JP2005174814A - Thermosensitive operation element - Google Patents

Thermosensitive operation element Download PDF

Info

Publication number
JP2005174814A
JP2005174814A JP2003415065A JP2003415065A JP2005174814A JP 2005174814 A JP2005174814 A JP 2005174814A JP 2003415065 A JP2003415065 A JP 2003415065A JP 2003415065 A JP2003415065 A JP 2003415065A JP 2005174814 A JP2005174814 A JP 2005174814A
Authority
JP
Japan
Prior art keywords
bimetal
movable electrode
circuit
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415065A
Other languages
Japanese (ja)
Inventor
Kuniyuki Ota
晋志 大田
Katsuyuki Shirasawa
勝行 白澤
Naohiro Hamao
尚宏 濱尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003415065A priority Critical patent/JP2005174814A/en
Publication of JP2005174814A publication Critical patent/JP2005174814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosensitive operation element capable of cutting off a circuit in response to a temperature rise and an excessive current. <P>SOLUTION: A bimetal 8 is installed in a space formed between a fixed electrode 2 and a movable electrode 3 brought into contact with the fixed electrode 2 through a contact 3a formed at one end. When the bimetal 8 is deformed by temperature rise, the movable electrode 3 is pressed up to separate the contact 3a from the fixed electrode 2. When this thermosensitive operation element 1 is installed with the movable electrode 3 and the fixed electrode 2 serially connected to a circuit, the circuit can be cut off when temperature rises. When an excessive current flows through the circuit, the movable electrode 3 generates heat by its electric resistance and the heat is transmitted to the bimetal 8, whereby the movable electrode 3 is separated from the fixed electrode 2 by its contact 3a by deformation of the bimetal 8, so that the excessive current flowing through the circuit is cut off. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、温度上昇及び過大電流により作動して回路接続を遮断する感熱作動素子に関するものである。   The present invention relates to a heat-sensitive actuating element that is activated by an increase in temperature and an excessive current to interrupt circuit connection.

温度上昇に感応して回路遮断する素子としてサーモスタットが知られており、小型のサーモスタットが二次電池を用いた電池パックに適用されている。電池パックにおいては、過充電等の原因によって二次電池が温度上昇したとき、上昇温度に感応したサーモスタットによって充電回路を遮断し、二次電池が過度の温度上昇によって発火に至るような事故を防止する。   A thermostat is known as an element that cuts off a circuit in response to a temperature rise, and a small thermostat is applied to a battery pack using a secondary battery. In the battery pack, when the secondary battery temperature rises due to overcharge, etc., the charging circuit is shut off by a thermostat sensitive to the rising temperature, preventing accidents where the secondary battery is ignited due to excessive temperature rise To do.

このような電池パックにサーモスタットを適用した従来技術として、スイッチ構造を形成する可動板にバイメタルを取り付け、温度上昇によりバイメタルが変形することにより可動板が固定板から離れるようにしたサーマルプロテクタが知られている(特許文献1参照)。
特開平11−260220号公報(第2〜3頁、図2)
As a conventional technology that applies a thermostat to such a battery pack, a thermal protector is known in which a bimetal is attached to a movable plate forming a switch structure, and the movable plate is separated from the fixed plate by deformation of the bimetal due to temperature rise. (See Patent Document 1).
Japanese Patent Laid-Open No. 11-260220 (pages 2 and 3, FIG. 2)

リチウムイオン二次電池を用いた電池パックにおいては、過充電、過放電及び過大電流から二次電池を保護する手段が設けられ、可燃性の有機溶媒を電解液として用いるリチウムイオン二次電池の安全性を確保する構成が採用されている。過充電や過放電に対しては電池保護回路により過充電や過放電を検出して充放電回路を遮断する手段が用いられ、外部短絡等による過大電流に対しては前記電池保護回路と共にPTC(Positive Temperature Coefficient)素子やサーモスタットを充放電回路と直列に接続した二重の対策が講じられている。この場合、前記PTCやサーモスタットにより、前記電池保護回路の故障による過充電や、不適切な充電器の接続や外部短絡による過電流が防止されるのは、それらが原因で電池温度が上昇し、その温度で充放電回路を遮断すべく動作するからである。このような構成は、リチウムイオン二次電池を用いて電池パックを構成する上で不可欠且つ有効な手段であるが、電池保護回路を構成した回路基板を二次電池と共にパッケージングし、配線処理する必要があり、電池パックの小型化やコストダウン化を阻害する要因ともなる。   In a battery pack using a lithium ion secondary battery, a means for protecting the secondary battery from overcharge, overdischarge and excessive current is provided, and the safety of the lithium ion secondary battery using a flammable organic solvent as an electrolyte. The structure which secures property is adopted. For overcharge and overdischarge, means for detecting overcharge and overdischarge by the battery protection circuit and shutting down the charge / discharge circuit is used. For overcurrent due to an external short circuit or the like, the PTC ( Double temperature measures have been taken in which a positive temperature coefficient) element or thermostat is connected in series with the charge / discharge circuit. In this case, the PTC or thermostat prevents overcharge due to failure of the battery protection circuit, overcurrent due to improper connection of the charger or external short circuit, the battery temperature rises due to them, It is because it operates to cut off the charge / discharge circuit at that temperature. Such a configuration is an indispensable and effective means for constructing a battery pack using a lithium ion secondary battery. The circuit board constituting the battery protection circuit is packaged together with the secondary battery, and the wiring process is performed. It is necessary, and it becomes a factor that hinders downsizing and cost reduction of the battery pack.

二次電池の性能向上に伴って前述のような電池保護構成は過剰構成ともなりかねず、徒にコストアップをまねくので、より簡易に電池保護がなし得る構成が要求されている。二次電池に悪影響を与える温度上昇や過大電流を検出して速やかに充放電回路を遮断することができれば、通常構成になる電池パックにおいては電池保護を果たせることになる。   As the performance of the secondary battery is improved, the battery protection configuration as described above may become an excessive configuration, which increases the cost. Therefore, a configuration that can easily protect the battery is required. If a temperature rise or an excessive current that adversely affects the secondary battery can be detected and the charge / discharge circuit can be promptly shut off, battery protection can be achieved in a battery pack having a normal configuration.

サーモスタットを用いることにより、所定値以上の電池温度及び所定値以上の充放電電流の両者に対して充放電回路を遮断する場合、サーモスタットはそれを構成するバイメタルが温度上昇により変形して回路を閉じる接点を開くように作用するものであるから、バイメタルに電流が流れるようにしておけば、過大電流が流れたときに発生するバイメタルの電気抵抗による所定値以上のジュール熱と、所定値以上の電池温度の何れに対しても前記接点を開くように構成することが出来ると考えられる。   By using a thermostat, when the charge / discharge circuit is shut down for both the battery temperature above a predetermined value and the charge / discharge current above a predetermined value, the thermostat is closed due to the deformation of the bimetal constituting the thermostat. Since it works to open the contacts, if the current flows through the bimetal, the Joule heat exceeding the predetermined value due to the electrical resistance of the bimetal generated when an excessive current flows, and the battery exceeding the predetermined value It is conceivable that the contacts can be configured to open at any temperature.

しかしながら、所定値以上の電流による発熱によって変形する動作と、所定値以上の周囲温度によって変形する動作のそれぞれを同時に満足させるバイメタルの材料を選ぶのは困難であり、1つのサーモスタットによって電池の温度上昇と過大電流の両者に対応させることができなかった。   However, it is difficult to select a bimetal material that simultaneously satisfies an operation that deforms due to heat generation by a current exceeding a predetermined value and an operation that deforms due to an ambient temperature that exceeds a predetermined value, and the temperature of the battery is increased by one thermostat. And overcurrent could not be dealt with.

本発明が目的とするところは、温度上昇及び過大電流に感応して回路遮断することを可能にする感熱作動素子を提供することにある。   An object of the present invention is to provide a heat-sensitive actuating element capable of breaking a circuit in response to a temperature rise and an excessive current.

