JP2005175178A - Supercritical fluid processor and its method - Google Patents

Supercritical fluid processor and its method Download PDF

Info

Publication number
JP2005175178A
JP2005175178A JP2003412702A JP2003412702A JP2005175178A JP 2005175178 A JP2005175178 A JP 2005175178A JP 2003412702 A JP2003412702 A JP 2003412702A JP 2003412702 A JP2003412702 A JP 2003412702A JP 2005175178 A JP2005175178 A JP 2005175178A
Authority
JP
Japan
Prior art keywords
heating
liquid
drying
supercritical fluid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003412702A
Other languages
Japanese (ja)
Other versions
JP4307973B2 (en
Inventor
Sakae Takabori
栄 高堀
Hisayuki Takasu
久幸 高須
Toru Iwatani
徹 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Science Systems Ltd
Original Assignee
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Science Systems Ltd filed Critical Hitachi Science Systems Ltd
Priority to JP2003412702A priority Critical patent/JP4307973B2/en
Publication of JP2005175178A publication Critical patent/JP2005175178A/en
Application granted granted Critical
Publication of JP4307973B2 publication Critical patent/JP4307973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical fluid processor and its method for quickly and uniformly washing or drying a substrate having a fine structure without using any mechanical agitation by preventing the generation of a pattern distortion. <P>SOLUTION: This supercritical fluid processor is configured by placing an object to be processed on a holding means in a high pressure container, and introducing fluid as a medium which becomes gas in normal temperature and normal pressure, and which becomes liquid under a high pressure to the high pressure container in a liquid or supercritical state in order to wash or dry the object to be processed. The holding means is provided with a heating means having a plurality of independent heating sources for heating the object to be dried. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体やマスク・MEMS素子・微小な機械部品等を形成する際の半導体基板の洗浄、現像(エッチング)工程後のリンス液に浸漬した微細構造を有する基板の乾燥を行う新規な超臨界流体処理装置とその方法に関する。   The present invention is a novel superconductor for cleaning a semiconductor substrate when forming a semiconductor, a mask, a MEMS element, a minute mechanical part, etc., and drying a substrate having a microstructure immersed in a rinse solution after a development (etching) step. The present invention relates to a critical fluid processing apparatus and method.

超LSIやMEMS素子を始めとする大規模・高性能なデバイス製造におけるパターンの微細化が顕著に推進されるようになり、最近は100nmを切るような微細パターンの形成が可能となっている。このため、パターンのアスペクト比、すなわち高さ対幅の寸法比の大きいパターンが形成されつつある。   Pattern miniaturization in large-scale, high-performance device manufacturing such as VLSI and MEMS devices has been promoted remarkably, and recently, it is possible to form fine patterns of less than 100 nm. For this reason, a pattern having a large pattern aspect ratio, that is, a dimension ratio of height to width is being formed.

このようなパターンは、レジストパターンをマスクとしたエッチングの施工後に、洗浄→リンス洗浄(水洗)→乾燥の各工程を経て形成される。このため、マスクとして使用されるレジストパターンも、必然的にアスペクト比が高くなってきている。レジストとは露光の有無により分子量や分子構造が変化し、その結果として現像液に浸漬することにより、露光部と未露光部との間で現像液に対する溶解速度差が生じることによって、パターンを形成することができる高分子薄膜のことである。この場合も現像後にリンス液による処理を経て乾燥が行われる。   Such a pattern is formed through the steps of cleaning → rinse cleaning (water washing) → drying after performing etching using the resist pattern as a mask. For this reason, the resist pattern used as a mask inevitably has a high aspect ratio. With resist, the molecular weight and molecular structure change depending on the presence or absence of exposure, and as a result, the pattern is formed by the difference in dissolution rate in the developer between the exposed and unexposed areas when immersed in the developer. It is a polymer thin film that can be used. Also in this case, after the development, drying is performed through a treatment with a rinse solution.

この微細パターン形成における乾燥時の大きな問題点として、パターン倒れという現象がみられる。これは図8に示すように、リンス液の乾燥に伴って生じ、特に、高いアスペクト比をもつパターン400では一層顕著に現れる現象であって、原理的には、図8及び図9に示すように、基板の乾燥時にパターン400とパターン400の間に残留したリンス液501と、外部の空気502との圧力差により、パターン400に作用する曲げ力500によるものである。   As a big problem at the time of drying in this fine pattern formation, a phenomenon of pattern collapse is seen. As shown in FIG. 8, this occurs with the drying of the rinsing liquid, and is a phenomenon that appears more prominent particularly in the pattern 400 having a high aspect ratio. In principle, as shown in FIG. 8 and FIG. Furthermore, this is due to the bending force 500 acting on the pattern 400 due to the pressure difference between the rinse liquid 501 remaining between the patterns 400 and the external air 502 when the substrate is dried.

この曲げ力500の大きさは、リンス液501の表面張力に依存することが非特許文献1に報告されている。そして、この曲げ力501は単にレジストパターン400を倒すだけでなく、シリコン等のパターン400自体にも歪みを与えるほどの力を有するため、このリンス液501の表面張力の問題は重要となっている。   Non-patent document 1 reports that the magnitude of the bending force 500 depends on the surface tension of the rinsing liquid 501. The bending force 501 has such a force that not only the resist pattern 400 but also the pattern 400 itself such as silicon is distorted. Therefore, the problem of the surface tension of the rinsing liquid 501 is important. .

この問題の解決には、表面張力の小さいリンス液を用いることが知られている。例えば、水の表面張力は約72dyn/cmであるが、メタノールでは約23dyn/cmとなり、水からの乾燥よりも水をメタノール置換した後に乾燥する方が、倒れの程度を小さく抑えることができる。さらには、20dyn/cm以下の表面張力を持つパーフルオロカーボンを使用することは効果的であるが、たとえ僅かにしても表面張力が存在するから、倒れの低減に若干の効果があるとは言えるが、問題の完全な解決策とはならず、表面張力問題を根本的に解決するには、表面張力がゼロのリンス液の使用、すなわち、超臨界流体を使用することによって可能となるものである。   In order to solve this problem, it is known to use a rinse liquid having a low surface tension. For example, although the surface tension of water is about 72 dyn / cm, it becomes about 23 dyn / cm in methanol, and the degree of collapse can be suppressed smaller by drying after replacing water with methanol rather than drying from water. Furthermore, although it is effective to use a perfluorocarbon having a surface tension of 20 dyn / cm or less, it can be said that there is a slight effect in reducing the fall because there is a surface tension even if it is a little. It is not a complete solution to the problem, but a fundamental solution to the surface tension problem is made possible by the use of a rinsing liquid with zero surface tension, i.e. using a supercritical fluid. .

