JP2005179735A - METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR - Google Patents

METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR Download PDF

Info

Publication number
JP2005179735A
JP2005179735A JP2003422016A JP2003422016A JP2005179735A JP 2005179735 A JP2005179735 A JP 2005179735A JP 2003422016 A JP2003422016 A JP 2003422016A JP 2003422016 A JP2003422016 A JP 2003422016A JP 2005179735 A JP2005179735 A JP 2005179735A
Authority
JP
Japan
Prior art keywords
alloy
melting furnace
molten
raw material
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003422016A
Other languages
Japanese (ja)
Inventor
Kazuho Suzuki
寿穂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003422016A priority Critical patent/JP2005179735A/en
Publication of JP2005179735A publication Critical patent/JP2005179735A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing an Mg alloy for efficiently producing an Mg alloy having uniform alloy components, and to provide a device of producing an Mg alloy used therefor. <P>SOLUTION: In the method of producing an Mg alloy, to an Mg raw material in the process of heating or the molten metal M of Mg, the molten metal m of an element for an Mg alloy is added as droplets d. The production device 1 for an Mg alloy is provided with: a main melting furnace 2 melting an Mg raw material (ingot) G; an auxiliary melting furnace 6 melting the raw material of an element for an Mg alloy; and a pipe 9 for droplets communicating the auxiliary melting furnace 6 with the main melting furnace 2, and also, capable of dropping the molten metal m of the element for an Mg alloy to the main melting furnace 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、合金成分の均一なMg合金を効率良く製造するためのMg合金の製造方法およびこれに用いるMg合金の製造装置に関する。   The present invention relates to a method for producing an Mg alloy for efficiently producing an Mg alloy having a uniform alloy component and an apparatus for producing an Mg alloy used therefor.

Al(アルミニウム)よりも軽量なMg(マグネシウム)合金は、2輪車のホイール、ヘルメット、デジタルカメラやノートパソコンなどの筺体、各種の自動車部品などに広く活用されている。
ところで、所望の合金組成を有するMg合金を得るには、図6に示すように、鉄(鋼)製の炉体21からなる溶解炉20にMgの原料(インゴットまたはスクラップ)を装入し、炉底22や炉体21の側面から図示しないバーナーで加熱し且つ溶解すると共に、合金元素である例えばAlのインゴット(固体)を10wt%以下の範囲で添加している。尚、上記Alのインゴットに替えて、粒状で且つ2wt%以下のZnや、1wt%以下のMnを添加する場合もある。
Mg (magnesium) alloy, which is lighter than Al (aluminum), is widely used in motorcycle wheels, helmets, housings such as digital cameras and notebook computers, and various automobile parts.
By the way, in order to obtain an Mg alloy having a desired alloy composition, as shown in FIG. 6, a raw material of Mg (ingot or scrap) is charged into a melting furnace 20 composed of a furnace body 21 made of iron (steel), It is heated and melted from the side of the furnace bottom 22 and the furnace body 21 with a burner (not shown), and an ingot (solid) of an alloy element such as Al is added in a range of 10 wt% or less. In addition, in place of the Al ingot, there are cases where granular and 2 wt% or less Zn or 1 wt% or less Mn is added.

図6に示すように、溶解炉20の開口部は、蓋23で密閉され、排気管24から溶解炉20内の空気を脱気すると共に、給気管25からArなどの不活性ガスを吹き込んで、Mgの溶湯Mの酸化を防止している。
しかしながら、合金成分であるAl、Mn、Znなどを固体状態でMgの溶湯Mに添加すると、図6に示すように、上記AlなどはMgよりも比重が大きいため、炉底22寄りに沈降してしまう。このため、係る合金成分のAlなどが溶湯M中に均一に分散されず、且つ所要のMg合金を得るための溶解に長時間が必要となる。しかも、合金成分を均一化するため、加熱後における融点付近で保持する工程を設けると更に長時間を要することになる。
As shown in FIG. 6, the opening of the melting furnace 20 is sealed with a lid 23, and air in the melting furnace 20 is degassed from the exhaust pipe 24 and an inert gas such as Ar is blown from the air supply pipe 25. The oxidation of the molten metal M is prevented.
However, when Al, Mn, Zn, or the like, which is an alloy component, is added to the molten metal M in the solid state, as shown in FIG. 6, since the above-mentioned Al has a higher specific gravity than Mg, it settles toward the furnace bottom 22. End up. For this reason, Al or the like of the alloy component is not uniformly dispersed in the molten metal M, and a long time is required for melting to obtain a required Mg alloy. In addition, in order to make the alloy components uniform, a longer time is required if a step of holding near the melting point after heating is provided.

そこで、図7に示すように、溶解炉20内で溶解されたMgの溶湯M中に攪拌羽根28を挿入し且つ機械的に攪拌する方法も考えられる。係る攪拌羽根28は、その回転軸27が蓋23の通し孔26を貫通すると共に、図示しないモータなどにより回転される。係る攪拌羽根28を回転させることで、合金成分は溶湯M中に均一に分散され易くなるため、Mg合金の製造時間を短縮することができる。
しかし、上記の方法では、攪拌による流速が溶湯Mに付加されるため、攪拌羽根28や炉体21の溶損により、Feなどの不純物元素が混入するおそれがある。係る不純物元素を除去するには、溶湯Mを非常に長時間にわたり沈静保持する必要がある。しかも、回転軸27と蓋23とのシール性が十分でないと、Mgの溶湯Mが酸化してMgO(非金属介在物)が生成し、これが混入するおそれもある。
Therefore, as shown in FIG. 7, a method of inserting the stirring blade 28 into the molten Mg M melted in the melting furnace 20 and mechanically stirring it may be considered. The stirring blade 28 is rotated by a motor or the like (not shown) while the rotating shaft 27 passes through the through hole 26 of the lid 23. By rotating the stirring blade 28, the alloy component is easily dispersed uniformly in the molten metal M, so that the manufacturing time of the Mg alloy can be shortened.
However, in the above method, since the flow rate by stirring is added to the molten metal M, impurity elements such as Fe may be mixed due to melting damage of the stirring blade 28 and the furnace body 21. In order to remove such impurity elements, it is necessary to keep the molten metal M calm for a very long time. In addition, if the sealing property between the rotating shaft 27 and the lid 23 is not sufficient, the molten Mg M is oxidized to produce MgO (non-metallic inclusions), which may be mixed.

因みに、以上において説明したMg合金の製造方法について、図8のグラフにより説明する。Mg−3wt%AlのMg合金を得るため、前記溶解炉20を用いて4種類の溶解を行った。1つ目は、Mgのインゴットを加熱した直後からAlのインゴットを装入したケース、2つ目は、Mgの溶解が終了直前の時点でAlのインゴットを装入したケース、3つ目と4つ目とは、1つ目または2つ目で溶解完了に続き5分間にわたり前記攪拌羽根28を用いて攪拌したケースである。
図8のグラフ中の実線で示すように、攪拌のない1つ目および2つ目のケースは、上記狙いとする合金組成に至らず且つ長時間を要した。
一方、攪拌を行った一点鎖線または破線で示す3つ目および4つ目のケースでは、Mgの溶解完了直後にほぼMg−3wt%Alの合金組成となった。しかし、これらのケースでは、前述したように、FeやMgOなどが混入するおそれがあり、それらを除去するために非常に長時間の沈静保持を必要としていた。
Incidentally, the manufacturing method of Mg alloy demonstrated above is demonstrated with the graph of FIG. In order to obtain a Mg alloy of Mg-3 wt% Al, four types of melting were performed using the melting furnace 20. The first is a case in which an Al ingot is charged immediately after heating the Mg ingot, and the second is a case in which an Al ingot is charged immediately before the dissolution of Mg is completed. The first case is a case where stirring is performed using the stirring blade 28 for 5 minutes following the completion of dissolution in the first or second.
As indicated by the solid line in the graph of FIG. 8, the first and second cases without stirring did not reach the target alloy composition and took a long time.
On the other hand, in the third and fourth cases indicated by the alternate long and short dash line or broken line, the alloy composition was almost Mg-3 wt% Al immediately after the dissolution of Mg. However, in these cases, as described above, there is a possibility that Fe, MgO, and the like may be mixed in, and in order to remove them, a very long time of calming is required.

本発明は、以上にて説明した背景技術の問題点を解決し、合金成分の均一なMg合金を効率良く製造するためのMg合金の製造方法およびこれに用いるMg合金の製造装置を提供する、ことを課題とする。   The present invention solves the problems of the background art described above, and provides an Mg alloy manufacturing method and an Mg alloy manufacturing apparatus used therefor for efficiently manufacturing an Mg alloy having a uniform alloy component. This is the issue.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、上記課題を解決するため、発明者による鋭意研究および調査の結果に基づき、Mgの原料または溶湯に対して、狙いとする合金成分の元素を液滴として添加する、ことに着想して成されたものである。
即ち、本発明のMg合金の製造方法(請求項1)は、加熱直後または加熱途中のMg原料、あるいはMgの溶湯に対して、Mg合金用元素の溶湯を液滴として添加する、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention is based on the result of earnest research and investigation by the inventor and adding an element of the target alloy component as droplets to the Mg raw material or molten metal. It was made.
That is, the Mg alloy production method of the present invention (Claim 1) is characterized in that the molten Mg alloy element is added as droplets to the Mg raw material immediately after heating or in the middle of heating, or to the molten Mg. And

これによれば、Mg合金用の元素は、溶滴として加熱中のMg原料またはMgの溶湯に滴下されるため、例えばAlのようにMgよりも比重の大きな元素であっても沈降することなく、比較的短時間に均一にMg溶湯中に分散される。従って、合金成分の均一なMg合金を効率良く製造することが可能となる。
尚、上記Mg原料には、Mgのインゴットや任意形状のMg合金のスクラップが含まれる。また、加熱直後のMg原料とは、係るMg原料を加熱しているが、その一部が未だに溶けていない当該原料を指し、通常は後述する主溶解炉内に最初から装入される。更に、加熱中のMg原料とは、係るMg原料の一部が溶け始めたものから、当該原料が全て溶けて溶湯状態に保持されているものまでを指す。
According to this, since the element for the Mg alloy is dropped as a droplet on the Mg raw material being heated or the molten Mg, it does not settle even if the element has a specific gravity greater than Mg, such as Al. , Uniformly dispersed in the molten Mg in a relatively short time. Accordingly, it is possible to efficiently produce a Mg alloy having a uniform alloy component.
The Mg raw material includes Mg ingots and scraps of arbitrarily shaped Mg alloys. Further, the Mg raw material immediately after heating refers to the raw material in which the Mg raw material is heated, but a part of the Mg raw material is not yet melted, and is usually charged from the beginning into the main melting furnace described later. Further, the Mg raw material being heated refers to a material from which a part of the Mg raw material starts to melt to one in which the raw material is all melted and held in a molten metal state.

また、本発明には、前記合金用元素は、Mgの比重よりも大きな比重を有することおよびMgの融点よりも高い融点を有することの少なくとも一方を満たすものである、Mg合金の製造方法(請求項2)も含まれる。
これによれば、Mg合金用元素は、予め所定の温度で溶解され且つ液滴としてMgの溶湯中に滴下されるため、Mgよりも比重が大きい元素や融点が高い元素であっても、確実にMgの溶湯中に均一に分散することができる。
尚、Mgの比重よりも大きな比重を有する合金用元素には、例えばAl、Zn、Mn、Cu、Ni、Feなどが含まれ、Mgの融点よりも高い融点を有する合金用元素には、例えばAl、Mn、Cu、Ni、Feなどが含まれる。
Further, in the present invention, the alloying element satisfies at least one of having a specific gravity greater than that of Mg and having a melting point higher than that of Mg. Item 2) is also included.
According to this, since the element for Mg alloy is melted at a predetermined temperature in advance and dropped as a droplet into the molten Mg, even an element having a higher specific gravity or a higher melting point than Mg can be reliably It can be uniformly dispersed in the molten Mg.
The alloying elements having a specific gravity greater than that of Mg include, for example, Al, Zn, Mn, Cu, Ni, Fe, etc. The alloying elements having a melting point higher than the melting point of Mg include, for example, Al, Mn, Cu, Ni, Fe, etc. are included.

更に、本発明には、前記Mgの溶湯は、前記Mg原料の全てが溶解する直前または直後のものである、Mg合金の製造方法(請求項3)も含まれる。
これによれば、Mg合金用元素は、液滴としてMg溶湯中に滴下されるため、当該溶湯中に短時間で且つ一層均一に分散することができる。
Furthermore, the present invention includes a method for producing an Mg alloy, wherein the molten Mg is immediately before or immediately after all of the Mg raw material is melted (Claim 3).
According to this, since the element for Mg alloy is dripped in Mg molten metal as a droplet, it can disperse | distribute more uniformly in the said molten metal in a short time.

一方、本発明のMg合金の製造装置(請求項4)は、Mg原料を溶解する主溶解炉と、Mg合金用元素の原料を溶解する補助溶解炉と、係る補助溶解炉と上記主溶解炉との間を連通し且つ上記Mg合金用元素の溶湯を主溶解炉に滴下可能な液滴用パイプと、を備えている、ことを特徴とする。
これによれば、予め補助溶解炉でMg合金用元素の原料を溶解し、液滴溶パイプを介して主溶解炉中のMg原料またはMgの溶湯に滴下することができる。従って、合金成分の均一なMg合金を効率良く製造することが可能となる。
尚、上記主溶解炉や補助溶解炉には、例えばバーナ加熱、電気抵抗加熱、または誘導加熱方式の溶解炉などが用いられる。
On the other hand, the Mg alloy production apparatus of the present invention (Claim 4) includes a main melting furnace for melting Mg raw material, an auxiliary melting furnace for melting Mg alloy element raw materials, the auxiliary melting furnace, and the main melting furnace. And a drop pipe that can drop the molten Mg alloy element into the main melting furnace.
According to this, the raw material of the element for Mg alloy can be melt | dissolved previously with an auxiliary melting furnace, and it can be dripped at the Mg raw material in the main melting furnace or the molten metal of Mg via a droplet melting pipe. Accordingly, it is possible to efficiently produce a Mg alloy having a uniform alloy component.
For the main melting furnace and the auxiliary melting furnace, for example, a burner heating, electric resistance heating, induction heating type melting furnace or the like is used.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明における1形態のMg合金の製造方法およびこれに用いる製造装置1の概略を示す。Mg合金の製造装置1は、図1に示すように、Mgのインゴット(原料)Gを溶解する主溶解炉2と、Mg合金用元素の原料を溶解する補助溶解炉6と、これらの間を連通し且つMg合金用元素の溶湯mを主溶解炉2に滴下する液滴用パイプ9とを備えている。
主溶解炉2は、図1に示すように、鉄(鋼)からなるほぼ円筒形の炉体3と、その開口部を閉鎖する蓋4と、炉体3の下方に位置するバーナ5とを含み、上記蓋4には図示しない排気管およびシールドガス(例えば、乾燥空気とSFとの混合ガス、COとSFとの混合ガス、またはArとSFとの混合ガス)供給用の給気管が貫通し、主溶解炉2内をシールドガス雰囲気に保持可能としている。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 shows an outline of a method of manufacturing an Mg alloy according to one embodiment of the present invention and a manufacturing apparatus 1 used therefor. As shown in FIG. 1, the Mg alloy manufacturing apparatus 1 includes a main melting furnace 2 for melting an Mg ingot (raw material) G, an auxiliary melting furnace 6 for melting an Mg alloy element raw material, and a space between them. A drop pipe 9 is provided which is in communication and drops a molten metal m for Mg alloy into the main melting furnace 2.
As shown in FIG. 1, the main melting furnace 2 includes a substantially cylindrical furnace body 3 made of iron (steel), a lid 4 for closing the opening, and a burner 5 positioned below the furnace body 3. In addition, the lid 4 is for supplying an exhaust pipe and a shielding gas (not shown) (for example, a mixed gas of dry air and SF 6 , a mixed gas of CO 2 and SF 6 or a mixed gas of Ar and SF 6 ) not shown. The supply pipe penetrates and the inside of the main melting furnace 2 can be maintained in a shield gas atmosphere.

また、補助溶解炉6は、鉄(鋼)からなる円筒形の炉体8と、その外側に螺旋形状に巻き付けた図示しない誘導コイルとを備えている。更に、液滴用パイプ9は、図1に示すように、補助溶解炉6の炉体8の底面に上端が開口し且つ下端が主溶解炉2の炉体3の上方に開口する細径の透孔10を軸方向に沿って内設した耐熱性の金属管である。
尚、透孔10の内径は、Mg合金用元素の溶湯mを液滴dとして滴下可能な範囲(例えば、5〜50mm)とされている。また、補助溶解炉6と主溶解炉2との間に位置する液滴用パイプ9の中間には、透孔10を開閉する耐熱性のスライディングゲートを配置することも可能である。
The auxiliary melting furnace 6 includes a cylindrical furnace body 8 made of iron (steel) and an induction coil (not shown) wound in a spiral shape on the outer side thereof. Further, as shown in FIG. 1, the droplet pipe 9 has a small diameter with an upper end opened at the bottom of the furnace body 8 of the auxiliary melting furnace 6 and a lower end opened above the furnace body 3 of the main melting furnace 2. This is a heat-resistant metal tube in which the through hole 10 is provided along the axial direction.
The inner diameter of the through hole 10 is set to a range (for example, 5 to 50 mm) in which the molten metal m for Mg alloy can be dropped as a droplet d. In addition, a heat-resistant sliding gate that opens and closes the through hole 10 can be disposed in the middle of the droplet pipe 9 positioned between the auxiliary melting furnace 6 and the main melting furnace 2.

ここで、本発明におけるMg合金の製造方法の1形態を図1により説明する。
図1に示すように、予め、補助溶解炉6の炉体8内にMg合金用元素の原料、例えばAlのインゴット、またはZr粒やMn粒を装入し且つこれを誘導加熱してAlなどの溶湯mとしておく。尚、炉体8内は、予め不活性ガス雰囲気としてある。
上記と平行してまたはその後で、主溶解炉2の炉体3内にMgのインゴット(原料)Gを装入し、蓋4で炉体3内を密閉し且つ炉体3内を前記シールドガス雰囲気とした後、バーナ5で炉体3を加熱して、図1に示すように、上記インゴットGを溶湯Mに徐々に溶解する。
Here, one form of the manufacturing method of Mg alloy in this invention is demonstrated with reference to FIG.
As shown in FIG. 1, a raw material of an element for Mg alloy, for example, an Al ingot, or Zr grains or Mn grains, is charged in advance in a furnace body 8 of an auxiliary melting furnace 6 and this is induction-heated to produce Al or the like. It is set as a molten metal. In addition, the inside of the furnace body 8 is previously set as an inert gas atmosphere.
In parallel with or after the above, a Mg ingot (raw material) G is charged into the furnace body 3 of the main melting furnace 2, the inside of the furnace body 3 is sealed with a lid 4, and the inside of the furnace body 3 is sealed with the shielding gas. After making the atmosphere, the furnace body 3 is heated by the burner 5 to gradually dissolve the ingot G in the molten metal M as shown in FIG.

係る加熱直後または加熱途中のMgのインゴットGおよびMgの溶湯Mに対して、補助溶解炉6内のAlなどの溶湯mを液滴用パイプ9を介して液滴dとして滴下する。すると、Alなどの溶湯mは、炉体3の底部に滞留するMgの溶湯Mに混入するが、直ちに沈降することなく、当該溶湯M中に均一に分散される。この結果、所要量のAlなどの溶湯mを滴下し且つMgのインゴットGが全て溶解して溶湯Mになった時点付近において、合金成分の均一なMg合金を得ることが可能となる。係るMg合金は、主溶解炉2を傾動し、後述するインゴットケースに注湯することにより、合金成分の均一なMg合金のインゴットとなる。   The molten metal m such as Al in the auxiliary melting furnace 6 is dropped as a droplet d through the droplet pipe 9 to the Mg ingot G and the molten Mg M immediately after heating or in the middle of heating. Then, the molten metal m such as Al is mixed into the molten Mg M staying at the bottom of the furnace body 3, but is uniformly dispersed in the molten metal M without being immediately settled. As a result, it is possible to obtain a Mg alloy having a uniform alloy component in the vicinity of the time when a required amount of molten metal m such as Al is dropped and all the Mg ingot G is melted to form molten metal M. The Mg alloy is tilted in the main melting furnace 2 and poured into an ingot case to be described later, thereby forming an Mg alloy ingot having a uniform alloy component.

図2は、前記製造装置1を用いる異なる形態のMg合金の製造方法を示す概略図である。前記と同様に、補助溶解炉6においてAlの溶湯mを用意する。これと平行して、あるいは事前に、主溶解炉2の炉体3内にMgのインゴット(原料)Gを装入し、前記と同様にして、係るインゴットGのほぼ全量を溶解し、図2に示すように、Mgの溶湯Mとする。係る時点で、補助溶解炉6内のAlの溶湯mを液滴溶パイプ9を介して液滴dとして、主溶解炉2内のMgの溶湯Mに滴下する。この場合、Alの溶湯mは、直ちに当該溶湯M中に均一に分散されるため、最も短時間で所定のMg合金を得ることが可能となる。   FIG. 2 is a schematic view showing a manufacturing method of different forms of Mg alloys using the manufacturing apparatus 1. In the same manner as described above, an Al molten metal m is prepared in the auxiliary melting furnace 6. In parallel or in advance, Mg ingot (raw material) G is charged into the furnace body 3 of the main melting furnace 2, and almost the entire amount of the ingot G is melted in the same manner as described above. As shown in FIG. At this time, the molten Al m in the auxiliary melting furnace 6 is dropped into the molten Mg M in the main melting furnace 2 as droplets d through the droplet melting pipe 9. In this case, since the Al molten metal m is immediately and uniformly dispersed in the molten metal M, a predetermined Mg alloy can be obtained in the shortest time.

ここで、本発明の具体的な実施例について説明する。
Mg−3wt%AlのMg合金を10kg製造するため、前記製造装置1の主溶解炉2において、3組のMgのインゴットGを個別に装入して加熱した。
一方、補助溶解炉6で3組の所要量のAlのインゴットを個別に溶解し、上記MgのインゴットGの加熱直後(加熱開始〜15分間:添加時期1)、加熱途中(加熱30分経過後から15分間:添加時期2)、あるいは溶解完了直後(加熱45分経過後から15分間:添加時期3)の時点において、Alの溶湯mを液滴用パイプ9を介して、Mgの溶湯M中に実施例の各組ごとに滴下した。
実施例の各組(添加時期1,同2,同3)ごとの加熱時間と溶湯状態のMg合金中におけるAlの含有量とを、サンプリングにより測定した。その結果を図3のグラフに実線、一点鎖線、破線にて個別に示した。
Now, specific examples of the present invention will be described.
In order to produce 10 kg of Mg-3 wt% Al alloy, three sets of Mg ingots G were individually charged in the main melting furnace 2 of the production apparatus 1 and heated.
On the other hand, three sets of required amounts of Al ingots were individually melted in the auxiliary melting furnace 6 and immediately after heating the Mg ingot G (heating start to 15 minutes: addition time 1), during heating (after 30 minutes of heating) 15 minutes from the addition time 2), or immediately after the completion of melting (15 minutes after 45 minutes of heating: addition time 3), the molten Al m is passed through the droplet pipe 9 into the molten Mg M. The solution was dropped for each set of Examples.
The heating time and the Al content in the molten Mg alloy were measured by sampling for each group of the examples (addition time 1, 2 and 3). The results are individually shown in the graph of FIG. 3 by a solid line, a chain line, and a broken line.

図3のグラフによれば、実線で示す添加時期1の組は、Mgインゴットの加熱開始から約45分経過した時点(Mg溶解完了)以降では、Mg−2.8wt%Alの合金組成で推移し、一点鎖線で示す添加時期2の組は、加熱開始から約50分経過した時点以降では、Mg−3wt%Alの合金組成で推移した。更に、破線で示す添加時期3の組は、Alの溶湯mを全量滴下し終えた時点、即ち加熱開始から約60分経過した時点でMg−3wt%Alの合金組成となった。
因みに、前記図8のグラフで示した従来の方法を用い且つ攪拌なしの組では、Mgインゴットの加熱開始から約80分経過した時点でも、Mg−2.5wt%Alの合金組成レベルに達していなかった。また、攪拌した組では、加熱開始から約50分経過した時点で、ほぼMg−3wt%Alの合金組成となったが、前述したFeやMgOなどの混入が懸念されるため、長時間の沈静処理が必要であった。
以上のような3組の実施例の結果から、本発明のMg合金の製造方法の効果が裏付けられ、その優位性を容易に理解することができる。尚、添加時期1と添加時期2との間の時間帯においてAlの溶湯mを滴下した場合も、上記各実施例と同等の効果を得ることが可能である。
According to the graph of FIG. 3, the set of addition time 1 indicated by a solid line changes at an alloy composition of Mg-2.8 wt% Al after about 45 minutes have passed since the start of heating of the Mg ingot (Mg dissolution completed). In addition, the group of addition time 2 indicated by the alternate long and short dash line changed with the alloy composition of Mg-3 wt% Al after about 50 minutes from the start of heating. Further, the set of addition time 3 indicated by a broken line has an alloy composition of Mg-3 wt% Al when the entire amount of Al molten metal m has been dropped, that is, when about 60 minutes have elapsed since the start of heating.
Incidentally, in the group using the conventional method shown in the graph of FIG. 8 and without stirring, the alloy composition level of Mg-2.5 wt% Al has been reached even when about 80 minutes have elapsed since the start of heating of the Mg ingot. There wasn't. Moreover, in the stirred group, when about 50 minutes passed from the start of heating, the alloy composition was almost Mg-3 wt% Al. Processing was necessary.
From the results of the three sets of examples as described above, the effect of the manufacturing method of the Mg alloy of the present invention is supported, and the superiority thereof can be easily understood. Even when the molten Al m is dropped in the time period between the addition time 1 and the addition time 2, it is possible to obtain the same effects as in the above embodiments.

前記製造装置1を用いてMg−3wt%AlのMg合金を10kg製造すべく、MgのインゴットGの溶解完了直後(加熱45分経過後から15分間:添加時期3)に、前記補助溶解炉6で溶解したAlの溶湯mを、液滴用パイプ9を介してMgの溶湯M中に液滴として滴下した。加熱開始から60分間経過した後、得られた実施例のMg合金の溶湯M1(10kg)を、図4に示すように、主溶解炉2の炉体3を90度まで傾動し、その全量をインゴットケース(鋳型)12内に注湯した。
一方、前記溶解炉20にMgのインゴットGを装入し、これにAlのインゴットを装入して(添加時期1)これらを加熱し且つ溶解し、加熱開始から60分経過後に比較例のMg合金の溶湯(10kg)を得た。係る溶湯も図4に示したと同様にして、その全量をインゴットケース12内に注湯した。
Immediately after the completion of melting of the Mg ingot G (15 minutes after 45 minutes of heating: addition time 3) in order to produce 10 kg of Mg-3 wt% Al alloy using the production apparatus 1, the auxiliary melting furnace 6 The molten Al m dissolved in (1) was dropped into the molten Mg M via the droplet pipe 9 as droplets. After the elapse of 60 minutes from the start of heating, the molten Mg alloy M1 (10 kg) of the obtained example was tilted to 90 degrees to the furnace body 3 of the main melting furnace 2 as shown in FIG. Hot water was poured into the ingot case (mold) 12.
On the other hand, Mg ingot G was charged into the melting furnace 20, and Al ingot was charged into this (addition time 1), and these were heated and melted. A molten alloy (10 kg) was obtained. The molten metal was poured into the ingot case 12 in the same manner as shown in FIG.

得られた実施例のMg合金のインゴット14と、比較例のMg合金のインゴットとについて、図4中で示す高さ方向におけるトップ、ミドル、ボトムの各位置でサンプルをそれぞれ切り出し、サンプルごとにAlの含有量を測定した。その結果を図5のグラフに示した。
図5のグラフによれば、実施例のインゴット14では、トップ、ミドル、およびボトムの各位置において、Alの含有量は約3wt%と均一であった。これは、実施例では、Mgの溶湯MにAlの溶湯mを滴下したため、Alが前記インゴット14の全体に均一に分散したことによる。
For the Mg alloy ingot 14 of the obtained example and the Mg alloy ingot of the comparative example, samples were cut out at each of the top, middle, and bottom positions in the height direction shown in FIG. The content of was measured. The results are shown in the graph of FIG.
According to the graph of FIG. 5, in the ingot 14 of the example, the Al content was uniform at about 3 wt% at each of the top, middle, and bottom positions. This is because, in the example, since the molten Al m was dropped into the molten M M, Al was uniformly dispersed throughout the ingot 14.

一方、比較例のMg合金のインゴットは、そのトップでAl:4.2wt%、ミドルでAl:2.1wt%、ボトムでAl:1.3wt%というように、Alの含有量が偏析していた。これは、前記溶解炉20の炉底22付近にMgよりも比重の大きなAlが沈降したため、インゴットケース12に注湯した際、係る部位がMg合金のインゴットのトップ付近の金属組織となり、且つAl分が少ない溶湯の液面付近がボトム付近の金属組織となったためである。
以上のような実施例のMg合金のインゴット14によっても、本発明のMg合金の製造方法の効果が裏付けられ、その優位性が容易に理解されよう。
On the other hand, the Mg alloy ingot of the comparative example has segregated Al content such that Al: 4.2 wt% at the top, Al: 2.1 wt% at the middle, and Al: 1.3 wt% at the bottom. It was. This is because Al having a larger specific gravity than Mg settled near the furnace bottom 22 of the melting furnace 20, so when pouring into the ingot case 12, the part becomes a metal structure near the top of the Mg alloy ingot, and Al This is because the metal structure near the bottom is near the liquid surface of the molten metal.
The effect of the Mg alloy production method of the present invention is supported by the Mg alloy ingot 14 of the embodiment as described above, and its superiority will be easily understood.

本発明は、以上に説明した各形態や実施例1,2に限定されるものではない。
例えば、Mg合金用元素には、前述したもののほか、Sn、Zr、Ag、Ce、Thを用いたり、Mgと同等の比重で且つ融点の高いBeや、Mgよりも比重が小さく融点が低いK、Na、Liを用いても良い。
また、Mg合金用元素は、溶滴として滴下すると共に、一部を粒状または粉末の形態としてMgの溶湯に添加することも可能である。
更に、前記製造装置1において、主溶解炉2と補助溶解炉6とを、共通する密閉容器の内側にセットし、係る容器内を不活性ガス雰囲気に置換可能とした形態としても良い。
本発明は、その趣旨を逸脱しない範囲において適宜変更することができる。
The present invention is not limited to the above-described embodiments and Examples 1 and 2.
For example, Sn, Zr, Ag, Ce, Th may be used as the element for Mg alloy, Be having a specific gravity equivalent to Mg and having a high melting point, or K having a lower specific gravity and lower melting point than Mg. Na, Li may be used.
Further, the element for Mg alloy can be dropped as a droplet, and a part thereof can be added to the Mg melt in the form of particles or powder.
Furthermore, in the manufacturing apparatus 1, the main melting furnace 2 and the auxiliary melting furnace 6 may be set inside a common sealed container so that the inside of the container can be replaced with an inert gas atmosphere.
The present invention can be modified as appropriate without departing from the spirit of the present invention.

本発明のMg合金の製造方法の1形態とこれに用いる製造装置を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows 1 form of the manufacturing method of Mg alloy of this invention, and the manufacturing apparatus used for this. 異なる形態のMg合金の製造方法を示す概略図。Schematic which shows the manufacturing method of Mg alloy of a different form. 本発明の製造方法における実施例のMgの加熱時間とMg合金の溶湯中におけるAlの溶解量との関係を示すグラフ。The graph which shows the relationship between the heating time of Mg of the Example in the manufacturing method of this invention, and the dissolution amount of Al in the molten metal of Mg alloy. 実施例のMg合金の溶湯をインゴットにする状態を示す概略図。Schematic which shows the state which uses the molten metal of Mg alloy of an Example as an ingot. 実施例および比較例のMg合金のインゴットにおける各部位でのAlの含有量を示すグラフ。The graph which shows content of Al in each site | part in the ingot of the Mg alloy of an Example and a comparative example. 従来のMg合金の製造方法および製造装置を示す概略図。Schematic which shows the manufacturing method and manufacturing apparatus of the conventional Mg alloy. 異なる形態の従来のMg合金の製造方法と製造装置を示す概略図。Schematic which shows the manufacturing method and manufacturing apparatus of the conventional Mg alloy of a different form. 従来の製造方法における実施例のMgの加熱時間とAlの溶解量との関係を示すグラフ。The graph which shows the relationship between the heating time of Mg of the Example in the conventional manufacturing method, and the amount of dissolution of Al.

符号の説明Explanation of symbols

1…Mg合金の製造装置
2…主溶解炉
6…補助溶解炉
9…液滴用パイプ
G…Mgのインゴット(Mg原料)
M…Mgの溶湯
m…Alの溶湯(Mg合金用元素の溶湯)
d…液滴
DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus of Mg alloy 2 ... Main melting furnace 6 ... Auxiliary melting furnace 9 ... Pipe for droplet G ... Mg ingot (Mg raw material)
M ... Mg molten metal m ... Al molten metal (Mg alloy element molten metal)
d: Droplet

Claims (4)

加熱直後または加熱途中のMg原料、あるいはMgの溶湯に対して、Mg合金用元素の溶湯を液滴として添加する、
ことを特徴とするMg合金の製造方法。
Add molten Mg alloy element as droplets to Mg raw material immediately after heating or in the middle of heating, or molten Mg,
The manufacturing method of Mg alloy characterized by the above-mentioned.
前記合金用元素は、Mgの比重よりも大きな比重を有することおよびMgの融点よりも高い融点を有することの少なくとも一方を満たすものである、
ことを特徴とする請求項1に記載のMg合金の製造方法。
The alloying element satisfies at least one of having a specific gravity greater than that of Mg and a melting point higher than that of Mg.
The manufacturing method of Mg alloy of Claim 1 characterized by the above-mentioned.
前記Mgの溶湯は、前記Mg原料の全てが溶解する直前または直後のものである、
ことを特徴とする請求項1または2に記載のMg合金の製造方法。
The molten Mg is immediately before or immediately after all of the Mg raw material is dissolved,
The manufacturing method of Mg alloy of Claim 1 or 2 characterized by the above-mentioned.
Mg原料を溶解する主溶解炉と、
Mg合金用元素の原料を溶解する補助溶解炉と、
上記補助溶解炉と主溶解炉との間を連通し且つ上記Mg合金用元素の溶湯を主溶解炉に滴下可能な液滴用パイプと、を備えている、
ことを特徴とするMg合金の製造装置。
A main melting furnace for melting the Mg raw material;
An auxiliary melting furnace for melting the raw material of the element for Mg alloy,
A droplet pipe that communicates between the auxiliary melting furnace and the main melting furnace and that can drop the molten Mg alloy element into the main melting furnace.
An apparatus for producing an Mg alloy characterized by the above.
JP2003422016A 2003-12-19 2003-12-19 METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR Withdrawn JP2005179735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422016A JP2005179735A (en) 2003-12-19 2003-12-19 METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422016A JP2005179735A (en) 2003-12-19 2003-12-19 METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR

Publications (1)

Publication Number Publication Date
JP2005179735A true JP2005179735A (en) 2005-07-07

Family

ID=34783013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422016A Withdrawn JP2005179735A (en) 2003-12-19 2003-12-19 METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR

Country Status (1)

Country Link
JP (1) JP2005179735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230611B1 (en) 2012-06-26 2013-02-06 삼보산업(주) Method and apparatus for manufacturing al-zn alloy ingot
KR20190107423A (en) * 2018-03-12 2019-09-20 정해용 Al-Mg alloy compound melting furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230611B1 (en) 2012-06-26 2013-02-06 삼보산업(주) Method and apparatus for manufacturing al-zn alloy ingot
KR20190107423A (en) * 2018-03-12 2019-09-20 정해용 Al-Mg alloy compound melting furnace
KR102137451B1 (en) * 2018-03-12 2020-07-24 김기성 Al-Mg alloy compound melting furnace

Similar Documents

Publication Publication Date Title
US4248630A (en) Method of adding alloy additions in melting aluminum base alloys for ingot casting
US9707621B2 (en) System for metal atomisation and method for atomising metal powder
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
KR20070089221A (en) A method of and a device for producing a liquid-solid metal composition
JP3003914B2 (en) Method for producing copper alloy containing active metal
US4917359A (en) Apparatus for making hypereutectic Al-Si alloy composite materials
BR112017009373B1 (en) PROCESSES FOR THE PRODUCTION OF ALLOYS AND ALLOYS
Sidorov et al. Removal of a sulfur impurity from complex nickel melts in vacuum
US4992241A (en) Recycling of metal matrix composites
JP2005179735A (en) METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR
US20070215311A1 (en) Method and Device for the Production of Metal Slurry, and Method and Device for Produciton of Ingot
JPS6122018B2 (en)
CN105803252B (en) A kind of manufacture method of electronic cable high-intensity high-conductivity copper alloy line
JP2006326639A (en) Method for producing maraging steel
EP0259772B1 (en) Apparatus and method for manufacturing copper-base alloy
CN110885935B (en) Casting method suitable for Mg-Al alloy grain refinement
CN110079717A (en) A kind of distribution of aluminium alloy smelting
RU2734220C1 (en) Method of ligature production in vacuum arc furnace with non-consumable electrode
JP7471946B2 (en) Manufacturing method of titanium ingot
CN113613810A (en) Method for manufacturing steel ingot
Koleda et al. Refining of metal in melting of copper and its alloys from waste
JP4521879B2 (en) Continuous casting method of lead-containing steel
CN106521257B (en) A kind of rafifinal silicon intermediate alloy and its production method
CN106702189A (en) Method for improving content of slag in directly supplied A380 liquid aluminum alloy
JP6365192B2 (en) Method for casting Ni alloy castings

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306