上記目的を達成するために本発明に係る感熱作動素子は、固定電極と、一端に設けられた接点により前記固定電極に接触する可動電極との間に形成された間隙内に、温度上昇が生じたとき前記接点を固定電極から引き離すように変形するバイメタルが配設され、前記可動電極はそれに過大電流が流れたとき前記バイメタルを変形させ得る温度に発熱する材質によって形成されてなることを特徴とする。   In order to achieve the above object, in the thermosensitive operating element according to the present invention, a temperature rise occurs in a gap formed between the fixed electrode and the movable electrode contacting the fixed electrode by a contact provided at one end. A bimetal that is deformed so as to separate the contact from the fixed electrode, and the movable electrode is formed of a material that generates heat to a temperature at which the bimetal can be deformed when an excessive current flows therethrough. To do.

上記構成によれば、温度上昇によりバイメタルが変形すると、変形が可動電極に及んで可動電極の一端に設けられた接点が固定電極から離れるように作用する。可動電極と固定電極とを充放電回路と直列に接続した状態に感熱作動素子を配設しておくと、バイメタルに変形が生じる温度に温度上昇したとき、回路を遮断することができる。また、回路に過大電流が流れると可動電極がその電気抵抗によって発熱し、発熱は一部が接するバイメタルに伝熱するので、バイメタルが変形する温度になったとき、変形により可動電極をその接点が固定電極から引き離すように作用するので、回路に流れる過大電流は遮断される。   According to the above configuration, when the bimetal is deformed due to a temperature rise, the deformation reaches the movable electrode and acts so that the contact provided at one end of the movable electrode is separated from the fixed electrode. If the thermosensitive operating element is disposed in a state where the movable electrode and the fixed electrode are connected in series with the charge / discharge circuit, the circuit can be shut off when the temperature rises to a temperature at which the bimetal is deformed. In addition, when an excessive current flows in the circuit, the movable electrode generates heat due to its electric resistance, and the generated heat is transferred to the bimetal with which part of the movable electrode comes into contact. Since it acts so as to be separated from the fixed electrode, an excessive current flowing in the circuit is cut off.

上記構成において、可動電極が過大電流によって発熱するためには、可動電極が所要の電気抵抗を有し、その電気抵抗は平常時には回路抵抗として無視できる程度のものである必要がある。これを実現する可動電極の材質として、SUS304が好適であり、スイッチ構造を形成する弾性を兼ね備えたものが得られる。   In the above configuration, in order for the movable electrode to generate heat due to an excessive current, the movable electrode has a required electrical resistance, and the electrical resistance needs to be negligible as a circuit resistance in normal times. SUS304 is suitable as a material of the movable electrode that realizes this, and a material having elasticity that forms a switch structure can be obtained.

本発明によれば、温度上昇と過大電流とに感応して回路遮断する感熱作動素子が構成され、電池パックのように二次電池に過充電がなされたような場合の温度上昇に対して充放電回路を遮断して過充電を停止させ、外部短絡や不適切な充電器の接続によって過大電流が流れたとき充放電回路を遮断して過大電流の流れを阻止するために、それぞれ個別の保護手段を設けていた従来構成は、1つの感熱作動素子によって実現することが可能になり、電池パックを簡易に構成して小型化とコストダウン化を図ることができる。   According to the present invention, a thermosensitive actuating element configured to shut off a circuit in response to a temperature rise and an excessive current is configured, and is charged against a temperature rise when a secondary battery is overcharged like a battery pack. Individual protection to shut off the discharge circuit to stop overcharge and shut off the charge / discharge circuit to prevent overcurrent flow when overcurrent flows due to external short circuit or improper charger connection The conventional configuration provided with the means can be realized by one heat-sensitive operating element, and the battery pack can be simply configured to reduce the size and the cost.

図1(a)は、本実施形態に係る感熱作動素子1の構成を示すもので、図2に分解して示す構成要素を用いて組み立てられたものである。この感熱作動素子1は、リチウムイオン二次電池を用いた電池パックに適用するのに好適な構造に構成したもので、二次電池が異常温度上昇したとき、あるいは充放電回路に外部短絡等による過大電流が流れたとき、充放電回路を遮断して二次電池を保護する目的に使用される。   Fig.1 (a) shows the structure of the thermosensitive operating element 1 which concerns on this embodiment, and was assembled using the component shown disassembled in FIG. This heat-sensitive actuating element 1 has a structure suitable for application to a battery pack using a lithium ion secondary battery. When the secondary battery rises abnormally or due to an external short circuit or the like in the charge / discharge circuit. When an excessive current flows, it is used for the purpose of blocking the charge / discharge circuit and protecting the secondary battery.

図1、図2に示すように、筐体10を構成する台ケース5は、樹脂成形により固定電極2及び可動電極リード4をインサートし、中央に構成要素を収容する空間である部材収容室11が形成されている。この部材収容室11の中央に固定電極2の表面を露出させた円形凹部11a内に伝熱座板9を配し、その上に円弧状に湾曲させたバイメタル8を積み重ね、バイメタル8上に可動電極3が配設される。可動電極3に設けられた固定翼部3bは台ケース5に設けられた位置決め枠12内に嵌り合うので、可動電極3の一端は位置決め枠12の中に露出する可動電極リード4にスポット溶接される。このように構成部材が取り付けられた台ケース5上に、樹脂形成により押圧板7をインサートして形成された蓋ケース6を被せ、蓋ケース6と台ケース5との間を超音波溶接することにより、台ケース5の内部空間に構成部材を封止して感熱作動素子1が形成される。尚、伝熱座板9は、バイメタル8を所定位置に保持して外部からの熱をバイメタル8に伝熱する役割をなすものであるが、台ケース5によって一体に形成することもできる。   As shown in FIGS. 1 and 2, the base case 5 constituting the housing 10 is inserted into the fixed electrode 2 and the movable electrode lead 4 by resin molding, and a member accommodating chamber 11 which is a space for accommodating the constituent elements in the center. Is formed. A heat transfer seat plate 9 is arranged in a circular recess 11a in which the surface of the fixed electrode 2 is exposed in the center of the member accommodating chamber 11, and a bimetal 8 curved in an arc shape is stacked thereon, and the bimetal 8 is movable on the bimetal 8. An electrode 3 is provided. Since the fixed wing 3b provided on the movable electrode 3 fits in the positioning frame 12 provided on the base case 5, one end of the movable electrode 3 is spot welded to the movable electrode lead 4 exposed in the positioning frame 12. The The lid case 6 formed by inserting the pressing plate 7 by resin formation is put on the base case 5 to which the constituent members are attached in this way, and ultrasonic welding is performed between the lid case 6 and the base case 5. Thus, the heat-sensitive operating element 1 is formed by sealing the constituent members in the internal space of the base case 5. The heat transfer seat plate 9 serves to hold the bimetal 8 in a predetermined position and transfer heat from the outside to the bimetal 8, but can be formed integrally with the base case 5.

図1(a)に示すように、台ケース5内に配設された可動電極3は、蓋ケース6が被せられることにより、その内面にインサートされた押圧板7の突出部により中央部分が押圧され、先端部に設けられた接点3aが固定電極2に接触した状態となる。   As shown in FIG. 1 (a), the movable electrode 3 disposed in the base case 5 is pressed at the center portion by the protruding portion of the pressing plate 7 inserted on the inner surface of the movable electrode 3 when the cover case 6 is covered. Then, the contact 3 a provided at the tip is brought into contact with the fixed electrode 2.

上記構成になる感熱作動素子1は、図3に示すように、電池パックA内に二次電池Bと直列に接続した状態にして配設される。感熱作動素子1の取り付けは、図4に示すように、二次電池Bの表面に絶縁紙Cを介して台ケース5の底面が当接するように取り付けられる。   As shown in FIG. 3, the heat-sensitive operating element 1 having the above-described configuration is disposed in a state of being connected in series with the secondary battery B in the battery pack A. As shown in FIG. 4, the heat-sensitive operating element 1 is attached so that the bottom surface of the base case 5 comes into contact with the surface of the secondary battery B via the insulating paper C.