超臨界流体は液体に匹敵する溶解力を有するが、表面張力、粘度は気体に近い性質を示す。従って、超臨界状態で乾燥すれば、表面張力の影響を無視することができ、パ夕ーンの倒れ現象は全く生じないことになる。図10の二酸化炭素の状態図に示すように、二酸化炭素は低い臨界点(7.3MPa、304K)を有すると共に、化学的に安定であるため、超臨界流体として電子顕微鏡観察用の生物試料の乾燥に用いることが特許文献1に知られている。   A supercritical fluid has a dissolving power comparable to that of a liquid, but its surface tension and viscosity are close to those of a gas. Therefore, if the film is dried in a supercritical state, the influence of the surface tension can be ignored, and the pattern collapse phenomenon does not occur at all. As shown in the phase diagram of carbon dioxide in FIG. 10, since carbon dioxide has a low critical point (7.3 MPa, 304 K) and is chemically stable, it is used as a supercritical fluid for a biological sample for electron microscope observation. It is known from Patent Document 1 that it is used for drying.

又、特許文献2では、(1)液体(洗浄液、エッチング液、現像液又はリンス液)の攪拌若しくは基板の回転による直接的な攪拌、(2)反応槽自体を回転若しくは揺動することによる間接的な液体の攪拌、(3)超音波振動を利用した液体の攪拌、等により、効率良く置換、乾燥を行うことが示されている。   In Patent Document 2, (1) liquid (cleaning liquid, etching liquid, developer or rinsing liquid) is agitated or directly agitated by rotating the substrate, and (2) indirect by rotating or swinging the reaction tank itself. It has been shown that efficient replacement and drying can be achieved by typical liquid stirring, (3) liquid stirring using ultrasonic vibration, and the like.

アプライド フィジックス レター、66巻、2655〜2657頁Applied Physics Letter, 66, 2655-2657

特開昭50−12653号公報JP 50-12653 A 特開平11−87306号公報JP-A-11-87306

しかし、低表面張力リンス液を用いた乾燥法であっても、基板上に形成したパターン間の寸法、即ちスペース幅が90nm程度以下になるとパターン間に残存するリンス液の表面張力(毛細管力)の作用により、パターン間にラプラス力が作用してパターン倒れが生ずるという問題が発生するようになった。更に、パーフルオロカーボンのような超低表面張力リンス液を用いた乾燥プロセスでも、パターン幅が微細化して70nm以下になるとパターン倒れを防ぐことができなくなる。   However, even in a drying method using a low surface tension rinse solution, the surface tension (capillary force) of the rinse solution remaining between patterns when the dimension between patterns formed on the substrate, that is, the space width is about 90 nm or less. As a result, the problem that the Laplace force acts between the patterns and the pattern collapses occurs. Furthermore, even in a drying process using an ultra-low surface tension rinse liquid such as perfluorocarbon, pattern collapse cannot be prevented when the pattern width is reduced to 70 nm or less.

また、従来の超臨界乾燥法はリンス液と液体二酸化炭素の置換処理時間が長く、数十分程度から1時間以上の長時間を要し、直径100mm以上の大口径基板で特に40nm程度以下のパターンに対してはリンス液と液体二酸化炭素の置換効率が極めて悪いために3時間程度の置換時間を設定してもパターン間に残存するリンス液を置換することが出来ない。このため、乾燥時のパターン間に表面張力が作用して完全にはパターン倒れを防ぐことができなかった。また、大口径基板では全面の均一な乾燥ができなかった。   In addition, the conventional supercritical drying method takes a long time for rinsing liquid and liquid carbon dioxide to be replaced, and requires a long time of several tens of minutes to 1 hour or more. Since the replacement efficiency of the rinsing liquid and liquid carbon dioxide is very poor for the pattern, the rinsing liquid remaining between the patterns cannot be replaced even if a replacement time of about 3 hours is set. For this reason, surface tension acts between the patterns during drying, and pattern collapse cannot be prevented completely. In addition, even with a large-diameter substrate, the entire surface could not be uniformly dried.

更に、リンス液と液体二酸化炭素の置換処理時間が長いために、液体二酸化炭素送出のための圧送ポンプ駆動の消費エネルギー及び液体二酸化炭素の消費量が増大した。   Furthermore, since the replacement processing time of the rinsing liquid and liquid carbon dioxide is long, the energy consumption of driving the pressure pump for liquid carbon dioxide delivery and the consumption amount of liquid carbon dioxide are increased.

又、特許文献2においては、液体や基板を攪拌するための機構を高圧乾燥処理容器の内部へ構築することで、機構部より発生した塵埃などの二次的な障害が発生し、高清浄化が阻害される問題がある。   Further, in Patent Document 2, by constructing a mechanism for stirring a liquid or a substrate inside a high-pressure drying treatment container, secondary obstacles such as dust generated from the mechanism portion occur, and high cleaning can be achieved. There is a problem that is disturbed.

また、反応槽自体を回転若しくは揺動させたり、超音波振動を用いると、反応槽自体を回転若しくは揺動させるための機構が大型化し、更には超音波振動子の振動による二次的な障害として、発熱よる制御外の熱エネルギーの影響が問題となる。   In addition, if the reaction vessel itself is rotated or oscillated, or if ultrasonic vibration is used, the mechanism for rotating or oscillating the reaction vessel itself is increased in size, and further, secondary obstacles due to the vibration of the ultrasonic transducer are caused. As a result, the influence of heat energy outside the control due to heat generation becomes a problem.

本発明の目的は、機械的な攪拌を用いずに微細構造を有する基板をパターン倒れが無く、短時間で均一に洗浄又は乾燥させることができる超臨界流体処理装置とその方法を提供することにある。   An object of the present invention is to provide a supercritical fluid processing apparatus and method capable of uniformly cleaning or drying a substrate having a fine structure without mechanical collapse without causing pattern collapse in a short time. is there.

本発明は、温度制御機能を有するホルダを組み込むことにより、被乾燥物近傍のリンス液や乾燥溶媒へ渦流、或いは脈流などの状態変化を発生させる機能を持った高圧乾燥処理装置にある。即ち、被乾燥物近傍のリンス液や乾燥溶媒である二酸化炭素を直接加熱することで液体の持つ比重や密度を変化させ、リンス液と乾燥溶媒である二酸化炭素との置換効率を向上させて処理時間を短縮する。   The present invention resides in a high-pressure drying processing apparatus having a function of generating a state change such as a vortex or a pulsating flow in a rinsing liquid or a dry solvent in the vicinity of an object to be dried by incorporating a holder having a temperature control function. In other words, the specific gravity and density of the liquid are changed by directly heating the rinsing liquid in the vicinity of the material to be dried and the carbon dioxide, which is the drying solvent, and the treatment is performed by improving the substitution efficiency of the rinsing liquid and carbon dioxide as the drying solvent Reduce time.

本発明は、具体的には、高圧容器内の保持手段に被処理物を載置し、前記高圧容器内に溶媒となる常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理装置において、前記保持手段は前記被乾燥物を加熱する複数の独立した加熱源を有する加熱手段を備えたことを特徴とする。   Specifically, the present invention is such that a workpiece is placed on a holding means in a high-pressure vessel, and a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure is used as a solvent in the high-pressure vessel. In a supercritical fluid processing apparatus that is introduced in a critical state to clean or dry the object to be processed, the holding means includes heating means having a plurality of independent heating sources for heating the object to be dried. To do.

前記溶媒を貯蔵容器から圧縮して送出する送出手段と、該送出された前記溶媒を濾過する濾過手段と、該濾過された前記溶媒を前記高圧容器内に導入し前記洗浄又は乾燥後に排出させる排出手段とを有すること、又、前記保持手段は、前記被処理物を搭載する搭載面の平面形状が丸型又は角型であることが好ましい。   Delivery means for compressing and delivering the solvent from the storage container; Filtration means for filtering the delivered solvent; Discharge for introducing the filtered solvent into the high-pressure container and discharging it after washing or drying It is preferable that the holding means has a round shape or a square shape in a planar shape of a mounting surface on which the workpiece is mounted.

又、本発明は、各加熱源が前記被処理物を搭載する搭載面において前記被処理物の全体が均等に加熱されるように平面形状の中心から放射状に均等に配置され、各加熱源が前記搭載面における平面形状が同じであること、又、前記加熱源の各々をON及びOFFする時間とそれらのインターバル時間を任意に設定する設定手段を有し、前記設定手段が前記ON及びOFFにする周期を2Hz〜3kHzに調整可能であること、更に、前記加熱源がヒータ又は高周波誘導コイルであることが好ましい。   Further, the present invention is arranged such that each heating source is uniformly distributed radially from the center of the planar shape so that the entire processing target is uniformly heated on the mounting surface on which the processing target is mounted. The mounting surface has the same planar shape, and has setting means for arbitrarily setting the time for turning on and off each of the heating sources and the interval time thereof, and the setting means is set to ON and OFF. It is preferable that the period for performing the adjustment can be adjusted to 2 Hz to 3 kHz, and that the heating source is a heater or a high-frequency induction coil.

更に、本発明は、高圧容器内の保持手段にリンス液に浸漬又は濡れた状態の被処理物を載置し、前記高圧容器内に溶媒となる常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理方法において、前記被乾燥物を部分的に加熱しながら前記リンス液を前記流体によって置換することを特徴とする。   Furthermore, the present invention places an object to be treated immersed or wet in a rinsing liquid on a holding means in a high-pressure vessel, and becomes a solvent in the high-pressure vessel, which is a gas at normal temperature and normal pressure, and a liquid under high pressure. In the supercritical fluid processing method of introducing the fluid to be liquid or in a supercritical state to wash or dry the object to be processed, replacing the rinse liquid with the fluid while partially heating the object to be dried Features.

前記部分的な個々の加熱を前記被処理物を載置する搭載面において均等に分割された領域毎において行うこと、又、前記個々の部分的な加熱の周期を2Hz〜3kHzに調整すると共に前記個々の加熱の順序、OFFにする時間及びインターバル時間を任意に設定するすること、更に、前記部分的な加熱を前記平面形状の中心に対して放射状に均等に分配した領域毎で行うと共に該各加熱を前記被乾燥物の搭載面において同じ平面形状で行うことが好ましい。   The partial individual heating is performed for each of the equally divided regions on the mounting surface on which the workpiece is placed, and the individual partial heating cycle is adjusted to 2 Hz to 3 kHz and The order of individual heating, the time to turn off, and the interval time are arbitrarily set, and further, the partial heating is performed for each region evenly and radially distributed with respect to the center of the planar shape. It is preferable that heating is performed in the same planar shape on the mounting surface of the object to be dried.

前記均等に分配された各領域における前記各加熱のON時間が他の領域の加熱のON時間と重複しないように前記各加熱を順次行うか又は各領域毎に時間差を設けて順次行い、前記被乾燥物近傍の前記溶媒の温度を局部的に変化させ前記リンス液及び溶媒に密度及び渦流又は対流による状態変化を発生せることが好ましい。   The heating is sequentially performed so that the ON time of each heating in each of the equally distributed regions does not overlap with the ON time of the heating in other regions, or sequentially performed with a time difference for each region, and the covered It is preferable that the temperature of the solvent in the vicinity of the dried product is locally changed to cause a change in state due to density and vortex or convection in the rinse liquid and the solvent.

前記被処理物がリンス液に浸漬又は濡れた状態で前記高圧容器内に設置され、前記高圧容器内に導入された前記流体によって前記被処理物から前記リンス液を除去すると共に、前記被処理物を乾燥させることが好ましい。   The object to be processed is installed in the high pressure vessel in a state of being immersed or wet in a rinsing liquid, and the rinsing liquid is removed from the object to be processed by the fluid introduced into the high pressure container. Is preferably dried.

本発明によれば、リンス液を液体二酸化炭素の溶媒によって置換する際の置換時間を飛躍的に短縮することが可能となり、更には極微細な構造物間の均一な置換が可能となり、LSI等を大規模に製作するためのレジスト等の微細構造を有し、パターン幅70nm以下、特にはパターン幅30nm以下で、直径100mm以上の基板上のパターンの倒れが無く、更に全面均一に乾燥できるためデバイス製造ラインへの適用が可能な処理速度を得ることができる。又、処理時間短縮により消費エネルギーを抑えることができコストダウンを図ることができる。   According to the present invention, it is possible to drastically shorten the replacement time when the rinsing liquid is replaced with a liquid carbon dioxide solvent, and further, it is possible to perform uniform replacement between ultrafine structures, such as LSI. Has a fine structure such as a resist for manufacturing a large-scale substrate, has a pattern width of 70 nm or less, in particular, a pattern width of 30 nm or less, and does not collapse a pattern on a substrate having a diameter of 100 mm or more, and can be dried uniformly over the entire surface. A processing speed applicable to the device manufacturing line can be obtained. In addition, energy consumption can be suppressed by shortening the processing time, and costs can be reduced.

更に、リンス液と溶媒としての液体二酸化炭素との置換時間の短縮により、液体二酸化炭素送出のための圧送ポンプ駆動エネルギー及び液体二酸化炭素の消費を抑えることができると共に、高清浄な洗浄又は乾燥を行うことができる超臨界流体処理装置とその方法を提供することができる。   Furthermore, by shortening the replacement time of the rinsing liquid and liquid carbon dioxide as a solvent, it is possible to suppress the consumption of the pumping pump driving energy and liquid carbon dioxide for liquid carbon dioxide delivery, and to achieve highly clean washing or drying. It is possible to provide a supercritical fluid processing apparatus and method that can be performed.

以下、本発明を実施するための最良の形態を具体的な実施例によって詳細に説明するが、本発明は実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail by way of specific examples, but the present invention is not limited to the examples.

図1は、本実施例に係る超臨界二酸化炭素を用いた微細構造乾燥装置の構成を示すブロック図である。本実施例の微細構造乾燥装置は、超臨界流体にするべき乾燥溶媒(液体)を保持するサイホン管付液取りボンベやコールドエバポレータ(以下CE)からなる容器100、乾燥溶媒を供給するバルブ104、乾燥溶媒を圧縮して送出する高圧ポンプ101、乾燥溶媒中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過分離する目の粗さが3μm〜3nmであるフィルタ102、加熱と冷却手段を兼ね備えた高圧乾燥処理容器103、被乾燥物107を設置して保持するホルダ106、乾燥処理終了後の超臨界流体を大気開放するための制御弁105を有する。   FIG. 1 is a block diagram showing a configuration of a fine structure drying apparatus using supercritical carbon dioxide according to the present embodiment. The microstructure drying apparatus of this embodiment includes a container 100 composed of a liquid collecting cylinder with a siphon tube and a cold evaporator (hereinafter referred to as CE) holding a drying solvent (liquid) to be a supercritical fluid, a valve 104 for supplying a drying solvent, High pressure pump 101 that compresses and sends dry solvent, impurities that are dissolved in moisture contained in dry solvent, and metal fine particles that are dissolved from liquid collection cylinders with siphon tube, etc., have a coarseness of 3 μm to 3 nm A filter 102, a high-pressure drying processing vessel 103 having both heating and cooling means, a holder 106 for installing and holding an object to be dried 107, and a control valve 105 for releasing the supercritical fluid after the drying processing to the atmosphere. .

超臨界二酸化炭素による超臨界流体を用いた乾燥プロセスは、先ず、被乾燥物107の洗浄に使われて極微細パターン間に溜まっているリンス液を液体二酸化炭素で洗い、リンス液を液体二酸化炭素で置換することで開始される。もし、被乾燥物107の洗浄に用いるリンス液が二酸化炭素と混和しないものであれば、このリンス液を二酸化炭素親和性を有する別のリンス液に置換しておく必要がある。液体二酸化炭素に溶解させて置換させる置換可能なリンス液としては、例えば、2-プロパノール、エタノール、アルコール等がある。   In the drying process using supercritical fluid by supercritical carbon dioxide, first, the rinse liquid used for cleaning the object 107 to be dried and accumulated between the ultrafine patterns is washed with liquid carbon dioxide, and the rinse liquid is liquid carbon dioxide. It begins by replacing with. If the rinsing liquid used for washing the object to be dried 107 is not miscible with carbon dioxide, it is necessary to replace this rinsing liquid with another rinsing liquid having affinity for carbon dioxide. Examples of the rinsing liquid that can be replaced by dissolving in liquid carbon dioxide include 2-propanol, ethanol, alcohol, and the like.

図2は、本発明に係るホルダとその加熱源及び制御回路ユニットを示す構成図である。図2に示すように、高圧乾燥処理容器7内に設けられた被乾燥物107を設置して保持するためのホルダ106、ホルダ106を加熱するための加熱源200、加熱源200を制御するための制御ユニット201を有する。ホルダ106は被乾燥物107の搭載面に平行な面における断面図である。加熱源200は電熱線ヒータ又は高周波誘導コイルがホルダ106内に埋め込まれており、図2に示すようにホルダ106の中心から放射状に所定の間隔で、8個同じ平面形状で均等に配置され、各加熱源200を制御ユニット201によって独立に制御できる構造になっている。ホルダ106の平面形状は図2のように丸型になっているが、被乾燥物107の平面形状に合わせて用いられるので、角型でも良い。   FIG. 2 is a configuration diagram showing the holder, its heating source, and control circuit unit according to the present invention. As shown in FIG. 2, a holder 106 for installing and holding an object to be dried 107 provided in the high-pressure drying treatment container 7, a heating source 200 for heating the holder 106, and a control for the heating source 200 The control unit 201 is included. The holder 106 is a cross-sectional view in a plane parallel to the mounting surface of the object 107 to be dried. In the heating source 200, a heating wire heater or a high-frequency induction coil is embedded in the holder 106, and as shown in FIG. 2, eight are evenly arranged in the same plane shape at a predetermined interval radially from the center of the holder 106. Each heating source 200 can be controlled independently by the control unit 201. The planar shape of the holder 106 is a round shape as shown in FIG. 2, but it may be a square shape because it is used in accordance with the planar shape of the object 107 to be dried.

図3は、本発明の微細構造乾燥装置における加熱源を示す平面図である。図3に示すように、8個の加熱源200は図中に示す番号に従って図4及び図5に示すように其々の加熱源200をON/OFFする状態によって順次加熱される。図3の個々の加熱源200はやや間隔を有して配置されているが、その間隔は図2のヒータ、コイルにおいてその平面形状を重ならないように交叉させて配置させることができるので、無くても良い。   FIG. 3 is a plan view showing a heating source in the microstructure drying apparatus of the present invention. As shown in FIG. 3, the eight heating sources 200 are sequentially heated in accordance with the numbers shown in the drawing according to the state in which the respective heating sources 200 are turned on / off as shown in FIGS. 4 and 5. The individual heating sources 200 in FIG. 3 are arranged with a slight interval, but the intervals can be arranged so as to intersect with each other so that the heaters and coils in FIG. May be.

図4においてはヒータ200を(1)から(8)まで順次ONにして加熱し、液体二酸化炭素301の状態変化した液体302とする操作を1回繰り返したものである。又、図5においてはヒータ200を(1)から(4)までを飛び飛びとし、その各間を(5)から(8)よって順次ONにして加熱し、液体二酸化炭素301の状態変化した液体302とする操作を1回繰り返したものである。即ち、ホルダ106に組み込まれた加熱源200のON/OFF制御を開始すると、加熱された部位のリンス液300や二酸化炭素301の液温が上昇し、液温変化による対流が発生すると共に、更に加熱源200のON/OFF制御による回転流(攪拌効果)によりリンス液300を短時間で二酸化炭素301によって置換することができる。   In FIG. 4, the heater 200 is sequentially turned on and heated from (1) to (8) to heat the liquid carbon dioxide 301 to change the state of the liquid 302, and the operation is repeated once. In FIG. 5, the heater 200 is skipped from (1) to (4), and each of the heaters 200 is sequentially turned on by (5) to (8) and heated. This operation is repeated once. That is, when the ON / OFF control of the heating source 200 incorporated in the holder 106 is started, the liquid temperature of the rinse liquid 300 and the carbon dioxide 301 in the heated part rises, and convection due to the liquid temperature change occurs, and further The rinse liquid 300 can be replaced with the carbon dioxide 301 in a short time by the rotational flow (stirring effect) by ON / OFF control of the heating source 200.

又、本実施例では、隣接した加熱源200を順次連続させてON/OFFさせるよりも、図5ように2〜4個離れた位置の加熱源200を順次ON/OFFさせた方が隣の加熱源200の影響を受けることがないので、アスペクト比が大きい場合に有効である。   Also, in this embodiment, the adjacent heating sources 200 are sequentially turned on / off rather than sequentially being turned on / off, as shown in FIG. Since it is not affected by the heating source 200, it is effective when the aspect ratio is large.

以上のように、個々の加熱源200を所定の順序でON/OFFさせることによって、その加熱された部分ではリンス液300、液体二酸化炭素301の温度が上昇すると共に、液体二酸化炭素301へのリンス液300の溶解度が大きくなる。更に、加熱源200のON/OFFを何回でも繰り返すことにより液体二酸化炭素301が軽くなったり、重くなったりを繰り返すことにより上昇流と下降流が発生し、対流も活発となり、リンス液300を液体二酸化炭素301によって置換する時間を短縮させることができる。   As described above, by turning on / off the individual heating sources 200 in a predetermined order, the temperature of the rinsing liquid 300 and the liquid carbon dioxide 301 rises in the heated portion, and the rinsing to the liquid carbon dioxide 301 is performed. The solubility of the liquid 300 increases. Furthermore, by repeating ON / OFF of the heating source 200 many times, the liquid carbon dioxide 301 becomes lighter or heavier, and ascending and descending flows are generated, and convection also becomes active. The time for replacement with the liquid carbon dioxide 301 can be shortened.

図6はリンス液300を乾燥溶媒である液体二酸化炭素301が加熱され密度が変化し状態変化した液体302によって置換する状態を示す断面図である。右半分が加熱された部分、左半分が非加熱部分である。このような加熱は後述するように極めて短時間で順次行われる。図6に示すようにリンス液300は液体二酸化炭素301が前述のように加熱され密度が変化し状態変化した液体302によって部分的に順次置換するものでる。図6中では前述のように、状態変化した液体302は実際には液体二酸化炭素301との境界は明確ではなく、上昇流と下降流が発生し、対流も活発となっている。スペース幅90nm以下、高アスペクト比を有する極めて微細な配線構造を有する被乾燥物107においては、配線間の間隔も極めて小さく、そのため配線間の中のリンス液300の置換が困難なものであるが、本実施例の如く、被乾燥物107の直接の局部的な加熱によって局部的な熱的な対流による攪拌が行われるため効率良く短時間で液体二酸化炭素301によって置換することができるものである。尚、図6の液体二酸化炭素301が被乾燥物107の上にのみ載置した構造を示しているが、実際には図1に示すように高圧乾燥処理容器103内全体が液体二酸化炭素301によって充満されているものである。   FIG. 6 is a cross-sectional view showing a state in which the rinsing liquid 300 is replaced with a liquid 302 whose density has changed due to heating of liquid carbon dioxide 301 as a dry solvent. The right half is the heated part and the left half is the non-heated part. Such heating is sequentially performed in a very short time as will be described later. As shown in FIG. 6, the rinsing liquid 300 is one in which the liquid carbon dioxide 301 is partially and sequentially replaced by the liquid 302 that has been heated and changed in density as described above. In FIG. 6, as described above, the boundary of the liquid 302 whose state has changed is actually not clear from the liquid carbon dioxide 301, an upward flow and a downward flow are generated, and convection is also active. In the to-be-dried object 107 having a very fine wiring structure having a space width of 90 nm or less and a high aspect ratio, the interval between the wirings is also extremely small, so that it is difficult to replace the rinsing liquid 300 between the wirings. As in this embodiment, since the stirring by the local thermal convection is performed by the direct local heating of the material to be dried 107, the carbon dioxide 301 can be efficiently replaced in a short time. . 6 shows a structure in which the liquid carbon dioxide 301 is placed only on the object to be dried 107. In practice, however, the entire interior of the high-pressure drying treatment container 103 is covered with the liquid carbon dioxide 301 as shown in FIG. It is the one that is full.

図7は時間と温度との関係を示す図である。図7に示すように各加熱部分は数百μs〜数sと極めて短時間の加熱サイクルによって行われる。10秒以上の局部的な加熱は部分的な加熱の影響が大きく、あまり効果がない。この300μs〜3sと極めて短時間の加熱サイクルによって前述の効率的なリンス液300の置換が可能である。   FIG. 7 is a diagram showing the relationship between time and temperature. As shown in FIG. 7, each heating portion is performed by a heating cycle of several hundred μs to several s for a very short time. Local heating for 10 seconds or more has a large effect of partial heating and is not very effective. The above-described efficient rinsing solution 300 can be replaced by a heating cycle of 300 μs to 3 s for a very short time.

以下、上述した各図に従って本実施例における微細構造物の乾燥方法について説明する。先ず、乾燥しようとする被乾燥物107を加熱及び冷却手段を兼ね備えた高圧乾燥処理容器103内のホルダ106に搭載し、高圧乾燥処理容器103の蓋を閉める。   Hereinafter, the drying method of the fine structure in the present embodiment will be described with reference to the above-described drawings. First, an object to be dried 107 to be dried is mounted on a holder 106 in a high-pressure drying processing container 103 having both heating and cooling means, and the lid of the high-pressure drying processing container 103 is closed.

次に、乾燥溶媒としての液体二酸化炭素301を貯蔵しているサイホン管付液取りボンベやCEからなる容器等からボンベ100の頭上弁であるバルブ104を開放する。バルブ104が開放されると、液体二酸化炭素301が送出され高圧ポンプ101の運転を開始し、後述するリンス液300の置換に必要な流量を高圧ポンプ101にて圧縮して圧送する。   Next, the valve 104 that is an overhead valve of the cylinder 100 is opened from a liquid collecting cylinder with a siphon tube storing liquid carbon dioxide 301 as a dry solvent, a container made of CE, or the like. When the valve 104 is opened, the liquid carbon dioxide 301 is sent out to start the operation of the high-pressure pump 101, and the high-pressure pump 101 compresses and pumps a flow rate necessary for replacement of a rinsing liquid 300 described later.

高圧ポンプ101にて圧送された液体二酸化炭素301は、焼結フィルタやメンブレンフィルタなど除去目的の目の粗さに合わせたフィルタ102にて液体二酸化炭素301中に含有される水分に溶解した不純物やサイホン管付液取りボンベなどから溶け出した金属微粒子を濾過 分離し、高清浄化される。   The liquid carbon dioxide 301 pumped by the high-pressure pump 101 contains impurities dissolved in water contained in the liquid carbon dioxide 301 by a filter 102 that matches the roughness of the eye for removal, such as a sintered filter or a membrane filter. Metal fine particles that have melted out of a siphon tube with a siphon tube are filtered and separated to be highly purified.

高清浄化された液体二酸化炭素301が高圧乾燥処理容器103へ導入されると、乾燥される被乾燥物106が液体二酸化炭素301で満たされ、微細構造間に残留しているリンス液300が液体二酸化炭素301に接触した時点より置換が進行する。この時、ホルダ106に組み込まれた前述のヒータ又は高周波誘導コイルからなる加熱源200を前述の図4又は図5のように予め設定された条件に従ってON/OFF制御することで開始する。   When the highly purified liquid carbon dioxide 301 is introduced into the high-pressure drying treatment vessel 103, the material 106 to be dried is filled with the liquid carbon dioxide 301, and the rinsing liquid 300 remaining between the microstructures is liquid dioxide. Substitution proceeds from the point of contact with carbon 301. At this time, the heating source 200 composed of the above-described heater or high-frequency induction coil incorporated in the holder 106 is controlled by ON / OFF control according to a preset condition as shown in FIG. 4 or FIG.

ホルダ106に組み込まれた加熱源200のON/OFF制御を開始すると、加熱された部位のリンス液300や液体二酸化炭素301の液温が上昇する。特に液体二酸化炭素301は温度を通常液温の約20℃程度より40℃程度まで変化させると、液温変化による対流が発生したり、密度が約0.75g/mlから約0.5g/mlまで変化することで溶解度も変化する。更に加熱源200の前述の条件によってON/OFFする制御回路ユニット201の制御による回転流(攪拌効果)によりリンス液300が短時間で液体二酸化炭素301に置換される。   When the ON / OFF control of the heating source 200 incorporated in the holder 106 is started, the liquid temperature of the rinse liquid 300 and the liquid carbon dioxide 301 at the heated part rises. In particular, when the temperature of liquid carbon dioxide 301 is changed from the normal liquid temperature of about 20 ° C to about 40 ° C, convection occurs due to the liquid temperature change, or the density changes from about 0.75g / ml to about 0.5g / ml. This also changes the solubility. Further, the rinsing liquid 300 is replaced with the liquid carbon dioxide 301 in a short time by the rotating flow (stirring effect) controlled by the control circuit unit 201 which is turned on / off according to the above-described conditions of the heating source 200.

従来の微細構造乾燥装置では、液体二酸化炭素のボンベ圧を超臨界圧力まで圧縮するまでに数分から10分程度かかっており、更にその後の長い時間をかけてリンス液置換を行っていたが、本実施例のプロセスでは超臨界圧力到達前にほぼリンス液の置換を終了させることができる。   In the conventional fine-structure drying equipment, it takes several minutes to 10 minutes to compress the cylinder pressure of liquid carbon dioxide to the supercritical pressure. In the process of the embodiment, the replacement of the rinse liquid can be almost completed before the supercritical pressure is reached.

リンス液の置換が終了した後、乾燥溶媒の圧力を保ちながらホルダ106に組み込まれたすべての加熱源200をONにし、被乾燥物107近傍の温度を40℃に加熱制御し、臨界点以上の温度、圧力(二酸化炭素の臨界条件:304K、7.3MPa)にして、液化二酸化炭素301を超臨界二酸化炭素に変換すると共に、高圧乾燥処理容器103の温度を上昇させる。これにより、液体二酸化炭素301が超臨界状態となる。   After replacement of the rinsing liquid is completed, all the heating sources 200 incorporated in the holder 106 are turned on while maintaining the pressure of the drying solvent, and the temperature in the vicinity of the object 107 to be dried is controlled to 40 ° C. The temperature and pressure (critical conditions of carbon dioxide: 304 K, 7.3 MPa) are converted into liquefied carbon dioxide 301 into supercritical carbon dioxide, and the temperature of the high-pressure drying treatment vessel 103 is increased. Thereby, the liquid carbon dioxide 301 becomes a supercritical state.

超臨界状態となった後、制御温度40℃を保ちながら調節弁105を開けて、高圧乾燥処理容器103の温度を超臨界温度以上に保持したまま超臨界二酸化炭素を外部に放出して大気圧とし、その後高圧乾燥処理容器102の温度を室温程度まで冷却して乾燥を終了する。これにより、超臨界状態から開放するため気体/液体の界面を介さない、高清浄な状態で乾燥を終了させることができる。又、この時、圧力を下げても二酸化炭素は液化することがないため、表面張力は発生しない。   After entering the supercritical state, open the control valve 105 while maintaining the control temperature of 40 ° C., and release the supercritical carbon dioxide to the outside while maintaining the temperature of the high-pressure drying treatment vessel 103 at the supercritical temperature or higher. Then, the temperature of the high-pressure drying treatment container 102 is cooled to about room temperature, and the drying is finished. Thus, the drying can be completed in a highly clean state without going through the gas / liquid interface because the supercritical state is released. At this time, carbon dioxide is not liquefied even if the pressure is lowered, so that no surface tension is generated.

以上のように、本実施の形態の微細構造乾燥装置では、ホルダ106に4個以上に分割して組み込んだヒータ又は高周波誘導コイルによる加熱源200の制御により、基板上に形成したパターン間の寸法、即ちスペース幅が90nm程度以下、或いは40nm程度以下、又はMEMS素子などの数μmの構造体でアスペクト比が大きい場合でも、加熱源200の加熱周期を制御する制御パターンを調整することにより、被乾燥物近傍及び微細構造間内のリンス液と乾燥溶媒である液体二酸化炭素の置換時間を数十秒から数分以内で置換することができる。   As described above, in the microstructure drying apparatus of the present embodiment, the dimension between patterns formed on the substrate is controlled by controlling the heating source 200 with a heater or a high-frequency induction coil divided into four or more holders 106. That is, even when the space width is about 90 nm or less, or about 40 nm or less, or even when the aspect ratio is large in a structure of several μm such as a MEMS element, the control pattern for controlling the heating cycle of the heating source 200 is adjusted to adjust the control pattern. The rinsing liquid in the vicinity of the dried product and between the fine structures and the liquid carbon dioxide as the drying solvent can be replaced within tens of seconds to several minutes.

また、この乾燥処理時間が長いという従来の臨界点乾燥法の欠点と、大口径基板に対しては全面均一な乾燥結果を得ることができないという欠点を解決でき、LSI等を大規模に製作するためにレジスト等の微細構造を有し、そのパターン幅が70nm以下、特にはパターン幅30nm以下で、直径100mm以上の基板上のパターンを倒れ無く、更に全面均一に乾燥できるためデバイス製造ラインへの適用が可能なる。   Moreover, the disadvantage of the conventional critical point drying method that the drying treatment time is long and the disadvantage that a uniform drying result cannot be obtained on the entire surface of a large-diameter substrate can be solved, and an LSI or the like is manufactured on a large scale. Therefore, it has a fine structure such as a resist, and the pattern width is 70 nm or less, particularly 30 nm or less, and the pattern on the substrate having a diameter of 100 mm or more can be dried uniformly and further uniformly dried. Applicable.

更に、液体二酸化炭素送出のための圧送ポンプ駆動エネルギー、及び液体二酸化炭素の消費量を抑えることの出来る微細構造乾燥装置及び方法を提供することができる。そして、本実施形態のように高圧乾燥処理容器全体を超臨界温度に制御することなく、容器内部の液温を制御し超臨界状態とすることでエネルギーの消費と加熱昇温時間とを低減・短縮しているのは言うまでもない。   Furthermore, it is possible to provide a pressure pump driving energy for liquid carbon dioxide delivery, and a microstructure drying apparatus and method capable of suppressing the consumption of liquid carbon dioxide. And, without controlling the entire high-pressure drying treatment vessel to the supercritical temperature as in this embodiment, the liquid temperature inside the vessel is controlled to be in a supercritical state, thereby reducing energy consumption and heating heating time. Needless to say, it is shortened.

本発明に係る微細構造乾燥装置のブロック図である。It is a block diagram of the microstructure drying apparatus which concerns on this invention. 本発明の加熱源を有するホルダとその制御ユニットの構成図である。It is a block diagram of the holder which has the heat source of this invention, and its control unit. 本発明のホルダ内の加熱源の配置を示す構成図である。It is a block diagram which shows arrangement | positioning of the heat source in the holder of this invention. 本発明のホルダ内の加熱源の加熱プロセスを示す図である。It is a figure which shows the heating process of the heat source in the holder of this invention. 本発明のホルダ内の加熱源の加熱プロセスを示す図である。It is a figure which shows the heating process of the heat source in the holder of this invention. 本発明に係る微細構造乾燥装置によるリンス液と二酸化炭素との置換プロセスを示す断面図である。It is sectional drawing which shows the replacement process of the rinse liquid and carbon dioxide by the microstructure drying apparatus which concerns on this invention. 本発明の加熱源の加熱時間と温度を示す状態図である。It is a state figure which shows the heating time and temperature of the heating source of this invention. 半導体装置の微細パターンの倒れ現象を示す模式図である。It is a schematic diagram which shows the collapse phenomenon of the fine pattern of a semiconductor device. 半導体装置の微細パターンの倒れ現象を説明する模式図である。It is a schematic diagram explaining the collapse phenomenon of the fine pattern of a semiconductor device. 二酸化炭素の状態図である。It is a phase diagram of carbon dioxide.

符号の説明Explanation of symbols

100…ボンベ、101…高圧ポンプ、102…フィルタ、103…高圧乾燥処理容器、104…バルブ、105…調節弁、106…ホルダ、107…被乾燥物、200…加熱源、201…制御回路ユニット、300、501…リンス液、301…液体二酸化炭素、302…状態変化した液体、400…パターン、500…曲げ力、502…空気。
100 ... bomb, 101 ... high pressure pump, 102 ... filter, 103 ... high pressure drying container, 104 ... valve, 105 ... control valve, 106 ... holder, 107 ... object to be dried, 200 ... heating source, 201 ... control circuit unit, 300, 501 ... rinsing liquid, 301 ... liquid carbon dioxide, 302 ... changed liquid, 400 ... pattern, 500 ... bending force, 502 ... air.

Claims (16)

高圧容器内の保持手段に被処理物を載置し、前記高圧容器内に溶媒となる常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理装置において、前記保持手段は前記被乾燥物を加熱する複数の独立した加熱源を有する加熱手段を備えたことを特徴とする超臨界流体処理装置。   An object to be processed is placed on a holding means in a high-pressure vessel, and a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure is introduced into the high-pressure vessel in a liquid or supercritical state. In the supercritical fluid processing apparatus for cleaning or drying an object, the holding means includes a heating means having a plurality of independent heating sources for heating the object to be dried. 請求項1において、前記溶媒を貯蔵容器から圧縮して送出する送出手段と、該送出された前記溶媒を濾過する濾過手段と、該濾過された前記溶媒を前記高圧容器内に導入し前記洗浄又は乾燥後に排出させる排出手段とを有することを特徴とする超臨界流体処理装置。   2. The sending means for compressing and sending the solvent from a storage container according to claim 1, a filtering means for filtering the sent solvent, and introducing the filtered solvent into the high-pressure vessel for the washing or A supercritical fluid processing apparatus comprising: a discharge means for discharging after drying. 請求項1又は2において、前記保持手段は、前記被処理物を搭載する搭載面の平面形状が丸型又は角型であることを特徴とする超臨界流体処理装置。   3. The supercritical fluid processing apparatus according to claim 1, wherein the holding unit has a round shape or a square shape as a planar shape of a mounting surface on which the workpiece is mounted. 請求項1〜3のいずれかにおいて、前記加熱源は、前記被処理物を搭載する搭載面における平面形状の中心に対して放射状に均等に配置され、各加熱源は前記搭載面における平面形状が同じであることを特徴とする超臨界流体処理装置。   4. The heating source according to claim 1, wherein the heating sources are evenly arranged radially with respect to the center of the planar shape on the mounting surface on which the workpiece is mounted, and each heating source has a planar shape on the mounting surface. A supercritical fluid processing apparatus characterized by being the same. 請求項1〜4のいずれかにおいて、前記加熱源の各々をON及びOFFする時間とそれらのインターバル時間を任意に設定する設定手段を有することを特徴とする微細構造乾燥装置。   5. The fine structure drying apparatus according to claim 1, further comprising a setting unit that arbitrarily sets a time for turning on and off each of the heating sources and an interval time thereof. 請求項5において、前記設定手段は、前記ON及びOFFにする周期を2Hz〜3kHzに調整可能であることを特徴とする微細構造乾燥装置。   6. The fine structure drying apparatus according to claim 5, wherein the setting means is capable of adjusting the ON and OFF cycle to 2 Hz to 3 kHz. 請求項1〜6のいずれかにおいて、前記加熱源がヒータ又は高周波誘導コイルであることを特徴とする微細構造乾燥装置。   7. The microstructure drying apparatus according to claim 1, wherein the heating source is a heater or a high frequency induction coil. 請求項1〜7のいずれかにおいて、前記保持手段は、温度センサーを有することを特徴とする超臨界流体処理装置。   The supercritical fluid processing apparatus according to claim 1, wherein the holding unit includes a temperature sensor. 高圧容器内の保持手段にリンス液に浸漬又は濡れた状態の被処理物を載置し、前記高圧容器内に溶媒となる常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で導入して前記被処理物を洗浄又は乾燥させる超臨界流体処理方法において、前記被乾燥物を部分的に加熱しながら前記リンス液を前記流体によって置換することを特徴とする超臨界流体処理方法。   An object to be treated immersed or wet in a rinsing liquid is placed on the holding means in the high-pressure vessel, and a fluid that is a gas at normal temperature and normal pressure and a liquid that is liquid under high pressure is used as a solvent in the high-pressure vessel. A supercritical fluid processing method for cleaning or drying the object to be processed by introduction in a critical state, wherein the rinse liquid is replaced with the fluid while partially heating the object to be dried. Processing method. 請求項9において、前記部分的な個々の加熱を前記被処理物を載置する搭載面において均等に分割された領域毎において行うことを特徴とする微細構造乾燥方法。   10. The fine structure drying method according to claim 9, wherein the partial individual heating is performed for each of the equally divided regions on the mounting surface on which the workpiece is placed. 請求項9又は10において、前記個々の部分的な加熱の周期を2Hz〜3kHzに調整すると共に、前記個々の加熱の順序、OFFにする時間及びインターバル時間を任意に設定するすることを特徴とする微細構造乾燥方法。   In Claim 9 or 10, the period of the individual partial heating is adjusted to 2 Hz to 3 kHz, and the order of the individual heating, the time to turn off, and the interval time are arbitrarily set. Microstructure drying method. 請求項9〜11のいずれかにおいて、前記部分的な加熱を、前記平面形状の中心に対して放射状に均等に分配した領域毎で行うと共に、該各加熱を前記被乾燥物の搭載面において同じ平面形状で行うことを特徴とする超臨界流体処理方法。   In any one of Claims 9-11, while performing the said partial heating for every area | region uniformly distributed radially with respect to the center of the said planar shape, this each heating is the same in the mounting surface of the said to-be-dried material A supercritical fluid processing method characterized by being performed in a planar shape. 請求項9〜12のいずれかにおいて、前記均等に分配された各領域における前記各加熱のON時間が他の領域の加熱のON時間と重複しないように前記各加熱を順次行うか、又は各領域毎に時間差を設けて順次行い、前記被乾燥物近傍の前記溶媒の温度を局部的に変化させ、前記リンス液及び溶媒に密度及び渦流又は対流による状態変化を発生せることを特徴とする超臨界流体処理方法。   In any one of Claims 9-12, each said heating is performed sequentially so that the ON time of each said heating in each said equally distributed area may not overlap with the ON time of the heating of another area | region, or each area | region Supercriticality characterized in that it is sequentially performed with a time difference every time, and the temperature of the solvent in the vicinity of the material to be dried is locally changed, and the rinse liquid and the solvent generate a state change due to density and vortex or convection. Fluid processing method. 請求項9〜13のいずれかにおいて、前記被処理物の温度を検出し、該検出された温度に基づいて前記加熱を行うことを特徴とする超臨界流体処理方法。   The supercritical fluid processing method according to claim 9, wherein the temperature of the object to be processed is detected, and the heating is performed based on the detected temperature. 請求項9〜14のいずれかにおいて、前記溶媒を圧縮して濾過し、該濾過された前記溶媒を前記高圧容器内に導入し前記洗浄又は乾燥後に排出させることを特徴とする超臨界流体処理方法。   The supercritical fluid processing method according to any one of claims 9 to 14, wherein the solvent is compressed and filtered, and the filtered solvent is introduced into the high-pressure vessel and discharged after the washing or drying. . 請求項9〜15のいずれかにおいて、前記被処理物がリンス液に浸漬又は濡れた状態で前記高圧容器内に設置され、前記高圧容器内に導入された前記流体によって前記被処理物から前記リンス液を除去すると共に、前記被処理物を乾燥させることを特徴とする超臨界流体処理方法。   16. The rinsing apparatus according to claim 9, wherein the object to be processed is placed in the high-pressure vessel in a state of being immersed or wet in a rinsing liquid, and the rinsing is performed from the object to be processed by the fluid introduced into the high-pressure vessel. A supercritical fluid processing method comprising removing a liquid and drying the object to be processed.
JP2003412702A 2003-12-11 2003-12-11 Supercritical fluid processing apparatus and method Expired - Fee Related JP4307973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412702A JP4307973B2 (en) 2003-12-11 2003-12-11 Supercritical fluid processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412702A JP4307973B2 (en) 2003-12-11 2003-12-11 Supercritical fluid processing apparatus and method

Publications (2)

Publication Number Publication Date
JP2005175178A true JP2005175178A (en) 2005-06-30
JP4307973B2 JP4307973B2 (en) 2009-08-05

Family

ID=34733029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412702A Expired - Fee Related JP4307973B2 (en) 2003-12-11 2003-12-11 Supercritical fluid processing apparatus and method

Country Status (1)

Country Link
JP (1) JP4307973B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161165A (en) * 2009-01-07 2010-07-22 Tokyo Electron Ltd Supercritical processing apparatus, substrate processing system, and supercritical processing method
WO2014071552A1 (en) * 2012-11-06 2014-05-15 中国科学院微电子研究所 Microwave excited supercritical drying apparatus and method therefor
KR20210007282A (en) * 2019-07-10 2021-01-20 엘지전자 주식회사 Drying apparatus and method of organic solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572746B1 (en) * 2011-05-30 2015-11-27 도쿄엘렉트론가부시키가이샤 Method for treating substrate, device for treating substrate and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161165A (en) * 2009-01-07 2010-07-22 Tokyo Electron Ltd Supercritical processing apparatus, substrate processing system, and supercritical processing method
KR101384320B1 (en) 2009-01-07 2014-04-14 도쿄엘렉트론가부시키가이샤 Supercritical processing apparatus, substrate processing system and supercritical processing method
WO2014071552A1 (en) * 2012-11-06 2014-05-15 中国科学院微电子研究所 Microwave excited supercritical drying apparatus and method therefor
KR20210007282A (en) * 2019-07-10 2021-01-20 엘지전자 주식회사 Drying apparatus and method of organic solution
KR102287457B1 (en) 2019-07-10 2021-08-10 엘지전자 주식회사 Drying apparatus of organic solution

Also Published As

Publication number Publication date
JP4307973B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4546314B2 (en) Fine structure drying method and apparatus
JP4133209B2 (en) High pressure processing equipment
JP3965693B2 (en) Fine structure drying method and apparatus and high-pressure vessel thereof
JP5614418B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
JP7018792B2 (en) Board processing method and board processing equipment
JP2009038282A (en) Substrate treating method, substrate treating device, program, recording medium, and displacing agent
JP2007049065A (en) Super-critical processor
JP2010129809A (en) Substrate processing method, and substrate processing apparatus
JP2011249454A (en) Supercritical drying method
CN107154371A (en) Liquid processing method, substrate board treatment and storage medium
JP2010503236A (en) Substrate cleaning method and substrate cleaning apparatus
JP4307973B2 (en) Supercritical fluid processing apparatus and method
JP2004311507A (en) Method, device, and system for drying microstructure
JP3782366B2 (en) Supercritical processing method and supercritical processing apparatus
TWI312538B (en) Wet cleaning cavitation system and method to remove particulate wafer contamination
JP4372590B2 (en) Fine structure drying method and apparatus
JP4247087B2 (en) Fine structure drying method and apparatus
JP2006332215A (en) Method of processing microstructure and apparatus thereof
JP6895818B2 (en) Treatment liquid supply device and treatment liquid supply method
JP2012018962A (en) Method and apparatus for processing substrate
JP4252295B2 (en) Metal mask cleaning method and apparatus
JP2020170808A (en) Processing liquid generation device, substrate processing device, processing liquid generation method and substrate processing method
JP3861798B2 (en) Resist development processing apparatus and method
TWI291714B (en) Supercritical fluid washing method and system thereof
KR101014520B1 (en) The apparatus and method of single wafer cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees