JP2005181829A - Liquid crystal device, and projection display device - Google Patents

Liquid crystal device, and projection display device Download PDF

Info

Publication number
JP2005181829A
JP2005181829A JP2003424706A JP2003424706A JP2005181829A JP 2005181829 A JP2005181829 A JP 2005181829A JP 2003424706 A JP2003424706 A JP 2003424706A JP 2003424706 A JP2003424706 A JP 2003424706A JP 2005181829 A JP2005181829 A JP 2005181829A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal device
electrode
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424706A
Other languages
Japanese (ja)
Other versions
JP4389579B2 (en
Inventor
Kinya Ozawa
欣也 小澤
剛 ▲帯▼川
Takeshi Obikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003424706A priority Critical patent/JP4389579B2/en
Publication of JP2005181829A publication Critical patent/JP2005181829A/en
Application granted granted Critical
Publication of JP4389579B2 publication Critical patent/JP4389579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently suppress a flicker when electrode materials of a couple of substrates between which liquid crystal is sandwiched are different from each other. <P>SOLUTION: The liquid crystal device 100 constituted by sandwiching a liquid crystal layer 50 between substrates 10 and 20 having electrodes 9 and 23 made of mutually different electrode materials has alignment films 31 and 21, differing in specific dielectric constat, formed on both the substrates. At this time, alignment films which are relatively large in specific dielectric constant are formed on a surface of an electrode which is relatively small in work function of a liquid crystal interface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液晶装置、投射型表示装置に関する。   The present invention relates to a liquid crystal device and a projection display device.

従来、電極の一方をAl等の反射電極とした反射型の液晶装置が知られている。
特開平10−206845号公報
Conventionally, a reflection type liquid crystal device in which one of the electrodes is a reflection electrode such as Al is known.
JP-A-10-206845

しかし、上述のような反射型の液晶装置ではフリッカが生じ易く、十分な表示特性が得られないという問題があった。フリッカを解消する方法としては、例えば駆動を調節して上下基板間の電位のバランスをとる方法が考えられるが、フリッカの大きさは温度等にも依るため調節が難しい。また、この方法では別途補償用の回路が必要になるため、コストも嵩んでしまう。
本発明はこのような事情に鑑みてなされたもので、簡素な構成でフリッカの発生を十分に防止できるようにした液晶装置、並びにこの液晶装置を備えた投射型表示装置を提供することを目的とする。
However, the reflection type liquid crystal device as described above has a problem that flicker is likely to occur and sufficient display characteristics cannot be obtained. As a method of eliminating the flicker, for example, a method of adjusting the driving to balance the potential between the upper and lower substrates is conceivable. However, since the size of the flicker depends on the temperature or the like, the adjustment is difficult. In addition, this method requires a separate compensation circuit, which increases costs.
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a liquid crystal device capable of sufficiently preventing the occurrence of flicker with a simple configuration, and a projection display device including the liquid crystal device. And

上記の課題を解決するため、本発明の液晶装置は、電極を備えた一対の基板の間に液晶層を挟持してなる液晶装置であって、少なくとも一方の電極の表面に、両基板に備えられた電極の液晶界面における仕事関数の差を小さくするような仕事関数調整層が設けられたことを特徴とする。
本発明者は、上述のフリッカの発生原因として、液晶層と接する上下の電極の仕事関数の違いに着目した。すなわち、上述した従来の液晶装置では、一方の基板にITO等の透明電極が形成され、他方の基板にAl等の反射電極が形成されており、両電極の液晶界面の仕事関数には大きな差が生じている。このような仕事関数の違いは、両電極のコモン電位にずれを生じさせ、フリッカの原因となる。本発明では、仕事関数調整層によって両電極の液晶界面における仕事関数の不均衡を解消できるため、フリッカのない表示が可能となる。特に本発明では電極表面の電気的特性(液晶界面の仕事関数の大きさ)を直接改善しているので、駆動を調節した場合のように温度が変化してもコモン電位に変動は生じず、常に安定した表示特性が得られる。なお、本発明では、上記仕事関数調整層は無機材料からなることが好ましい。一般に無機材料は有機材料に比べて比誘電率が大きいため、仕事関数調整層に無機材料を用いることで、仕事関数の調節幅が広がり、調整が容易となる。
In order to solve the above problems, a liquid crystal device of the present invention is a liquid crystal device in which a liquid crystal layer is sandwiched between a pair of substrates provided with electrodes, and is provided on both substrates on the surface of at least one electrode. It is characterized in that a work function adjusting layer is provided so as to reduce the work function difference at the liquid crystal interface of the electrode.
The inventor paid attention to the difference in work function between the upper and lower electrodes in contact with the liquid crystal layer as a cause of the occurrence of the flicker described above. That is, in the conventional liquid crystal device described above, a transparent electrode such as ITO is formed on one substrate, and a reflective electrode such as Al is formed on the other substrate. Has occurred. Such a difference in work function causes a shift in the common potential of both electrodes and causes flicker. In the present invention, the work function adjustment layer can solve the work function imbalance at the liquid crystal interface between the two electrodes, thereby enabling display without flicker. In particular, in the present invention, since the electrical characteristics of the electrode surface (the work function of the liquid crystal interface) are directly improved, the common potential does not change even if the temperature changes as in the case where the drive is adjusted. Stable display characteristics can always be obtained. In the present invention, the work function adjusting layer is preferably made of an inorganic material. In general, since an inorganic material has a relative dielectric constant larger than that of an organic material, the use of the inorganic material for the work function adjustment layer widens the adjustment range of the work function and facilitates adjustment.

ところで、上記仕事関数調整層の具体的な形態としては、上記仕事関数調整層が、両基板の電極の表面に設けられた一対の配向膜からなり、該一対の配向膜の内、相対的に仕事関数の小さい電極の表面に設けられた第1の配向膜の比誘電率がもう一方の第2の配向膜の比誘電率よりも大きく構成されたものを用いることができる。この形態では、仕事関数調整層が配向膜として兼用されるため、装置構成が簡略化される。   By the way, as a specific form of the work function adjusting layer, the work function adjusting layer is composed of a pair of alignment films provided on the surfaces of the electrodes of both substrates. A material in which the relative dielectric constant of the first alignment film provided on the surface of the electrode having a small work function is larger than the relative dielectric constant of the other second alignment film can be used. In this embodiment, since the work function adjusting layer is also used as the alignment film, the device configuration is simplified.

