portion 6b and the light receiving element mounting portion 6c are housed and fixed in a housing (not shown) to maintain the positional relationship shown in FIG.

図2に示されるように、基板6がまっすぐな状態で基板6に周辺回路8、受光素子5、発光素子4、周辺回路7が実装される。このとき、受光素子5は、可撓性部分6aによって従来(図6)よりも発光素子4から離れている。   As shown in FIG. 2, the peripheral circuit 8, the light receiving element 5, the light emitting element 4, and the peripheral circuit 7 are mounted on the substrate 6 with the substrate 6 being straight. At this time, the light receiving element 5 is further away from the light emitting element 4 than the conventional one (FIG. 6) by the flexible portion 6a.

このように部品が実装されたまっすぐな基板6が波長フィルタ3と位置合わせされて図示しないハウジングに固定される。位置合わせは、発光素子実装部分6bの発光素子4からの出射光が波長フィルタ3で反射されて光ガイド2の光軸に最も適切に入射するように行われる。その後、可撓性部分6aが曲げられて、受光素子実装部分6cが発光素子実装部分6bに対して直角になるよう起立され、図1の状態となる。   The straight substrate 6 on which the components are mounted in this manner is aligned with the wavelength filter 3 and fixed to a housing (not shown). The alignment is performed such that light emitted from the light emitting element 4 of the light emitting element mounting portion 6b is reflected by the wavelength filter 3 and is most appropriately incident on the optical axis of the light guide 2. Thereafter, the flexible portion 6a is bent, and the light receiving element mounting portion 6c is erected so as to be perpendicular to the light emitting element mounting portion 6b, resulting in the state shown in FIG.

図1の光伝送アセンブリ1における動作を説明する。   The operation in the optical transmission assembly 1 of FIG. 1 will be described.

まず、光ガイド2からの波長λ1の入射光が波長フィルタ3に入ると、この入射光は波長フィルタ3を透過して直進し、受光素子5に入射する。   First, when incident light having a wavelength λ 1 from the light guide 2 enters the wavelength filter 3, the incident light passes through the wavelength filter 3 and travels straight and enters the light receiving element 5.

ここで、波長フィルタ3は、光ガイド2の光軸に対して45度傾斜して配置されている。   Here, the wavelength filter 3 is disposed with an inclination of 45 degrees with respect to the optical axis of the light guide 2.

一方、発光素子4により出射された波長λ2の出射光は、波長フィルタ3で90度反射され、光ガイド2に入射される。このように、光伝送アセンブリ1では、出射光と入射光の光ガイドを共通化した光伝送が可能となる。   On the other hand, the emitted light having the wavelength λ 2 emitted from the light emitting element 4 is reflected by 90 ° by the wavelength filter 3 and enters the light guide 2. As described above, the optical transmission assembly 1 enables optical transmission in which the light guides of the emitted light and the incident light are shared.

図1の光伝送アセンブリ1の効果を説明する。   The effect of the optical transmission assembly 1 of FIG. 1 will be described.

本発明の光伝送アセンブリ1では、可撓性部分6aが曲げられて、受光素子5が波長フィルタ3の入射光透過側に臨み、発光素子4が入射光に交わる方向から波長フィルタ3に臨んでいる。このように、受光素子5と発光素子4が同じ平面上に並んでいないため、受光素子5と発光素子4の距離が従来より拡がり、発光素子の駆動電流による輻射が受光素子の受光電流に影響を与える電気的クロストークが小さくなる。   In the optical transmission assembly 1 of the present invention, the flexible portion 6a is bent so that the light receiving element 5 faces the incident light transmitting side of the wavelength filter 3, and the light emitting element 4 faces the wavelength filter 3 from the direction intersecting the incident light. Yes. As described above, since the light receiving element 5 and the light emitting element 4 are not arranged on the same plane, the distance between the light receiving element 5 and the light emitting element 4 is longer than before, and radiation by the driving current of the light emitting element affects the light receiving current of the light receiving element. The electrical crosstalk that gives

しかも、基板6の受光素子実装部分6cは、可撓性部分6aが曲げられたことにより、波長フィルタ3の近傍に位置する。よって、レンズでコリメートされた光の光路長が長くならず、途中にレンズを追加する必要がない。   In addition, the light receiving element mounting portion 6c of the substrate 6 is positioned in the vicinity of the wavelength filter 3 by bending the flexible portion 6a. Therefore, the optical path length of the light collimated by the lens is not increased, and it is not necessary to add a lens in the middle.

ここで、光伝送アセンブリの実装精度を検討すると、光ガイド2がマルチモード光ファイバである場合、そのコアの直径は50μm程度であるため、発光素子4の実装精度は数μmであってもよい。しかし、光ガイド2がシングルモード光ファイバである場合、そのコアの直径は10μm程度であるため、発光素子4の実装精度は1μm未満の精度が要求される。これに対し、受光素子5は、その受光面が直径50μm程度であるため、光ガイド2の光軸に対する実装精度は数μmであってもよい。   Here, considering the mounting accuracy of the optical transmission assembly, when the light guide 2 is a multimode optical fiber, the core has a diameter of about 50 μm, and therefore the mounting accuracy of the light emitting element 4 may be several μm. . However, when the light guide 2 is a single mode optical fiber, the core has a diameter of about 10 μm. Therefore, the mounting accuracy of the light emitting element 4 is required to be less than 1 μm. On the other hand, since the light receiving surface of the light receiving element 5 has a diameter of about 50 μm, the mounting accuracy with respect to the optical axis of the light guide 2 may be several μm.

