JP2005174816A - Thermosensitive operation element - Google Patents

Thermosensitive operation element Download PDF

Info

Publication number
JP2005174816A
JP2005174816A JP2003415067A JP2003415067A JP2005174816A JP 2005174816 A JP2005174816 A JP 2005174816A JP 2003415067 A JP2003415067 A JP 2003415067A JP 2003415067 A JP2003415067 A JP 2003415067A JP 2005174816 A JP2005174816 A JP 2005174816A
Authority
JP
Japan
Prior art keywords
electrode
contact
bimetal
movable
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415067A
Other languages
Japanese (ja)
Inventor
Kuniyuki Ota
晋志 大田
Koichi Kise
浩一 木瀬
Akihiko Matsuo
昭彦 松生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003415067A priority Critical patent/JP2005174816A/en
Publication of JP2005174816A publication Critical patent/JP2005174816A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermally Actuated Switches (AREA)
  • Contacts (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosensitive operation element capable of cutting off a circuit in response to a temperature rise and an excessive current. <P>SOLUTION: A bimetal 8 is installed between a fixed electrode 2 and a movable electrode 3, and an inactive gas is enclosed in a casing 10. Oxidization and contamination of a contact part can be prevented by enclosing the gas; when the bimetal 8 is deformed by temperature rise, the movable electrode 3 is pressed up to separate a contact 3a from the fixed electrode 2; and when this thermosensitive operation element 1 is installed with the movable electrode 3 and the fixed electrode 2 serially connected to a circuit, the circuit can be cut off when temperature rises. When an excessive current flows through the circuit, the movable electrode 3 generates heat by its electric resistance to heat and deform the bimetal 8, whereby the contact 3a is separated from the fixed electrode 2 to cut off the excessive current. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、温度上昇及び過大電流により作動して回路接続を遮断する感熱作動素子に関するものである。   The present invention relates to a heat-sensitive actuating element that is activated by an increase in temperature and an excessive current to interrupt circuit connection.

温度上昇に感応して回路遮断する素子としてサーモスタットが知られており、小型のサーモスタットが二次電池を用いた電池パックに適用されている。電池パックにおいては、過充電等の原因によって二次電池が温度上昇したとき、上昇温度に感応したサーモスタットによって充電回路を遮断し、二次電池が過度の温度上昇によって発火に至るような事故を防止する。   A thermostat is known as an element that cuts off a circuit in response to a temperature rise, and a small thermostat is applied to a battery pack using a secondary battery. In the battery pack, when the secondary battery temperature rises due to overcharge, etc., the charging circuit is shut off by a thermostat sensitive to the rising temperature, preventing accidents where the secondary battery is ignited due to excessive temperature rise To do.

このような電池パックにサーモスタットを適用した従来技術として、スイッチ構造を形成する可動板にバイメタルを取り付け、温度上昇によりバイメタルが変形することにより可動板が固定板から離れるようにしたサーマルプロテクタが知られている(特許文献1参照)。   As a conventional technique that applies a thermostat to such a battery pack, a thermal protector is known in which a bimetal is attached to a movable plate forming a switch structure, and the movable plate is separated from the fixed plate by deformation of the bimetal due to a temperature rise. (See Patent Document 1).

しかし、サーモスタットにより充電回路が遮断されると、二次電池の温度は低下するのでサーモスタットは充電回路を閉じるので、再び充電電流が流れて過充電状態となる。この課題を解決するために、サーモスタットに加熱抵抗を並列接続し、サーモスタットと加熱抵抗とを一体化した自己保持型のサーモスタットが知られている。この自己保持型のサーモスタットでは、二次電池の温度上昇に感応したサーモスタットが充電回路を開くと、並列接続された加熱抵抗に電流が流れるようになり、加熱抵抗が発熱することによる熱でサーモスタットが加熱され、回路遮断した状態が維持される。加熱抵抗の抵抗値は大きく設定されるので、サーモスタットが回路遮断した状態に自己保持させるための電流は小さく、その電流によって二次電池が過充電状態となることはない(特許文献2参照)。
特開平11−260220号公報(第2〜3頁、図2) 特許第3416229号公報(第2〜3頁、図8)
However, when the charging circuit is interrupted by the thermostat, the temperature of the secondary battery is lowered, and the thermostat closes the charging circuit, so that the charging current flows again and the battery is overcharged. In order to solve this problem, there is known a self-holding thermostat in which a heating resistor is connected in parallel to a thermostat and the thermostat and the heating resistor are integrated. In this self-holding thermostat, when a thermostat that responds to the temperature rise of the secondary battery opens the charging circuit, current flows through the heating resistor connected in parallel, and the thermostat is heated by the heat generated by the heating resistor. Heated and maintained in a circuit interrupted state. Since the resistance value of the heating resistor is set to be large, the current required for the thermostat to keep itself in a state where the thermostat is cut off is small, and the secondary battery is not overcharged by the current (see Patent Document 2).
Japanese Patent Laid-Open No. 11-260220 (pages 2 and 3, FIG. 2) Japanese Patent No. 3416229 (pages 2 and 3, FIG. 8)

しかしながら、サーモスタットは接点部分の開閉により回路を開閉する素子であるため、経時変化により接点に酸化物や汚れなどの不導体層が形成されると接触抵抗が増加する。電池パックに適用されるサーモスタットは充放電回路と直列に接続されるため、充放電電流が接点部分を流れ、電流量が大きくなると接触抵抗の増加は無駄な熱エネルギーの増加に伴う電力損失をまねき、電池パックの内部抵抗を増加させる問題があった。   However, since the thermostat is an element that opens and closes a circuit by opening and closing the contact portion, contact resistance increases when a non-conductive layer such as oxide or dirt is formed on the contact due to change over time. Since the thermostat applied to the battery pack is connected in series with the charge / discharge circuit, the charge / discharge current flows through the contact part, and when the amount of current increases, the increase in contact resistance leads to power loss associated with an increase in wasted thermal energy. There was a problem of increasing the internal resistance of the battery pack.

本発明が目的とするところは、接点部分に経時変化が発生することを抑制する構造を備えた感熱作動素子を提供することにある。   An object of the present invention is to provide a heat-sensitive actuating element having a structure that suppresses a change with time in a contact portion.

上記目的を達成するために本発明に係る感熱作動素子は、筐体内に少なくとも、固定電極と、可動接点が前記固定電極に接触する状態と離隔する状態とに変形する可動電極と、温度上昇により前記可動接点が固定電極に接触した状態から離隔した状態に可動電極に変形作用を及ぼすバイメタルとを収容し、固定電極及び可動電極につながるリード部分を外部に引き出し、不活性ガスを封入して前記筐体内が封止されてなることを特徴とする。   In order to achieve the above object, a thermosensitive operating element according to the present invention includes at least a fixed electrode, a movable electrode that is deformed into a state in which the movable contact is in contact with the fixed electrode, and a state in which the movable contact is separated from the fixed electrode, and a temperature rise. The movable contact accommodates a bimetal that exerts a deformation action on the movable electrode in a state separated from the state in which the movable contact is in contact with the fixed electrode, draws out the lead portion connected to the fixed electrode and the movable electrode to the outside, and encloses the inert gas, The inside of the housing is sealed.

上記構成によれば、温度上昇を検知する対象物に感熱作動素子を取り付けると、対象物からの伝熱によりバイメタルが加熱されて変形し、可動電極に変形を及ぼすので、可動接点が固定電極から離隔した状態になり、固定電極及び可動電極の各リードを回路と直列に接続しておくと、温度上昇により回路が遮断される。可動電極に変形が及ばない温度状態では可動接点と固定電極との間の接続は、回路接続に損失が生じない接触抵抗に維持されることが要求されるが、大気に曝された状態では各接点に酸化物や汚れが生じて接触抵抗が増加する経時変化が生じることになるので、本構成のように筐体内に不活性ガスが封入されていると、各接点に経時変化が生じる状態とはならない。   According to the above configuration, when a thermosensitive operating element is attached to an object for detecting an increase in temperature, the bimetal is heated and deformed by heat transfer from the object, and the movable electrode is deformed. If the leads of the fixed electrode and the movable electrode are connected in series with the circuit in a separated state, the circuit is interrupted due to the temperature rise. In the temperature state where the movable electrode is not deformed, the connection between the movable contact and the fixed electrode is required to be maintained at a contact resistance that does not cause a loss in circuit connection. As the contact resistance increases with time due to oxides and dirt on the contacts, a change with time will occur at each contact if an inert gas is enclosed in the housing as in this configuration. Must not.

上記構成において、可動電極をバイメタルによって形成することができ、自らの熱変形により可動接点を固定電極から離隔させて回路遮断することができる。   In the above configuration, the movable electrode can be formed of bimetal, and the circuit can be interrupted by separating the movable contact from the fixed electrode by its own thermal deformation.

また、可動電極は過大電流が流れることにより発熱する材料によって形成することにより、短絡等による過大電流によって発熱してバイメタルを加熱することができるので、温度上昇に加えて過大電流によってもバイメタルの変形により回路遮断する感熱作動素子とすることができる。過大電流にも対応できる可動電極の材質として、SUS304が好適なものとなる。   In addition, since the movable electrode is made of a material that generates heat when an excessive current flows, the bimetal can be heated by heating due to an excessive current due to a short circuit, etc. Thus, a heat-sensitive operating element that cuts off the circuit can be obtained. SUS304 is a suitable material for the movable electrode that can cope with an excessive current.

また、筐体内への不活性ガスの封止は、少なくとも筐体内の封止を不活性ガスの雰囲気下で行うことにより可能となり、感熱作動素子を不活性ガスの雰囲気下で組み立てることによっても可能である。   In addition, the inert gas can be sealed in the casing by at least sealing the casing in an inert gas atmosphere, and it is also possible to assemble the thermal element in an inert gas atmosphere. It is.

本発明によれば、温度上昇あるいは過大電流に感応して回路遮断する感熱作動素子の経時変化が抑制され、平常時には回路接続に損失を生じさせない接触抵抗で回路接続をなし、温度上昇が発生したときや過大電流が流れたときに回路遮断する感熱作動に変化が生じず、電池パック等の安全対策を確実に講じることができる。   According to the present invention, the change over time of the thermosensitive operating element that shuts down the circuit in response to a temperature rise or an excessive current is suppressed, and the circuit connection is made with a contact resistance that does not cause a loss in the circuit connection under normal conditions, resulting in a temperature rise. No change occurs in the heat sensitive operation that interrupts the circuit when an overcurrent or excessive current flows, and safety measures such as battery packs can be taken reliably.

図1(a)は、本実施形態に係る感熱作動素子1の構成を示すもので、図2に分解して示す構成要素を用いて組み立てられたものである。この感熱作動素子1は、リチウムイオン二次電池を用いた電池パックに適用するのに好適な構造に構成したもので、二次電池が異常温度上昇したとき、あるいは充放電回路に外部短絡等による過大電流が流れたとき、充放電回路を遮断して二次電池を保護する目的に使用される。以下、図1及び図2を参照して詳細な構造及び動作について説明する。   Fig.1 (a) shows the structure of the thermosensitive operating element 1 which concerns on this embodiment, and was assembled using the component shown disassembled in FIG. This heat-sensitive actuating element 1 has a structure suitable for application to a battery pack using a lithium ion secondary battery. When the secondary battery rises abnormally or due to an external short circuit or the like in the charge / discharge circuit. When an excessive current flows, it is used for the purpose of blocking the charge / discharge circuit and protecting the secondary battery. The detailed structure and operation will be described below with reference to FIGS.

図1、図2に示すように、感熱作動素子1の筐体10を構成する台ケース5は、樹脂成形により固定電極2及び可動電極リード4をインサートし、中央に構成部材を収容する部材収容室11が形成されている。この部材収容室11の中央に固定電極2の表面を露出させた円形凹部11aが形成されており、この中に円盤状に形成したPTC素子9を配し、その上に円弧状に湾曲させたバイメタル8を積み重ね、バイメタル8上に可動電極3を配設する。可動電極3に設けられた固定翼部3bは台ケース5上に形成された一対の位置決め枠12に嵌り合うので、可動電極3は位置決め配置され、可動電極3の一端は位置決め枠12の中に露出する可動電極リード4にスポット溶接される。このように構成部材が取り付けられた台ケース5上に、樹脂形成により押圧板7をインサートして形成された蓋ケース6を被せ、蓋ケース6と台ケース5との間を超音波溶接することにより、台ケース5に蓋ケース6を接合した筐体10の部材収容室11に構成部材を封止して感熱作動素子1が形成される。   As shown in FIGS. 1 and 2, the base case 5 constituting the casing 10 of the thermosensitive operating element 1 is a member housing in which the fixed electrode 2 and the movable electrode lead 4 are inserted by resin molding and the constituent members are housed in the center. A chamber 11 is formed. A circular recess 11a in which the surface of the fixed electrode 2 is exposed is formed in the center of the member accommodating chamber 11, and a PTC element 9 formed in a disk shape is disposed therein, and is curved in an arc shape thereon. The bimetal 8 is stacked, and the movable electrode 3 is disposed on the bimetal 8. Since the fixed wing 3b provided on the movable electrode 3 fits a pair of positioning frames 12 formed on the base case 5, the movable electrode 3 is positioned and disposed, and one end of the movable electrode 3 is placed in the positioning frame 12. Spot welding is performed on the exposed movable electrode lead 4. The lid case 6 formed by inserting the pressing plate 7 by resin formation is put on the base case 5 to which the constituent members are attached in this way, and ultrasonic welding is performed between the lid case 6 and the base case 5. As a result, the structural member is sealed in the member housing chamber 11 of the housing 10 in which the lid case 6 is joined to the base case 5, thereby forming the heat-sensitive operating element 1.

図1(a)に示すように、台ケース5内に配設された可動電極3は、蓋ケース6が被せられることにより、その内面にインサートされた押圧板7の突出部により中央部分が押圧され、先端部に設けられた可動接点3aが固定電極2に接触した状態となる。   As shown in FIG. 1 (a), the movable electrode 3 disposed in the base case 5 is pressed at the center portion by the protruding portion of the pressing plate 7 inserted on the inner surface of the movable electrode 3 when the cover case 6 is covered. Then, the movable contact 3 a provided at the tip is brought into contact with the fixed electrode 2.

上記感熱作動素子1の組み立て工程は、不活性ガスが満たされたチャンバ内で行うことにより、完成した感熱作動素子1の筐体10内に不活性ガスが封入された状態が得られる。また、構成要素を配した台ケース5に蓋ケース6を接合する工程のみを不活性ガスを満たしたチャンバ内で行っても筐体10内に不活性ガスを封入することができる。   The assembly process of the thermosensitive operating element 1 is performed in a chamber filled with an inert gas, whereby a state in which the inert gas is sealed in the housing 10 of the completed thermosensitive operating element 1 is obtained. Even if only the step of joining the lid case 6 to the base case 5 on which the components are arranged is performed in a chamber filled with an inert gas, the inert gas can be enclosed in the housing 10.

上記構成になる感熱作動素子1は、図3に示すように、電池パックA内に二次電池Bと直列に接続した状態にして配設される。感熱作動素子1の取り付けは、図4に示すように、二次電池Bの表面に絶縁紙Cを介して台ケース5の底面が当接するように取り付けられる。   As shown in FIG. 3, the heat-sensitive operating element 1 having the above-described configuration is disposed in a state of being connected in series with the secondary battery B in the battery pack A. As shown in FIG. 4, the heat-sensitive operating element 1 is attached so that the bottom surface of the base case 5 comes into contact with the surface of the secondary battery B via the insulating paper C.

二次電池Bが過充電状態になったときや、電池パックAが高温環境に曝されたとき、二次電池Bは温度上昇する。二次電池Bの熱は固定電極2及びPTC素子9を通じてバイメタル8に伝熱するので、バイメタル8が所定温度以上に加熱されたとき、図1(b)に示すように、バイメタル8は膨出方向を反転させるように変形する。バイメタル8は熱膨張率が異なる2種類の金属板を貼り合わせて形成されているため、温度上昇が所定温度以上になると両面の膨張率が異なることから膨出方向が反転する。   When the secondary battery B is overcharged or when the battery pack A is exposed to a high temperature environment, the temperature of the secondary battery B rises. Since the heat of the secondary battery B is transferred to the bimetal 8 through the fixed electrode 2 and the PTC element 9, when the bimetal 8 is heated to a predetermined temperature or more, the bimetal 8 swells as shown in FIG. Deform to reverse direction. Since the bimetal 8 is formed by bonding two types of metal plates having different thermal expansion coefficients, the expansion direction is reversed because the expansion coefficients of both surfaces are different when the temperature rise exceeds a predetermined temperature.

バイメタル8の膨出方向が反転すると、跳ね上った周縁部が可動電極3の先端側を押し上げるので、先端に設けられた可動接点3aは固定電極2から離れ、充放電回路が遮断され、過充電状態にあるときには過充電が停止され、高温環境に曝されているときには高温状態にある二次電池Bに充放電がなされることを防止することができる。可動電極3の可動接点3aが固定電極2から離れると、可動電極3からバイメタル8、PTC素子9を通じて固定電極2につながる電流経路が形成され、PTC素子9の抵抗値に対応する電流値の電流が流れる。PTC素子9は所定温度(トリップ温度)を越えると抵抗値が急増するトリップ状態となる特性を有しており、いったんトリップ状態になると電流が遮断されるまで抵抗値が高くなった状態が維持される。従って、高い抵抗値に電流が流れることによるジュール熱によってPTC素子9の温度上昇によりバイメタル8が加熱され、膨出方向が反転した状態が維持される。   When the bulging direction of the bimetal 8 is reversed, the jumped peripheral edge pushes up the distal end side of the movable electrode 3, so that the movable contact 3 a provided at the distal end is separated from the fixed electrode 2 and the charge / discharge circuit is interrupted. Overcharging is stopped when in a charged state, and charging / discharging of the secondary battery B in a high temperature state can be prevented when exposed to a high temperature environment. When the movable contact 3 a of the movable electrode 3 moves away from the fixed electrode 2, a current path is formed from the movable electrode 3 to the fixed electrode 2 through the bimetal 8 and the PTC element 9, and a current having a current value corresponding to the resistance value of the PTC element 9. Flows. The PTC element 9 has a characteristic that a resistance value rapidly increases when a predetermined temperature (trip temperature) is exceeded. Once the trip state is reached, the resistance value is maintained until the current is cut off. The Therefore, the bimetal 8 is heated by the temperature rise of the PTC element 9 due to the Joule heat caused by the current flowing at a high resistance value, and the state where the bulging direction is reversed is maintained.

このPTC素子9による加熱でバイメタル8に反転状態が維持されるため、過充電状態が停止されて二次電池Bの温度が低下すると、それに伴ってバイメタル8の温度も低下して膨出方向が元の状態に反転し、可動電極3はその弾性により原状復帰して可動接点3aが固定電極2に接して図1(a)に示す状態となり、充放電回路は導通状態となり、再び充電が開始されて過充電が継続される状態が繰り返されることにならない。   Since the inversion state is maintained in the bimetal 8 by the heating by the PTC element 9, when the overcharge state is stopped and the temperature of the secondary battery B is lowered, the temperature of the bimetal 8 is also lowered accordingly, and the bulging direction is changed. Inverted to the original state, the movable electrode 3 returns to its original state due to its elasticity, and the movable contact 3a comes into contact with the fixed electrode 2 to be in the state shown in FIG. 1A, the charge / discharge circuit becomes conductive, and charging starts again. Thus, the state in which overcharge continues is not repeated.

また、電池パックAの外部入出力端子Dの正極、負極間が外部短絡したような場合に、二次電池Bから過大電流が流れて二次電池Bは温度上昇する。それ以前に、感熱作動素子1に過大電流が流れると、可動電極3がその電気抵抗によりジュール熱を発して温度上昇する。本構成においては可動電極3の材質として、SUS304が適用されており、一般にこの種の部材に適用される銅合金の電気抵抗が約7mΩなのに対して、SUS304では電気抵抗が約40mΩとなるため、過大電流が流れたときの発熱量が大きくなる。可動電極3の発熱は、それに一部が接しているバイメタル8に伝熱し、バイメタル8が所定温度以上に加熱されたとき、図1(b)に示すように、バイメタル8は膨出方向を反転させるように変形する。   Further, when the positive and negative electrodes of the external input / output terminal D of the battery pack A are externally short-circuited, an excessive current flows from the secondary battery B, and the temperature of the secondary battery B rises. Before that, when an excessive current flows through the heat-sensitive operating element 1, the movable electrode 3 generates Joule heat due to its electric resistance, and the temperature rises. In this configuration, SUS304 is applied as the material of the movable electrode 3, and the electrical resistance of a copper alloy generally applied to this type of member is about 7 mΩ, whereas the electrical resistance of SUS304 is about 40 mΩ. The amount of heat generated when excessive current flows increases. The heat generated by the movable electrode 3 is transferred to the bimetal 8 that is partially in contact therewith, and when the bimetal 8 is heated to a predetermined temperature or more, the bimetal 8 reverses the bulging direction as shown in FIG. It transforms so that

バイメタル8の膨出方向が反転すると、先と同様に跳ね上った周縁部が可動電極3の先端側を押し上げるので、先端に設けられた可動接点3aは固定電極2から離れ、充放電回路に流れる過大電流は遮断される。可動接点3aが固定電極2から離れると、可動電極3からバイメタル8、PTC素子9を通じて固定電極2につながる電流経路が形成され、PTC素子9の抵抗値に対応する電流値の電流が流れる。PTC素子9は高い抵抗値に電流が流れることによるジュール熱によって温度上昇するのでバイメタル8が加熱され、膨出方向が反転した状態が維持される。   When the bulging direction of the bimetal 8 is reversed, the peripheral edge that has jumped up pushes up the distal end side of the movable electrode 3 in the same manner as before, so that the movable contact 3 a provided at the distal end is separated from the fixed electrode 2 and is connected to the charge / discharge circuit. The excessive current that flows is cut off. When the movable contact 3 a is separated from the fixed electrode 2, a current path is formed from the movable electrode 3 to the fixed electrode 2 through the bimetal 8 and the PTC element 9, and a current having a current value corresponding to the resistance value of the PTC element 9 flows. Since the temperature of the PTC element 9 rises due to Joule heat caused by current flowing at a high resistance value, the bimetal 8 is heated and the state where the bulging direction is reversed is maintained.

このPTC素子9による加熱でバイメタル8に反転状態が維持されるため、過大電流が阻止されて二次電池Bの温度が低下すると、それに伴ってバイメタル8の温度も低下して膨出方向が元の状態に反転し、可動電極3はその弾性により原状復帰して可動接点3aが固定電極2に接して図1(a)に示す状態となり、充放電回路は導通状態となり、再び過大電流が流れる状態が繰り返されることにならない。過大電流が流れる外部短絡等の原因が排除されると、充放電回路には電流が流れなくなるので、PTC素子9はトリップ状態から解放され、元の低い抵抗値の状態に復帰する。   Since the inversion state is maintained in the bimetal 8 by the heating by the PTC element 9, when the excessive current is prevented and the temperature of the secondary battery B is lowered, the temperature of the bimetal 8 is also lowered accordingly, and the bulging direction is the original. The movable electrode 3 returns to its original state due to its elasticity, and the movable contact 3a comes into contact with the fixed electrode 2 to be in the state shown in FIG. 1 (a), the charge / discharge circuit becomes conductive, and an excessive current flows again. The state will not be repeated. When a cause such as an external short circuit in which an excessive current flows is eliminated, no current flows in the charge / discharge circuit, so that the PTC element 9 is released from the trip state and returns to the original low resistance state.

尚、上記構成においては、可動電極3の可動接点3aが固定電極2から離隔した状態を維持するためにPTC素子9を適用しているが、これに代えて所定抵抗値を有する抵抗器を用いても同様の効果が得られる。また、可動接点3aが接触する固定電極2上に固定接点を設けると、より接触抵抗が小さく安定した接触が得られるように構成することができる。   In the above configuration, the PTC element 9 is applied in order to maintain the movable contact 3a of the movable electrode 3 separated from the fixed electrode 2. Instead, a resistor having a predetermined resistance value is used. However, the same effect can be obtained. In addition, when a fixed contact is provided on the fixed electrode 2 with which the movable contact 3a contacts, it can be configured such that the contact resistance is smaller and stable contact can be obtained.

上記のように可動電極3の材質として、平常使用時において流れる充放電電流によって大きな損失が生じない電気抵抗を有し、適度な弾性を備えているものを選択することにより、温度上昇と過大電流とに感応する感熱作動素子1に構成することができる。   As described above, by selecting the material of the movable electrode 3 that has an electric resistance that does not cause a large loss due to the charge / discharge current that flows during normal use and has appropriate elasticity, the temperature rise and the excessive current It is possible to configure the thermosensitive operating element 1 that is sensitive to the above.

また、より簡易な構成でよい場合には、可動電極3そのものをバイメタル材料により形成することができる。この構成では感熱作動素子1が温度上昇すると、バイメタル材料によって形成された可動電極3が変形し、先端に設けられた可動接点3aが固定電極2から離れて回路遮断する。   Further, when a simpler configuration is sufficient, the movable electrode 3 itself can be formed of a bimetal material. In this configuration, when the temperature of the thermosensitive operating element 1 rises, the movable electrode 3 formed of the bimetal material is deformed, and the movable contact 3a provided at the tip is separated from the fixed electrode 2 and the circuit is interrupted.

以上説明した実施形態は電池パックに適用するのに好適な構成について説明したが、これに限定されるものではなく、温度上昇と過大電流とに感応して回路遮断する用途に広く適用できることは言うまでもない。   The embodiment described above has been described with respect to a configuration suitable for application to a battery pack. However, the present invention is not limited to this, and it is needless to say that the embodiment can be widely applied to applications in which a circuit is cut in response to a temperature rise and an excessive current. Yes.

本発明に係る感熱作動素子は、温度上昇及び/又は過大電流によって作動する構成部材を収容した筐体の内部空間に不活性ガスが封入されているので、接点部分に酸化物や汚れが発生することが抑制され、経年変化が少ない感熱作動素子を構成することができる。   In the heat-sensitive actuating element according to the present invention, the inert gas is sealed in the internal space of the housing that accommodates the component that operates due to temperature rise and / or excessive current, so that oxide and dirt are generated at the contact portion. Therefore, it is possible to configure a heat-sensitive operating element with little secular change.

実施形態に係る感熱作動素子の構成を(a)の平常時、(b)の作動時の状態で示す断面図。Sectional drawing which shows the structure of the thermosensitive operating element which concerns on embodiment in the state at the time of the normal time of (a), and (b). 同上感熱作動素子の構成要素を分解して示す分解斜視図。The disassembled perspective view which decomposes | disassembles and shows the component of a thermosensitive operating element same as the above. 電池パックに適用した例を示す回路図。The circuit diagram which shows the example applied to the battery pack. 電池パックに対する取り付け状態を示す側面図。The side view which shows the attachment state with respect to a battery pack.

符号の説明Explanation of symbols

1 感熱作動素子
2 固定電極
3 可動電極
3a 可動接点
5 台ケース
6 蓋ケース
8 バイメタル
10 筐体
11 部材収容室
DESCRIPTION OF SYMBOLS 1 Thermal sensing element 2 Fixed electrode 3 Movable electrode 3a Movable contact 5 Case 6 Lid case 8 Bimetal 10 Case 11 Member accommodation chamber

Claims (5)

筐体内に少なくとも、固定電極と、可動接点が前記固定電極に接触する状態と離隔する状態とに変形する可動電極と、温度上昇により前記可動接点が固定電極に接触した状態から離隔した状態に可動電極に変形作用を及ぼすバイメタルとを収容し、固定電極及び可動電極につながるリード部分を外部に引き出し、不活性ガスを封入して前記筐体内が封止されてなることを特徴とする感熱作動素子。 In the housing, at least a fixed electrode, a movable electrode that is deformed into a state in which the movable contact is in contact with the fixed electrode, and a state in which the movable contact is separated from the fixed electrode, and a state in which the movable contact is separated from a state in which the movable contact is in contact with the fixed electrode due to temperature rise A thermosensitive actuating element comprising: a bimetal that exerts a deforming action on an electrode; a lead portion connected to the fixed electrode and the movable electrode is drawn to the outside; and the inside of the casing is sealed with an inert gas sealed . 可動電極は、バイメタルによって形成されてなる請求項1に記載の感熱作動素子。 The heat-sensitive operating element according to claim 1, wherein the movable electrode is made of bimetal. 可動電極は、過大電流が流れることにより発熱する材料によって形成されてなる請求項1に記載の感熱作動素子。 The heat-sensitive operating element according to claim 1, wherein the movable electrode is formed of a material that generates heat when an excessive current flows. 可動電極の材質が、SUS304である請求項3に記載の感熱作動素子。 The heat-sensitive operating element according to claim 3, wherein the movable electrode is made of SUS304. 少なくとも筐体内の封止が、不活性ガスの雰囲気下でなされる請求項1に記載の感熱作動素子。


The heat-sensitive operating element according to claim 1, wherein at least sealing in the housing is performed in an atmosphere of an inert gas.


JP2003415067A 2003-12-12 2003-12-12 Thermosensitive operation element Pending JP2005174816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415067A JP2005174816A (en) 2003-12-12 2003-12-12 Thermosensitive operation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415067A JP2005174816A (en) 2003-12-12 2003-12-12 Thermosensitive operation element

Publications (1)

Publication Number Publication Date
JP2005174816A true JP2005174816A (en) 2005-06-30

Family

ID=34734681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415067A Pending JP2005174816A (en) 2003-12-12 2003-12-12 Thermosensitive operation element

Country Status (1)

Country Link
JP (1) JP2005174816A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203277A (en) * 2004-01-16 2005-07-28 Komatsu Lite Seisakusho:Kk Safety device using bimetal
JP4592117B1 (en) * 2009-12-25 2010-12-01 株式会社イー・ピー・アイ Bimetal circuit breaker
WO2011105175A1 (en) * 2010-02-26 2011-09-01 株式会社小松ライト製作所 Breaker
JP2011249322A (en) * 2010-04-28 2011-12-08 Komatsulite Mfg Co Ltd Thermal protector
JP2012059369A (en) * 2010-09-03 2012-03-22 Komatsulite Mfg Co Ltd Breaker
JP2013504288A (en) * 2009-09-04 2013-02-04 リ−テック・バッテリー・ゲーエムベーハー Protection device for galvanicel
WO2013058362A1 (en) * 2011-10-20 2013-04-25 タイコエレクトロニクスジャパン合同会社 Protection device
JP2014078530A (en) * 2011-10-14 2014-05-01 Komatsulite Mfg Co Ltd Breaker, and safety circuit and secondary battery having the same
CN104681362A (en) * 2015-02-27 2015-06-03 上海长园维安电子线路保护有限公司 Miniaturization breaker with high strength structure
JP2017103118A (en) * 2015-12-02 2017-06-08 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit
JP2017208358A (en) * 2017-08-30 2017-11-24 ボーンズ株式会社 Breaker and safety circuit and secondary battery circuit including the same
WO2021024700A1 (en) * 2019-08-08 2021-02-11 ボーンズ株式会社 Breaker and safety circuit

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203277A (en) * 2004-01-16 2005-07-28 Komatsu Lite Seisakusho:Kk Safety device using bimetal
JP2013504288A (en) * 2009-09-04 2013-02-04 リ−テック・バッテリー・ゲーエムベーハー Protection device for galvanicel
JP4592117B1 (en) * 2009-12-25 2010-12-01 株式会社イー・ピー・アイ Bimetal circuit breaker
JP2011134624A (en) * 2009-12-25 2011-07-07 Ii P I:Kk Bimetal circuit breaker
JP2013149632A (en) * 2010-02-26 2013-08-01 Komatsulite Mfg Co Ltd Breaker and secondary battery equipped with the same
CN102782793B (en) * 2010-02-26 2015-10-21 小松电子部品有限公司 Circuit breaker
JP4980495B2 (en) * 2010-02-26 2012-07-18 株式会社小松ライト製作所 Breaker and secondary battery provided with the same
CN102782793A (en) * 2010-02-26 2012-11-14 小松电子部品有限公司 Breaker
JP2012238615A (en) * 2010-02-26 2012-12-06 Komatsulite Mfg Co Ltd Breaker and secondary battery provided with the same
JPWO2011105175A1 (en) * 2010-02-26 2013-06-20 株式会社小松ライト製作所 Breaker and secondary battery provided with the same
WO2011105175A1 (en) * 2010-02-26 2011-09-01 株式会社小松ライト製作所 Breaker
CN105304416B (en) * 2010-02-26 2017-11-14 小松电子部品有限公司 Breaker
CN105304416A (en) * 2010-02-26 2016-02-03 小松电子部品有限公司 Breaker
JP2011249322A (en) * 2010-04-28 2011-12-08 Komatsulite Mfg Co Ltd Thermal protector
JP2012059369A (en) * 2010-09-03 2012-03-22 Komatsulite Mfg Co Ltd Breaker
JP2014078530A (en) * 2011-10-14 2014-05-01 Komatsulite Mfg Co Ltd Breaker, and safety circuit and secondary battery having the same
US9715980B2 (en) 2011-10-14 2017-07-25 Komatsulite Mfg. Co., Ltd. Breaker, safety circuit provided with same, and secondary cell
WO2013058362A1 (en) * 2011-10-20 2013-04-25 タイコエレクトロニクスジャパン合同会社 Protection device
JPWO2013058362A1 (en) * 2011-10-20 2015-04-02 タイコエレクトロニクスジャパン合同会社 Protective device
TWI594284B (en) * 2011-10-20 2017-08-01 太谷電子日本合同公司 Protection device and a method for producing a protection device
CN104011823A (en) * 2011-10-20 2014-08-27 泰科电子日本合同会社 Protection device
US9831056B2 (en) 2011-10-20 2017-11-28 Littelfuse Japan G.K. Protection device
CN104681362A (en) * 2015-02-27 2015-06-03 上海长园维安电子线路保护有限公司 Miniaturization breaker with high strength structure
JP2017103118A (en) * 2015-12-02 2017-06-08 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit
JP2017208358A (en) * 2017-08-30 2017-11-24 ボーンズ株式会社 Breaker and safety circuit and secondary battery circuit including the same
WO2021024700A1 (en) * 2019-08-08 2021-02-11 ボーンズ株式会社 Breaker and safety circuit

Similar Documents

Publication Publication Date Title
JP3609741B2 (en) Pack battery
JP5490713B2 (en) Battery pack including PCM using safety member
JP4391016B2 (en) Current breaker for electrochemical battery
JP4629952B2 (en) Manufacturing method of secondary battery
JP3825583B2 (en) Thermal shutdown device and battery pack
JP2002313295A (en) Secondary cell pack
JP2005174816A (en) Thermosensitive operation element
JPH11154504A (en) Pressure breaking sensor
JP4815151B2 (en) Thermal protection switch device and battery pack
JP5315742B2 (en) battery
JP2005174815A (en) Thermosensitive operation element
JP2008016190A (en) Battery pack
JP5023411B2 (en) Battery device
JPH07153499A (en) Pack battery
WO2020045144A1 (en) Breaker, safety circuit, and secondary battery pack
JP2006100054A (en) Battery protector with pressure withstanding property
JP6057684B2 (en) Battery pack breaker, battery pack using this breaker, and temperature switch
JP2005174814A (en) Thermosensitive operation element
JP5904659B2 (en) Pack battery
JP2005124329A (en) Battery protector and battery pack using the same
JPH11297174A (en) Safety device
JP2013037858A (en) Battery pack with non-conduction type breaker
JP5901055B2 (en) breaker
JP2004179085A (en) Battery pack
JP2008159395A (en) Packed battery