また、上記形態では、上記第1の配向膜が、斜方蒸着膜からなる第1の膜と、該第1の膜よりも比誘電率の大きい第2の膜とを含む構成とすることができる。このように第1の配向膜を多層構造とすることで、液晶の配向制御力及び仕事関数の調整力の双方に優れた配向膜を得ることができる。なお、第1の膜と第2の膜の積層順序は任意に決めることができるが、第2の膜を第1の膜の上に形成する場合には、第1の膜の凹凸面によって生じる配向制御力を損なわないように、この第2の膜の表面に第1の膜の表面形状を反映した凹凸形状が形成されるようにすることが望ましい。また、上記第1の膜としてはSiOxが好適であり、第2の膜としてはTiOxやAlOx(Al酸化物)等が好適である。   In the above embodiment, the first alignment film includes a first film made of an oblique deposition film and a second film having a relative dielectric constant larger than that of the first film. it can. As described above, by forming the first alignment film in a multilayer structure, an alignment film excellent in both the alignment control power of liquid crystal and the work function adjustment power can be obtained. Note that the stacking order of the first film and the second film can be arbitrarily determined, but when the second film is formed on the first film, the first film and the second film are generated by the uneven surface of the first film. It is desirable that an uneven shape reflecting the surface shape of the first film is formed on the surface of the second film so as not to impair the orientation control force. Also, SiOx is suitable for the first film, and TiOx, AlOx (Al oxide), etc. are suitable for the second film.

また、上記形態では、上記一対の基板は枠状に設けられたシール材を介して対向しており、上記第1の膜は上記シール材の枠内の領域に該シール材に掛からないように設けられたものを用いることができる。このようにシール材を第1の膜の外側に離して配置することで、シール材からの不純物による第1の膜の汚染を防止し、配向の信頼性を高めることが可能となる。   Further, in the above embodiment, the pair of substrates are opposed to each other via a sealing material provided in a frame shape, and the first film is not covered with the sealing material in a region within the frame of the sealing material. The provided one can be used. By disposing the sealing material away from the first film in this manner, contamination of the first film due to impurities from the sealing material can be prevented, and the reliability of orientation can be improved.

なお、電極表面の仕事関数の大きさは、その電極の材料、及び、電極の下層側の構造に依って影響される。例えば、いずれか一方の電極を反射電極として構成した場合(即ち、一方の電極がAlやAg等の相対的に仕事関数の小さい導電材料からなり、他方の電極がITO等の相対的に仕事関数の大きい導電材料からなる場合)には、両電極の仕事関数差によってコモン電位にずれが生じる。また、電極材料が双方の基板で同じであっても、いずれか一方の基板がスイッチング素子を備えた素子基板からなる場合(即ち、一方の基板がTFTや回路配線等を備えた素子基板からなり、他方の基板が単にベタ電極を形成しただけの対向基板からなる場合)には、両電極の液晶界面における仕事関数に若干の差が生じる。このため、このような構成に対して本発明を適用すれば、本発明の効果をよりよく発揮することができる。
また本発明は、ガラス基板等の絶縁基板を用いた液晶装置に限らず、シリコン基板等の半導体基板を素子基板としたLCOS(Liquid Crystal On Silicon)と呼ばれる液晶装置に対しても適用することができる。
In addition, the magnitude | size of the work function of an electrode surface is influenced by the material of the electrode, and the structure of the lower layer side of an electrode. For example, when one of the electrodes is configured as a reflective electrode (that is, one electrode is made of a conductive material having a relatively low work function such as Al or Ag, and the other electrode is a relatively work function such as ITO. In the case of a conductive material having a large thickness), the common potential shifts due to the work function difference between the two electrodes. In addition, even if the electrode material is the same for both substrates, when either substrate is composed of an element substrate having a switching element (that is, one substrate is composed of an element substrate having TFTs, circuit wiring, etc.) When the other substrate is made of a counter substrate in which a solid electrode is simply formed), there is a slight difference in the work function at the liquid crystal interface between both electrodes. For this reason, if this invention is applied with respect to such a structure, the effect of this invention can be exhibited more fully.
The present invention is not limited to a liquid crystal device using an insulating substrate such as a glass substrate, but can be applied to a liquid crystal device called LCOS (Liquid Crystal On Silicon) using a semiconductor substrate such as a silicon substrate as an element substrate. it can.

また、本発明の投射型表示装置は上述の液晶装置を光変調手段として備えたことを特徴とする。これにより、高品質且つ安定な投射表示を実現することができる。   The projection display device of the present invention includes the above-described liquid crystal device as light modulation means. Thereby, high quality and stable projection display can be realized.

[液晶装置]
以下、図面を参照しながら、本発明の液晶装置について説明する。
本実施の形態では、投射型表示装置のライトバルブに用いるアクティブマトリクス方式の液晶装置(液晶ライトバルブ)の例を挙げて説明する。
図1は本実施形態の液晶装置を各構成要素とともに対向基板の側から見た平面図、図2は図1のH−H’線に沿う断面図、図3はシール部周辺の構成を拡大した断面図である。なお、以下の説明に用いた各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならせてある。なお、本明細書において液晶装置を構成する各部材の液晶層側の面を「内面」、それと反対側の面を「外面」という。
[Liquid Crystal Device]
The liquid crystal device of the present invention will be described below with reference to the drawings.
In this embodiment, an example of an active matrix liquid crystal device (liquid crystal light valve) used for a light valve of a projection display device will be described.
1 is a plan view of the liquid crystal device according to the present embodiment as viewed from the side of the counter substrate together with each component, FIG. 2 is a cross-sectional view taken along the line HH ′ of FIG. 1, and FIG. FIG. In each drawing used in the following description, the scale is different for each layer and each member so that each layer and each member can be recognized on the drawing. In this specification, the surface on the liquid crystal layer side of each member constituting the liquid crystal device is referred to as an “inner surface”, and the surface on the opposite side is referred to as an “outer surface”.