そこで、本発明の光伝送アセンブリ1では、可撓性部分6aの先に位置合わせ精度が発光素子4に比べて大まかでよい受光素子5を配置してある。このため、発光素子4の位置合わせをした後は可撓性部分6aを曲げて、受光素子実装部分6cを起こすだけで、簡単に受光素子5を十分な受光ができる位置に持ってくることができる。   Therefore, in the optical transmission assembly 1 of the present invention, the light receiving element 5 whose positioning accuracy is roughly larger than that of the light emitting element 4 is arranged at the tip of the flexible portion 6a. For this reason, after aligning the light emitting element 4, it is possible to simply bring the light receiving element 5 to a position where sufficient light can be received simply by bending the flexible part 6a and raising the light receiving element mounting part 6c. it can.

次に、本実施形態の変形例を説明する。   Next, a modification of this embodiment will be described.

図3に示されるように、本発明に係る光伝送アセンブリ31は、光伝送アセンブリ1と同様に、出射光を発光する発光素子4と入射光を受光する受光素子5とが同じ基板36に実装され、基板36が発光素子4と受光素子5の実装箇所間に可撓性部分36aを有し、可撓性部分36aが曲げられて、受光素子5が波長フィルタ3の入射光透過側に臨み、発光素子4が入射光に交わる方向から波長フィルタ3に臨んでいるものである。   As shown in FIG. 3, in the same manner as the optical transmission assembly 1, the optical transmission assembly 31 according to the present invention has a light emitting element 4 that emits emitted light and a light receiving element 5 that receives incident light mounted on the same substrate 36. The substrate 36 has a flexible portion 36a between the mounting positions of the light emitting element 4 and the light receiving element 5, and the flexible portion 36a is bent so that the light receiving element 5 faces the incident light transmitting side of the wavelength filter 3. The light emitting element 4 faces the wavelength filter 3 from the direction intersecting the incident light.

光伝送アセンブリ1との相違点は、基板36は、可撓性部分36aだけでなく、発光素子実装部分6bと受光素子実装部分6cもフレキ基板のみで構成され、リジッド基板が用いられないことである。図示のように曲げられているのは可撓性部分36aのみであり、発光素子実装部分6bと受光素子実装部分6cは曲げられていない。よって、波長フィルタ3、発光素子4、受光素子5の位置関係は光伝送アセンブリ1と同じである。   The difference from the optical transmission assembly 1 is that the substrate 36 is composed not only of the flexible portion 36a but also of the light emitting element mounting portion 6b and the light receiving element mounting portion 6c only of a flexible substrate, and a rigid substrate is not used. is there. Only the flexible portion 36a is bent as shown, and the light emitting element mounting portion 6b and the light receiving element mounting portion 6c are not bent. Therefore, the positional relationship among the wavelength filter 3, the light emitting element 4, and the light receiving element 5 is the same as that of the optical transmission assembly 1.

全体がフレキ基板からなる基板36は、その一部に金属板等からなる固定用部材37b,37cを取り付け、その固定用部材をハウジングにYAGレーザ溶接又はネジ止めすることにより、ハウジングに固定するとよい。   The substrate 36 made entirely of a flexible substrate may be fixed to the housing by attaching fixing members 37b, 37c made of a metal plate or the like to a part of the substrate 36 and YAG laser welding or screwing the fixing members to the housing. .

変形例である光伝送アセンブリ31においても、光伝送アセンブリ1と同様に発光素子4の駆動電流による輻射が受光素子5の受光電流に与える影響を小さくできるという効果がある。   Also in the optical transmission assembly 31 which is a modified example, similarly to the optical transmission assembly 1, there is an effect that the influence of the radiation due to the driving current of the light emitting element 4 on the light receiving current of the light receiving element 5 can be reduced.

これに加え、光伝送アセンブリ31は、リジッド基板を使用せずにフレキ基板のみで基板36を構成するので、光伝送アセンブリ31を安価に製造できるという利点がある。   In addition to this, the optical transmission assembly 31 has the advantage that the optical transmission assembly 31 can be manufactured at low cost because the substrate 36 is formed of only a flexible substrate without using a rigid substrate.

図1の光伝送アセンブリ1(図3の光伝送アセンブリ31も同様)は、発光素子4と受光素子5を基板6に実装し、基板6の可撓性部分6aを曲げてそれより先にある受光素子実装部分6cを起こすことで、受光素子5と発光素子4を波長フィルタ3の異なる面に臨ませたが、光ガイド2がマルチモード光ファイバである場合、上記した光伝送アセンブリの実装精度の検討を踏まえ、コア直径は50μm程度であることから、発光素子4の実装精度は数μmでもよくなるため、基板6の先に発光素子4を実装し、受光素子5を光ガイド2からの入射光に交わる方向から波長フィルタ3に臨ませてもよい。可撓性部分6aを曲げると、発光素子4が波長フィルタ3の入射光透過側に臨むことになるので、波長フィルタ3には、波長λ2の出射光を透過し、波長λ1の入射光を反射するものを使用する。   In the optical transmission assembly 1 of FIG. 1 (the same applies to the optical transmission assembly 31 of FIG. 3), the light-emitting element 4 and the light-receiving element 5 are mounted on the substrate 6, and the flexible portion 6a of the substrate 6 is bent and placed ahead of it. By raising the light receiving element mounting portion 6c, the light receiving element 5 and the light emitting element 4 are faced to different surfaces of the wavelength filter 3, but when the light guide 2 is a multimode optical fiber, the mounting accuracy of the above-described optical transmission assembly In consideration of the above, since the core diameter is about 50 μm, the mounting accuracy of the light emitting element 4 may be several μm. Therefore, the light emitting element 4 is mounted on the tip of the substrate 6 and the light receiving element 5 is incident from the light guide 2. You may make it approach the wavelength filter 3 from the direction which crosses light. When the flexible portion 6a is bent, the light emitting element 4 faces the incident light transmitting side of the wavelength filter 3, so that the wavelength filter 3 transmits the emitted light having the wavelength λ2 and reflects the incident light having the wavelength λ1. Use what you want.

また、受光素子5と発光素子4を基板6に実装するのではなく、2箇所とも受光素子5を実装してもよい。すなわち、波長λ1の入射光を受光するための受光素子5と波長λ2の入射光を受光するための受光素子5を実装する。これにより、波長多重された入射光が光ガイド2から波長フィルタ3に入射すると、2箇所の受光素子5に波長分離された光がそれぞれ入射して受光されることになるので、波長多重光受信用の光伝送アセンブリを実現することができる。   Further, instead of mounting the light receiving element 5 and the light emitting element 4 on the substrate 6, the light receiving elements 5 may be mounted at two places. That is, the light receiving element 5 for receiving the incident light having the wavelength λ1 and the light receiving element 5 for receiving the incident light having the wavelength λ2 are mounted. As a result, when the wavelength-multiplexed incident light enters the wavelength filter 3 from the light guide 2, the wavelength-separated light is incident on and received by the two light receiving elements 5. An optical transmission assembly can be realized.

ここで、波長フィルタ3に代えて、偏光ビームスプリッタなど偏光に応じて光ビームを分離する機能を有した光学部品である偏光分離素子を用いてもよい。偏光分離素子として偏光ビームスプリッタを設けることにより、偏光状態に応じて光信号を分離検出することができる。偏光ビームスプリッタの偏光分離面は光ガイド2の光軸に対して45°傾斜させることにより2つの偏光をほぼ90°光路が分離した状態(図1、図3、図4と同一構造)で検出できる。これは、例えば、光磁気ディスクにレーザ光を照射して光磁気ディスクで反射された信号をS偏光成分とP偏光成分(S偏光成分と直交する偏光)に分離して検出することにより光磁気ディスクに記載された信号を読み取ることに利用できる。そしてこのときは、光ガイド2としてレンズ結合系を用いる従来構造と同一となり、実装が容易となる。   Here, instead of the wavelength filter 3, a polarization separation element that is an optical component having a function of separating a light beam according to polarization, such as a polarization beam splitter, may be used. By providing a polarization beam splitter as the polarization separation element, an optical signal can be separated and detected according to the polarization state. The polarization beam splitting surface of the polarizing beam splitter is tilted by 45 ° with respect to the optical axis of the light guide 2 to detect the two polarized light in a state where the optical path is separated by approximately 90 ° (the same structure as in FIGS. 1, 3 and 4). it can. For example, the magneto-optical disk is irradiated with a laser beam and the signal reflected by the magneto-optical disk is separated into an S-polarized component and a P-polarized component (polarized light orthogonal to the S-polarized component) and detected. It can be used to read a signal written on a disc. At this time, the structure is the same as the conventional structure using a lens coupling system as the light guide 2, and the mounting becomes easy.

一方、これとは逆に、2箇所とも発光素子4を実装してもよい。すなわち、波長λ1の出射光を発光する発光素子4と波長λ2の出射光を発光する発光素子4を実装する。これにより、波長フィルタ3において波長多重された出射光が光ガイド2から出射されることになるので、波長多重光送信用の光伝送アセンブリを実現することができる。   On the other hand, the light emitting element 4 may be mounted at two places on the contrary. That is, the light emitting element 4 that emits the emitted light having the wavelength λ1 and the light emitting element 4 that emits the emitted light having the wavelength λ2 are mounted. Thereby, since the emitted light wavelength-multiplexed by the wavelength filter 3 is emitted from the light guide 2, an optical transmission assembly for wavelength-multiplexed light transmission can be realized.

この波長多重光送信用の光伝送アセンブリは、一例として、レーザプリンタ用の光源モジュールとして利用できる。アレイ(複数)状のLDをさらに波長多重することで、より多数の光信号で印字できるため、高速印刷が容易となる。   As an example, the optical transmission assembly for wavelength-multiplexed optical transmission can be used as a light source module for a laser printer. By further wavelength-multiplexing the arrayed LDs, it is possible to print with a larger number of optical signals, which facilitates high-speed printing.

次に、本発明の他の実施形態を説明する。   Next, another embodiment of the present invention will be described.

図4に示されるように、本発明に係る光伝送アセンブリ41は、波長λ2の出射光と波長λ1の入射光とを互いに反対方向に導く光ガイド2に対して所定の傾斜角で波長フィルタ3を臨ませることにより、光ガイド2からの入射光が波長フィルタ3を透過して直進し、この入射光に交わる方向から上記波長フィルタ3に入る出射光が光ガイド2へ反射されるようにした光トランシーバの光伝送アセンブリ1において、出射光を発光する発光素子4と入射光を受光する受光素子5とが同じ基板6に実装され、基板6が発光素子4と受光素子5の実装箇所間に可撓性部分6aを有し、可撓性部分6aが曲げられて、受光素子5が波長フィルタ3の入射光透過側に臨み、発光素子4が入射光に交わる方向から波長フィルタ3に臨んでいるものである。   As shown in FIG. 4, the optical transmission assembly 41 according to the present invention has a wavelength filter 3 with a predetermined inclination angle with respect to the light guide 2 that guides the outgoing light of wavelength λ2 and the incoming light of wavelength λ1 in opposite directions. The incident light from the light guide 2 passes through the wavelength filter 3 and travels straight, so that the emitted light entering the wavelength filter 3 is reflected to the light guide 2 from the direction intersecting the incident light. In the optical transmission assembly 1 of the optical transceiver, the light emitting element 4 that emits the emitted light and the light receiving element 5 that receives the incident light are mounted on the same substrate 6, and the substrate 6 is disposed between the mounting positions of the light emitting element 4 and the light receiving element 5. It has a flexible portion 6a, the flexible portion 6a is bent, the light receiving element 5 faces the incident light transmitting side of the wavelength filter 3, and the light emitting element 4 faces the wavelength filter 3 from the direction intersecting the incident light. It is what.

光伝送アセンブリ1との相違点は、波長フィルタ3が両波長λ1,λ2に対して透明な光学ブロック43内に収容され、その光学ブロック43に、受光素子5に臨む面に入射用レンズ43a、発光素子4に臨む面に出射用レンズ43b、光ガイド2に臨む面に入出射用レンズ43cが形成されていることである。   The difference from the optical transmission assembly 1 is that the wavelength filter 3 is accommodated in an optical block 43 transparent to both wavelengths λ1 and λ2, and the optical block 43 has an incident lens 43a on the surface facing the light receiving element 5, The exit lens 43b is formed on the surface facing the light emitting element 4, and the entrance / exit lens 43c is formed on the surface facing the light guide 2.

光学ブロック43は、波長フィルタ3を収容するための穴(溝)が設けられており、その穴に光ガイド2の光軸に対して所定の角度傾斜した斜面が形成されている。この斜面に波長フィルタ3を置くことで光軸に対する波長フィルタ3の位置と姿勢を決めることができる。この波長フィルタ3を入れた穴を図示しない透明な充填材(屈折率整合材)で埋めるのが好ましい。これにより、波長フィルタ3を外気(空気)の水分からの影響を受けにくくすることができる。   The optical block 43 is provided with a hole (groove) for accommodating the wavelength filter 3, and a slope inclined at a predetermined angle with respect to the optical axis of the light guide 2 is formed in the hole. By placing the wavelength filter 3 on this slope, the position and posture of the wavelength filter 3 with respect to the optical axis can be determined. The hole containing the wavelength filter 3 is preferably filled with a transparent filler (refractive index matching material) (not shown). Thereby, the wavelength filter 3 can be made hard to receive the influence from the water | moisture content of external air (air).

この実施形態の光伝送アセンブリ41においても、光伝送アセンブリ1と同様に発光素子4の駆動電流による輻射が受光素子5の受光電流に与える影響を小さくできるという効果がある。   The light transmission assembly 41 of this embodiment also has an effect that the influence of the radiation due to the drive current of the light emitting element 4 on the light reception current of the light receiving element 5 can be reduced as in the case of the light transmission assembly 1.

これに加え、光学ブロック43において各レンズが一体成形されるので、部品点数が減少すると共に、波長フィルタ3と各レンズの位置合わせが簡素化される。光学ブロック43自体の形状も簡素であるため、製造が容易となる。   In addition, since each lens is integrally formed in the optical block 43, the number of parts is reduced and the alignment of the wavelength filter 3 and each lens is simplified. Since the shape of the optical block 43 itself is simple, the manufacturing is facilitated.

さらに、この実施形態では、光学ブロック43には、光ガイド2を嵌め合わせるための嵌合部43dが形成されている。嵌合部43dは、光ガイド2の外形と同じ形の穴であり、嵌合部43d内の光ガイド2の光軸に相当する位置に入出射用レンズ43cが形成されている。これにより、嵌合部43dに光ガイド2を嵌め合わせるだけで、位置合わせが達成される。   Furthermore, in this embodiment, the optical block 43 is formed with a fitting portion 43d for fitting the light guide 2 together. The fitting portion 43d is a hole having the same shape as the outer shape of the light guide 2, and an entrance / exit lens 43c is formed at a position corresponding to the optical axis of the light guide 2 in the fitting portion 43d. Thereby, alignment is achieved only by fitting the light guide 2 to the fitting portion 43d.

これにより、光学ブロック43と光ガイド2の位置合わせが簡単となると共に、光学ブロック43と光ガイド2をこれらが一体化したひとつの部品として扱うことができる。   As a result, the alignment of the optical block 43 and the light guide 2 is simplified, and the optical block 43 and the light guide 2 can be handled as a single component in which they are integrated.

図5に示されるように、本発明に係る光伝送アセンブリ51は、前述の光伝送アセンブリ41において、基板6の受光素子5が実装されている受光素子実装部分6cの反対面6dに、電気コネクタ9が実装されているものである。   As shown in FIG. 5, the optical transmission assembly 51 according to the present invention has an electrical connector on the opposite surface 6d of the light receiving element mounting portion 6c on which the light receiving element 5 of the substrate 6 is mounted in the optical transmission assembly 41 described above. 9 is implemented.

また、この実施形態では、光トランシーバのハウジング10に光伝送アセンブリ51が収容されている。受光素子実装部分6cと電気コネクタ9はハウジング10に固定されている。ここでは、ハウジング10は、実際より簡略化して側断面輪郭が長方形としてある。このハウジング10の一端面より内に受光素子実装部分6cがあり、ハウジング10の外に電気コネクタ9が現れている。   In this embodiment, the optical transmission assembly 51 is accommodated in the housing 10 of the optical transceiver. The light receiving element mounting portion 6 c and the electrical connector 9 are fixed to the housing 10. Here, the housing 10 has a simplified side profile and a rectangular cross-sectional profile. The light receiving element mounting portion 6 c is located within one end surface of the housing 10, and the electrical connector 9 appears outside the housing 10.

電気コネクタ9は、光トランシーバと外部を繋ぐ(詳細には、光伝送アセンブリ51の周辺回路7,8と上位機器のインタフェース回路を電気的に導通させる)ものである。電気コネクタ9は、光ガイド2とは対向する位置にあり、光ガイド2が直接又は間接的に相手の光通信機器に接続され、電気コネクタ9が上位機器に接続される。   The electrical connector 9 connects the optical transceiver and the outside (specifically, the peripheral circuits 7 and 8 of the optical transmission assembly 51 and the interface circuit of the host device are electrically connected). The electrical connector 9 is at a position facing the light guide 2, and the light guide 2 is directly or indirectly connected to the counterpart optical communication device, and the electrical connector 9 is connected to the host device.

このとき、電気コネクタ9が受光素子実装部分6cの反対面6dに実装されていることで、電気コネクタ9をハウジング10の一端面の外に出すことができる。電気コネクタ9がハウジング10の一端面の外にあるので、光トランシーバを上位機器に対して挿入/抜き取りをすることが容易となる。   At this time, since the electrical connector 9 is mounted on the opposite surface 6d of the light receiving element mounting portion 6c, the electrical connector 9 can be taken out of one end surface of the housing 10. Since the electrical connector 9 is outside the one end surface of the housing 10, it becomes easy to insert / remove the optical transceiver to / from the host device.

本実施形態では、発光素子4としてレーザダイオードを用いているが、特に面実装型であるVCSEL−LD(vertical cavity surface emitting laser)を用いると、光結合が実装面に対して垂直方向であり、実装が容易となるので好ましい。VCSEL−LDを用いた場合、出射波長としては850nm帯である。   In the present embodiment, a laser diode is used as the light emitting element 4. However, when a VCSEL-LD (vertical cavity surface emitting laser) that is a surface mount type is used, the optical coupling is perpendicular to the mounting surface. This is preferable because mounting becomes easy. When VCSEL-LD is used, the emission wavelength is in the 850 nm band.

一方、端面発光型のFB−LD(ファブリペローレーザ)、DFB−LD(Distributed Feedback レーザ)などを用いてもよい。FB−LD、DFB−LDなどの端面発光型LDを用いる場合には、発光素子をサブマウントに実装し、発光方向を波長フィルタ3の入射光軸と一致させる必要がある。FB−LD、DFB−LDなどを用いると、1300nm帯、または1550nm帯の出射波長を用いることが可能であり、長距離光伝送に好都合である。   On the other hand, an edge-emitting FB-LD (Fabry-Perot laser), DFB-LD (Distributed Feedback laser), or the like may be used. In the case of using an edge-emitting LD such as FB-LD or DFB-LD, it is necessary to mount the light emitting element on the submount and make the emission direction coincide with the incident optical axis of the wavelength filter 3. When FB-LD, DFB-LD, or the like is used, an emission wavelength of 1300 nm band or 1550 nm band can be used, which is convenient for long-distance optical transmission.

また、光ガイド2として光ファイバ、光導波路などを実施形態として説明したが、レンズ系結合であってもよい。   Moreover, although the optical fiber, the optical waveguide, etc. were demonstrated as embodiment as the light guide 2, lens system coupling | bonding may be sufficient.

