JP2005179757A - Method for producing sponge-titanium particle - Google Patents

Method for producing sponge-titanium particle Download PDF

Info

Publication number
JP2005179757A
JP2005179757A JP2003424611A JP2003424611A JP2005179757A JP 2005179757 A JP2005179757 A JP 2005179757A JP 2003424611 A JP2003424611 A JP 2003424611A JP 2003424611 A JP2003424611 A JP 2003424611A JP 2005179757 A JP2005179757 A JP 2005179757A
Authority
JP
Japan
Prior art keywords
titanium
sponge
foreign matter
titanium particles
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424611A
Other languages
Japanese (ja)
Other versions
JP3803928B2 (en
Inventor
Munehiro Yasuda
宗浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2003424611A priority Critical patent/JP3803928B2/en
Publication of JP2005179757A publication Critical patent/JP2005179757A/en
Application granted granted Critical
Publication of JP3803928B2 publication Critical patent/JP3803928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and economically produce sponge-titanium particles containing little foreign matter mixed quantity. <P>SOLUTION: The sponge-titanium particles having little foreign matter is produced by processing the following processes, that is, (a rough-crushing process) for processing the sponge-titanium block produced with Kroll process into small blocks with a cutter: (a pulverizing process) for processing the small blocks obtained by rough-crushing into the sponge-titanium particles: and (a foreign matter separation process with specific gravity sorting) for respectively recovering the product on the upstream side and the foreign matter on the downstream side in the inclining direction of a vibrating plate by conveying the sponge-titanium particles obtained by crushing onto the inclined porous vibrating plate and also, blowing up gas from each hole of the vibrating plate, and then, together with rubber pieces and wooden pieces, etc., the sponge-titanium thin pieces inevitably mixed on the sponge-titanium particles after crushing related to the cutting at the rough-crushing process, including the stuck material to the sponge-titanium particles, are effectively separated and removed from the sponge-titanium particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チタンインゴットの製造等に使用されるスポンジチタン粒の製造方法に関する。   The present invention relates to a method for producing sponge titanium particles used for producing a titanium ingot.

金属チタンは、従来よりクロール法を用いて製造されている。クロール法では、反応容器内に溶融Mgを収容した状態で、その溶融Mgに上方からTiCl4 液を供給する。供給されたTiCl4 は逐次Mgにより還元されてTiとなる。生成されたTiは溶融Mgとの比重差により沈降して堆積し、その一方で溶融Mgが上方へ浮上することにより、反応が継続する。この還元工程により、反応容器内にスポンジ状のTiが生成される。 Titanium metal is conventionally manufactured using a crawl method. In the crawl method, a molten TiCl 4 solution is supplied to the molten Mg from above with the molten Mg contained in the reaction vessel. The supplied TiCl 4 is successively reduced by Mg to Ti. The produced Ti settles and accumulates due to the difference in specific gravity with molten Mg, while the molten Mg floats upward, and the reaction continues. By this reduction step, sponge-like Ti is generated in the reaction vessel.

還元工程が終わると、真空分離工程に移行する。この工程では、反応容器内に残る未反応のMg及び副生物であるMgCl2 なとが除去される。こうして大きな塊状のスポンジチタンが反応容器内に製造される。 When the reduction process ends, the process proceeds to a vacuum separation process. In this step, unreacted Mg remaining in the reaction vessel and MgCl 2 as a byproduct are removed. In this way, a large lump of sponge titanium is produced in the reaction vessel.

冷却後に反応容器から取り出されたスポンジチタン塊は、溶解用のブリケットを製造するために、スポンジチタン粒に破砕される。この破砕は通常、粗砕、粉砕の2工程からなる(非特許文献1)   The sponge titanium lump taken out from the reaction vessel after cooling is crushed into sponge titanium particles to produce briquettes for dissolution. This crushing usually consists of two steps of coarse crushing and crushing (Non-Patent Document 1).

材料化学Jan.1999「スポンジチタンとインゴットの製造」Materials Chemistry Jan. 1999 “Manufacture of sponge titanium and ingot”

粗砕では、プレス切断機を用いてスポンジチタン塊を段階的に小塊へ加工する。得られた小塊は、バッチごとに、且つ予め決められた部位ごとに仕分けされる。中心部から得られた小塊は純度が高いために半導体配線用などの高級品として扱われる場合もある。その場合、中心部以外の部位から得られた小塊は展伸材用などの一般品として扱われる。なお、表面に近い部分は、純度によっては不良品として破棄される。   In coarse crushing, a titanium sponge lump is processed into small lumps in stages using a press cutting machine. The obtained blob is sorted for each batch and for each predetermined part. Since the small lump obtained from the center part has high purity, it may be treated as a high-grade product for semiconductor wiring or the like. In that case, a small blob obtained from a portion other than the central portion is treated as a general product for wrought material. The portion close to the surface is discarded as a defective product depending on the purity.

粗砕工程の次は粉砕工程である。粉砕では、小塊が品質別にジョークラッシャーなどの粉砕機によりスポンジチタン粒に加工される。高級品の場合は、要求品質が高いために、全量人手により厳密な選別を受け、異物を除去された後、ドラム缶に充填される。一方、一般品の場合は、要求される品質が低い上に、1バッチ当たりの生産量も多いため、粉砕後のスポンジチタン粒をブレンダー等で均質に混合した後にサンプリングする、抜き取り検査を行うのが通例である。   The crushing process is followed by a crushing process. In pulverization, small lumps are processed into titanium sponge particles according to quality by a pulverizer such as a jaw crusher. In the case of a high-quality product, since the required quality is high, the whole amount is subjected to strict sorting by hand and after removing foreign matter, it is filled in a drum can. On the other hand, in the case of general products, since the required quality is low and the production amount per batch is also large, sampling after sampling the titanium sponge particles after pulverization with a blender etc. Is customary.

そして、抜き取り検査で一定量以上の異物混入が認められた場合は、そのバッチの全量について、高級品と同様、ベルトコンベアで少量ずつ搬送しながら異物を目視で検査し、手で除去するという極めて手間のかかる作業が強いられることになり、しかも、その頻度は決して低くない。このため、この異物選別が一般品の製造コストを引き下げる上での大きな阻害となっている。   And, when a sampling amount of foreign matter is found in the sampling inspection, the whole amount of the batch is inspected visually by a small amount on the belt conveyor while being transported little by little like a high-quality product, and removed by hand. Time-consuming work is forced, and the frequency is not low. For this reason, this foreign matter selection is a great hindrance in reducing the production cost of general products.

なお、除去すべき異物としては、ゴムベルトを用いたコンベア搬送に起因するゴム片、輸送用パレットの使用に起因する木片の他、チタン薄片などがある。チタン薄片は、スポンジチタン塊の粗砕工程でのシャー切断による押し潰しなどで生じる極薄い板状のチタン片であり、焼き付いた状態になっていることが多いため、異物に分類される。   In addition, as a foreign material which should be removed, there exist a titanium piece etc. other than the rubber | gum piece resulting from the conveyor conveyance using a rubber belt, the wooden piece resulting from use of a pallet for transportation. Titanium flakes are extremely thin plate-like titanium pieces generated by crushing by shear cutting in the titanium titanium lump coarse crushing process, and are often burned, and are therefore classified as foreign substances.

本発明の目的は、異物混入量が少ないスポンジチタン粒を効率的、経済的に製造できるスポンジチタン粒の製造方法を提供することにある。   An object of the present invention is to provide a method for producing sponge titanium particles capable of efficiently and economically producing sponge titanium particles with a small amount of foreign matter mixed therein.

上記目的を達成するために、本発明者らは、破砕工程で混入した異物を機械的に除去する自動異物除去工程の導入を企画した。異物のうち、ゴム片、木片を除去することは難しくはない。なぜなら、これらはチタンとは材質が絶対的に相違する非金属である上、色や形、比重なども大きく相違するからである。事実、磁性体選別装置、静電選別装置、色彩選別装置等を使用すれば、ゴム片、木片等の選別は可能であった。   In order to achieve the above object, the present inventors planned the introduction of an automatic foreign matter removing process for mechanically removing foreign matters mixed in the crushing process. It is not difficult to remove rubber pieces and wood pieces among foreign substances. This is because these are non-metals whose materials are absolutely different from titanium, and are also greatly different in color, shape, specific gravity and the like. In fact, rubber pieces, wood pieces, and the like could be sorted using a magnetic material sorting device, an electrostatic sorting device, a color sorting device, or the like.

ところが、シャー切断に伴って発生するチタン薄片は、焼き付きにより品質が変化しているとはいえチタン粒と同じ金属チタンであり、しかも、厚みは異なるもののサイズはチタン粒とほぼ同じである。そして、更にやっかいなことには、このチタン薄片がチタン粒に付着している場合が少なくないことである。これらのために、チタン薄片の選別は目視でさえ容易でなく、機械的な自動選別は非常に困難であるることが判明した。   However, the titanium flakes generated by shear cutting are the same metal titanium as the titanium grains, although the quality is changed by seizure, and the size is almost the same as the titanium grains although the thickness is different. And even more troublesome is that this titanium flake is often attached to titanium grains. For these reasons, it has been found that the sorting of titanium flakes is not easy even visually, and mechanical automatic sorting is very difficult.

このような状況下で、本発明者はゴム片や木片などと共にチタン薄片を選別できる方法について鋭意検討した。その結果、比重分離が特に有効なことを知見した。比重分離とは、被選別材料を傾斜した多孔の振動板上に投入すると共に、振動板の各孔から気体を上方へ吹き上げ、比重の大きい材料を振動板の傾斜方向上流側へ移動させ、比重の小さい材料を下流側へ移動させて、選別を行う方法である。比重の大きい材料が振動板の傾斜方向上流側へ移動し、比重の小さい材料が下流側へ移動するのは、前者が振動板に近いところに層を形成するため、振動板の振動作用により自重に抗して上流側へ移動し、一方、後者が振動板から離れたところに層を形成するために、自重により下流側へ移動するからである。   Under such circumstances, the present inventor has intensively studied a method for selecting titanium flakes together with rubber pieces and wood pieces. As a result, it was found that the specific gravity separation is particularly effective. Specific gravity separation means that the material to be sorted is put on a tilted porous diaphragm and gas is blown upward from each hole of the diaphragm to move the material with a higher specific gravity to the upstream side in the tilt direction of the diaphragm. This is a method in which a small material is moved to the downstream side for selection. The material with a higher specific gravity moves to the upstream side in the tilt direction of the diaphragm, and the material with a lower specific gravity moves to the downstream side because the former forms a layer near the diaphragm. This is because, in order to form a layer at a position away from the diaphragm, the latter moves downstream due to its own weight.

このような選別方法は、以前より穀物から砂、小石などの異物を除去するのに使用されており、比重が異なるゴム片や木片などを分離できるのは当然であるが、比重が同じで且つチタン粒に付着するチタン薄片さえもチタン粒から効果的に分離できることが判明した。その理由としては、比重は同じでもチタン粒とチタン薄片では形状が違い、チタン薄片の方が気体抵抗の影響が大きいために、ゴム片や木片などと共にチタン粒の上方に層を形成すること、振動板の振動によりチタン薄片がチタン粒から効果的に剥離することが考えられる。   Such a sorting method has been used for removing foreign matters such as sand and pebbles from grains, and it is natural that rubber pieces or wood pieces having different specific gravities can be separated. It has been found that even titanium flakes adhering to the titanium grains can be effectively separated from the titanium grains. The reason for this is that even if the specific gravity is the same, the shape of the titanium grains and the titanium flakes are different, and the titanium flakes are more affected by gas resistance, so that a layer is formed above the titanium grains along with rubber pieces and wood pieces, It is conceivable that the titanium flakes are effectively separated from the titanium grains by the vibration of the diaphragm.

本発明のスポンジチタン粒の製造方法は、かかる知見を基礎として開発されたものであり、クロール法により製造されたスポンジチタン塊を切断機により小塊に加工する粗砕工程と、粗砕により得られた小塊をスポンジチタン粒に加工する粉砕工程と、粉砕により得られたスポンジチタン粒を傾斜した多孔の振動板上に搬送すると共に、振動板の各孔から気体を上方へ吹き上げ、振動板の傾斜方向上流側で製品を、下流側で異物を各回収する異物分離工程とを包含している。   The method for producing sponge titanium particles of the present invention was developed on the basis of such knowledge, and is obtained by a crushing process in which a titanium sponge lump produced by the crawl method is processed into a small lump by a cutting machine, and by crushing. A crushing process for processing the small blob into sponge titanium particles, and conveying the titanium sponge particles obtained by crushing onto a tilted porous diaphragm, and blowing up gas from each hole of the diaphragm, A foreign substance separation step of collecting each product on the upstream side in the inclination direction and collecting foreign substances on the downstream side.

本発明のスポンジチタン粒の製造方法においては、粗砕工程での切断に関連して粉砕後のスポンジチタン粒中に不可避的にスポンジチタン薄片が混入する。粉砕の後に実施される異物分離工程では、傾斜した振動板に近いところにスポンジチタン粒が層を形成し、その振動により傾斜方向上流側へ移動する。スポンジチタン粒に混入する異物のうち、スポンジチタン粒より比重が小さいゴム片や木片等は、スポンジチタン粒の上に層を形成し、振動の影響を受けないために自重で下流側へ移動する。   In the method for producing sponge titanium particles of the present invention, sponge titanium flakes are inevitably mixed into the pulverized sponge titanium particles in connection with the cutting in the crushing step. In the foreign matter separation step performed after the pulverization, the titanium sponge particles form a layer near the inclined diaphragm, and move to the upstream side in the inclination direction due to the vibration. Of the foreign matter mixed in the sponge titanium particles, rubber pieces and wood pieces with a specific gravity smaller than the sponge titanium particles form a layer on the sponge titanium particles and move to the downstream side by their own weight because they are not affected by vibration. .

チタン薄片のうち、スポンジチタン粒に付着していないものは、大きな気体抵抗によりスポンジチタン粒の上に層を形成し、下流側へ移動する。スポンジチタン粒に付着するチタン薄片は、好都合なことに、そのスポンジチタン粒が振動板に近いところに層を形成するために振動の影響を効果的に受けることになり、結果、そのスポンジチタン粒から効果的に剥離する。剥離したチタン薄片は、上述したとおり、スポンジチタン粒の上に層を形成し、下流側へ移動する。   Among the titanium flakes, those not attached to the sponge titanium particles form a layer on the sponge titanium particles due to a large gas resistance and move downstream. The titanium flakes adhering to the sponge titanium particles will advantageously be affected by vibrations effectively to form a layer where the sponge titanium particles are close to the diaphragm, resulting in the sponge titanium particles. Effectively peels off. As described above, the peeled titanium flakes form a layer on the sponge titanium particles and move downstream.

かくして、ゴム片や木片などと共に、チタン薄片がスポンジチタン粒に付着するものも含めてスポンジチタン粒から効率的に分離除去される。   Thus, together with rubber pieces, wood pieces and the like, titanium thin pieces including those attached to the sponge titanium particles are efficiently separated and removed from the sponge titanium particles.

本発明のスポンジチタン粒の製造方法においては、振動板の上方へ吹き上げる気体を、異物分離工程の環境外から導入するのが好ましい。また、振動板の各孔を通して下方へ落下した粉粒体を別グレードのスポンジチタン製品として回収することができる。   In the method for producing sponge titanium particles of the present invention, it is preferable to introduce a gas that blows up above the diaphragm from outside the environment of the foreign matter separation step. Moreover, the granular material dropped downward through each hole of the diaphragm can be recovered as another grade of sponge titanium product.

本発明の方法で製造されるスポンジチタン粒の粒度は、通常1.0〜12.7mmである。   The particle size of the sponge titanium particles produced by the method of the present invention is usually 1.0 to 12.7 mm.

本発明のスポンジチタン粒の製造方法は、ゴム片や木片などだけでなく、チタン薄片を機械的に分離除去でき、スポンジチタン粒に付着するチタン薄片についてもこれを機械的に自動除去できる。従って、異物の少ないスポンジチタン粒を安価に製造できる。即ち、一般品に適用した場合は、異物量を低減できることにより、目視手作業による全量検査の頻度が低減し、経済性が向上する。高級品に適用した場合も、異物量を低減できることにより、目視手作業による全量検査の手数が著しく低減され、経済性が向上する。   The method for producing sponge titanium particles according to the present invention can mechanically separate and remove not only rubber pieces and wood pieces but also titanium thin pieces, and can automatically remove titanium thin pieces adhering to the sponge titanium particles. Therefore, sponge titanium particles with few foreign substances can be manufactured at low cost. That is, when applied to a general product, the amount of foreign matter can be reduced, so that the frequency of full-scale inspection by visual manual work is reduced and the economy is improved. Even when applied to high-end products, the amount of foreign matter can be reduced, so that the total amount of inspection by visual manual work is remarkably reduced and the economy is improved.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示すスポンジチタン粒製造方法の工程図、図2は異物分離工程に使用される比重選別機の構成図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a process diagram of a method for producing sponge titanium particles showing an embodiment of the present invention, and FIG. 2 is a configuration diagram of a specific gravity sorter used in a foreign matter separation process.

本実施形態では、図1に示すように、粗砕、粉砕、異物分離の各工程を経てスポンジチタン粒が製造される。粗砕工程では、クロール法により還元工程、真空分離工程を経て製造されたスポンジチタン塊が、例えばギロチン式のシャーにより直径が5cm程度まで段階的に小塊化される。この小塊化はスポンジチタン塊の部位ごと行われ、中心部から採取される小塊は高級品に、それ以外の部位から採取される小塊は一般品に仕分けされる。   In the present embodiment, as shown in FIG. 1, sponge titanium particles are manufactured through the steps of coarse crushing, pulverization, and foreign matter separation. In the coarse crushing process, the titanium sponge mass produced through the reduction process and the vacuum separation process by the crawl method is gradually agglomerated to a diameter of about 5 cm using, for example, a guillotine shear. This agglomeration is performed for each part of the titanium sponge mass, and the small mass collected from the center is classified as a high-quality product, and the small mass collected from other sites is classified as a general product.

粗砕に続く粉砕では、粗砕工程で得られた小塊が、ジョークラッシャーなどの粉砕機により粒径が例えば1/2メッシュ以下のチタン粒に粉砕される。この粉砕工程も採取部位(品質)ごとに独立して実施される。なお、粗砕工程は、製造されたスポンジチタン塊のままでは粉砕機による処理が不可能なために行う前処理であり、スポンジチタンの物理的性質を考慮して切断によるのが一般的である。   In the pulverization subsequent to the crushing, the small lump obtained in the crushing step is pulverized into titanium particles having a particle size of, for example, 1/2 mesh or less by a pulverizer such as a jaw crusher. This pulverization process is also performed independently for each collection site (quality). Note that the coarse crushing step is a pretreatment that is performed because the manufactured titanium sponge lump cannot be processed by a pulverizer, and is generally cut by considering the physical properties of the titanium sponge. .

粗砕、粉砕の各工程を経て製造されたチタン粒は、異物除去工程に送られる。工程間の材料搬送はベルトコンベアによる。異物除去工程では、チタン粒が比重選別機へ投入される。比重選別機は、図2に示すように、傾斜して配置された振動板1を備えている。選別デッキである振動板1は、微細な通気孔を多数有する例えばメッシュであり、下方に配置された駆動機構2によりほぼ振動板1の傾斜方向に沿って所定サイクルで往復駆動される。この振動板1は側面から見て鋸歯状に形成されている。より具体的には、傾斜方向下流側から上流側へ傾斜が急になった斜面を、ほぼ垂直な段差面を介して連続的に繰り返す鋸歯状に形成されている。   The titanium particles produced through the coarse crushing and crushing steps are sent to the foreign matter removing step. Material conveyance between processes is performed by a belt conveyor. In the foreign matter removing step, titanium particles are put into a specific gravity sorter. As shown in FIG. 2, the specific gravity sorter includes a diaphragm 1 that is arranged at an inclination. The diaphragm 1 as a sorting deck is, for example, a mesh having a large number of fine ventilation holes, and is reciprocated in a predetermined cycle substantially along the inclination direction of the diaphragm 1 by a drive mechanism 2 disposed below. The diaphragm 1 is formed in a sawtooth shape when viewed from the side. More specifically, a slope whose slope is steep from the downstream side in the slope direction to the upstream side is formed in a sawtooth shape that repeats continuously through a substantially vertical step surface.

振動板1の下方にはブロア3が配置されている。ブロア3により、振動板1の下から上へ多数の通気孔を通して空気を吹き上げる。ここで重要なことは、ブロア3に導入する空気を、異物除去工程の外の環境から確保する点である。即ち、異物除去工程の環境内で空気を循環使用しない。振動板1の上方には、吸引ダクト4と原料投入ホッパー5とが設けられている。一方、振動板1の傾斜方向上流側には、製品取り出し部6が設けられており、下流側には異物取り出し部7が設けられている。   A blower 3 is disposed below the diaphragm 1. The blower 3 blows air from the bottom to the top of the diaphragm 1 through a large number of air holes. What is important here is that air to be introduced into the blower 3 is secured from the environment outside the foreign matter removing process. That is, air is not circulated and used in the environment of the foreign substance removal process. Above the diaphragm 1, a suction duct 4 and a raw material charging hopper 5 are provided. On the other hand, a product takeout part 6 is provided on the upstream side in the tilt direction of the diaphragm 1, and a foreign matter takeout part 7 is provided on the downstream side.

この異物除去工程では、粗砕、粉砕の各工程を経て製造されたチタン粒8が、品質別に原料投入ホッパー5から振動板1上に投入される。チタン粒8は異物としてゴム片や木片の他、チタン薄片を含んでいる。そのチタン粒8が振動板1上に投入されると、チタン粒自体は振動板1の表面近傍に層を形成し、振動板1の傾斜方向に沿った振動により傾斜方向上流側へ搬送される。   In this foreign matter removing step, titanium particles 8 produced through the coarse crushing and pulverizing steps are charged onto the diaphragm 1 from the raw material charging hopper 5 according to quality. Titanium grains 8 include titanium flakes as well as rubber pieces and wood pieces as foreign matters. When the titanium grains 8 are put on the diaphragm 1, the titanium grains themselves form a layer near the surface of the diaphragm 1 and are conveyed upstream in the tilt direction by vibration along the tilt direction of the diaphragm 1. .

一方、チタン粒8に含まれる異物のうち、チタン粒より比重が小さいゴム片や木片などは、吹き上げられる空気によりチタン粒より上に層を形成し、自重により傾斜方向下流側へ移動する。かくして、チタン粒の製品9は上流側の製品取り出し部6から回収され、一方、下流側の異物取り出し部7からは異物10が分離回収される。   On the other hand, among the foreign matters contained in the titanium particles 8, rubber pieces or wood pieces having a specific gravity smaller than that of the titanium particles form a layer above the titanium particles by the air blown up, and move to the downstream side in the tilt direction by their own weight. Thus, the titanium-grained product 9 is collected from the upstream product take-out unit 6, while the foreign matter 10 is separated and collected from the downstream foreign matter take-out unit 7.

チタン粒8に含まれる異物のうち、チタン粒8と比重が同じチタン薄片については、チタン粒8から分離しているものは、チタン粒8より厚みが極端に薄く、重量に比して空気抵抗が大きいために、チタン粒8より比重が小さいゴム片や木片などと共に、チタン粒8より上に層を形成し、自重により傾斜方向下流側へ移動する。   Among the foreign matters contained in the titanium particles 8, the titanium flakes having the same specific gravity as the titanium particles 8 are separated from the titanium particles 8 and are extremely thinner than the titanium particles 8, and have an air resistance compared to the weight. Therefore, a layer is formed above the titanium particles 8 together with rubber pieces or wood pieces having a specific gravity smaller than that of the titanium particles 8, and the layer moves to the downstream side in the tilt direction by its own weight.

一方、チタン粒8に付着するチタン薄片は、当初はチタン粒8と共に振動板1の表面近傍に層を形成する。そうすると、振動板1の傾斜方向に沿った振動により傾斜方向上流側へ搬送される過程で、振動に伴う衝撃等によりチタン粒8から分離する。チタン粒8から分離した薄片は、上述したとおり、ゴム片や木片などと共に、チタン粒8より上に層を形成し、自重により傾斜方向下流側へ移動する。   On the other hand, the titanium flakes adhering to the titanium grains 8 initially form a layer near the surface of the diaphragm 1 together with the titanium grains 8. If it does so, it will isolate | separate from the titanium grain 8 by the impact accompanying a vibration, etc. in the process conveyed by the inclination direction upstream by the vibration along the inclination direction of the diaphragm 1. As described above, the flakes separated from the titanium particles 8 form a layer above the titanium particles 8 together with rubber pieces, wood pieces, and the like, and move to the downstream side in the inclination direction due to their own weight.

かくして、チタン薄片は、チタン粒8と比重が同じでありながら、しかもチタン粒8に付着したものについてもチタン粒8から分離して、異物10として異物取り出し部7から回収される。   Thus, the titanium flakes have the same specific gravity as that of the titanium particles 8, and those attached to the titanium particles 8 are also separated from the titanium particles 8 and collected as the foreign material 10 from the foreign material take-out portion 7.

異物分離工程では、チタン粒中のチタン微粉末は予め分級除去されているが、若干量は残っており、当該工程で新たに発生する場合もある。この微粉末は吹き上げ空気により浮遊し、基本的に下流側へ異物として分離除去されるが、異物分離工程の環境内でブロア3により空気を吸引し循環させると、長期間使用するうちにブロア3内や吸引ダクト4内に蓄積する場合がある。そうなると、予想外の発火を招く危険性がある。   In the foreign matter separation step, the fine titanium powder in the titanium grains is classified and removed in advance, but a slight amount remains and may be newly generated in the step. The fine powder is floated by the blown air and is basically separated and removed downstream as foreign matter. However, if air is sucked and circulated by the blower 3 in the environment of the foreign matter separation process, the blower 3 can be used over a long period of use. May accumulate in the suction duct 4. If so, there is a risk of unexpected fire.

しかるに、本実施形態では、異物分離工程の環境外から空気を吸引しているため、この発火の危険性がない。この観点から、ブロア3も異物分離工程の環境外へ配置することが望まれる。異物分離工程が粗砕工程や粉砕工程に併設している場合は、これらの工程でもチタンの微粉が生じるので、これらの工程の環境外から空気を吸引することが必要になり、粗砕から異物分離にかけての一連の粉末製造工程を実施する建物の外から外気を吸引することが特に有効である。   However, in the present embodiment, since air is sucked from outside the environment of the foreign substance separation step, there is no risk of this ignition. From this point of view, it is desirable that the blower 3 is also disposed outside the environment for the foreign matter separation process. If the foreign matter separation process is combined with the crushing process or the crushing process, fine titanium powder is generated in these processes, so it is necessary to suck air from outside the environment of these processes. It is particularly effective to suck outside air from the outside of the building where a series of powder manufacturing processes until separation is performed.

また、チタン微粉末の一部は振動板1の通気孔を通って振動板1の下方へ落下する。振動板1の下方へ落下した物質を分析したところ、殆どがこのチタン微粉末であり、展伸材には使用し難いが、例えば鉄鋼用の添加剤として使用可能である。   Further, a part of the titanium fine powder falls through the ventilation hole of the diaphragm 1 to the lower side of the diaphragm 1. Analysis of the material falling below the diaphragm 1 shows that most of the titanium fine powder is difficult to use as a wrought material, but can be used as an additive for steel, for example.

異物除去工程で製品9として取り出されたチタン粒は、展伸材用の一般品の場合はドラム缶に充填される。半導体配線等に使用される高級品の場合は更に目視手作業による精密選別工程を経てドラム缶に充填される。   The titanium particles taken out as the product 9 in the foreign matter removing step are filled in a drum can in the case of a general product for wrought material. In the case of a high-grade product used for semiconductor wiring or the like, the drum can be further filled through a precision sorting process by visual manual work.

一般品について本発明を実施したところ、ゴム片や木片などの比重の小さい異物の混入量は、従来を100とすると約10に低減した。また、チタン粒と比重が同じチタン薄片の混入量は、従来を100とすると約20に低減した。その結果、缶詰め後の抜き取り検査での不良の発生率が大幅に低下し、これに伴い、1バッチ全量目視検査を行う頻度が大幅に低下した。   When the present invention was applied to a general product, the amount of foreign matter having a small specific gravity, such as rubber pieces or wood pieces, was reduced to about 10 when the conventional value was 100. Moreover, the mixing amount of the titanium flakes having the same specific gravity as the titanium grains was reduced to about 20 when the conventional amount was 100. As a result, the rate of occurrence of defects in the sampling inspection after canning has been greatly reduced, and the frequency of visual inspection of the entire batch is greatly reduced accordingly.

高級品に対して本発明を実施した場合は、目視手作業による精密選別工程の前に、比重選別機を用いた異物除去工程を実施することにより、後の目視手作業による精密選別工程での負担が大幅に軽減される。   When the present invention is applied to a high-quality product, a foreign matter removal process using a specific gravity sorter is performed before the precise manual sorting process by visual manual work, and the subsequent fine manual sorting process by visual manual work is performed. The burden is greatly reduced.

なお、本実施例での異物選別条件(比重分離条件)は以下のとおりである。チタン粒の粒度は1.0〜12.7mm、投入量は10〜16ton/Hr、比重選別機での傾斜板の傾斜角度は13°、振動サイクルは50〜60Hz、通気孔の大きさは0.8mm、空気の吹き上げ量は320m3 /分である。 In addition, the foreign material selection conditions (specific gravity separation conditions) in this example are as follows. Titanium grain size is 1.0 to 12.7 mm, input amount is 10 to 16 ton / Hr, tilt angle of tilt plate in specific gravity sorter is 13 °, vibration cycle is 50 to 60 Hz, and vent hole size is 0 0.8 mm, the air blowing rate is 320 m 3 / min.

本発明の一実施形態を示すスポンジチタン粒製造方法の工程図である。It is process drawing of the sponge titanium particle manufacturing method which shows one Embodiment of this invention. 異物分離工程に使用される比重選別機の構成図である。It is a block diagram of the specific gravity sorter used for a foreign material separation process.

符号の説明Explanation of symbols

1 振動板
2 駆動機構
3 ブロア
4 吸引ダクト
5 原料投入ホッパー
6 製品取り出し部
7 異物取り出し部
8 スポンジチタン粒(被選別材料)
9 製品
10 異物
DESCRIPTION OF SYMBOLS 1 Diaphragm 2 Drive mechanism 3 Blower 4 Suction duct 5 Raw material injection | throwing-in hopper 6 Product taking-out part 7 Foreign material taking-out part 8 Sponge titanium grain (material to be sorted)
9 Product 10 Foreign object

Claims (3)

クロール法により製造されたスポンジチタン塊を切断機により小塊に加工する粗砕工程と、粗砕により得られた小塊をスポンジチタン粒に加工する粉砕工程と、粉砕により得られたスポンジチタン粒を傾斜した多孔の振動板上に搬送すると共に、振動板の各孔から気体を上方へ吹き上げ、振動板の傾斜方向上流側で製品を、下流側で異物を各回収する異物分離工程とを包含することを特徴とするスポンジチタン粒の製造方法。   Crushing process for processing sponge titanium lumps produced by the crawl method into small lumps with a cutting machine, pulverization process for processing small lumps obtained by crushing into sponge titanium grains, and sponge titanium grains obtained by pulverization And a foreign matter separation step of collecting the product on the upstream side in the tilt direction of the vibration plate and collecting each foreign matter on the downstream side. A process for producing sponge titanium particles characterized by comprising: 振動板の上方へ吹き上げる気体を、異物分離工程の環境外から導入する請求項1に記載のスポンジチタン粒の製造方法。   The method for producing titanium sponge particles according to claim 1, wherein the gas blown upward of the diaphragm is introduced from outside the environment of the foreign matter separation step. 振動板の各孔を通して下方へ落下した粉粒体を別グレードのスポンジチタン製品として回収する請求項1に記載のスポンジチタン粒の製造方法。   The method for producing sponge titanium particles according to claim 1, wherein the granular material dropped downward through each hole of the diaphragm is collected as another grade of sponge titanium product.
JP2003424611A 2003-12-22 2003-12-22 Method for producing sponge titanium particles Expired - Lifetime JP3803928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424611A JP3803928B2 (en) 2003-12-22 2003-12-22 Method for producing sponge titanium particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424611A JP3803928B2 (en) 2003-12-22 2003-12-22 Method for producing sponge titanium particles

Publications (2)

Publication Number Publication Date
JP2005179757A true JP2005179757A (en) 2005-07-07
JP3803928B2 JP3803928B2 (en) 2006-08-02

Family

ID=34784754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424611A Expired - Lifetime JP3803928B2 (en) 2003-12-22 2003-12-22 Method for producing sponge titanium particles

Country Status (1)

Country Link
JP (1) JP3803928B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166602A (en) * 2013-02-28 2014-09-11 Toho Titanium Co Ltd Metal sorting apparatus and odd-shaped metal sorting method using the same
JP2020139187A (en) * 2019-02-27 2020-09-03 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder, and gas collection apparatus
JP2020180380A (en) * 2020-08-11 2020-11-05 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder, and gas collection apparatus
JP7423401B2 (en) 2020-04-21 2024-01-29 東邦チタニウム株式会社 Crushing line, method for producing titanium sponge aggregate, and method for producing titanium ingot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166602A (en) * 2013-02-28 2014-09-11 Toho Titanium Co Ltd Metal sorting apparatus and odd-shaped metal sorting method using the same
JP2020139187A (en) * 2019-02-27 2020-09-03 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder, and gas collection apparatus
WO2020174976A1 (en) * 2019-02-27 2020-09-03 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder and gas collection device
JP7423401B2 (en) 2020-04-21 2024-01-29 東邦チタニウム株式会社 Crushing line, method for producing titanium sponge aggregate, and method for producing titanium ingot
JP2020180380A (en) * 2020-08-11 2020-11-05 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder, and gas collection apparatus
JP7220186B2 (en) 2020-08-11 2023-02-09 東邦チタニウム株式会社 Method for producing titanium powder, method for producing sponge titanium, titanium powder and gas collector

Also Published As

Publication number Publication date
JP3803928B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP5574876B2 (en) Gypsum waste material recycling equipment
CN106269149B (en) A kind of titanium sponge processing crushing system and method
JP5749386B1 (en) Forming suppression material, forming suppression material manufacturing method, and forming suppression material manufacturing plant
JP2007098243A (en) Recovering apparatus of metal aluminum, and recycling system of aluminum dross
BG63890B1 (en) Method for processing mixed waste, processing plant and buffer silos therefor
JP2008232522A (en) Paper shredder dust disposal method and its system
JP3803928B2 (en) Method for producing sponge titanium particles
JP5851063B1 (en) Manufacturing method of carburized material and manufacturing equipment of carburized material
JP2012228818A (en) Method for sorting and removing rubber and urethanes from crushed matter
AU721352B2 (en) Metal recovery from salt cake and other compositions
WO2023217825A1 (en) A crusher feed station
JP7204342B2 (en) Apparatus for homogenizing and separating material mixtures consisting of particles
CN1115172A (en) Process and apparatus for grinding spent potlining and the like
JP3996791B2 (en) Sorting method and sorting apparatus
JP4010632B2 (en) Sorting apparatus and method
JPS5815179B2 (en) Metal material recovery method
RU117320U1 (en) PLANT FOR PROCESSING DUMPING METALLURGICAL SLAGS
JP3414705B2 (en) Pretreatment system in ash melting
JP2009233494A (en) Method and system for disposing of shredder dust
JP4890745B2 (en) Method and apparatus for separating mixed plastic waste
JP2001113231A (en) Classifying method of shredder dust
KR20240033356A (en) Apparatus for assorting the scrap iron from waste
KR20020051900A (en) Recovery method of resources from spent resource using composite materials separation
KR100523244B1 (en) a method for selection and crushing/fine crush of wastes construction
GB2624737A (en) Method and system of processing a flow of waste material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150519

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term