図1及び図2に示すように、本実施形態の液晶装置100は、TFTアレイ基板10と対向基板20とが矩形枠状に設けられたシール材52によって貼り合わされ、このシール材52によって区画された領域内に液晶50が封入、保持されている。シール材52には液晶注入用の注入口55が形成されており、該液晶注入口55は封止材54により封止されている。なお、対向基板20の内面側には対向電極23が形成され、TFTアレイ基板10の内面側には画素電極9が形成されている。   As shown in FIGS. 1 and 2, in the liquid crystal device 100 of this embodiment, the TFT array substrate 10 and the counter substrate 20 are bonded together by a sealing material 52 provided in a rectangular frame shape, and are partitioned by the sealing material 52. Liquid crystal 50 is sealed and held in the region. An injection port 55 for injecting liquid crystal is formed in the sealing material 52, and the liquid crystal injection port 55 is sealed with a sealing material 54. A counter electrode 23 is formed on the inner surface side of the counter substrate 20, and a pixel electrode 9 is formed on the inner surface side of the TFT array substrate 10.

シール材52の内側の領域には、遮光性材料からなる周辺見切り53が形成される一方、シール材52の外側の領域には、データ線駆動回路201及び実装端子202がTFTアレイ基板10の一辺に沿って形成されており、この一辺に隣接する2辺に沿って走査線駆動回路104が形成されている。TFTアレイ基板10の残る一辺には、画像表示領域の両側に設けられた走査線駆動回路104の間を接続するための複数の配線105が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的導通をとるための基板間導通材106が配設されている。   A peripheral parting 53 made of a light-shielding material is formed in a region inside the sealing material 52, while a data line driving circuit 201 and a mounting terminal 202 are provided on one side of the TFT array substrate 10 in a region outside the sealing material 52. The scanning line driving circuit 104 is formed along two sides adjacent to the one side. On the remaining side of the TFT array substrate 10, a plurality of wirings 105 are provided for connecting the scanning line driving circuits 104 provided on both sides of the image display area. In addition, an inter-substrate conductive material 106 for providing electrical continuity between the TFT array substrate 10 and the counter substrate 20 is disposed at at least one corner of the counter substrate 20.

なお、液晶装置100においては、使用する液晶50の種類、すなわちTN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、VAN(Vertical Alignment Nematic)モード等の動作モードや、ノーマリホワイトモード/ノーマリブラックモードの別に応じて、位相差板、偏光板等が所定の向きに配置されるが、ここでは図示を省略する。さらに、液晶装置100をカラー表示用として構成する場合には、対向基板20において、TFTアレイ基板10の各画素電極9に対向する領域に、例えば赤(R)、緑(G)、青(B)のカラーフィルタをその保護膜とともに形成する。   In the liquid crystal device 100, the type of liquid crystal 50 to be used, that is, an operation mode such as a TN (Twisted Nematic) mode, an STN (Super Twisted Nematic) mode, a VAN (Vertical Alignment Nematic) mode, or a normally white mode / no mode. Depending on the mari black mode, a retardation plate, a polarizing plate, and the like are arranged in a predetermined direction, but the illustration is omitted here. Further, in the case where the liquid crystal device 100 is configured for color display, for example, red (R), green (G), blue (B) in the region of the counter substrate 20 facing each pixel electrode 9 of the TFT array substrate 10. The color filter is formed together with the protective film.

次に、液晶装置100の要部構成について説明する。図3は、液晶装置100の非画素領域(シール材52の外側領域)及びシール材52の形成領域周辺について、その断面を拡大して示す模式図である。
図3に示すように、本実施形態の液晶装置100は、矩形枠状に配されたシール材52を介して対向する一対の基板10,20の間に液晶層50を挟持した構成をなしている。
Next, the configuration of the main part of the liquid crystal device 100 will be described. FIG. 3 is a schematic view showing an enlarged cross section of the non-pixel region (outer region of the sealing material 52) and the periphery of the formation region of the sealing material 52 of the liquid crystal device 100.
As shown in FIG. 3, the liquid crystal device 100 of the present embodiment has a configuration in which a liquid crystal layer 50 is sandwiched between a pair of substrates 10 and 20 that are opposed to each other via a sealing material 52 arranged in a rectangular frame shape. Yes.

TFTアレイ基板10には、画素スイッチング素子としてのTFTや、前述の走査線駆動回路104,データ線駆動回路201等の回路部が形成されており、更に、各画素に対応して複数の画素電極9がマトリクス状に配列形成されている。この基板10及び画素電極9の材料としては公知のものを用いることができる。例えば透過型の液晶装置では、基板10としてガラス,石英,プラスチック等の透光性基板を用いることができ、画素電極9としてはITO等の透光性導電材料を用いることができる。一方、反射型の液晶装置の場合には、基板10としてガラス,石英,プラスチック等の透光性基板の他、シリコン基板等の半導体基板を用いることができ、画素電極9としてはAlやAg等の高反射率の金属材料を用いることができる。また、画素電極9と基板との間に別途反射膜を形成した場合には、画素電極9にはITO等の透光性導電材料を用いることができる。なお、画素電極9をAl等の金属膜によって構成した場合、この画素電極9は反射電極として機能することになる。   The TFT array substrate 10 is formed with TFTs as pixel switching elements and circuit portions such as the scanning line driving circuit 104 and the data line driving circuit 201 described above, and a plurality of pixel electrodes corresponding to each pixel. 9 are arranged in a matrix. Known materials can be used for the substrate 10 and the pixel electrode 9. For example, in a transmissive liquid crystal device, a light-transmitting substrate such as glass, quartz, or plastic can be used as the substrate 10, and a light-transmitting conductive material such as ITO can be used as the pixel electrode 9. On the other hand, in the case of a reflective liquid crystal device, a transparent substrate such as glass, quartz, or plastic as well as a semiconductor substrate such as a silicon substrate can be used as the substrate 10, and Al, Ag, or the like can be used as the pixel electrode 9. A highly reflective metal material can be used. In addition, when a reflective film is separately formed between the pixel electrode 9 and the substrate, a light-transmitting conductive material such as ITO can be used for the pixel electrode 9. When the pixel electrode 9 is made of a metal film such as Al, the pixel electrode 9 functions as a reflective electrode.

一方、対向基板20には、各画素に共通の対向電極(共通電極)23が基板全面に形成されている。この基板20及び対向電極23には光透過性が求められるため、基板20には、ガラス,石英,プラスチック等の透光性基板を用いられ、対向電極23には、ITO等の透光性導電材料が用いられる。   On the other hand, a counter electrode (common electrode) 23 common to each pixel is formed on the entire surface of the counter substrate 20. Since the substrate 20 and the counter electrode 23 are required to have optical transparency, a transparent substrate such as glass, quartz, or plastic is used for the substrate 20, and the transparent electrode such as ITO is used for the counter electrode 23. Material is used.

そして、このように構成された基板10,20の表面には、それぞれSiOx,TiOx,AlOx等の無機材料からなる無機配向膜31,21が形成されている。この配向膜31,21は本発明の仕事関数調整層として機能するものであり、各配向膜の材料,膜厚,膜構造等は、両基板の電極材料や、電極の下層側の構造等に応じて最適に設計されている。例えば画素電極9をITO等よりも仕事関数の小さいAlやAg等によって構成した場合には、両電極9,23の仕事関数の違いによってコモン電位にずれが生じる。このため、この場合には、両電極9,23の液晶界面における仕事関数を等しくする(又は、仕事関数差を小さくする)ために、仕事関数の小さい画素電極9側に配される配向膜(第1の配向膜)31は、対向電極23側の配向膜(第2の配向膜)21よりも相対的に比誘電率の大きい材料によって構成される。また、画素電極9と対向電極23の電極材料が同じであっても、一方の基板がスイッチング素子を備えた素子基板であれば、両電極の下層側の構造の違いに応じて、両電極の液晶界面の仕事関数の大きさに若干の差ができる。例えば、本例のようなアクティブマトリクス型の液晶装置では、素子基板側の電極9の方が、対向基板側の電極23よりも仕事関数は若干小さくなる。したがって、この場合にも、画素電極9側の配向膜31が、対向電極23側の配向膜(第2の配向膜)21よりも相対的に比誘電率の大きい材料によって構成されることになる。   And the inorganic alignment films 31 and 21 which consist of inorganic materials, such as SiOx, TiOx, AlOx, are formed in the surface of the board | substrates 10 and 20 comprised in this way, respectively. These alignment films 31 and 21 function as the work function adjusting layer of the present invention. The material, film thickness, film structure, etc. of each alignment film are the same as the electrode material of both substrates, the structure on the lower layer side of the electrodes, etc. Designed optimally accordingly. For example, when the pixel electrode 9 is made of Al, Ag, or the like having a work function smaller than that of ITO or the like, a difference occurs in the common potential due to the difference in the work functions of the electrodes 9 and 23. For this reason, in this case, in order to equalize the work function at the liquid crystal interface between the electrodes 9 and 23 (or to reduce the work function difference), an alignment film (on the pixel electrode 9 side having a small work function) The first alignment film 31 is made of a material having a relative dielectric constant relatively larger than that of the alignment film (second alignment film) 21 on the counter electrode 23 side. Further, even if the electrode material of the pixel electrode 9 and the counter electrode 23 is the same, if one substrate is an element substrate provided with a switching element, depending on the difference in the structure on the lower layer side of both electrodes, There is a slight difference in the work function at the liquid crystal interface. For example, in the active matrix type liquid crystal device as in this example, the work function of the electrode 9 on the element substrate side is slightly smaller than that of the electrode 23 on the counter substrate side. Therefore, in this case as well, the alignment film 31 on the pixel electrode 9 side is made of a material having a relatively higher relative dielectric constant than the alignment film (second alignment film) 21 on the counter electrode 23 side. .

本例では例えば、対向基板側の配向膜(第2の配向膜)21をSiO等の斜方蒸着膜とし、TFTアレイ基板側の配向膜(第1の配向膜)31を、SiO等の斜方蒸着膜からなる第1の膜と、この第1の膜よりも比誘電率の大きい第2の膜とを含む多層膜としている。こうすることで、配向膜31に液晶配向機能(即ち、斜方蒸着膜のカラムの形状)を付与しつつ、この配向膜31を対向基板側の配向膜21よりも比誘電率の大きい膜とすることができる。例えば図3では、配向膜31は、液晶層50側に配置されたSiOからなる第1の膜31aと、基板10側に配置されたTiOからなる第2の膜31bとの2層構造をなす。なお、第1の膜と第2の膜の形成順序は任意に決めることができ、TiO等からなる第2の膜をSiO等からなる第1の膜の上に形成することも可能である。ただしこの場合、第2の膜によって第1の膜の表面の凹凸形状(カラムの形状)が平坦化されないようにする必要がある。具体的には、第2の膜の膜厚を数nm程度とし、第2の膜の表面に第1の膜の表面形状を反映した凹凸形状が形成されるようにすればよい。 In this example, for example, the alignment film (second alignment film) 21 on the counter substrate side is an oblique deposition film such as SiO 2, and the alignment film (first alignment film) 31 on the TFT array substrate side is SiO 2 or the like. A multilayer film including a first film made of the obliquely deposited film and a second film having a relative dielectric constant larger than that of the first film. In this way, while providing the alignment film 31 with a liquid crystal alignment function (that is, the shape of the column of the oblique vapor deposition film), the alignment film 31 has a higher relative dielectric constant than the alignment film 21 on the counter substrate side. can do. For example, in FIG. 3, the alignment film 31 has a two-layer structure of a first film 31a made of SiO 2 arranged on the liquid crystal layer 50 side and a second film 31b made of TiO 2 arranged on the substrate 10 side. Make. Note that the formation order of the first film and the second film can be arbitrarily determined, and the second film made of TiO 2 or the like can be formed on the first film made of SiO 2 or the like. is there. However, in this case, it is necessary to prevent the uneven shape (column shape) on the surface of the first film from being flattened by the second film. Specifically, the film thickness of the second film may be about several nm so that an uneven shape reflecting the surface shape of the first film is formed on the surface of the second film.

なお、配向膜31,21はそれぞれの基板の中央部(即ち、画像表示領域)にパターン形成されており、各配向膜31,21は、シール材からの不純物による汚染を防止するために、シール材52の枠内の領域に当該シール材52に掛からないように設けられている。   The alignment films 31 and 21 are patterned in the central portion (that is, the image display area) of each substrate, and the alignment films 31 and 21 are sealed to prevent contamination by impurities from the sealing material. The sealant 52 is provided in a region within the frame of the material 52 so as not to be hung on the sealant 52.

以上説明したように、本実施形態では両基板の電極9,23を覆う配向膜31,21の比誘電率を異ならせて両電極9,23の液晶界面の仕事関数の大きさを等しく(又は、仕事関数差を小さく)しているため、フリッカのない表示が可能となる。特に本実施形態では、電極の仕事関数を直接調整しているので、駆動を調節した場合のように温度が変化してもコモン電位に変動は生じず、常に安定した表示特性が得られる。また、本実施形態では、配向膜を比誘電率の大きい無機材料によって構成して仕事関数の調節と配向膜とを兼ねているので、プロセス上容易になる。   As described above, in the present embodiment, the relative dielectric constants of the alignment films 31 and 21 covering the electrodes 9 and 23 on both substrates are made different to make the work functions of the liquid crystal interfaces between the electrodes 9 and 23 equal in magnitude (or Since the work function difference is small, display without flicker is possible. In particular, in the present embodiment, since the work function of the electrode is directly adjusted, even if the temperature is changed as in the case where the drive is adjusted, the common potential does not fluctuate, and a stable display characteristic is always obtained. In this embodiment, the alignment film is made of an inorganic material having a high relative dielectric constant, and serves both as a work function adjustment and an alignment film.

また、本実施形態では、シール材52を配向膜31,21の外側に一定の距離だけ離して配置しているため、配向信頼性の高い液晶装置が得られる。なお本例では、配向膜31の第1の膜31a及び第2の膜31bの双方をパターニングしたが、配向に直接寄与しない、或いは、配向を補助するだけの第2の膜31bは必ずしもパターニングする必要はなく、基板全面にベタで形成してもよい。   Further, in this embodiment, since the sealing material 52 is arranged outside the alignment films 31 and 21 by a certain distance, a liquid crystal device with high alignment reliability can be obtained. In this example, both the first film 31a and the second film 31b of the alignment film 31 are patterned. However, the second film 31b that does not directly contribute to the alignment or only assists the alignment is necessarily patterned. There is no need, and the entire surface of the substrate may be solid.

[実施例1]
次に、本発明の第1の実施例について説明する。
本実施例では、以下の手順により本発明に係るLCOS型の液晶装置を作製した。
まず、シリコン基板上にAlをスパッタし、パターニングによりAl電極(反射電極)を形成する。次に、このAl電極の形成された基板の表面に、蒸着又はスパッタによりTiO2膜を50nm成膜し、続いて、このTiO2膜の上にSiO2を仰角50°の角度から打ち込む(斜方蒸着)。この斜方蒸着膜の厚みは10nmとする。一方、このシリコン基板とは別に、内面側にITO電極の形成されたガラス基板を用意し、ITO電極上にSiO2を斜方蒸着する。この斜方蒸着膜は18nmとする。次に、これらの基板をシール材によって貼り合わせて空セルを作製し、この空セルの中に誘電異方性が負の液晶を注入する。以上により、本発明に係る反射型の液晶装置が作製される。
また、同様の方法により、比較用の液晶装置を作製した。この比較用の液晶装置は、Al電極上にTiO2が形成されない点を除いて、上記本発明の液晶装置の構成と同じである。
次に、これらの液晶装置の中心電位差(コモン電位のずれ)を測定した。この結果、比較用の液晶装置ではAl電極とITO電極との間でコモン電位に500mVのずれが生じるのに対して、本発明の液晶装置では、これが200mVまで低減された。
[Example 1]
Next, a first embodiment of the present invention will be described.
In this example, an LCOS type liquid crystal device according to the present invention was manufactured by the following procedure.
First, Al is sputtered on a silicon substrate, and an Al electrode (reflection electrode) is formed by patterning. Next, a 50 nm TiO2 film is formed on the surface of the substrate on which the Al electrode is formed by vapor deposition or sputtering, and then SiO2 is implanted onto the TiO2 film from an angle of elevation of 50 [deg.] (Oblique vapor deposition). . The thickness of this obliquely deposited film is 10 nm. On the other hand, apart from this silicon substrate, a glass substrate having an ITO electrode formed on the inner surface side is prepared, and SiO2 is obliquely deposited on the ITO electrode. This obliquely deposited film is 18 nm. Next, these substrates are bonded to each other with a sealing material to produce an empty cell, and a liquid crystal having negative dielectric anisotropy is injected into the empty cell. Thus, the reflective liquid crystal device according to the present invention is manufactured.
Further, a comparative liquid crystal device was manufactured by the same method. This comparative liquid crystal device has the same configuration as the liquid crystal device of the present invention, except that TiO 2 is not formed on the Al electrode.
Next, the central potential difference (shift in common potential) of these liquid crystal devices was measured. As a result, in the liquid crystal device for comparison, a shift of 500 mV occurs in the common potential between the Al electrode and the ITO electrode, whereas in the liquid crystal device of the present invention, this is reduced to 200 mV.

[実施例2]
次に、本発明の第2の実施例について説明する。
本実施例では、以下の手順により本発明に係る反射型の液晶装置を作製した。
まず、シリコン基板上にAlをスパッタし、パターニングによりAl電極(反射電極)を形成する。次に、このAl電極の形成された基板の表面に、SiO2を10nmだけ斜方蒸着し、続いて、この斜方蒸着膜の上に、蒸着又はスパッタによりTiO2膜を5nm成膜する。一方、このシリコン基板とは別に、内面側にITO電極の形成されたガラス基板を用意し、ITO電極上にTiO2を斜方蒸着する。この斜方蒸着膜は20nmとする。次に、これらの基板をシール材によって貼り合わせて空セルを作製し、この空セルの中に誘電異方性が負の液晶を注入する。以上により、本発明に係る反射型の液晶装置が作製される。
次に、この液晶装置の中心電位差(コモン電位のずれ)を測定した。この結果、本発明の液晶装置では、コモン電位のずれが100mVまで低減された。
[Example 2]
Next, a second embodiment of the present invention will be described.
In this example, a reflective liquid crystal device according to the present invention was manufactured by the following procedure.
First, Al is sputtered on a silicon substrate, and an Al electrode (reflection electrode) is formed by patterning. Next, SiO2 is obliquely deposited by 10 nm on the surface of the substrate on which the Al electrode is formed, and then a TiO2 film is deposited on the obliquely deposited film by 5 nm by vapor deposition or sputtering. On the other hand, a glass substrate having an ITO electrode formed on the inner surface side is prepared separately from this silicon substrate, and TiO2 is obliquely deposited on the ITO electrode. This obliquely deposited film is 20 nm. Next, these substrates are bonded to each other with a sealing material to produce an empty cell, and a liquid crystal having negative dielectric anisotropy is injected into the empty cell. Thus, the reflective liquid crystal device according to the present invention is manufactured.
Next, the center potential difference (shift in common potential) of this liquid crystal device was measured. As a result, in the liquid crystal device of the present invention, the common potential shift was reduced to 100 mV.

[実施例3]
次に、本発明の第3の実施例について説明する。
本実施例では、以下の手順により本発明に係る反射型の液晶装置を作製した。
まず、シリコン基板上にAlをスパッタし、パターニングによりAl電極(反射電極)を形成する。この際、Al電極に液晶配向制御用のスリットを形成する。次に、このAl電極の形成された基板の表面にTiO2を蒸着又はスパッタし、続いて、このTiO2膜の上に、珪素酸を含む無機液体をスピンコートで成膜し、焼成によりSiO2膜とする。一方、このシリコン基板とは別に、内面側にITO電極の形成されたガラス基板を用意し、ITO電極上にSiO2を斜方蒸着する。次に、これらの基板をシール材によって貼り合わせて空セルを作製し、この空セルの中に誘電異方性が負の液晶を注入する。以上により、本発明に係る反射型の液晶装置が作製される。
次に、この液晶装置の中心電位差(コモン電位のずれ)を測定した。本例でも、コモン電位のずれは100mVまで低減された。なお、本例では、シリコン基板側の膜には斜方蒸着膜は含まれないが、ガラス基板側に斜方蒸着膜を形成しているため、配向制御は可能である。
[Example 3]
Next, a third embodiment of the present invention will be described.
In this example, a reflective liquid crystal device according to the present invention was manufactured by the following procedure.
First, Al is sputtered on a silicon substrate, and an Al electrode (reflection electrode) is formed by patterning. At this time, a slit for controlling liquid crystal alignment is formed in the Al electrode. Next, TiO2 is vapor-deposited or sputtered on the surface of the substrate on which the Al electrode is formed, and subsequently, an inorganic liquid containing silicon acid is formed on the TiO2 film by spin coating, and the SiO2 film is formed by baking. To do. On the other hand, apart from this silicon substrate, a glass substrate having an ITO electrode formed on the inner surface side is prepared, and SiO2 is obliquely deposited on the ITO electrode. Next, these substrates are bonded to each other with a sealing material to produce an empty cell, and a liquid crystal having negative dielectric anisotropy is injected into the empty cell. Thus, the reflective liquid crystal device according to the present invention is manufactured.
Next, the center potential difference (shift in common potential) of this liquid crystal device was measured. In this example, the common potential shift was reduced to 100 mV. In this example, the film on the silicon substrate side does not include the oblique vapor deposition film, but the orientation control is possible because the oblique vapor deposition film is formed on the glass substrate side.

[実施例4]
次に、本発明の第4の実施例について説明する。
本実施例では、以下の手順により本発明に係る透過型の液晶装置を作製した。
まず、p−SiTFTの形成されたガラス基板(TFTアレイ基板)上にITOを成膜し、パターニングによりITO電極を形成する。次に、このITO電極の形成された基板の表面に、SiO2を10nmだけ斜方蒸着し、続いて、この斜方蒸着膜の上に、蒸着又はスパッタによりTiO2膜を1nm成膜する。一方、このTFTアレイ基板とは別に、内面側にITO電極の形成されたガラス基板(対向基板)を用意し、この対向基板側のITO電極上にSiO2を斜方蒸着する。この斜方蒸着膜は20nmとする。次に、これらの基板をシール材によって貼り合わせて空セルを作製し、この空セルの中に誘電異方性が負の液晶を注入する。以上により、本発明に係る透過型の液晶装置が作製される。
また、同様の方法により、比較用の液晶装置を作製した。この比較用の液晶装置は、TFTアレイ基板側のITO電極上にTiO2が形成されない点を除いて、上記本発明の液晶装置の構成と同じである。
次に、この液晶装置の中心電位差(コモン電位のずれ)を測定した。この結果、比較用の液晶装置では、TFTアレイ基板側のITO電極と対向基板側のITO電極との間でコモン電位に若干のずれが生じていた。つまり、両基板の電極材料が同じ場合であっても、両基板で電極の下層側の構成が異なるため、両電極の液晶界面の仕事関数に若干の不均衡が生じたものと考えられる。これに対して、本発明に係る液晶装置では、コモン電位のずれがなく、フリッカが全く生じなかった。
[Example 4]
Next, a fourth embodiment of the present invention will be described.
In this example, a transmissive liquid crystal device according to the present invention was manufactured by the following procedure.
First, an ITO film is formed on a glass substrate (TFT array substrate) on which a p-Si TFT is formed, and an ITO electrode is formed by patterning. Next, SiO2 is obliquely vapor-deposited by 10 nm on the surface of the substrate on which the ITO electrode is formed, and then a TiO2 film is deposited by 1 nm on the oblique vapor-deposited film by vapor deposition or sputtering. On the other hand, a glass substrate (opposite substrate) having an ITO electrode formed on the inner surface side is prepared separately from the TFT array substrate, and SiO2 is obliquely deposited on the ITO electrode on the counter substrate side. This obliquely deposited film is 20 nm. Next, these substrates are bonded to each other with a sealing material to produce an empty cell, and a liquid crystal having negative dielectric anisotropy is injected into the empty cell. As described above, the transmissive liquid crystal device according to the present invention is manufactured.
Further, a comparative liquid crystal device was manufactured by the same method. This comparative liquid crystal device has the same configuration as that of the above-described liquid crystal device of the present invention except that TiO 2 is not formed on the ITO electrode on the TFT array substrate side.
Next, the center potential difference (shift in common potential) of this liquid crystal device was measured. As a result, in the liquid crystal device for comparison, there was a slight shift in the common potential between the ITO electrode on the TFT array substrate side and the ITO electrode on the counter substrate side. That is, even when the electrode materials of both the substrates are the same, it is considered that there is a slight imbalance in the work function of the liquid crystal interface between the two electrodes because the configurations on the lower layer side of the electrodes differ between the two substrates. On the other hand, in the liquid crystal device according to the present invention, there was no shift in common potential and no flicker occurred.