本発明の一実施形態を示す光伝送アセンブリの側断面図である。1 is a side cross-sectional view of an optical transmission assembly showing an embodiment of the present invention. 図1の光伝送アセンブリの製造途中の側断面図である。FIG. 2 is a side sectional view of the optical transmission assembly of FIG. 1 during manufacture. 図1の光伝送アセンブリの変形例を示す側断面図である。FIG. 9 is a side cross-sectional view showing a modification of the optical transmission assembly of FIG. 1. 本発明の他の実施形態を示す光伝送アセンブリの側断面図である。It is a sectional side view of the optical transmission assembly which shows other embodiment of this invention. 本発明の他の実施形態を示す光伝送アセンブリの側断面図である。It is a sectional side view of the optical transmission assembly which shows other embodiment of this invention. 従来の光伝送アセンブリの斜視図である。It is a perspective view of the conventional optical transmission assembly.

符号の説明Explanation of symbols

1,31,41,51 光伝送アセンブリ
2 光ガイド
3 波長フィルタ
4 発光素子
5 受光素子
6 基板
6a 可撓性部分
6b 発光素子実装部分
6c 受光素子実装部分
7,8 周辺回路
9 電気コネクタ
10 ハウジング
43 光学ブロック
43a 入射用レンズ
43b 出射用レンズ
43c 入出射用レンズ
1, 31, 41, 51 Light transmission assembly 2 Light guide 3 Wavelength filter 4 Light emitting element 5 Light receiving element 6 Substrate 6a Flexible portion 6b Light emitting element mounting portion 6c Light receiving element mounting portion 7, 8 Peripheral circuit 9 Electrical connector 10 Housing 43 Optical block 43a Incident lens 43b Outgoing lens 43c Incoming / outgoing lens

Claims (8)

波長λ2の光信号を出射する発光素子と、上記波長λ2とは異なる波長λ1の光信号を受光する受光素子と、上記波長λ2の出射光と上記波長λ1の入射光とを伝送する光ガイドと、上記波長λ2の出射光と上記波長λ1の入射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、上記光ガイドからの入射光が上記波長フィルタを透過して直進し、この入射光に交わる方向から上記波長フィルタに入る上記発光素子からの出射光が上記光ガイドへ反射される光伝送アセンブリにおいて、
上記発光素子と上記受光素子とが同じ基板に実装され、該基板が上記発光素子と上記受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、上記受光素子が上記波長フィルタの入射光透過側に臨み、上記発光素子が入射光に交わる方向から上記波長フィルタに臨んでいることを特徴とする光伝送アセンブリ。
A light emitting element that emits an optical signal having a wavelength λ2, a light receiving element that receives an optical signal having a wavelength λ1 different from the wavelength λ2, and a light guide that transmits the emitted light having the wavelength λ2 and the incident light having the wavelength λ1. A wavelength filter that separates the emitted light having the wavelength λ2 and the incident light having the wavelength λ1, and the incident light from the light guide by facing the wavelength guide at a predetermined inclination angle with respect to the light guide. In the optical transmission assembly in which the light emitted from the light emitting element entering the wavelength filter from the direction intersecting with the incident light is reflected to the light guide from the direction intersecting with the incident light.
The light-emitting element and the light-receiving element are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the light-emitting element and the light-receiving element, and the flexible portion is bent to receive the light-receiving element. An optical transmission assembly, wherein an element faces the incident light transmitting side of the wavelength filter, and the light emitting element faces the wavelength filter from a direction intersecting the incident light.
上記波長フィルタが両波長λ1,λ2に対して透明な光学ブロック内に収容され、該光学ブロックには、上記受光素子に臨む面に入射用レンズ、上記発光素子に臨む面に出射用レンズ、上記光ガイドに臨む面に入出射用レンズが形成されていることを特徴とする請求項1記載の光伝送アセンブリ。   The wavelength filter is accommodated in an optical block transparent to both wavelengths λ1 and λ2, and the optical block includes an incident lens on a surface facing the light receiving element, an output lens on a surface facing the light emitting element, 2. An optical transmission assembly according to claim 1, wherein an entrance / exit lens is formed on a surface facing the light guide. 上記基板の上記受光素子が実装されている部分の反対面に、電気コネクタが実装されていることを特徴とする請求項2記載の光伝送アセンブリ。   The optical transmission assembly according to claim 2, wherein an electrical connector is mounted on the opposite surface of the substrate on which the light receiving element is mounted. 波長λ2の光信号を出射する発光素子と、上記波長λ2とは異なる波長λ1の光信号を受光する受光素子と、上記波長λ2の出射光と上記波長λ1の入射光とを伝送する光ガイドと、上記波長λ2の出射光と上記波長λ1の入射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、上記光ガイドからの入射光が上記波長フィルタでこの入射光に交わる方向に反射され、上記入射光の延長方向から上記波長フィルタに入る上記発光素子からの出射光が上記波長フィルタを透過し直進して上記光ガイドへ入射される光伝送アセンブリにおいて、
上記発光素子と上記受光素子とが同じ基板に実装され、該基板が上記発光素子と上記受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、上記発光素子が上記波長フィルタの入射光延長側に臨み、上記受光素子が入射光に交わる方向から上記波長フィルタに臨んでいることを特徴とする光伝送アセンブリ。
A light emitting element that emits an optical signal having a wavelength λ2, a light receiving element that receives an optical signal having a wavelength λ1 different from the wavelength λ2, and a light guide that transmits the emitted light having the wavelength λ2 and the incident light having the wavelength λ1. A wavelength filter that separates the emitted light having the wavelength λ2 and the incident light having the wavelength λ1, and the incident light from the light guide by facing the wavelength guide at a predetermined inclination angle with respect to the light guide. Is reflected in the direction intersecting with the incident light by the wavelength filter, and the light emitted from the light emitting element entering the wavelength filter from the extension direction of the incident light passes through the wavelength filter and travels straight and is incident on the light guide. In the optical transmission assembly
The light emitting element and the light receiving element are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the light emitting element and the light receiving element, the flexible portion is bent, and the light emission An optical transmission assembly characterized in that an element faces the incident light extension side of the wavelength filter, and the light receiving element faces the wavelength filter from a direction intersecting the incident light.
上記基板は、上記発光素子の実装箇所から上記受光素子の実装箇所まで可撓性部分であって、上記発光素子の実装箇所から上記受光素子の実装箇所までの間で曲げられたことを特徴とする請求項1記載の光伝送アセンブリ。   The substrate is a flexible portion from the mounting position of the light emitting element to the mounting position of the light receiving element, and is bent between the mounting position of the light emitting element and the mounting position of the light receiving element. The optical transmission assembly of claim 1. 波長λ2の光信号を受光する受光素子と、上記波長λ2とは異なる波長λ1の光信号を受光する受光素子と、上記波長λ2の入射光と上記波長λ1の入射光とを伝送する光ガイドと、上記波長λ2の入射光と上記波長λ1の入射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、上記光ガイドからの一方の入射光が上記波長フィルタでこの入射光に交わる方向に反射され、他方の入射光が上記波長フィルタを透過し直進する光伝送アセンブリにおいて、
上記2つの受光素子が同じ基板に実装され、該基板が上記2つの受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、一方の受光素子が上記波長フィルタの入射光透過側に臨み、他方の受光素子が入射光に交わる方向から上記波長フィルタに臨んでいることを特徴とする光伝送アセンブリ。
A light receiving element that receives an optical signal having a wavelength λ2, a light receiving element that receives an optical signal having a wavelength λ1 different from the wavelength λ2, and a light guide that transmits incident light having the wavelength λ2 and incident light having the wavelength λ1. A wavelength filter that separates the incident light of the wavelength λ2 and the incident light of the wavelength λ1, and by facing the wavelength filter at a predetermined inclination angle with respect to the light guide, one of the light guides from the light guide In an optical transmission assembly in which incident light is reflected by the wavelength filter in a direction intersecting with the incident light, and the other incident light passes through the wavelength filter and travels straight.
The two light receiving elements are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the two light receiving elements, the flexible portion is bent, and one of the light receiving elements has the wavelength An optical transmission assembly, wherein the optical transmission assembly faces the incident light transmitting side of the filter, and the other light receiving element faces the wavelength filter from a direction intersecting the incident light.
波長λ2の光信号を出射する発光素子と、上記波長λ2とは異なる波長λ1の光信号を出射する発光素子と、上記波長λ2の出射光と上記波長λ1の出射光とを伝送する光ガイドと、上記波長λ2の出射光と上記波長λ1の出射光とを分離する波長フィルタとを備え、上記光ガイドに対して所定の傾斜角で波長フィルタを臨ませることにより、一方の出射光が上記波長フィルタを透過し直進して上記光ガイドへ入射され、この出射光に交わる方向から上記波長フィルタに入る他方の出射光が上記光ガイドへ反射される光伝送アセンブリにおいて、
上記2つの発光素子が同じ基板に実装され、該基板が上記2つの発光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、一方の発光素子が上記波長フィルタの上記光ガイドと反対側に臨み、他方の発光素子が上記光ガイドへの出射光に交わる方向から上記波長フィルタに臨んでいることを特徴とする光伝送アセンブリ。
A light emitting element that emits an optical signal having a wavelength λ2, a light emitting element that emits an optical signal having a wavelength λ1 different from the wavelength λ2, and a light guide that transmits the emitted light having the wavelength λ2 and the emitted light having the wavelength λ1. A wavelength filter that separates the emitted light of the wavelength λ2 and the emitted light of the wavelength λ1, and by facing the wavelength filter at a predetermined inclination angle with respect to the light guide, one of the emitted lights has the wavelength In an optical transmission assembly in which the other outgoing light that enters the wavelength filter from the direction intersecting with the outgoing light and reflected by the light guide is reflected by the light guide through the filter and straightly entering the light guide.
The two light emitting elements are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the two light emitting elements, the flexible portion is bent, and one light emitting element has the wavelength An optical transmission assembly, wherein the light transmission assembly faces the side opposite to the light guide of the filter, and the other light emitting element faces the wavelength filter from a direction intersecting with light emitted to the light guide.
光信号を受光する受光素子と、上記光信号とは偏光角が異なる光信号を受光する受光素子と、上記2つの光信号の入射光を伝送する光ガイドと、上記2つの光信号の入射光を偏光角に応じて分離する偏光分離素子とを備え、上記光ガイドに対して所定の傾斜角で偏光分離素子の偏光分離面を臨ませることにより、上記光ガイドからの一方の偏光角を有する光信号の入射光が上記偏光分離素子でこの入射光に交わる方向に反射され、他方の偏光角を有する光信号の入射光が上記偏光分離素子を透過し直進する光伝送アセンブリにおいて、
上記2つの受光素子が同じ基板に実装され、該基板が上記2つの受光素子の実装箇所間に可撓性部分を有し、該可撓性部分が曲げられて、一方の受光素子が上記偏光分離素子の入射光透過側に臨み、他方の受光素子が入射光に交わる方向から上記偏光分離素子に臨んでいることを特徴とする光伝送アセンブリ。
A light receiving element that receives an optical signal, a light receiving element that receives an optical signal having a polarization angle different from that of the optical signal, a light guide that transmits incident light of the two optical signals, and incident light of the two optical signals A polarization separation element that separates the light according to the polarization angle, and has one polarization angle from the light guide by facing the polarization separation surface of the polarization separation element at a predetermined inclination angle with respect to the light guide. In an optical transmission assembly in which incident light of an optical signal is reflected by the polarization separation element in a direction intersecting with the incident light, and incident light of an optical signal having the other polarization angle passes through the polarization separation element and travels straight.
The two light receiving elements are mounted on the same substrate, the substrate has a flexible portion between the mounting positions of the two light receiving elements, the flexible portion is bent, and one of the light receiving elements is An optical transmission assembly, wherein the light transmitting assembly faces the incident light transmitting side of the separating element, and the other light receiving element faces the polarization separating element from a direction intersecting the incident light.
JP2007311218A 2007-11-30 2007-11-30 Optical transmission assembly Pending JP2009134157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311218A JP2009134157A (en) 2007-11-30 2007-11-30 Optical transmission assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311218A JP2009134157A (en) 2007-11-30 2007-11-30 Optical transmission assembly

Publications (1)

Publication Number Publication Date
JP2009134157A true JP2009134157A (en) 2009-06-18

Family

ID=40866063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311218A Pending JP2009134157A (en) 2007-11-30 2007-11-30 Optical transmission assembly

Country Status (1)

Country Link
JP (1) JP2009134157A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513873B1 (en) * 2013-11-19 2015-04-21 주식회사 옵토웰 Optical subassembly module and manufacture method of optical subassembly module
WO2016151813A1 (en) * 2015-03-25 2016-09-29 オリンパス株式会社 Optical transmission module and endoscope
JP2021531505A (en) * 2018-07-23 2021-11-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Optical components, optical modules, and communication devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513873B1 (en) * 2013-11-19 2015-04-21 주식회사 옵토웰 Optical subassembly module and manufacture method of optical subassembly module
WO2016151813A1 (en) * 2015-03-25 2016-09-29 オリンパス株式会社 Optical transmission module and endoscope
JPWO2016151813A1 (en) * 2015-03-25 2018-01-18 オリンパス株式会社 Optical transmission module and endoscope
JP2021531505A (en) * 2018-07-23 2021-11-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Optical components, optical modules, and communication devices
JP7294761B2 (en) 2018-07-23 2023-06-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Optical components, optical modules, and communication devices

Similar Documents

Publication Publication Date Title
US9042731B2 (en) Optical module having a plurality of optical sources
US10261273B2 (en) Bi-directional optical module communicating with single optical fiber and optical transceiver implementing the same
JP4983703B2 (en) Optical transmission system
JP5216714B2 (en) Single-core bidirectional optical communication module and single-core bidirectional optical communication connector
JP5563167B2 (en) Optical communication module
US20160349470A1 (en) Hybrid integrated optical sub-assembly
US9143261B2 (en) Optical module
JP2010122312A (en) Transmission/reception lens block and optical module using the same
JP4977594B2 (en) Single-core bidirectional optical communication module
JP2008257094A (en) Optical transmission module and optical patch cable
JP2005222050A (en) Bidirectional optical transceiver
KR100640421B1 (en) Optical module for multi-wavelength
JP7230709B2 (en) optical receiver
US7778502B2 (en) Optical transmission assembly
JP2010122311A (en) Lens block and optical module using the same
US10418777B2 (en) Coaxial transmitter optical subassembly (TOSA) including side-by-side laser diode and monitor photodiode arrangement
US7373050B2 (en) Optical communication module and connector
JP6146573B2 (en) Lens block and optical communication module
JP2009134157A (en) Optical transmission assembly
US7018110B2 (en) Optical module
JP4006249B2 (en) Optical transmission / reception module, mounting method therefor, and optical transmission / reception apparatus
US20230021871A1 (en) Planar bidirectional optical coupler for wavelength division multiplexing
JP5158039B2 (en) Optical transceiver and optical active cable using optical path changing optical block with lens
JP2008020721A (en) Parallel optical transmitter-receiver
US11022765B2 (en) Lens clip for coupling and optical alignment of an optical lens and an optical subassembly module implementing same