二次電池Bが過充電状態になったときや、電池パックAが高温環境に曝されたとき、二次電池Bは温度上昇する。二次電池Bの熱は固定電極2及び伝熱座板9を通じてバイメタル8に伝熱するので、バイメタル8が所定温度以上に加熱されたとき、図1(b)に示すように、バイメタル8は膨出方向を反転させるように変形する。バイメタル8は熱膨張率が異なる2種類の金属板を貼り合わせて形成されているため、温度上昇が所定温度以上になると両面の膨張率が異なることから膨出方向が反転する。   When the secondary battery B is overcharged or when the battery pack A is exposed to a high temperature environment, the temperature of the secondary battery B rises. Since the heat of the secondary battery B is transferred to the bimetal 8 through the fixed electrode 2 and the heat transfer seat plate 9, when the bimetal 8 is heated to a predetermined temperature or higher, as shown in FIG. Deform to reverse the bulging direction. Since the bimetal 8 is formed by bonding two types of metal plates having different thermal expansion coefficients, the expansion direction is reversed because the expansion coefficients of both surfaces are different when the temperature rise exceeds a predetermined temperature.

バイメタル8の膨出方向が反転すると、跳ね上った周縁部が可動電極3の先端側を押し上げるので、先端に設けられた接点3aは固定電極2から離れ、充放電回路が遮断され、過充電状態にあるときには過充電が停止され、高温環境に曝されているときには高温状態にある二次電池Bに充放電がなされることを防止することができる。二次電池Bの温度が低下すると、それに伴ってバイメタル8の温度も低下するので、膨出方向が元の状態に反転して、図1(a)に示す状態となり、可動電極3はその弾性により原状復帰して接点3aが固定電極2に接して充放電回路は導通状態となる。   When the bulging direction of the bimetal 8 is reversed, the jumped peripheral edge pushes up the distal end side of the movable electrode 3, so that the contact 3 a provided at the distal end is separated from the fixed electrode 2, the charge / discharge circuit is interrupted, and overcharge When the battery is in the state, overcharge is stopped, and when the battery is exposed to a high temperature environment, the secondary battery B in the high temperature state can be prevented from being charged or discharged. When the temperature of the secondary battery B decreases, the temperature of the bimetal 8 also decreases accordingly. Therefore, the bulging direction is reversed to the original state, and the state shown in FIG. Thus, the original state is restored, and the contact 3a comes into contact with the fixed electrode 2 so that the charge / discharge circuit becomes conductive.

また、電池パックAの外部入出力端子Dの正極、負極間が外部短絡したような場合に、二次電池Bから過大電流が流れてあるいは、不適切な充電器が接続されると二次電池Bに過大電流が流れ込んで二次電池Bは温度上昇する。それ以前に、感熱作動素子1に過大電流が流れると、可動電極3がその電気抵抗によりジュール熱を発して温度上昇する。本構成においては可動電極3の材質として、SUS304が適用されており、一般にこの種の部材に適用される銅合金の電気抵抗が約7mΩなのに対して、SUS304では電気抵抗が約40mΩとなるため、過大電流が流れたときの発熱量が大きくなる。可動電極3の発熱は、それに一部が接しているバイメタル8に伝熱し、バイメタル8が所定温度以上に加熱されたとき、図1(b)に示すように、バイメタル8は膨出方向を反転させるように変形する。   In addition, when an external current is short-circuited between the positive electrode and the negative electrode of the external input / output terminal D of the battery pack A, a secondary battery is supplied if an excessive current flows from the secondary battery B or an inappropriate charger is connected. An excessive current flows into B, and the temperature of the secondary battery B rises. Before that, when an excessive current flows through the heat-sensitive operating element 1, the movable electrode 3 generates Joule heat due to its electric resistance, and the temperature rises. In this configuration, SUS304 is applied as the material of the movable electrode 3, and the electrical resistance of a copper alloy generally applied to this type of member is about 7 mΩ, whereas the electrical resistance of SUS304 is about 40 mΩ. The amount of heat generated when excessive current flows increases. The heat generated by the movable electrode 3 is transferred to the bimetal 8 that is partially in contact therewith, and when the bimetal 8 is heated to a predetermined temperature or more, the bimetal 8 reverses the bulging direction as shown in FIG. It transforms so that

バイメタル8の膨出方向が反転すると、先と同様に跳ね上った周縁部が可動電極3の先端側を押し上げるので、先端に設けられた接点3aは固定電極2から離れ、充放電回路に流れる過大電流は遮断される。外部短絡等の状態が排除されると、過大電流がなくなるので可動電極3の温度は低下し、それに伴ってバイメタル8の温度も低下するので、膨出方向が元の状態に反転して、図1(a)に示す状態となり、可動電極3はその弾性により原状復帰して接点3aが固定電極2に接して充放電回路は導通状態となる。   When the bulging direction of the bimetal 8 is reversed, the peripheral edge that has jumped up pushes up the distal end side of the movable electrode 3 in the same manner as before, so that the contact 3a provided at the distal end is separated from the fixed electrode 2 and flows into the charge / discharge circuit. Excessive current is cut off. When the state such as the external short circuit is eliminated, the excessive current disappears, so the temperature of the movable electrode 3 is lowered, and the temperature of the bimetal 8 is also lowered accordingly, so that the bulging direction is reversed to the original state. 1 (a), the movable electrode 3 returns to its original state due to its elasticity, the contact 3a contacts the fixed electrode 2, and the charge / discharge circuit becomes conductive.

上記のように可動電極3の材質として、平常使用時において流れる充放電電流によって大きな損失が生じない電気抵抗を有し、適度な弾性を備えているものを選択することにより、温度上昇と過大電流とに感応する感熱作動素子1に構成することができる。   As described above, by selecting the material of the movable electrode 3 that has an electric resistance that does not cause a large loss due to the charge / discharge current that flows during normal use and has appropriate elasticity, the temperature rise and the excessive current It is possible to configure the thermosensitive operating element 1 that is sensitive to the above.

以上説明した実施形態は電池パックに適用するのに好適な構成について説明したが、これに限定されるものではなく、温度上昇と過大電流とに感応して回路遮断する用途に広く適用できることは言うまでもない。   The embodiment described above has been described with respect to a configuration suitable for application to a battery pack. However, the present invention is not limited to this, and it is needless to say that the embodiment can be widely applied to applications in which a circuit is cut in response to a temperature rise and an excessive current. Yes.

本発明に係る感熱作動素子は、温度上昇と過大電流とに感応して回路遮断することができるので、二次電池に過充電がなされたような場合の温度上昇に対して充放電回路を遮断して過充電を停止させるための手段と、外部短絡や不適切な充電器が接続されることによって過大電流が流れたとき充放電回路を遮断して過大電流の流れを阻止するための手段とをそれぞれ個別に設けていた従来構成は、1つの感熱作動素子によって実現することが可能となり、電池パック等の構成を簡易にして小型化とコストダウン化を図ることができる。   Since the heat-sensitive operating element according to the present invention can shut down the circuit in response to a temperature rise and an excessive current, the charge / discharge circuit is cut off against a temperature rise when the secondary battery is overcharged. And means for stopping overcharging, and means for interrupting the flow of excessive current by shutting off the charge / discharge circuit when excessive current flows due to an external short circuit or improper charger connected. Can be realized by one heat-sensitive actuating element, and the configuration of the battery pack or the like can be simplified to reduce the size and the cost.

実施形態に係る感熱作動素子の構成を(a)の平常時、(b)の作動時の状態で示す断面図。Sectional drawing which shows the structure of the thermosensitive operating element which concerns on embodiment in the state at the time of the normal time of (a), and (b). 同上感熱作動素子の構成要素を分解して示す分解斜視図。The disassembled perspective view which decomposes | disassembles and shows the component of a thermosensitive operating element same as the above. 電池パックに適用した例を示す回路図。The circuit diagram which shows the example applied to the battery pack. 電池パックに対する取り付け状態を示す側面図。The side view which shows the attachment state with respect to a battery pack.

符号の説明Explanation of symbols

1 感熱作動素子
2 固定電極
3 可動電極
3a 接点
8 バイメタル
DESCRIPTION OF SYMBOLS 1 Thermal sensing element 2 Fixed electrode 3 Movable electrode 3a Contact 8 Bimetal

Claims (2)

固定電極と、一端に設けられた接点により前記固定電極に接触する可動電極との間に形成された間隙内に、温度上昇が生じたとき前記接点を固定電極から引き離すように変形するバイメタルが配設され、前記可動電極はそれに過大電流が流れたとき前記バイメタルを変形させ得る温度に発熱する材質によって形成されてなることを特徴とする感熱作動素子。 A bimetal that deforms so as to separate the contact from the fixed electrode when the temperature rises is disposed in a gap formed between the fixed electrode and the movable electrode that contacts the fixed electrode by a contact provided at one end. The heat-sensitive actuating element, wherein the movable electrode is formed of a material that generates heat to a temperature at which the bimetal can be deformed when an excessive current flows through the movable electrode. 可動電極の材質が、SUS304である請求項1に記載の感熱作動素子。


The heat-sensitive operating element according to claim 1, wherein the material of the movable electrode is SUS304.


JP2003415065A 2003-12-12 2003-12-12 Thermosensitive operation element Pending JP2005174814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415065A JP2005174814A (en) 2003-12-12 2003-12-12 Thermosensitive operation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415065A JP2005174814A (en) 2003-12-12 2003-12-12 Thermosensitive operation element

Publications (1)

Publication Number Publication Date
JP2005174814A true JP2005174814A (en) 2005-06-30

Family

ID=34734679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415065A Pending JP2005174814A (en) 2003-12-12 2003-12-12 Thermosensitive operation element

Country Status (1)

Country Link
JP (1) JP2005174814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094385A2 (en) * 2011-01-06 2012-07-12 International Rehabilitative Sciences, Inc. Battery with resettable internal fuse
CN114930633A (en) * 2020-08-07 2022-08-19 株式会社Lg新能源 Battery pack having current blocking device using bimetal and method of operating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094385A2 (en) * 2011-01-06 2012-07-12 International Rehabilitative Sciences, Inc. Battery with resettable internal fuse
WO2012094385A3 (en) * 2011-01-06 2013-01-17 International Rehabilitative Sciences, Inc. Battery with resettable internal fuse
CN114930633A (en) * 2020-08-07 2022-08-19 株式会社Lg新能源 Battery pack having current blocking device using bimetal and method of operating the same

Similar Documents

Publication Publication Date Title
JP3609741B2 (en) Pack battery
US8519816B2 (en) External operation thermal protector
EP1107344B1 (en) Circuit and device for protecting secondary battery
JP3825583B2 (en) Thermal shutdown device and battery pack
JP4494461B2 (en) Overcharge prevention safety element and secondary battery with the safety element combined
EP1422771A1 (en) Non-aqueous electrolytic secondary battery
WO2003069697A1 (en) Method of manufacturing battery pack
JP4841685B2 (en) Battery pack
JP2006149177A (en) Protective part, protection device, battery pack and portable electronic device
JP2005174816A (en) Thermosensitive operation element
JP4815151B2 (en) Thermal protection switch device and battery pack
KR20160002919A (en) Protective device
JP5315742B2 (en) battery
JP2005174815A (en) Thermosensitive operation element
JP2008016190A (en) Battery pack
JP2006296180A (en) Protection component, protecting device, battery pack and portable electronic device
JP4886212B2 (en) Protection circuit
WO2020045144A1 (en) Breaker, safety circuit, and secondary battery pack
WO2020136862A1 (en) Secondary battery circuit and method for controlling same
JP2005174814A (en) Thermosensitive operation element
JP5073204B2 (en) Polymer PTC element
JP2007043800A (en) Protector of battery and battery pack
JP2002095154A (en) Electronic device protecting circuit
JP3154280B2 (en) Rechargeable battery
JP2005124329A (en) Battery protector and battery pack using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602