[投射型表示装置]
次に、上述の液晶装置を用いた電子機器の一例として、投射型液晶表示装置(液晶プロジェクタ)について説明する。
図4は、液晶プロジェクタの概略構成を示す図である。この図に示されるように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、内部に配置された3枚のミラー1106および2枚のダイクロイックミラー1108によって赤(R)、緑(G)、青(B)の3原色に分離されて、各原色に対応するライトバルブ100R、100Gおよび100Bにそれぞれ導かれる。
[Projection type display device]
Next, a projection-type liquid crystal display device (liquid crystal projector) will be described as an example of an electronic apparatus using the above-described liquid crystal device.
FIG. 4 is a diagram showing a schematic configuration of the liquid crystal projector. As shown in this figure, a lamp unit 1102 including a white light source such as a halogen lamp is provided inside the projector 1100. The projection light emitted from the lamp unit 1102 is separated into three primary colors of red (R), green (G), and blue (B) by three mirrors 1106 and two dichroic mirrors 1108 arranged inside. Are guided to the light valves 100R, 100G and 100B corresponding to the respective primary colors.

ここで、ライトバルブ100R、100Gおよび100Bの構成は、上述した実施の形態に係る液晶装置と同様であり、画像信号を入力する処理回路(図示省略)から供給されるR、G、Bの原色信号でそれぞれ駆動されるものである。また、B色の光は、他のR色やG色と比較すると、光路が長いので、その損失を防ぐために、入射レンズ1122、リレーレンズ1123および出射レンズ1124からなるリレーレンズ系1121を介して導かれる。   Here, the configuration of the light valves 100R, 100G, and 100B is the same as that of the liquid crystal device according to the above-described embodiment, and R, G, and B primary colors supplied from a processing circuit (not shown) that inputs an image signal. Each is driven by a signal. In addition, B light has a long optical path compared to other R colors and G colors, and therefore, in order to prevent the loss, B light passes through a relay lens system 1121 including an incident lens 1122, a relay lens 1123, and an exit lens 1124. Led.

ライトバルブ100R、100G、100Bによってそれぞれ変調された光は、ダイクロイックプリズム1112に3方向から入射する。そして、このダイクロイックプリズム1112において、R色およびB色の光は90度に屈折する一方、G色の光は直進する。このようにして、各色の画像が合成された後、スクリーン1120には、投射レンズ1114によってカラー画像が投射されることとなる。
本実施形態の投射型表示装置は、上記実施形態の液晶装置を光変調手段として備えたことによって、高品質且つ安定な投射表示を実現することができる。
The lights modulated by the light valves 100R, 100G, and 100B are incident on the dichroic prism 1112 from three directions. In the dichroic prism 1112, R and B light is refracted by 90 degrees, while G light travels straight. In this manner, after the images of the respective colors are combined, a color image is projected onto the screen 1120 by the projection lens 1114.
The projection type display device of the present embodiment can realize high-quality and stable projection display by including the liquid crystal device of the above-described embodiment as a light modulation unit.

なお、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上記実施形態では、本発明の投射型表示装置を透過型のプロジェクタとして説明したが、ライトバルブに反射型の液晶装置を用いることで、反射型のプロジェクタとすることもできる。この場合、ライトバルブとなる液晶装置には、通常のガラス基板を用いたものの他に、基板にシリコン基板を用いたLCOSと呼ばれる構造のものを用いることもできる。
また、上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
In addition, this invention is not limited to the above-mentioned embodiment, It can implement in various deformation | transformation in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, the projection display device of the present invention has been described as a transmissive projector. However, a reflective liquid crystal device can be used as a light valve so that the projector can be a reflective projector. In this case, a liquid crystal device serving as a light valve may be a liquid crystal device having a structure called LCOS using a silicon substrate as the substrate, in addition to a normal glass substrate.
Further, the shapes and combinations of the constituent members shown in the above-described examples are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

本発明の液晶装置の一例を示す平面図。FIG. 6 is a plan view illustrating an example of a liquid crystal device of the invention. 図1のH−H’線に沿う断面図。Sectional drawing which follows the H-H 'line | wire of FIG. 同、液晶装置のシール材周辺部を拡大して示す断面図。Sectional drawing which expands and shows the sealing material peripheral part of a liquid crystal device. 本発明の投射型表示装置の一例を示す模式図。The schematic diagram which shows an example of the projection type display apparatus of this invention.

符号の説明Explanation of symbols

9・・・画素電極、10・・・TFTアレイ基板(素子基板)、20・・・対向基板、21・・・第2の配向膜、23・・・対向電極、31・・・第1の配向膜、31a・・・第1の膜、31b・・・第2の膜、50・・・液晶層、52・・・シール材、100,100R,100G,100B・・・液晶装置、1100・・・投射型表示装置   DESCRIPTION OF SYMBOLS 9 ... Pixel electrode, 10 ... TFT array substrate (element substrate), 20 ... Counter substrate, 21 ... Second alignment film, 23 ... Counter electrode, 31 ... First Alignment film, 31a ... first film, 31b ... second film, 50 ... liquid crystal layer, 52 ... sealing material, 100, 100R, 100G, 100B ... liquid crystal device, 1100. ..Projection display devices

Claims (12)

電極を備えた一対の基板の間に液晶層を挟持してなる液晶装置であって、
少なくとも一方の電極の表面に、両基板に備えられた電極の液晶界面における仕事関数の差を小さくするような仕事関数調整層が設けられたことを特徴とする、液晶装置。
A liquid crystal device comprising a liquid crystal layer sandwiched between a pair of substrates provided with electrodes,
A liquid crystal device, wherein a work function adjusting layer is provided on at least one electrode surface to reduce a work function difference at a liquid crystal interface between electrodes provided on both substrates.
上記仕事関数調整層が無機材料からなることを特徴とする、請求項1記載の液晶装置。   The liquid crystal device according to claim 1, wherein the work function adjusting layer is made of an inorganic material. 上記仕事関数調整層が、両基板の電極の表面に設けられた一対の配向膜からなり、該一対の配向膜の内、相対的に仕事関数の小さい電極の表面に設けられた第1の配向膜の比誘電率がもう一方の第2の配向膜の比誘電率よりも大きく構成されたことを特徴とする、請求項1又は2記載の液晶装置。   The work function adjusting layer is composed of a pair of alignment films provided on the surfaces of the electrodes of both substrates, and the first alignment provided on the surface of the electrode having a relatively small work function among the pair of alignment films. 3. The liquid crystal device according to claim 1, wherein the relative dielectric constant of the film is larger than that of the other second alignment film. 上記第1の配向膜が、斜方蒸着膜からなる第1の膜と、該第1の膜よりも比誘電率の大きい第2の膜とを含むことを特徴とする、請求項3記載の液晶装置。   The said 1st orientation film contains the 1st film | membrane which consists of an oblique vapor deposition film | membrane, and the 2nd film | membrane with a larger dielectric constant than this 1st film | membrane, The 3rd aspect is characterized by the above-mentioned. Liquid crystal device. 上記第1の膜がSiOxからなることを特徴とする、請求項4記載の液晶装置。   5. The liquid crystal device according to claim 4, wherein the first film is made of SiOx. 上記第2の膜がTiOxからなることを特徴とする、請求項4又は5記載の液晶装置。   6. The liquid crystal device according to claim 4, wherein the second film is made of TiOx. 上記第2の膜がAL酸化物からなることを特徴とする、請求項4又は5記載の液晶装置。   6. The liquid crystal device according to claim 4, wherein the second film is made of an AL oxide. 上記一対の基板は枠状に設けられたシール材を介して対向しており、上記第1の膜は上記シール材の枠内の領域に該シール材に掛からないように設けられたことを特徴とする、請求項4〜7のいずれかの項に記載の液晶装置。   The pair of substrates are opposed to each other via a seal material provided in a frame shape, and the first film is provided in a region within the frame of the seal material so as not to be caught by the seal material. The liquid crystal device according to any one of claims 4 to 7. 両電極の内、いずれか一方の電極が反射電極として構成されたことを特徴とする、請求項1〜8のいずれかの項に記載の液晶装置。   The liquid crystal device according to claim 1, wherein one of the two electrodes is configured as a reflective electrode. 上記一対の基板の内、いずれか一方の基板がスイッチング素子を備えた素子基板からなることを特徴とする、請求項1〜9のいずれかの項に記載の液晶装置。   The liquid crystal device according to claim 1, wherein one of the pair of substrates is an element substrate provided with a switching element. 上記一対の基板の内、いずれか一方の基板がシリコン基板からなることを特徴とする、請求項1〜10のいずれかの項に記載の液晶装置。   The liquid crystal device according to claim 1, wherein one of the pair of substrates is made of a silicon substrate. 請求項1〜11のいずれかの項に記載の液晶装置を光変調手段として備えたことを特徴とする、投射型表示装置。

A projection display device comprising the liquid crystal device according to claim 1 as light modulation means.

JP2003424706A 2003-12-22 2003-12-22 Liquid crystal device, projection display device Expired - Fee Related JP4389579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424706A JP4389579B2 (en) 2003-12-22 2003-12-22 Liquid crystal device, projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424706A JP4389579B2 (en) 2003-12-22 2003-12-22 Liquid crystal device, projection display device

Publications (2)

Publication Number Publication Date
JP2005181829A true JP2005181829A (en) 2005-07-07
JP4389579B2 JP4389579B2 (en) 2009-12-24

Family

ID=34784821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424706A Expired - Fee Related JP4389579B2 (en) 2003-12-22 2003-12-22 Liquid crystal device, projection display device

Country Status (1)

Country Link
JP (1) JP4389579B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047343A (en) * 2005-08-09 2007-02-22 Sony Corp Liquid crystal display element and its manufacturing method, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047343A (en) * 2005-08-09 2007-02-22 Sony Corp Liquid crystal display element and its manufacturing method, and liquid crystal display device

Also Published As

Publication number Publication date
JP4389579B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US8823071B2 (en) Electro-optical device and electronic apparatus
US10852600B2 (en) Electrooptical device and electronic apparatus
JP2017067999A (en) Substrate for electro-optic device, electro-optic device and electronic apparatus
US11422418B2 (en) Liquid crystal device and electronic apparatus
US10656456B2 (en) Electro-optical device and electronic apparatus
JP2009128401A (en) Liquid crystal display device and projection type liquid crystal display apparatus
JP2013073032A (en) Liquid crystal device, method of manufacturing liquid crystal device, and electronic apparatus
JP7288612B2 (en) Liquid crystal displays and electronic devices
JP2014149335A (en) Substrate for electro-optic device, electro-optic device, and electronic equipment
US11249357B2 (en) Liquid crystal device and electronic apparatus
JP2007212819A (en) Electro-optical device, substrate for electro-optical device, manufacturing method of electro-optical device, and electronic equipment
JP4389579B2 (en) Liquid crystal device, projection display device
JP2009069422A (en) Liquid crystal display element and projection liquid crystal display
JP2007286171A (en) Liquid crystal device, its manufacturing method and electronic equipment
US11119376B2 (en) Electro-optical device and electronic apparatus
WO2007077644A1 (en) Liquid crystal display device
JP2011076030A (en) Liquid crystal device, electronic device, and projection type display device
JP5924376B2 (en) Liquid crystal device and electronic device
US11526057B2 (en) Liquid crystal device comprising a wall portion extending along a third end and a fourth end of a pixel electrode and covered with the pixel electrode
JP2019008044A (en) Electro-optic device and electronic apparatus
JP4910830B2 (en) Liquid crystal module and liquid crystal display device
JP2008152007A (en) Liquid crystal device and method for manufacturing the same, and electronic apparatus equipped with the same
JP2006276622A (en) Liquid crystal device, method for manufacturing same, and projection display device
JP2015184629A (en) Liquid crystal device and electronic equipment
JP5929097B2 (en) Liquid crystal device and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4389579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees