JPS6122018B2 - - Google Patents
Info
- Publication number
- JPS6122018B2 JPS6122018B2 JP9746177A JP9746177A JPS6122018B2 JP S6122018 B2 JPS6122018 B2 JP S6122018B2 JP 9746177 A JP9746177 A JP 9746177A JP 9746177 A JP9746177 A JP 9746177A JP S6122018 B2 JPS6122018 B2 JP S6122018B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- tank
- base metal
- solid
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003756 stirring Methods 0.000 claims description 80
- 229910052751 metal Inorganic materials 0.000 claims description 76
- 239000002184 metal Substances 0.000 claims description 76
- 239000010953 base metal Substances 0.000 claims description 59
- 239000002245 particle Substances 0.000 claims description 47
- 239000007787 solid Substances 0.000 claims description 47
- 239000012071 phase Substances 0.000 claims description 33
- 239000002131 composite material Substances 0.000 claims description 32
- 239000007791 liquid phase Substances 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 description 11
- 239000007769 metal material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- -1 copper and aluminum Chemical class 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
【発明の詳細な説明】
本発明は、非樹枝状初晶を含む固液相共存基地
金属にこの基地金属とは組成が異なる固体粒子す
なわち第3相固体粒子を添加し、基地中に非樹枝
状初晶と第3相固体粒子とを含む複合金属溶湯を
溶製するための装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention involves adding solid particles having a composition different from that of the base metal, that is, third phase solid particles, to a solid-liquid phase coexisting base metal containing non-dendritic primary crystals. The present invention relates to an apparatus for producing a molten composite metal containing primary crystals and third phase solid particles.
近年、所要の強度、耐摩耗性または潤滑性を与
えるために、基地となる金属または合金(基地金
属と称する)の組成とは異なつた特殊な性質を有
する固体粒子を添加した複合金属材料の開発が盛
んに行なわれている。 In recent years, composite metal materials have been developed in which solid particles with special properties different from those of the base metal or alloy (referred to as base metal) are added to provide the required strength, wear resistance, or lubricity. is being actively carried out.
従来、かかる複合金属材料を得るための方法と
して、基地金属が溶融状態にある時に固体粒子を
添加する方法および基地金属粉末と固体粒子とを
混合したものを焼結する方法が一般に既知であ
る。しかし、前者の方法で単に固体粒子を溶融金
属に添加する場合には、極く少量の固体粒子(一
般に重量で約3%)が添加できるに過ぎず、この
理由は固体粒子が金属に濡らされないため、固体
粒子が溶融金属の表面に浮遊するるか、または底
に沈澱してしまうためである。後者の粉末冶金に
よる方法では、基地金属内に固体粒子が比較的高
濃度に分散した複合金属材料を得ることが可能で
あるが、製造費が高く、後の加工性があまり良く
ないばかりでなく、多孔性その他の理由から得ら
れる金属材料の強度が比較的低くなる等の欠点が
ある。 Conventionally, methods for obtaining such composite metal materials include a method of adding solid particles to a base metal when it is in a molten state, and a method of sintering a mixture of base metal powder and solid particles. However, when simply adding solid particles to molten metal using the former method, only a very small amount of solid particles (generally about 3% by weight) can be added, because the solid particles are wetted by the metal. This is because solid particles either float on the surface of the molten metal or settle to the bottom. The latter method using powder metallurgy makes it possible to obtain a composite metal material in which solid particles are dispersed in a relatively high concentration within the base metal, but it not only has high manufacturing costs and poor processability. However, there are disadvantages such as relatively low strength of the metal material obtained due to porosity and other reasons.
上述した欠点を除去して一様な強度と密度の高
い複合金属材料を得る方法として、特開昭49−
53503号公報には、第3相固体粒子を均一にかつ
約65重量%迄の含有率で含有する複合金属材料を
製造する方法が記載されており、この方法によれ
ば、基地金属が固液相共存状態にあるときに激し
い撹拌を加え、本来樹枝状晶として発達すべき初
晶が分断されて樹枝状晶の先端が球状化された非
樹枝状初晶になつて残存の溶融金属中に存在する
状態で第3相固体粒子を添加し、得られた組成物
を引続いて連続的に撹拌し、固液相共存状態の基
地金属溶湯中に第3相固体粒子を均一に分散さ
せ、所望の複合金属溶湯を溶製している。 As a method to eliminate the above-mentioned drawbacks and obtain a composite metal material with uniform strength and high density, JP-A-49-
Publication No. 53503 describes a method for producing a composite metal material containing third-phase solid particles uniformly at a content of up to about 65% by weight. According to this method, the base metal is solid-liquid. When the phases coexist, intense stirring is applied, and the primary crystals that should originally develop as dendrites are fragmented, and the tips of the dendrites become spheroidized, non-dendritic primary crystals, which form in the remaining molten metal. adding third phase solid particles in a state in which they are present and subsequently continuously stirring the resulting composition to uniformly disperse the third phase solid particles in the base metal melt in a solid-liquid phase coexistence state; A desired composite metal molten metal is produced.
上述した第3相固体粒子が均一に分散した複合
金属溶湯を溶製する装置として従来知られている
装置はいずれも実験装置として使用し得る程度の
バツチ式のもので、実際の工業的生産に適用し得
るものではなく問題があつた。 All of the previously known devices for melting composite metal molten metal in which third-phase solid particles are uniformly dispersed are batch-type devices that can be used as experimental devices, and are not suitable for actual industrial production. The problem was that it was not applicable.
本発明はかかる問題を解決し、第3相固体粒子
を基地金属溶湯中に均一に分散した複合金属溶湯
を工業的規模で多量に能率良く溶製し得るよう適
切に構成配置した装置を提供しようとするもので
ある。 The present invention solves this problem and provides an apparatus suitably configured and arranged to efficiently produce a large amount of composite metal molten metal on an industrial scale, in which third phase solid particles are uniformly dispersed in the base metal molten metal. That is.
かかる目的を達成するため、本発明によれば、
基地金属溶解槽と、溶融基地金属を固液相共存温
度に保持して撹拌し得るよう構成した基地金属撹
拌槽と、撹拌された固液相共存金属溶湯に第3相
固体粒子を添加する添加槽と、第3相固体粒子を
添加した固液相共存金属溶湯を撹拌する複合金属
撹拌槽とを順次に連通させて具えることを特徴と
する。 In order to achieve this objective, according to the present invention,
A base metal dissolving tank, a base metal stirring tank configured to maintain and stir the molten base metal at a solid-liquid phase coexistence temperature, and addition of third phase solid particles to the stirred solid-liquid phase coexistence metal molten metal. It is characterized in that the tank is sequentially connected to a composite metal stirring tank that stirs the solid-liquid phase coexistence metal molten metal to which the third phase solid particles have been added.
本発明によれば、上述した構成としたことによ
つて、溶融基地金属中に第3相固体粒子を均一に
分散して含む複合金属溶湯を基地金属のインゴツ
トから一貫して連続的に溶製することができ、所
望の組成を有する複合金属溶湯を所望量で、また
は大量に能率良く、経済的に得ることができる。 According to the present invention, with the above-described configuration, a molten composite metal containing third phase solid particles uniformly dispersed in the molten base metal is consistently and continuously produced from an ingot of the base metal. The composite metal molten metal having the desired composition can be efficiently and economically obtained in a desired amount or in large quantities.
本発明装置によれば、基地金属として、鉄、
銅、アルミニウム等の純金属および鉛合金、マグ
ネシウム合金、亜鉛合金、アルミニウム合金、銅
合金、鉄合金、ニツケル合金、およびコバルト合
金等、例えば、鉛−錫合金、亜鉛アルミニウム合
金、亜鉛−銅合金、マグネシウム−アルミニウム
合金、マグネシウム−アルミニウム−亜鉛合金、
マグネシウム−亜鉛合金、アルミニウム−銅合
金、アルミニウム−硅素合金、アルミニウム−銅
−亜鉛−マグネシウム合金、銅−錫青銅、真鍮、
アルミニウム青銅、鋼、鋳鉄工具鋼、ステンレス
鋼、超合金およびコバルト−クロム合金を、ま
た、第3相を形成する固体粒子としては黒鉛、金
属炭化物、砂、ガラス、セラミツクス、酸化トリ
ウムその他純金属、合金および金属酸化物を適宜
に用いることができる。 According to the device of the present invention, iron, iron,
Pure metals such as copper and aluminum, and lead alloys, magnesium alloys, zinc alloys, aluminum alloys, copper alloys, iron alloys, nickel alloys, and cobalt alloys, such as lead-tin alloys, zinc-aluminum alloys, zinc-copper alloys, Magnesium-aluminum alloy, magnesium-aluminum-zinc alloy,
Magnesium-zinc alloy, aluminum-copper alloy, aluminum-silicon alloy, aluminum-copper-zinc-magnesium alloy, copper-tin bronze, brass,
Aluminum bronze, steel, cast iron tool steel, stainless steel, superalloys and cobalt-chromium alloys; solid particles forming the third phase include graphite, metal carbides, sand, glass, ceramics, thorium oxide and other pure metals; Alloys and metal oxides can be used as appropriate.
本発明を図示の実施例につき説明する。 The invention will be explained with reference to the illustrated embodiments.
図面は本発明装置を構成する基地金属溶解槽1
と、基地金属撹拌槽2と、第3相固体粒子添加槽
3と、複合金属撹拌槽4とを垂直方向に直列に順
次に配置した例を示し、後に詳細に説明するよう
に、基地金属溶解槽1は基地となる金属のインゴ
ツト等を溶解し、基地金属撹拌槽2は溶解槽1内
で溶解した溶融金属を溶解槽内の温度より低い温
度に保持しながら激しく撹拌して非樹枝初晶を含
む固液相共存状態の金属溶湯とし、第3相固体粒
子添加槽3は適当な粘度を有する固液相共存金属
溶湯に粒状異種金属を添加し、複合金属撹拌槽4
は固液相共存金属溶湯中に第3相の固体粒子を均
一に分散混合させる機能をそれぞれ有するよう構
成される。 The drawing shows base metal melting tank 1 constituting the device of the present invention.
An example is shown in which the base metal stirring tank 2, the third phase solid particle addition tank 3, and the composite metal stirring tank 4 are sequentially arranged in series in the vertical direction. Tank 1 melts the base metal ingot, etc., and base metal stirring tank 2 vigorously stirs the molten metal melted in melting tank 1 while keeping the temperature lower than the temperature in the melting tank to form non-dendritic primary crystals. The third phase solid particle addition tank 3 adds granular dissimilar metals to the solid-liquid phase coexistence metal molten metal having an appropriate viscosity, and the composite metal stirring tank 4
are each configured to have a function of uniformly dispersing and mixing third phase solid particles in a molten metal coexisting with a solid-liquid phase.
図示の例では、最上段の基地金属溶解槽1とこ
れと同一軸線上でその下端に連通する基地金属撹
拌槽2とを、それぞれ耐火物で形成し、これら両
槽1,2を耐火物5,6,7によつて内張りした
鋼板製外匣8,9内に支持し、外匣8の上端を頂
板10によつて閉止する。両外匣8,9および頂
板10をフランジ11,12,13,14におい
て適当な連結ボルト(図示せず)によつてそれぞ
れ取外し可能に連結する。頂板10には基地金属
のインゴツトその他の材料を装入するための装入
口15を設け、この装入口15を蓋板16により
閉止する。17は蓋板開閉用具、18,19は開
閉軸を示す。 In the illustrated example, the base metal dissolving tank 1 on the uppermost stage and the base metal stirring tank 2 which is coaxial with this tank and communicates with its lower end are each made of a refractory material, and both tanks 1 and 2 are made of a refractory material. , 6 and 7, and the upper end of the outer case 8 is closed by a top plate 10. Both outer casings 8, 9 and top plate 10 are removably connected at flanges 11, 12, 13, 14 by suitable connecting bolts (not shown), respectively. The top plate 10 is provided with a charging port 15 for charging base metal ingots and other materials, and this charging port 15 is closed by a cover plate 16. 17 is a cover plate opening/closing tool, and 18 and 19 are opening/closing shafts.
基地金属撹拌槽2の下端に連通して設けられる
耐火物製の皿状の第3相固体粒子添加槽3と、複
合金属撹拌槽4とを耐火物20で内張りした1個
の外匣21内に設け、この外匣の上端フランジ2
2を基地金属撹拌槽2の外匣9の下端フランジ2
3に適当な連結ボルト(図示せず)その他により
取外し可能に連結する。撹拌槽4の下端には耐火
物製ノーズ24を耐火物25により内張りした支
持ケーシング26により支持して設け、このケー
シング26をもまた外匣21の下端にフランジお
よびボルト連結等により取外し可能に連結し、ノ
ーズ24の出口端をノーズストツパー27により
常時閉止し、これにより複合金属撹拌槽4から第
3相固体粒子を均一に分散混合した固液相共存金
属溶湯を取鍋または鋳型に取出し得るようにす
る。 A dish-shaped third phase solid particle addition tank 3 made of refractory, which is provided in communication with the lower end of the base metal stirring tank 2, and a composite metal stirring tank 4 are placed in one outer box 21 lined with a refractory 20. at the upper end flange 2 of this outer case.
2 is the lower end flange 2 of the outer casing 9 of the base metal stirring tank 2
3 by a suitable connecting bolt (not shown) or the like. A refractory nose 24 is supported at the lower end of the stirring tank 4 by a support casing 26 lined with a refractory 25, and this casing 26 is also removably connected to the lower end of the outer casing 21 by a flange, bolt connection, etc. Then, the outlet end of the nose 24 is always closed by the nose stopper 27, so that the solid-liquid phase coexistence metal molten metal in which the third phase solid particles are uniformly dispersed and mixed can be taken out from the composite metal stirring tank 4 into a ladle or a mold. Do it like this.
また、図示の例では、基地金属溶解槽1内に装
入された金属材料が完全に溶解する前に基地金属
撹拌槽2を経て下方の粒状金属添加槽3内に流れ
込むのを防止するため、撹拌槽2の下端流出口2
8に下方にテーパを付け、この流出口28に逆円
錐台形のストツパー29を取付け、これを後述す
るように撹拌羽根回転軸上取付けて軸受として作
用させるとともに回転軸を上昇させることによつ
て流出口28を開放し得るようにする。 In addition, in the illustrated example, in order to prevent the metal material charged into the base metal dissolving tank 1 from flowing into the granular metal addition tank 3 below through the base metal stirring tank 2 before being completely melted, Lower end outlet 2 of stirring tank 2
8 is tapered downward, and a stopper 29 in the shape of an inverted truncated cone is attached to this outlet 28.As will be described later, this is mounted on the rotating shaft of the stirring blade to act as a bearing, and the rotating shaft is raised to increase the flow rate. The outlet 28 can be opened.
上述した撹拌槽2および4には撹拌羽根31,
32をそれぞれ回転可能に設け、これらの撹拌羽
根31,32をそれぞれの回転軸33,34上の
所定位置にキー(図示せず)によつて固定し、前
記ストツパ29の下方に位置する回転軸33の下
端35にインロー部を設け、このインロー部に回
転軸34の上端部を挿入し、止めねじ等により緊
密に連結する。かように一体に連結して一本にし
た回転軸33,34を槽1,2,3および4を経
て装置に垂直方向に貫通し、外匣8の頂板10上
に設けた軸受36と、回転軸33上に固着したス
トツパー29を受ける流出口28と、後述する装
置下端に設けた軸受37とによつて回転自在に支
承し、軸受36から上方に延長する軸端部を電動
モータ(図示せず)に連結して回転軸33,34
を一体に回転し得るように構成する。 The above-mentioned stirring tanks 2 and 4 are provided with stirring blades 31,
32 are provided rotatably, and these stirring blades 31 and 32 are fixed at predetermined positions on the respective rotating shafts 33 and 34 by keys (not shown), and the rotating shafts are located below the stopper 29. A pilot part is provided at the lower end 35 of the rotary shaft 33, and the upper end of the rotating shaft 34 is inserted into the pilot part and tightly connected with a set screw or the like. The rotating shafts 33 and 34, which are connected together in this way and made into one, pass through the device in a vertical direction through the tanks 1, 2, 3 and 4, and a bearing 36 is provided on the top plate 10 of the outer case 8; It is rotatably supported by an outlet 28 that receives a stopper 29 fixed on a rotating shaft 33 and a bearing 37 provided at the lower end of the device (to be described later), and the shaft end extending upward from the bearing 36 is connected to an electric motor ( (not shown) to connect the rotating shafts 33, 34.
are constructed so that they can rotate together.
上述したように、回転軸33の下端部に取付け
たストツパー29を基地金属撹拌槽2の下端流出
口28に着座する閉止位置から上昇させて流出口
28を開放して撹拌槽2内の溶湯を添加槽3内に
流下させ得るようにするため、適当な油圧または
空圧シリンダ装置によつて制御して予め設定した
量だけ垂直方向に上下動させ得る架台(図示せ
ず)上に上述した電動モータを固定し、回転軸3
3を軸受36内に軸線方向にも移動し得るように
支承するとともに回転軸34の下端を支承する下
方軸受37を高密度黒鉛製円筒形カラーで構成
し、この軸受37をノーズ支持ケーシング26の
下面に連結した軸受箱38内のスリーブ39内に
上下に摺動可能に支持する。40はノーズ24か
ら軸受箱38内に溶湯が漏洩するのを防止するた
めに設けた高密度黒鉛その他の適当なシールリン
グ、41は軸受箱38の蓋を示す。 As described above, the stopper 29 attached to the lower end of the rotating shaft 33 is raised from the closed position where it is seated at the lower end outlet 28 of the base metal stirring tank 2 to open the outlet 28 and drain the molten metal in the stirring tank 2. In order to allow the water to flow down into the addition tank 3, the above-mentioned electric motor is mounted on a pedestal (not shown) which can be vertically moved up and down by a preset amount under the control of a suitable hydraulic or pneumatic cylinder arrangement. Fix the motor and rotate the rotating shaft 3.
A lower bearing 37 that supports the lower end of the rotary shaft 34 in a bearing 36 so as to be movable in the axial direction is constituted by a cylindrical collar made of high-density graphite. It is supported slidably up and down within a sleeve 39 within a bearing box 38 connected to the lower surface. Reference numeral 40 indicates a seal ring made of high-density graphite or other suitable material provided to prevent molten metal from leaking into the bearing box 38 from the nose 24, and 41 indicates a lid of the bearing box 38.
図示の例では撹拌羽根31および32をスクリ
ユー形式とするも、必要に応じ種々の形式のもの
を用いることができ、基地金属撹拌槽2内の撹拌
羽根31形状は溶融金属に激しい撹拌を与えるの
に最適な形状とし、他方、複合金属撹拌槽4内の
撹拌羽根32の形状はある程度の粘性を有する固
液相共存金属溶湯中に第3相固体粒子を均一に分
散混合させるとともに第3相固体粒子を含む固液
相共存金属溶湯を下端ノーズ24に向けて順次下
方へ送り出すに最適な形状にするのが良く、ま
た、溶融金属の種類に応じて適当な形状のものと
容易に交換して用いることができる。撹拌羽根3
1をスクリユー形式とする場合、ストツパー29
を閉じた状態でスクリユー形撹拌羽根を回転する
際に、湯が下方に送られ、撹拌槽下端における湯
の圧力が高まり、この結果として撹拌羽根が上方
に押し上げられ、これによりストツパー29が上
昇して流出口28が開く惧れがあり、かかる撹拌
羽根の望ましくない上昇を防止するため軸受の上
部に適当な押し上がり防止機構を設けるのが良
い。 In the illustrated example, the stirring blades 31 and 32 are screw type, but various types can be used as required. On the other hand, the shape of the stirring blades 32 in the composite metal stirring tank 4 allows the third phase solid particles to be uniformly dispersed and mixed in the solid-liquid phase coexistence metal molten metal having a certain degree of viscosity. It is best to have an optimal shape for sending the molten metal containing particles in a solid-liquid phase coexisting downward toward the lower end nose 24, and it can be easily replaced with one of an appropriate shape depending on the type of molten metal. Can be used. Stirring blade 3
If 1 is screw type, stopper 29
When the screw-type stirring blade is rotated in the closed state, hot water is sent downward, increasing the pressure of the hot water at the bottom end of the stirring tank, and as a result, the stirring blade is pushed upward, which causes the stopper 29 to rise. In order to prevent such an undesirable rise of the stirring blade, it is preferable to provide a suitable upward movement prevention mechanism in the upper part of the bearing.
図面に示すように、基地金属溶解槽1、基地金
属撹拌槽2、第3相固体粒子添加槽3および複合
金属撹拌槽4内の金属を所望の温度にそれぞれ制
御して加熱し、基地金属を溶解するとともに撹拌
時に所要の固液相共存状態に維持するため熱抵抗
線、電熱抵抗体、誘導体コイルその他の適当な加
熱装置45,46.47および48を各槽の周り
に取付けるとともに熱電対50,51,52,5
3,54等を適当に配置して設け、また、撹拌槽
2および4とこれらを囲む耐火物7および20と
の間に冷却気を流し得るよう冷却気流入口55,
56および流出口57,58を設け、熱電対によ
つて測定した温度により既知の適当な自動制御装
置を用いて電熱抵抗線45〜48への入力電力お
よび冷却気流入口55,56から流入される冷却
用空気の流入量を制御することによつて適当な加
熱温度に保持し得るようにする。 As shown in the drawings, the metals in the base metal dissolution tank 1, base metal stirring tank 2, third phase solid particle addition tank 3, and composite metal stirring tank 4 are controlled and heated to desired temperatures, respectively, and the base metal is heated. Heat resistance wires, electric heating resistors, inductive coils, and other suitable heating devices 45, 46, 47, and 48 are installed around each tank, and thermocouples 50 are installed in order to maintain the desired solid-liquid phase coexistence state during dissolution and stirring. ,51,52,5
3, 54, etc. are appropriately arranged, and cooling air inlets 55, 54, etc. are provided so that cooling air can flow between the stirring tanks 2 and 4 and the refractories 7 and 20 surrounding them.
56 and outlets 57, 58 are provided, and the input power to the electrical heating resistance wires 45-48 and the cooling air inlet 55, 56 are provided using a known suitable automatic control device according to the temperature measured by the thermocouple. By controlling the amount of cooling air flowing in, it is possible to maintain an appropriate heating temperature.
60は基地金属溶解槽1の内部を所要の雰囲気
に維持するための雰囲気ガス流入口、61は第3
相固体粒子添加槽3の内部を所要の雰囲気に維持
するための雰囲気ガス流入口、62は添加すべき
第3相固体粒子材料の送入管で一般に粉体の添加
に用いられるようなホツパに連結して第3相固体
粒子を添加し得るよう構成する。上述した雰囲気
ガス流入口60,61からそれぞれ導入したガス
は図示せざる適当な流出口を経て外部に導出され
る。 Reference numeral 60 indicates an atmospheric gas inlet for maintaining the inside of the base metal melting tank 1 at a required atmosphere, and reference numeral 61 indicates a third
An atmosphere gas inlet 62 is used to maintain the required atmosphere inside the phase solid particle addition tank 3, and 62 is a feed pipe for the third phase solid particle material to be added, and is connected to a hopper generally used for powder addition. The structure is such that the third phase solid particles can be added by connecting them. The gases introduced from the above-mentioned atmospheric gas inlets 60 and 61 are led out to the outside through appropriate outlet ports (not shown).
上述の構成になる装置により第3相固体粒子を
均一に分散した複合金属溶湯を溶製するに際して
は、まず、蓋16を開け、基地金属溶解槽1内に
所望の基地金属のインゴツトを装入し、次で、蓋
16を閉じた後、ストツパー29が閉止位置にあ
る状態で、雰囲気ガス流入口60よりN2などの
不活性ガスを導入し、溶解槽1および基地金属撹
拌槽2内の雰囲気を置換し、加熱装置45,46
に電気を通し、溶解槽1内のインゴツトを溶解す
る。インゴツトが完全に溶解した後、電動モータ
により回転軸33,34を回転し、上部の基地金
属撹拌槽2内の溶融基地金属を撹拌する。この
際、撹拌槽2の冷却気流入口55より冷却気を撹
拌槽2の周りに流して撹拌槽2内の溶融金属の温
度を所望の固液相共存温度に保持する。 When melting a composite metal molten metal in which third phase solid particles are uniformly dispersed using the apparatus configured as described above, first, the lid 16 is opened and an ingot of the desired base metal is charged into the base metal melting tank 1. Next, after closing the lid 16 and with the stopper 29 in the closed position, an inert gas such as N 2 is introduced from the atmospheric gas inlet 60 to cool the inside of the melting tank 1 and the base metal stirring tank 2. The atmosphere is replaced and the heating devices 45, 46
The ingots in the melting tank 1 are melted by passing electricity through the melting tank 1. After the ingot is completely melted, the rotating shafts 33 and 34 are rotated by the electric motor to stir the molten base metal in the base metal stirring tank 2 at the top. At this time, cooling air is flowed around the stirring tank 2 from the cooling air inlet 55 of the stirring tank 2 to maintain the temperature of the molten metal in the stirring tank 2 at a desired solid-liquid phase coexistence temperature.
かようにして撹拌槽2内の溶融基地金属を固液
相共存温度下で激しく撹拌して非樹枝状初晶を含
む固液相共存状態にした後、回転軸33,34を
その電動モータの架台ごと油圧または空圧シリン
ダ装置により適当量上昇させ、これによりストツ
パー39を流出口28より上昇してこの流出口を
開放し、非樹枝状初晶を含み適当な粘度を有する
固液相共存金属を第3相固体粒子添加量3を経て
複合金属撹拌槽4に流入させる。この際、これら
の槽3,4を加熱装置47,48によつて適当な
温度に予熱して固液相共存金属溶湯がこれらの槽
3,4および撹拌羽根32上に付着凝固すること
がないようにする。 In this way, the molten base metal in the stirring tank 2 is violently stirred at the solid-liquid phase coexistence temperature to bring it into a solid-liquid phase coexistence state containing non-dendritic primary crystals. The entire frame is raised by an appropriate amount using a hydraulic or pneumatic cylinder device, thereby raising the stopper 39 from the outlet 28 to open this outlet, and the solid-liquid phase coexisting metal containing non-dendritic primary crystals and having an appropriate viscosity is removed. is caused to flow into the composite metal stirring tank 4 through the third phase solid particle addition amount 3. At this time, these tanks 3 and 4 are preheated to an appropriate temperature by heating devices 47 and 48 to prevent the solid-liquid phase coexisting molten metal from adhering and solidifying on these tanks 3 and 4 and the stirring blade 32. Do it like this.
上述したようにして固液相共存金属が第3固体
粒子添加槽3を経て複合金属撹拌槽4に流入する
際、所要の性質を有する第3相固体粒子を送入管
62を経て添加するとともにノーズストツパー2
7を取外ずす。このようにして、固液相が共存す
る基地金属溶湯中、第3相固体が均一に分散混合
された複合金属溶湯がノーズ24を通して得ら
れ、これを図示せざるレードルまたは鋳型に注入
する。 When the solid-liquid phase coexisting metal flows into the composite metal stirring tank 4 through the third solid particle addition tank 3 as described above, third phase solid particles having the desired properties are added through the inlet pipe 62 and Nose stopper 2
Remove 7. In this way, a composite metal molten metal in which the third phase solid is uniformly dispersed and mixed in the base metal molten metal in which the solid and liquid phases coexist is obtained through the nose 24, and is poured into a ladle or mold (not shown).
複合金属撹拌槽4内に流入した固液相共存金属
溶湯を適当な固液相共存温度に保つため、前述し
た基地金属撹拌槽2に対する温度制御と同様に熱
電対54により測定される温度によつて既知の適
当な自動制御装置を用いて加熱装置48の電熱抵
抗線への入力電力および冷却気流入口56より流
入される冷却用空気流の流入量を制御することに
よつて温度制御を行なう。 In order to maintain the solid-liquid phase coexisting molten metal that has flowed into the composite metal stirring tank 4 at an appropriate solid-liquid phase coexistence temperature, similar to the temperature control for the base metal stirring tank 2 described above, the temperature measured by the thermocouple 54 is used. Temperature control is achieved by controlling the input power to the heating resistance wire of the heating device 48 and the amount of cooling air flowing through the cooling air inlet 56 using any suitable automatic control device known in the art.
本発明の装置は上記のように構成したので非樹
枝状初晶を含む固液相共存金属に該金属の組成と
は異なる固体粒子を添加し溶融基地金属中に非樹
枝状初晶と第3相固体粒子とを均一にかつ多量に
分散させたものを連続的に溶製することができ
る。 Since the apparatus of the present invention is constructed as described above, solid particles having a composition different from that of the metal are added to a solid-liquid phase coexisting metal containing non-dendritic primary crystals, and non-dendritic primary crystals and third crystals are added to the molten base metal. It is possible to continuously melt and produce a product in which phase solid particles are uniformly dispersed in a large amount.
また、炉体を構成する基地金属溶解槽、基地金
属撹拌槽、第3固体粒子添加槽および複合金属撹
拌槽等の外匣をフランジおよびボルトにより取外
し可能に連結し、またノーズ、軸受箱、撹拌羽
根、回転軸等をも容易に取外し得る構造としたか
ら、これらの修理または交換を容易に行なうこと
ができる。さらに、第3固体粒子添加槽および複
合金属撹拌槽ならびにその撹拌羽根、回転軸等を
装置から取外ずして基地金属溶解槽、基地金属撹
拌槽およびその撹拌羽根、回転軸等だけで組立て
ることによつて非樹枝状初晶を含む固液相共存金
属溶湯だけを得るための溶製装置として利用する
ことができる。 In addition, the outer cases of the base metal melting tank, base metal stirring tank, third solid particle addition tank, composite metal stirring tank, etc. that make up the furnace body are removably connected with flanges and bolts, and the nose, bearing box, and stirring tank are removably connected. Since the structure allows the blades, rotating shaft, etc. to be easily removed, these can be easily repaired or replaced. Furthermore, it is possible to assemble only the base metal dissolving tank, base metal stirring tank, its stirring blade, rotating shaft, etc. without removing the third solid particle addition tank, composite metal stirring tank, its stirring blade, rotating shaft, etc. from the apparatus. It can be used as a melting device to obtain only a molten metal containing solid-liquid phase coexistence containing non-dendritic primary crystals.
ストツパーを用いて未溶解金属材料が下方の添
加槽に流入しないよう構成したことによつて、固
液相共存金属の供給を半連続的にして各バツチ毎
に性質の異なる第3相固体粒子を添加することが
できる。 By using a stopper to prevent undissolved metal material from flowing into the lower addition tank, the solid-liquid phase coexisting metal can be supplied semi-continuously, and third-phase solid particles with different properties can be added to each batch. Can be added.
また、基地金属撹拌槽と複合金属撹拌槽とを別
個に設け、これらに撹拌羽根をそれれぞれ設ける
構成としたから、これらの撹拌羽根の形状それぞ
れの目的に合して別個に最適形状に設計すること
ができる。 In addition, since the base metal stirring tank and the composite metal stirring tank are provided separately, and a stirring blade is provided for each of them, the shapes of these stirring blades can be individually optimized to suit their respective purposes. can be designed.
上述したところは本発明の実施例を示すに過ぎ
ず、本発明を実施するに当つては、上述した例に
限られることなく、本発明の範囲内で種々の変更
をえることができ、例えば上記実施例では基地金
属溶解槽、基地金属撹拌槽、第3固体粒子添加
槽、複合金属撹拌槽を垂直に配置したが、横方向
に配置してもよい。また、基地金属溶解槽から未
溶解金属材料が下方に流下するのを防止するため
のストツパーを溶解槽と基地金属撹拌槽との間に
設けることもできる。 The above-mentioned merely shows examples of the present invention, and in carrying out the present invention, various changes can be made within the scope of the present invention without being limited to the above-mentioned examples. For example, In the above embodiment, the base metal dissolving tank, the base metal stirring tank, the third solid particle addition tank, and the composite metal stirring tank are arranged vertically, but they may be arranged laterally. Further, a stopper for preventing undissolved metal material from flowing downward from the base metal dissolving tank may be provided between the dissolving tank and the base metal stirring tank.
図面は本発明による装置の1例を示す縦断面図
である。
1……基地金属溶解槽、2……基地金属撹拌
槽、3……第3相固体粒子添加槽、4……複合金
属撹拌槽、5,6,7,20,25……耐火物内
張、8,9,21……外匣、10……頂板、1
1,12,13,14,22,23……フラン
ジ、15……材料装入口、16……蓋板、17…
…蓋板開閉用具、18,19……開閉軸、24…
…ノーズ、26……支持ケーシング、27……ノ
ーズストツパー、28……流出口、29……スト
ツパー、31,32……撹拌羽根、33,34…
…回転軸、35……下端、36,37……軸受、
38……軸受箱、39……スリーブ、40……シ
ールリング、41……蓋、45,46,47,4
8……加熱装置、55,56……冷却気流入口、
57,58……冷却気流出口、60,61……雰
囲気ガス流入口、62……第3相固体粒子送入
管。
The drawing is a longitudinal sectional view showing an example of the device according to the invention. 1... Base metal dissolution tank, 2... Base metal stirring tank, 3... Third phase solid particle addition tank, 4... Composite metal stirring tank, 5, 6, 7, 20, 25... Refractory lining , 8, 9, 21... outer box, 10... top plate, 1
1, 12, 13, 14, 22, 23...flange, 15...material charging port, 16...cover plate, 17...
...Lid plate opening/closing tool, 18, 19...Opening/closing shaft, 24...
... Nose, 26 ... Support casing, 27 ... Nose stopper, 28 ... Outlet, 29 ... Stopper, 31, 32 ... Stirring blade, 33, 34 ...
... Rotating shaft, 35 ... Lower end, 36, 37 ... Bearing,
38... Bearing box, 39... Sleeve, 40... Seal ring, 41... Lid, 45, 46, 47, 4
8... Heating device, 55, 56... Cooling air inlet,
57, 58... Cooling air outlet, 60, 61... Atmospheric gas inlet, 62... Third phase solid particle inlet pipe.
Claims (1)
存温度に保持して撹拌する基地金属撹拌槽と、撹
拌された固液相共存金属溶湯に第3相固体粒子を
添加する添加槽と、第3相固体粒子を添加した固
液相共存金属溶湯を撹拌する複合金属撹拌層とを
順次に連通させて具えることを特徴とする固体粒
子を分散して含む複合金属溶湯の溶製装置。 2 前記基地金属溶解槽および前記基地金属撹拌
槽から前記第3相固体粒子添加槽および前記複合
金属撹拌槽を分離着脱可能としたことを特徴とす
る特許請求の範囲第1項に記載の装置。 3 前記槽を垂直方向に直列に配置したことを特
徴とする特許請求の範囲第1項または第2項に記
載の装置。 4 前記基地金属撹拌層および前記複合金属撹拌
槽とに撹拌羽根をそれぞれ設け、これらの撹拌羽
根を一体の回転駆動軸に着脱可能に取付けてなる
ことを特徴とする特許請求の範囲第1〜3項のい
ずれか1項に記載の装置。 5 前記各槽が加熱装置および温度測定装置を具
えるとともに前記撹拌槽が冷却装置をも具え、こ
れにより前記撹拌槽内の金属溶湯を固液相共存温
度に保持するよう制御する構成としたことを特徴
とする特許請求の範囲第1〜4項のいずれか1項
に記載の装置。[Scope of Claims] 1. A base metal dissolving tank, a base metal stirring tank that stirs the molten base metal while maintaining it at a solid-liquid phase coexistence temperature, and a base metal stirring tank that stirs the molten base metal at a solid-liquid phase coexistence temperature, and a third phase solid particle is added to the stirred solid-liquid phase coexistence metal molten metal. A composite metal containing dispersed solid particles, characterized in that an addition tank for addition and a composite metal stirring layer for stirring a solid-liquid coexistence metal molten metal to which third-phase solid particles are added are sequentially connected to each other. Molten metal melting equipment. 2. The apparatus according to claim 1, wherein the third phase solid particle addition tank and the composite metal stirring tank are detachable from the base metal dissolving tank and the base metal stirring tank. 3. The apparatus according to claim 1 or 2, characterized in that the tanks are arranged in series in a vertical direction. 4. Claims 1 to 3, characterized in that the base metal stirring layer and the composite metal stirring tank are each provided with stirring blades, and these stirring blades are removably attached to an integral rotating drive shaft. Apparatus according to any one of paragraphs. 5. Each of the tanks includes a heating device and a temperature measuring device, and the stirring tank also includes a cooling device, whereby the molten metal in the stirring tank is controlled to be maintained at a solid-liquid phase coexistence temperature. The device according to any one of claims 1 to 4, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9746177A JPS5432103A (en) | 1977-08-16 | 1977-08-16 | Preparing apparatus for composite molten metal containing solid particles in dispersed state |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9746177A JPS5432103A (en) | 1977-08-16 | 1977-08-16 | Preparing apparatus for composite molten metal containing solid particles in dispersed state |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5432103A JPS5432103A (en) | 1979-03-09 |
JPS6122018B2 true JPS6122018B2 (en) | 1986-05-29 |
Family
ID=14192934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9746177A Granted JPS5432103A (en) | 1977-08-16 | 1977-08-16 | Preparing apparatus for composite molten metal containing solid particles in dispersed state |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5432103A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0219022U (en) * | 1988-07-12 | 1990-02-08 | ||
JPH0472213U (en) * | 1990-11-02 | 1992-06-25 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100643A (en) * | 1981-12-11 | 1983-06-15 | Toyota Motor Corp | Production of dispersion reinforced composite aluminum alloy |
US4473103A (en) * | 1982-01-29 | 1984-09-25 | International Telephone And Telegraph Corporation | Continuous production of metal alloy composites |
JPH0196343A (en) * | 1987-10-08 | 1989-04-14 | Agency Of Ind Science & Technol | Dispersed particle-reinforced copper for electric material and its production |
JP2692143B2 (en) * | 1988-06-10 | 1997-12-17 | 石川島播磨重工業株式会社 | Semi-solid metal slurry transfer device |
JP2646990B2 (en) * | 1993-12-28 | 1997-08-27 | 日本電気株式会社 | Hydrogen reduction apparatus and method and hydrogen reduction material |
GB2285588B (en) * | 1994-01-17 | 1997-04-30 | Ea Tech Ltd | Method and apparatus for mixing a metal matrix composite |
-
1977
- 1977-08-16 JP JP9746177A patent/JPS5432103A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0219022U (en) * | 1988-07-12 | 1990-02-08 | ||
JPH0472213U (en) * | 1990-11-02 | 1992-06-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS5432103A (en) | 1979-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7169350B2 (en) | Method and apparatus for making a thixotropic metal slurry | |
US4248630A (en) | Method of adding alloy additions in melting aluminum base alloys for ingot casting | |
US3650311A (en) | Method for homogeneous refining and continuously casting metals and alloys | |
US4917359A (en) | Apparatus for making hypereutectic Al-Si alloy composite materials | |
US3861660A (en) | Pyrometallurgical system with fluid cooled stirrer | |
AU2001264749A1 (en) | Method and apparatus for making a thixotropic metal slurry | |
KR20000048914A (en) | Apparatus and method for semi-solid material production | |
CN110814305B (en) | Cu-Fe composite material double-melt mixed casting equipment and process | |
EP0492761B1 (en) | Method and apparatus for the production of semi-solidified metal composition | |
CN100532596C (en) | Method for preparing and rheologic molding semisolid alloy pulp | |
JPS6122018B2 (en) | ||
JP2001293552A (en) | Casting system and method adding powder into casting nucleation | |
JPS5874248A (en) | Intermediate treating device for liquefied metal or alloy flow | |
JP2005508758A (en) | Method for producing an alloy ingot | |
CN101003862A (en) | Method for preparing and molding semisolid alloy pulp | |
CN100574939C (en) | A kind of preparation of semi-solid alloy slurry and shaped device | |
US4605438A (en) | Apparatus and method for forming a wear-resistant metal composition | |
US4194552A (en) | Method to form metal containing nondendritic primary solids | |
US4079920A (en) | Metal-melting furnace | |
US5205981A (en) | Method and apparatus for the production of semi-solidified metal composition | |
JPS6114065A (en) | Manufacture of metallic block, casting or section into whichhard metallic particle is buried and device thereof | |
RU2510420C2 (en) | Copper alloy and method of its production | |
KR20090131133A (en) | A manufacturing method of composite metal powder using the gas atomization and manufacturing device of the same | |
CN215998698U (en) | Bottom casting device for preparing particle reinforced aluminum matrix composite | |
RU2814351C1 (en) | Centrifugal unit for producing cast materials by centrifugal shs casting |