JPH07153499A - Pack battery - Google Patents

Pack battery

Info

Publication number
JPH07153499A
JPH07153499A JP29965893A JP29965893A JPH07153499A JP H07153499 A JPH07153499 A JP H07153499A JP 29965893 A JP29965893 A JP 29965893A JP 29965893 A JP29965893 A JP 29965893A JP H07153499 A JPH07153499 A JP H07153499A
Authority
JP
Japan
Prior art keywords
heat
cutoff
battery
heating resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29965893A
Other languages
Japanese (ja)
Other versions
JP3416229B2 (en
Inventor
Kazuo Osaki
Takamasa Yamazoe
一夫 大崎
貴正 山添
Original Assignee
Sanyo Electric Co Ltd
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, 三洋電機株式会社 filed Critical Sanyo Electric Co Ltd
Priority to JP29965893A priority Critical patent/JP3416229B2/en
Priority to DE19506161A priority patent/DE19506161C2/en
Publication of JPH07153499A publication Critical patent/JPH07153499A/en
Application granted granted Critical
Publication of JP3416229B2 publication Critical patent/JP3416229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To cut off a battery current at the time of an abnormality, keep a thermosensitive cutoff element at the cutoff state with a small current, miniaturize safety parts, and reduce the storage space. CONSTITUTION:This pack battery stores a thermosensitive cutoff element 1 cut off when the battery temperature rises and a heating resistor 3 connected in parallel with the thermosensitive cutoff element 1 and heating the thermosensitive cutoff element 1 kept at the cutoff state with Joule's heat. The heating resistor 3 is stored in the case 4 of the thermosensitive cutoff element 1. The Joule's heat of the heating resistor 3 heats the thermosensitive cutoff element 1 stored together to prevent its return. The heating resistor 3 stored in the case 4 together with the thermosensitive cutoff element 1 efficiently heats the thermosensitive cutoff element 1 to keep it at the off state.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は過大な電流が流れ、ある
いは電池温度が異常に上昇すると電流を遮断する感熱遮
断素子を内蔵するパック電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery pack containing a heat-sensitive cutoff element for cutting off the current when an excessive current flows or the battery temperature rises abnormally.
【0002】[0002]
【従来の技術】従来のパック電池は、図1に示すよう
に、感熱遮断素子1としてサーモスタットを内蔵してい
る。サーモスタットは図2の回路図に示すように、電池
と直列に接続されて充電端子2に接続される。サーモス
タットは電池が過充電されて温度が上昇するとオフ状態
となって充電を停止する安全部品である。充電中に電池
温度が上昇すると、サーモスタットがオフになって電流
は遮断されるが、電流を遮断すると電池温度が低下する
のでサーモスタットがオン状態に復帰してしまう。この
ため、電池温度が低下すると、再び充電電流が流れるよ
うになり、電池を過充電してしまう欠点がある。
2. Description of the Related Art As shown in FIG. 1, a conventional battery pack incorporates a thermostat as a heat-sensitive cutoff element 1. As shown in the circuit diagram of FIG. 2, the thermostat is connected in series with the battery and connected to the charging terminal 2. A thermostat is a safety component that turns off when the battery is overcharged and the temperature rises, stopping charging. If the battery temperature rises during charging, the thermostat is turned off and the current is cut off, but if the current is cut off, the battery temperature drops and the thermostat returns to the on state. Therefore, when the battery temperature decreases, the charging current starts to flow again, and the battery is overcharged.
【0003】この弊害を防止するために、図3に示すよ
うに、サーモスタットと並列に加熱抵抗3を接続した安
全部品が開発されている。この安全部品は、図4に示す
ように充電端子2と直列に接続されるので、サーモスタ
ットがオフ状態となったとき、加熱抵抗3にバイパスし
て電流が流れる。加熱抵抗3を流れる電流は電池にも流
れるが非常に小さい電流であるために、電池を過充電す
ることはない。加熱抵抗3は相当に大きな抵抗値に設計
されるからである。高抵抗の加熱抵抗3は、サーモスタ
ットがオフになって電流が流れるとジュール熱を発生す
る。ジュール熱は抵抗値に比例して大きくなるので、電
流が小さくても相当なジュール熱を発生する。加熱抵抗
のジュール熱はサーモスタットを加熱し、サーモスタッ
トが復帰するのを阻止する。したがって、この構造の安
全部品を内蔵するパック電池は、電池温度が上昇してサ
ーモスタットが作動して充電電流を遮断して後は、再び
サーモスタットが復帰して充電を再開して電池を過充電
するのを防止できる。
In order to prevent this adverse effect, a safety component has been developed in which a heating resistor 3 is connected in parallel with a thermostat as shown in FIG. Since this safety component is connected in series with the charging terminal 2 as shown in FIG. 4, when the thermostat is turned off, it bypasses the heating resistor 3 and a current flows. Although the current flowing through the heating resistor 3 also flows through the battery, it is a very small current, so the battery is not overcharged. This is because the heating resistor 3 is designed to have a considerably large resistance value. The high resistance heating resistor 3 generates Joule heat when the thermostat is turned off and a current flows. Since the Joule heat increases in proportion to the resistance value, considerable Joule heat is generated even if the current is small. The Joule heat of the heating resistance heats the thermostat and prevents the thermostat from returning. Therefore, in the battery pack containing the safety component of this structure, after the battery temperature rises and the thermostat operates to cut off the charging current, the thermostat restarts and restarts charging to overcharge the battery. Can be prevented.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、図3に
示す安全部品は、感熱遮断素子1であるサーモスタット
の表面に加熱抵抗3を抱き合わせて固定するので、外形
が大きくなってパック電池の電池の間に収納すると、図
5に示すようにパック電池の厚み寸法からはみ出してし
まう欠点がある。一部がはみだしたパック電池は、電池
を収納するために余分に大きなスペースを必要とする欠
点がある。
However, in the safety component shown in FIG. 3, the heating resistor 3 is fixed by tying it to the surface of the thermostat which is the heat-sensitive cutoff element 1, so that the outer shape becomes large and the space between the batteries of the battery pack is increased. However, if the battery pack is stored in the battery pack, the battery pack has a drawback that it is out of the thickness dimension of the battery pack as shown in FIG. The partially extended battery pack has a drawback that it requires an extra large space to house the battery.
【0005】さらに、図3に示すように感熱遮断素子1
であるサーモスタットに加熱抵抗3を抱き合わせると、
加熱抵抗3のジュール熱を効率よくサーモスタットに伝
導することが難しい。加熱抵抗3が周囲からジュール熱
が放散してしまうからである。加熱抵抗3が有効にサー
モスタットを加熱できないと、加熱抵抗3のジュール熱
を大きく設計する必要がある。このためには加熱抵抗3
の抵抗値を小さくして、サーモスタットがオフになった
ときの電流を大きく設計する必要がある。サーモスタッ
トオフ状態の電流が大きくなると、この電流で電池が過
充電される弊害が発生する。電池の過充電を防止するた
めに、加熱抵抗の抵抗値は可能な限り大きく設計するこ
とが要求される。
Further, as shown in FIG.
If you tie the heating resistor 3 to the thermostat,
It is difficult to efficiently transfer the Joule heat of the heating resistor 3 to the thermostat. This is because the heating resistor 3 dissipates Joule heat from the surroundings. If the heating resistor 3 cannot effectively heat the thermostat, it is necessary to design the Joule heat of the heating resistor 3 to be large. To do this, heating resistor 3
It is necessary to reduce the resistance value of and design a large current when the thermostat is turned off. When the current in the thermostat-off state becomes large, the battery may be overcharged by this current. In order to prevent the battery from being overcharged, it is required to design the heating resistance as large as possible.
【0006】さらにまた、図3に示すように、サーモス
タットに加熱抵抗を固定してこれを内蔵するパック電池
は、部品点数と製造工数とが多くなって製造コストが高
くなる欠点もある。
Further, as shown in FIG. 3, a battery pack having a thermostat with a fixed heating resistance and a built-in thermostat has a drawback in that the number of parts and the number of manufacturing steps are large and the manufacturing cost is high.
【0007】本発明は、この欠点を解決することを目的
に開発されたものである。本発明の重要な目的は、異常
時に電池電流を遮断できると共に、小電流で感熱遮断素
子を遮断状態に保持でき、さらに内蔵する安全部品を小
型化して収納容積を小さくできるパック電池を提供する
ことにある。
The present invention was developed for the purpose of solving this drawback. An important object of the present invention is to provide a battery pack that can cut off the battery current in the event of an abnormality, can hold the heat-sensitive cutoff element in the cutoff state with a small current, and can further reduce the size of the internal safety parts to reduce the storage volume. It is in.
【0008】[0008]
【課題を解決するための手段】本発明のパック電池は、
前述の目的を達成するために下記の構成を備える。請求
項1に記載されるパック電池は、電池と直列に接続され
ている感熱遮断素子1と、感熱遮断素子1と並列に接続
されている加熱抵抗3とを内蔵する。加熱抵抗3は、感
熱遮断素子1がオフ状態のとき、感熱遮断素子1に流れ
る電流をバイパスしてジュール熱を発生し、ジュール熱
で感熱遮断素子1を加熱して遮断状態に保持させる。さ
らに本発明のパック電池は、感熱遮断素子1のケース4
内に加熱抵抗3を内蔵している。感熱遮断素子1のケー
ス4に内蔵された加熱抵抗3は、感熱遮断素子1がオフ
になったときにジュール熱を発生し、ジュール熱でもっ
て同じケース4に内蔵された感熱遮断素子1を加熱して
遮断状態に保持する。
The battery pack of the present invention comprises:
In order to achieve the above-mentioned object, the following configurations are provided. The battery pack according to claim 1 incorporates the heat-sensitive cutoff element 1 connected in series with the battery and the heating resistor 3 connected in parallel with the heat-sensitive cutoff element 1. When the heat-sensitive cutoff element 1 is in the off state, the heating resistor 3 bypasses the current flowing through the heat-sensitive cutoff element 1 to generate Joule heat, and heats the heat-sensitive cutoff element 1 by the Joule heat to hold the heat-sensitive cutoff element 1. Furthermore, the battery pack of the present invention includes the case 4 of the heat-sensitive cutoff element 1.
The heating resistor 3 is built in. The heating resistor 3 built in the case 4 of the thermal cutoff element 1 generates Joule heat when the thermal cutoff element 1 is turned off, and heats the thermal cutoff element 1 built in the same case 4 by the Joule heat. And keep it in the cutoff state.
【0009】請求項2に記載されているパック電池は、
電池と直列に接続された感熱遮断素子1と、この感熱遮
断素子1と並列に接続されて、感熱遮断素子1がオフ状
態のときに感熱遮断素子1に流れる電流をバイパスして
ジュール熱を発生して感熱遮断素子1を加熱する加熱抵
抗3と、感熱遮断素子1と直列に接続されて電池に流れ
る電流でジュール熱を発生して感熱遮断素子1を加熱し
て強制的にオフ状態に切り換える強制オフ抵抗5とを備
える。このパック電池は、感熱遮断素子1のケース4内
に、加熱抵抗3と強制オフ抵抗5の両方を内蔵する。感
熱遮断素子1のケース4に内蔵された加熱抵抗3と強制
オフ抵抗5はジュール熱を発生し、このジュール熱で感
熱遮断素子1を加熱する。加熱抵抗3はオフ状態の感熱
遮断素子1を加熱してオフ状態に保持する。強制オフ抵
抗5は電池に過電流が流れたときにオン状態の感熱遮断
素子1を加熱してオフ状態に切り換える。
The battery pack according to claim 2 is
A heat-sensitive cutoff element 1 connected in series with a battery, and a heat-sensitive cutoff element 1 connected in parallel with the heat-sensitive cutoff element 1 bypasses a current flowing through the heat-sensitive cutoff element 1 to generate Joule heat. The heating resistor 3 for heating the heat-sensitive cutoff element 1 and Joule heat generated by the current flowing in the battery connected in series with the heat-sensitive cutoff element 1 heats the heat-sensitive cutoff element 1 and forcibly switches it to the off state. And a forced off resistance 5. In this battery pack, both a heating resistor 3 and a forced-off resistor 5 are built in a case 4 of the heat-sensitive cutoff element 1. The heating resistor 3 and the forced-off resistor 5 built in the case 4 of the heat-sensitive cutoff element 1 generate Joule heat, and the heat-sensitive cutoff element 1 is heated by this Joule heat. The heating resistor 3 heats the heat-sensitive cutoff element 1 in the off state and holds it in the off state. When the overcurrent flows through the battery, the forced off resistance 5 heats the heat-sensitive cutoff element 1 in the on state and switches it to the off state.
【0010】さらに、請求項3に記載のパック電池は、
電池と直列に接続された感熱遮断素子1としてバイメタ
ル1Aを使用し、このバイメタル1Aと並列に加熱抵抗
3としてPTC素子3Aを接続している。PTC素子3
Aは感熱遮断素子1がオフ状態のときに感熱遮断素子1
に流れる電流をバイパスしてジュール熱を発生し、この
ジュール熱でバイメタル1Aを加熱する。さらに、この
パック電池は、バイメタル1Aの接点の間にPTC素子
3Aを配設して、PTC素子3Aをバイメタル1Aのケ
ース4内に内蔵している。PTC素子3Aのジュール熱
は直接にバイメタル1Aの接点を加熱し、遮断状態にあ
るバイメタル1Aが復帰するのを阻止する。
Further, the battery pack according to claim 3 is
A bimetal 1A is used as the thermal cutoff element 1 connected in series with the battery, and a PTC element 3A is connected as a heating resistor 3 in parallel with the bimetal 1A. PTC element 3
A is the thermal cutoff element 1 when the thermal cutoff element 1 is in the off state.
The electric current that flows through is bypassed to generate Joule heat, and the Joule heat heats the bimetal 1A. Further, in this battery pack, the PTC element 3A is arranged between the contacts of the bimetal 1A, and the PTC element 3A is built in the case 4 of the bimetal 1A. The Joule heat of the PTC element 3A directly heats the contact point of the bimetal 1A and prevents the bimetal 1A in the cutoff state from returning.
【0011】[0011]
【作用】パック電池は感熱遮断素子1のケース4に加熱
抵抗3を内蔵している。同じケース4に内蔵された加熱
抵抗3は、発生するジュール熱で有効に感熱遮断素子1
を加熱する。加熱抵抗3のジュール熱で直接に感熱遮断
素子1を加熱でき、加熱抵抗3のジュール熱の放熱が感
熱遮断素子1のケース4で阻止されるからである。すな
わち、この構造のパック電池は、ケース4内では加熱抵
抗3と感熱遮断素子1との熱を効率よく伝導し、感熱遮
断素子1のケース4が加熱抵抗3の熱の放散を防止する
からである。従来のように、感熱遮断素子1に加熱抵抗
3を抱き合わせる構造は、加熱抵抗3のジュール熱の放
散を防止するために加熱抵抗3を断熱すると、加熱抵抗
3が感熱遮断素子1を効率よく加熱できなくなる。しか
しながら、本発明のパック電池は、加熱抵抗3のジュー
ル熱を効率よく感熱遮断素子1に伝達して、ケース4か
らの放熱を遮弊して加熱抵抗3の熱を有効に利用できる
特徴がある。
In the battery pack, the heating resistor 3 is built in the case 4 of the thermal cutoff element 1. The heating resistor 3 built in the same case 4 effectively uses the Joule heat generated to effectively cut the heat sensitive element 1.
To heat. This is because the thermal cutoff element 1 can be directly heated by the Joule heat of the heating resistor 3 and the heat dissipation of the Joule heat of the heating resistor 3 is blocked by the case 4 of the thermal cutoff element 1. That is, in the battery pack having this structure, the heat between the heating resistor 3 and the heat-sensitive cutoff element 1 is efficiently conducted in the case 4, and the case 4 of the heat-sensitive cutoff element 1 prevents the heat of the heating resistor 3 from being dissipated. is there. In the structure in which the heating resistor 3 is wrapped around the thermal cutoff element 1 as in the conventional case, when the heating resistor 3 is thermally insulated to prevent the Joule heat of the heating resistor 3 from being dissipated, the heating resistor 3 efficiently heats the thermal cutoff element 1. Can not be heated. However, the battery pack of the present invention is characterized in that the Joule heat of the heating resistor 3 can be efficiently transmitted to the heat-sensitive cutoff element 1 to prevent the heat radiation from the case 4 and effectively utilize the heat of the heating resistor 3. .
【0012】加熱抵抗3のジュール熱で感熱遮断素子1
を有効に加熱できるパック電池は、感熱遮断素子1がオ
フ状態となったときの電池電流を小さくできる。加熱抵
抗3のジュール熱を漏れなく感熱遮断素子1に伝えるの
で、加熱抵抗3が発生するジュール熱を必要以上に大き
くしなくてもよい。このため、加熱抵抗3の抵抗値を大
きく設定できるので、その結果、感熱遮断素子1がオフ
状態となったときの電池電流を小さくできる。
Heat-sensitive cutoff element 1 by Joule heat of heating resistor 3
The battery pack that can effectively heat the battery can reduce the battery current when the thermal cutoff element 1 is turned off. Since the Joule heat of the heating resistor 3 is transmitted to the thermal cutoff element 1 without leaking, the Joule heat generated by the heating resistor 3 does not have to be increased more than necessary. Therefore, the resistance value of the heating resistor 3 can be set to a large value, and as a result, the battery current when the thermal cutoff element 1 is turned off can be reduced.
【0013】さらに、感熱遮断素子1のケース4内に、
加熱抵抗3に加えて強制オフ抵抗5を内蔵したパック電
池は、強制オフ抵抗5のジュール熱で感熱遮断素子1を
加熱する。電池と直列に接続された強制オフ抵抗5は、
電池に過大な電流が流れたときに大きなジュール熱を発
生する。電池電流が強制オフ抵抗5に流れるからであ
る。強制オフ抵抗5が発生するジュール熱は、加熱抵抗
3と同じように効率よく感熱遮断素子1に伝導され、こ
れが感熱遮断素子1を加熱してオン状態からオフ状態に
強制的に切り換える。このように、強制オフ抵抗5は電
池に過大な電流が流れるときにオフ状態となって電流を
遮断するので、ショートしたときなどに作動して電池を
安全に保護する。
Further, in the case 4 of the heat-sensitive cutoff element 1,
In the battery pack having the built-in forced-off resistance 5 in addition to the heating resistance 3, the thermal cutoff element 1 is heated by the Joule heat of the forced-off resistance 5. The forced off resistance 5 connected in series with the battery is
Large Joule heat is generated when an excessive current flows through the battery. This is because the battery current flows through the forced off resistance 5. The Joule heat generated by the forced-off resistance 5 is efficiently conducted to the heat-sensitive cutoff element 1 like the heating resistance 3, and this heats the heat-sensitive cutoff element 1 to forcibly switch it from the ON state to the OFF state. In this way, the forced-off resistance 5 is turned off when a large amount of current flows in the battery to cut off the current. Therefore, the forced-off resistor 5 operates when a short circuit occurs and protects the battery safely.
【0014】さらに、バイメタル1Aの接点の間にPT
C素子3Aを配設し、PTC素子3Aをバイメタル1A
のケース4に一緒に内蔵したパック電池は、電池温度が
上昇するとバイメタル1Aの接点が離れて電池に流れる
電流を遮断する。この状態になるとPTC素子3Aにバ
イパスして電流が流れるようになる。このとき、PTC
素子3Aは加熱されて抵抗が大きくなっているので、電
流によってジュール熱を発生する。PTC素子3Aのジ
ュール熱はバイメタル1Aを加熱し、バイメタル1Aを
オフ状態に保持する。
Further, PT is provided between the contacts of the bimetal 1A.
C element 3A is arranged and PTC element 3A is replaced with bimetal 1A.
When the battery temperature rises, the battery pack built in the case 4 of the above 1 separates the contact of the bimetal 1A to cut off the current flowing to the battery. In this state, a current will flow by bypassing the PTC element 3A. At this time, PTC
Since the element 3A is heated and has increased resistance, Joule heat is generated by the current. The Joule heat of the PTC element 3A heats the bimetal 1A and holds the bimetal 1A in the off state.
【0015】[0015]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。ただし、以下に示す実施例は、本発明の技術思想
を具体化するためのパック電池を例示するものであっ
て、本発明はパック電池を下記のものに特定しない。
Embodiments of the present invention will be described below with reference to the drawings. However, the examples described below exemplify a battery pack for embodying the technical idea of the present invention, and the present invention does not specify the battery pack as follows.
【0016】さらに、この明細書は、特許請求の範囲を
理解し易いように、実施例に示される部材に対応する番
号を、「特許請求の範囲の欄」、「作用の欄」、および
「課題を解決するための手段の欄」に示される部材に付
記している。ただ、特許請求の範囲に示される部材を、
実施例の部材に特定するものでは決してない。
Further, in this specification, for easy understanding of the claims, the numbers corresponding to the members shown in the embodiments are referred to as "claim column", "action column", and "action column". It is added to the members shown in the section of "Means for Solving the Problems". However, the members shown in the claims are
It is by no means specific to the members of the examples.
【0017】図6に示すパック電池は、4本の電池を平
行に並べて連結し、表面を熱収縮チューブ6で被覆して
いる。電池の間に感熱遮断素子1と加熱抵抗3とを一緒
のケース4に内蔵する安全部品Aを配設している。この
パック電池の回路図を図7に示す。安全部品Aの感熱遮
断素子1は電池と直接に接続されて充電端子2に接続さ
れている。充電端子2に接続された安全部品Aは、電池
を充電するときに電池温度が異常に上昇したときに充電
を停止する。電池を放電するときに過大電流が流れるの
を防止するには、安全部品を電池と直列に接続して放電
端子に接続する。
In the battery pack shown in FIG. 6, four batteries are arranged in parallel and connected, and the surface is covered with a heat shrinkable tube 6. A safety component A having the heat-sensitive cutoff element 1 and the heating resistor 3 built in a case 4 is disposed between the batteries. A circuit diagram of this battery pack is shown in FIG. The heat-sensitive cutoff element 1 of the safety component A is directly connected to the battery and connected to the charging terminal 2. The safety component A connected to the charging terminal 2 stops charging when the battery temperature rises abnormally when charging the battery. To prevent excessive current from flowing when the battery is discharged, a safety component is connected in series with the battery and connected to the discharge terminal.
【0018】感熱遮断素子1と並列に加熱抵抗3を接続
している。加熱抵抗3は感熱遮断素子1が作動してオフ
状態なったとき、復帰するのを阻止して遮断状態に保持
する。加熱抵抗3はジュール熱で感熱遮断素子1を加熱
してオフ状態に保持する。加熱抵抗3は感熱遮断素子1
のケース4内に一緒に配設されている。
A heating resistor 3 is connected in parallel with the heat-sensitive cutoff element 1. When the thermal cutoff element 1 is activated and turned off, the heating resistor 3 prevents the heating resistor 3 from returning and keeps it in the cutoff state. The heating resistor 3 heats the thermal cutoff element 1 by Joule heat and holds it in the off state. The heating resistor 3 is the thermal cutoff element 1.
Are arranged together in the case 4.
【0019】図8は感熱遮断素子1と加熱抵抗3とを内
蔵する安全部品Aの断面構造を示している。この図に示
す安全部品Aは、感熱遮断素子1にバイメタル1Aを使
用し、バイメタル1Aを内蔵するケース4に加熱抵抗3
も一緒に内蔵している。この図に示す安全部品Aは、図
において右端を開口したプラスチック製のケース4の下
面に固定接点7を配設している。固定接点7の右端はケ
ース4の外部に突出されている。バイメタル1Aの可動
接点8は右端部分をケース4に固定し、左端部分はケー
ス4内で可動できるように配設されている。ケース4内
で可動する可動接点8の左端と、固定接点7の左端に
は、電気的に接触する接点を固定している。可動接点8
の右端部分は、加熱抵抗3と絶縁部材とを挟着してケー
ス4に固定されている。バイメタル1Aの可動接点8は
リード板9に接続され、リード板9はケース4の右端か
ら外部に突出している。リード板9と固定接点7が突出
するケース4も右側開口部は、絶縁部材10で閉塞され
ている。
FIG. 8 shows the cross-sectional structure of the safety component A having the heat-sensitive cutoff element 1 and the heating resistor 3 built therein. In the safety component A shown in this figure, a bimetal 1A is used for the heat-sensitive cutoff element 1, and a heating resistor 3 is provided in a case 4 containing the bimetal 1A.
Is also built in. In the safety component A shown in this figure, a fixed contact 7 is arranged on the lower surface of a plastic case 4 whose right end is open in the figure. The right end of the fixed contact 7 is projected to the outside of the case 4. The movable contact 8 of the bimetal 1A has a right end portion fixed to the case 4 and a left end portion arranged so as to be movable in the case 4. At the left end of the movable contact 8 that moves inside the case 4 and the left end of the fixed contact 7, contacts that make electrical contact are fixed. Moving contact 8
The right end portion of the is fixed to the case 4 by sandwiching the heating resistor 3 and the insulating member. The movable contact 8 of the bimetal 1A is connected to the lead plate 9, and the lead plate 9 projects outside from the right end of the case 4. The case 4 from which the lead plate 9 and the fixed contact 7 project is also closed at the right side opening with an insulating member 10.
【0020】バイメタル1Aの可動接点8は、通常は固
定接点7に接触してオン状態にあるが、設定温度よりも
高温に加熱されると作動して接点を開いてオフ状態とす
る。感熱遮断素子1であるバイメタル1Aの接点の間
に、バイメタル1Aをオフ状態に保持する加熱抵抗3を
配設している。加熱抵抗3はバインダーにカーボンを充
填し抵抗値を調整してものである。ただ、加熱抵抗3に
は、ニクロム線等の細い高抵抗の抵抗線も使用できる。
加熱抵抗3の抵抗値は、ジュール熱でバイメタル1Aを
オフ状態に保持でき、電池を過充電しない電流となるよ
うに設計される。図8に示すように、バイメタル1Aの
接点の間に加熱抵抗3を配設したものは、加熱抵抗3の
ジュール熱で最も有効にバイメタル1Aを加熱してオフ
状態に保持できる。
The movable contact 8 of the bimetal 1A is normally in contact with the fixed contact 7 and is in an ON state, but when it is heated to a temperature higher than a set temperature, it operates to open the contact to be in an OFF state. A heating resistor 3 that holds the bimetal 1A in an off state is provided between the contacts of the bimetal 1A that is the heat-sensitive cutoff element 1. The heating resistance 3 is obtained by filling the binder with carbon and adjusting the resistance value. However, a thin high resistance wire such as a nichrome wire can be used as the heating resistor 3.
The resistance value of the heating resistor 3 is designed so that the bimetal 1A can be held in the off state by Joule heat and the current does not overcharge the battery. As shown in FIG. 8, in the case where the heating resistor 3 is provided between the contacts of the bimetal 1A, the Joule heat of the heating resistor 3 can most effectively heat the bimetal 1A to keep it in the OFF state.
【0021】さらに、図9の回路図に示すパック電池
は、感熱遮断素子1であるバイメタル1Aと直列に強制
オフ抵抗5を接続している。強制オフ抵抗5は、図10
に示すように、バイメタル1Aを内蔵するケース4に、
加熱抵抗3と一緒に内蔵されている。強制オフ抵抗5は
バイメタル1Aをジュール熱で加熱して強制的にオフ状
態に切り換える。それは、電池に過大な電流が流れると
き、強制オフ抵抗5にも大きな電流が流れてジュール熱
が発生し、このジュール熱でバイメタル1Aを加熱する
からである。この安全部品Aは、電池の電流でバイメタ
ル1Aを加熱する。したがって、この安全部品Aを内蔵
するバイメタル1Aは、電池に過大電流が流れるとき
に、バイメタル1Aをオフにして電池を安全に保護する
特長がある。
Further, in the battery pack shown in the circuit diagram of FIG. 9, the forced off resistance 5 is connected in series with the bimetal 1A which is the thermal cutoff element 1. The forced off resistance 5 is shown in FIG.
As shown in, the case 4 containing the bimetal 1A,
Built in with heating resistor 3. The forced off resistance 5 heats the bimetal 1A with Joule heat to forcibly switch it to the off state. This is because when an excessive current flows through the battery, a large current also flows through the forced off resistance 5 to generate Joule heat, and the Joule heat heats the bimetal 1A. This safety component A heats the bimetal 1A with the current of the battery. Therefore, the bimetal 1A incorporating the safety component A has a feature that the bimetal 1A is turned off to safely protect the battery when an excessive current flows in the battery.
【0022】強制オフ抵抗5は可動接点8とリード板9
との間に直列に接続されて、ジュール熱でバイメタル1
Aの可動接点8を加熱する。強制オフ抵抗5に電流が流
れると電圧降下ができる。したがって、強制オフ抵抗5
はできる限り小さい抵抗値に調整される。ただ、強制オ
フ抵抗5の抵抗値が小さき過ぎると、強制オフ抵抗5が
発生するジュール熱が少なくなって、バイメタル1Aを
有効に加熱できなくなる。強制オフ抵抗5の抵抗値は、
電池の容量と、電圧降下と要求されるジュール熱とを考
慮して最適値に調整される。
The forced off resistance 5 is composed of a movable contact 8 and a lead plate 9.
It is connected in series between and and is bimetal 1 by Joule heat.
The movable contact 8 of A is heated. When a current flows through the forced off resistance 5, a voltage drop occurs. Therefore, the forced off resistance 5
Is adjusted to the smallest possible resistance. However, if the resistance value of the forced-off resistance 5 is too small, the Joule heat generated by the forced-off resistance 5 decreases, and the bimetal 1A cannot be effectively heated. The resistance value of the forced off resistance 5 is
It is adjusted to an optimum value in consideration of the battery capacity, the voltage drop, and the required Joule heat.
【0023】図10に示す安全部品Aは、強制オフ抵抗
5をバイメタル1Aの可動接点8とリード板9との間に
配設している。強制オフ抵抗5は加熱抵抗3と同じよう
に、バインダーにカーボンを添加したものや抵抗線が使
用される。図に示す安全部品Aは、バイメタル1Aに直
接に強制オフ抵抗5を接触させて、強制オフ抵抗5のジ
ュール熱を有効にバイメタル1Aに伝達する構造として
いる。
In the safety component A shown in FIG. 10, the forced off resistance 5 is arranged between the movable contact 8 of the bimetal 1A and the lead plate 9. As in the case of the heating resistor 3, the forced-off resistor 5 is made of a binder added with carbon or a resistance wire. The safety component A shown in the figure has a structure in which the forced off resistance 5 is brought into direct contact with the bimetal 1A and the Joule heat of the forced off resistance 5 is effectively transmitted to the bimetal 1A.
【0024】さらに、図11に示すパック電池は、加熱
抵抗3をPTC素子3Aとする。PTC素子3Aを内蔵
する安全部品Aは、図8の断面図において加熱抵抗3を
PTC素子3Aとする。PTC素子3Aは温度が高くな
ると抵抗が急激に上昇する素子である。したがって、バ
イメタル1Aが作動する温度になると、PTC素子3A
の抵抗も高くなっている。バイメタル1Aが作動してオ
フ状態になると、PTC素子3Aに流れる電流で多量の
ジュール熱を発生し、この熱でバイメタル1Aを加熱し
てオフ状態に保持する。バイメタル1Aが作動しないと
き、PTC素子3Aの抵抗値は極めて低い。このため、
バイメタル1Aの接点が閉じているとき、バイメタル1
AとPTC素子3Aの両方に電池の電流が流れる。た
だ、接点を閉じているバイメタル1Aの抵抗はPTC素
子3Aよりもさらに小さいので、ほとんどの電流はバイ
メタル1Aの接点を流れる。ただ、バイメタル1Aの接
点が接触不良等をおこして抵抗が大きくなると、電池の
電流はPTC素子3Aにバイパスして流れるようにな
る。このため、バイメタル1Aに接点不良が発生しても
パック電池を使用できる特長がある。
Further, in the battery pack shown in FIG. 11, the heating resistor 3 is the PTC element 3A. In the safety component A including the PTC element 3A, the heating resistor 3 is the PTC element 3A in the sectional view of FIG. The PTC element 3A is an element whose resistance rapidly increases as the temperature rises. Therefore, at the temperature at which the bimetal 1A operates, the PTC element 3A
Resistance is also high. When the bimetal 1A is activated and turned off, a large amount of Joule heat is generated by the current flowing through the PTC element 3A, and this heat heats the bimetal 1A to hold it in the off state. When the bimetal 1A does not operate, the resistance value of the PTC element 3A is extremely low. For this reason,
When the contact of Bimetal 1A is closed, Bimetal 1
Battery current flows through both A and PTC element 3A. However, since the resistance of the bimetal 1A that closes the contact is smaller than that of the PTC element 3A, most of the current flows through the contact of the bimetal 1A. However, when the contact of the bimetal 1A causes a contact failure or the like to increase the resistance, the current of the battery bypasses the PTC element 3A and flows. Therefore, there is a feature that the battery pack can be used even if a contact failure occurs in the bimetal 1A.
【0025】以上の実施例は、加熱抵抗3と強制オフ抵
抗5とを感熱遮断素子1に直接に接触する状態として同
じケース4に内蔵させている。安全部品Aをこの構造に
すると、加熱抵抗3や強制オフ抵抗5のジュール熱は最
も有効に感熱遮断素子1に伝達される。ただ、本発明の
パック電池は、加熱抵抗3や強制オフ抵抗5を必ずしも
感熱遮断素子1に直接に接触して固定する必要はない。
たとえば、図示しないが、加熱抵抗と感熱遮断素子とを
互いに接近させてその間にプラスチック等の伝熱部材を
密着し、伝熱部材を介して加熱抵抗や強制オフ抵抗のジ
ュール熱を感熱遮断素子に伝導することも可能である。
In the above embodiment, the heating resistor 3 and the forced off resistor 5 are built in the same case 4 in a state of being in direct contact with the thermal cutoff element 1. When the safety component A has this structure, the Joule heat of the heating resistor 3 and the forced off resistor 5 is most effectively transmitted to the heat-sensitive cutoff element 1. However, in the battery pack of the present invention, the heating resistor 3 and the forced off resistor 5 do not necessarily have to be in direct contact with and fixed to the heat-sensitive cutoff element 1.
For example, although not shown, a heating resistance and a heat-sensitive cutoff element are brought close to each other and a heat transfer member such as plastic is closely adhered between them, and Joule heat of heating resistance or forced off resistance is transferred to the heat-sensitive cutoff element via the heat transfer member. It is also possible to conduct.
【0026】[0026]
【発明の効果】本発明のパック電池は、感熱遮断素子を
オフ状態としたときの電池電流を小さくして、感熱遮断
素子をオフ状態に保持できる特長がある。それは、感熱
遮断素子をジュール熱で加熱する加熱抵抗を、感熱遮断
素子と一緒のケースに内蔵しているからである。感熱遮
断素子のケースに内蔵された加熱抵抗は、発生するジュ
ール熱で有効に感熱遮断素子を加熱する。加熱抵抗と感
熱遮断素子との間に熱の伝達を阻害する部材を配設する
必要がないからである。感熱遮断素子のケースは断熱材
となって熱の放熱を防止することができる。ケースが加
熱抵抗の放熱を防止すると、加熱抵抗が発生するジュー
ル熱でケース内の温度は効率よく上昇する。このため、
加熱抵抗のジュール熱を効率よく感熱遮断素子の加熱に
利用できる。このように、本発明のパック電池は加熱抵
抗のジュール熱を効率よく感熱遮断素子に伝達できるの
で、加熱抵抗の発生熱量を小さくできる。すなわち、加
熱抵抗の抵抗値を大きくして電流を小さくできる。この
ことは、感熱遮断素子をオフ状態としたときの電池電流
を小さくできることになり、加熱抵抗の電流で電池を過
充電する弊害を防止できる特長を実現する。すなわち、
本発明のパック電池は、電池の温度が異常に上昇する
と、感熱遮断素子を確実に作動されて電流を遮断し、し
かも、この状態における電池電流を非常に小さくして、
電池を過充電から防止し、しかも感熱遮断素子が復帰し
て電池を再充電するのも有効に防止できる優れた特長を
実現する。
The battery pack of the present invention has the feature that the battery current when the heat-sensitive cutoff element is in the off state can be reduced to keep the heat-sensitive cutoff element in the off state. This is because the heating resistor for heating the heat-sensitive cutoff element by Joule heat is built in the case together with the heat-sensitive cutoff element. The heating resistor built in the case of the heat-sensitive cutoff element effectively heats the heat-sensitive cutoff element by the generated Joule heat. This is because it is not necessary to dispose a member that blocks heat transfer between the heating resistor and the heat-sensitive cutoff element. The case of the heat-sensitive cutoff element serves as a heat insulating material to prevent heat radiation. When the case prevents the heat radiation of the heating resistor, the temperature inside the case rises efficiently due to the Joule heat generated by the heating resistor. For this reason,
Joule heat of heating resistance can be efficiently used for heating the heat-sensitive cutoff element. As described above, in the battery pack of the present invention, Joule heat of the heating resistance can be efficiently transmitted to the heat-sensitive cutoff element, so that the amount of heat generated by the heating resistance can be reduced. That is, the resistance value of the heating resistor can be increased to reduce the current. This makes it possible to reduce the battery current when the thermal cutoff element is in the OFF state, and realizes the feature that the harmful effect of overcharging the battery due to the current of the heating resistance can be prevented. That is,
The battery pack of the present invention, when the temperature of the battery rises abnormally, the thermal cutoff element is reliably operated to cut off the current, and further, the battery current in this state is made extremely small,
Achieves excellent features that prevent the battery from being overcharged and also effectively prevent the thermal cutoff element from returning and recharging the battery.
【0027】さらにまた、本発明のパック電池は、感熱
遮断素子のケースに、加熱抵抗や強制オフ抵抗を一緒に
内蔵するので、感熱遮断素子を内蔵するケースに隙間を
有効に利用して、加熱抵抗や強制オフ抵抗を内蔵でき
る。このため、感熱遮断素子と加熱抵抗と強制オフ抵抗
とからなる安全部品を極めてコンパクトにして一体構造
にでき、従来のパック電池のように安全部品が電池の厚
さ寸法から飛び出すのを防止できる特長がある。したが
って、本発明のパック電池は安全部品で電池を有効に保
護できることに加えて、パック電池を狭い収納部分にセ
ットできる特長も実現する。
Furthermore, in the battery pack of the present invention, since the heating resistance and the forced off resistance are also incorporated in the case of the heat-sensitive cutoff element, the gap is effectively utilized in the case incorporating the heat-sensitive cutoff element to heat the case. Built-in resistance and forced off resistance. Therefore, the safety parts consisting of the heat-sensitive cutoff element, heating resistance and forced off resistance can be made extremely compact and integrated, and it is possible to prevent the safety parts from jumping out of the thickness dimension of the battery like the conventional battery pack. There is. Therefore, the battery pack of the present invention not only can effectively protect the battery with the safety component, but also realizes the feature that the battery pack can be set in a narrow storage part.
【0028】さらにまた、加熱抵抗と強制オフ抵抗の両
方を感熱遮断素子のケースに一緒に内蔵する本発明のパ
ック電池は、強制オフ抵抗のジュール熱で感熱遮断素子
を加熱するので、電池に過大電流が流れたときに感熱遮
断素子をオン状態からオフ状態に切り換えて、電池を安
全に保護できる特長がある。とくに、強制オフ抵抗を感
熱遮断素子のケース内に一緒に内蔵するので、強制オフ
抵抗の発生熱が感熱遮断素子に有効に伝達される。この
ため、強制オフ抵抗の抵抗値を小さくして、感熱遮断素
子の作動時間を短縮できる。このことは、感熱遮断素子
を確実に作動できることにくわえて、強制オフ抵抗の電
圧降下によるロスを少なくできる特長も実現する。
Furthermore, the battery pack of the present invention in which both the heating resistance and the forced OFF resistance are built in the case of the heat-sensitive cutoff element heats the heat-sensitive cutoff element by the Joule heat of the forced OFF resistance, so that the battery is excessively large. There is a feature that the battery can be protected safely by switching the heat-sensitive cutoff element from the on state to the off state when a current flows. In particular, since the forced off resistance is built in together with the case of the thermal cutoff element, the heat generated by the forced off resistance is effectively transmitted to the thermal cutoff element. Therefore, it is possible to reduce the resistance value of the forced off resistance and shorten the operation time of the thermal cutoff element. In addition to the fact that the thermal cutoff element can be operated reliably, this also realizes the feature that the loss due to the voltage drop of the forced off resistance can be reduced.
【0029】さらにまた、感熱遮断素子としてバイメタ
ルを使用し、このバイメタルの接点の間にPTC素子を
内蔵する本発明のパック電池は、バイメタルがオフ状態
になるとPTC素子に流れる電流のジュール熱がバイメ
タルを効率よく加熱する。とくに、この構造のパック電
池は、バイメタルが作動する温度に加熱されると、PT
C素子の抵抗も非常に大きくなって、電流に対するジュ
ール熱の発生量が多くなる。このことは、PTC素子を
バイメタルの接点の間に配設することと相乗してバイメ
タルを極めて有効に加熱する。したがって、PTC素子
に流れる小電流でバイメタルが復帰するのにを有効に防
止できる特長がある。
Furthermore, in the battery pack of the present invention in which a bimetal is used as the heat-sensitive cutoff element and the PTC element is built in between the contacts of the bimetal, the Joule heat of the current flowing through the PTC element when the bimetal is in the off state is the bimetal. To heat efficiently. In particular, the battery pack with this structure has a PT when heated to the temperature at which the bimetal operates.
The resistance of the C element also becomes very large, and the amount of Joule heat generated with respect to the current increases. This synergizes with disposing the PTC element between the contacts of the bimetal and heats the bimetal very effectively. Therefore, there is a feature that it is possible to effectively prevent the bimetal from being restored by a small current flowing through the PTC element.
【図面の簡単な説明】[Brief description of drawings]
【図1】従来のパック電池の一例を示す側面図及び平面
FIG. 1 is a side view and a plan view showing an example of a conventional battery pack.
【図2】図1に示すパック電池の回路図FIG. 2 is a circuit diagram of the battery pack shown in FIG.
【図3】従来のパック電池に内蔵される安全部品の正面
図、底面図及び平面図
FIG. 3 is a front view, a bottom view, and a plan view of a safety component built into a conventional battery pack.
【図4】図3に示す安全部品を内蔵するパック電池の回
路図
FIG. 4 is a circuit diagram of a battery pack containing the safety component shown in FIG.
【図5】図3の安全部品を内蔵するパック電池の側面図
及び平面図
5 is a side view and a plan view of a battery pack incorporating the safety component of FIG.
【図6】本発明の実施例にかかるパック電池の側面図及
び平面図
FIG. 6 is a side view and a plan view of a battery pack according to an embodiment of the present invention.
【図7】本発明の実施例にかかるパック電池の回路図FIG. 7 is a circuit diagram of a battery pack according to an embodiment of the present invention.
【図8】図7の回路図に示すパック電池に内蔵される安
全部品の断面図
8 is a cross-sectional view of safety components built into the battery pack shown in the circuit diagram of FIG.
【図9】本発明の他の実施例にかかるパック電池の回路
FIG. 9 is a circuit diagram of a battery pack according to another embodiment of the present invention.
【図10】図9の回路図に示すパック電池に内蔵される
安全部品の断面図
FIG. 10 is a cross-sectional view of a safety component built into the battery pack shown in the circuit diagram of FIG.
【図11】本発明の他の実施例にかかるパック電池の回
路図
FIG. 11 is a circuit diagram of a battery pack according to another embodiment of the present invention.
【符号の説明】[Explanation of symbols]
1…感熱遮断素子 1A…バイメタル 2…充電端子 3…加熱抵抗 3A…PTC素子 4…ケース 5…強制オフ抵抗 6…熱収縮チューブ 7…固定接点 8…可動接点 9…リード板 10…絶縁部材 A…安全部品 1 ... Thermal cutoff element 1A ... Bimetal 2 ... Charging terminal 3 ... Heating resistance 3A ... PTC element 4 ... Case 5 ... Forced off resistance 6 ... Heat shrink tube 7 ... Fixed contact 8 ... Moving contact 9 ... Lead plate 10 ... Insulating member A … Safety parts

Claims (3)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 電池と直列に接続された感熱遮断素子
    (1)と、この感熱遮断素子(1)と並列に接続されて、感熱
    遮断素子(1)がオフ状態のときに感熱遮断素子(1)に流れ
    る電流をバイパスしてジュール熱を発生して感熱遮断素
    子(1)を加熱する加熱抵抗(3)とを内蔵するパック電池に
    おいて、 感熱遮断素子(1)のケース(4)内に加熱抵抗(3)が内蔵さ
    れており、加熱抵抗(3)のジュール熱が感熱遮断素子(1)
    のケース(4)内で感熱遮断素子(1)を加熱するように構成
    されてなることを特徴とするパック電池。
    1. A heat-sensitive cutoff device connected in series with a battery.
    (1) is connected in parallel with this thermal cutoff element (1), and when the thermal cutoff element (1) is in the off state, it bypasses the current flowing through the thermal cutoff element (1) to generate Joule heat. In a battery pack that has a built-in heating resistor (3) for heating the heat-sensitive cutoff element (1), the heating resistance (3) is built in the case (4) of the heat-sensitive cutoff element (1). ) Joule heat is a thermal cutoff element (1)
    A battery pack which is configured to heat the heat-sensitive cutoff element (1) in the case (4).
  2. 【請求項2】 電池と直列に接続された感熱遮断素子
    (1)と、この感熱遮断素子(1)と並列に接続されて、感熱
    遮断素子(1)がオフ状態のときに感熱遮断素子(1)に流れ
    る電流をバイパスしてジュール熱を発生して感熱遮断素
    子(1)を加熱する加熱抵抗(3)と、感熱遮断素子(1)と直
    列に接続されて電池に流れる電流でジュール熱を発生し
    て感熱遮断素子(1)をオフに切り換える強制オフ抵抗(5)
    とを備え、 感熱遮断素子(1)のケース(4)内に、加熱抵抗(3)と強制
    オフ抵抗(5)が内蔵されており、加熱抵抗(3)と強制オフ
    抵抗(5)のジュール熱が感熱遮断素子(1)のケース(4)内
    で感熱遮断素子(1)を加熱するように構成されてなるこ
    とを特徴とするパック電池。
    2. A thermal cutoff element connected in series with a battery.
    (1) is connected in parallel with this thermal cutoff element (1), and when the thermal cutoff element (1) is in the off state, it bypasses the current flowing through the thermal cutoff element (1) to generate Joule heat. Forced to switch the heat-sensitive cut-off element (1) off by heating resistance (3) that heats the heat-sensitive cut-off element (1) and Joule heat generated by the current flowing in the battery that is connected in series with the heat-sensitive cut-off element (1). Off resistance (5)
    The heating resistor (3) and the forced-off resistance (5) are built in the case (4) of the thermal cutoff element (1). A battery pack characterized in that heat is configured to heat the heat-sensitive cutoff element (1) in the case (4) of the heat-sensitive cutoff element (1).
  3. 【請求項3】 電池と直列に接続された感熱遮断素子
    (1)であるバイメタル(1A)と、このバイメタル(1A)と並
    列に接続されて、感熱遮断素子(1)がオフ状態のときに
    感熱遮断素子に流れる電流をバイパスしてジュール熱を
    発生してバイメタル(1A)を加熱する加熱抵抗であるPT
    C素子(3A)を内蔵し、 バイメタル(1A)の接点の間にPTC素子(3A)が配設され
    てPTC素子(3A)がバイメタル(1A)のケース(4)内に内
    蔵されており、PTC素子(3A)のジュール熱がバイメタ
    ル(1A)の接点を加熱するように構成されてなることを特
    徴とするパック電池。
    3. A thermal cut-off element connected in series with a battery.
    The bimetal (1A), which is (1), is connected in parallel with this bimetal (1A), and when the thermal cutoff element (1) is in the off state, it bypasses the current flowing through the thermal cutoff element to generate Joule heat. PT is a heating resistance that heats the bimetal (1A)
    The C element (3A) is built in, the PTC element (3A) is arranged between the contacts of the bimetal (1A), and the PTC element (3A) is built in the case (4) of the bimetal (1A), A battery pack, wherein the PTC element (3A) is configured so that the Joule heat of the PTC element (3A) heats the contact point of the bimetal (1A).
JP29965893A 1993-11-30 1993-11-30 Battery pack Expired - Fee Related JP3416229B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29965893A JP3416229B2 (en) 1993-11-30 1993-11-30 Battery pack
DE19506161A DE19506161C2 (en) 1993-11-30 1995-02-22 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29965893A JP3416229B2 (en) 1993-11-30 1993-11-30 Battery pack
DE19506161A DE19506161C2 (en) 1993-11-30 1995-02-22 Battery pack

Publications (2)

Publication Number Publication Date
JPH07153499A true JPH07153499A (en) 1995-06-16
JP3416229B2 JP3416229B2 (en) 2003-06-16

Family

ID=26012699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29965893A Expired - Fee Related JP3416229B2 (en) 1993-11-30 1993-11-30 Battery pack

Country Status (2)

Country Link
JP (1) JP3416229B2 (en)
DE (1) DE19506161C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346796B1 (en) * 1999-06-25 2002-02-12 Uchiya Thermostat Co., Ltd. Thermal shut-off device and battery pack
JP2006156064A (en) * 2004-11-29 2006-06-15 Komatsu Lite Seisakusho:Kk Safety device built-in battery
JP2007128818A (en) * 2005-11-07 2007-05-24 Nec Tokin Corp Battery pack
JP2011078282A (en) * 2009-10-01 2011-04-14 Sony Corp Battery pack
JP2012182909A (en) * 2011-03-01 2012-09-20 Sony Corp Battery pack, power storage system, electronic apparatus, electric vehicle, electric power system and control system
JP2016500508A (en) * 2012-12-18 2016-01-12 サーミク ゲラーテバウ ゲーエムベーハー Overheat protection circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016142A1 (en) * 1997-09-19 1999-04-01 Siemens Aktiengesellschaft Power-supply component fitted with an accumulator
DE102004014136B4 (en) * 2004-03-23 2007-12-06 Siemens Ag Arrangement with a battery
DE102010034081A1 (en) * 2010-08-12 2012-02-16 Li-Tec Battery Gmbh Envelope for an electrochemical cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457489A (en) * 1966-09-26 1969-07-22 Teal Ind Inc Charging circuits
US3629765A (en) * 1970-05-18 1971-12-21 Gen Motors Corp Circuit breaker
DE2643903A1 (en) * 1976-09-29 1978-03-30 Boris Dipl Ing Koleff Heater system for maintaining car starter battery at working temp. - controlled by thermometric probe within battery and pref. comprising hotplate with polystyrene insulation
JPS5786265U (en) * 1980-11-14 1982-05-27
DE3620041A1 (en) * 1986-06-14 1987-12-17 Licentia Gmbh Charging arrangement for accumulators
JPS63316641A (en) * 1987-06-19 1988-12-23 Matsushita Electric Works Ltd Charging equipment
DE3742088A1 (en) * 1987-12-11 1989-06-22 Proxxon Werkzeug Gmbh Accumulator unit
US5254933A (en) * 1992-07-09 1993-10-19 Lin Pi Chu Battery charging device
DE4234231A1 (en) * 1992-10-10 1994-04-14 Wuerth Adolf Gmbh & Co Kg Rechargeable battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346796B1 (en) * 1999-06-25 2002-02-12 Uchiya Thermostat Co., Ltd. Thermal shut-off device and battery pack
JP2006156064A (en) * 2004-11-29 2006-06-15 Komatsu Lite Seisakusho:Kk Safety device built-in battery
JP2007128818A (en) * 2005-11-07 2007-05-24 Nec Tokin Corp Battery pack
JP2011078282A (en) * 2009-10-01 2011-04-14 Sony Corp Battery pack
JP2015202046A (en) * 2009-10-01 2015-11-12 ソニー株式会社 battery pack
JP2012182909A (en) * 2011-03-01 2012-09-20 Sony Corp Battery pack, power storage system, electronic apparatus, electric vehicle, electric power system and control system
US9028988B2 (en) 2011-03-01 2015-05-12 Sony Corporation Battery pack, electricity storage system, electronic apparatus, electrically driven vehicle, electric power system, and control system
JP2016500508A (en) * 2012-12-18 2016-01-12 サーミク ゲラーテバウ ゲーエムベーハー Overheat protection circuit
US10027109B2 (en) 2012-12-18 2018-07-17 Thermik Geraetebau Gmbh Thermal protection circuit

Also Published As

Publication number Publication date
DE19506161C2 (en) 2000-07-13
DE19506161A1 (en) 1996-08-29
JP3416229B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
KR100871525B1 (en) Method of manufacturing battery pack
EP0514454B1 (en) Device for motor and short-circuit protection
US9054538B2 (en) Battery management system
US8227110B2 (en) Secondary battery
EP1513173B1 (en) Direct current cutoff switch
TW432734B (en) Secondary battery
TW390048B (en) Current interrupter for electrochemical cells
US7079003B2 (en) Secondary battery with protective circuit
CA1231167A (en) Fault current interrupter
US6300859B1 (en) Circuit protection devices
JP3272493B2 (en) Starting device for single-phase induction motor
US7391185B2 (en) Battery pack protection circuit with plural protective means, and battery pack including the protection circuit
US4255698A (en) Protection of batteries
JP5683372B2 (en) Charge / discharge control device, battery pack, electric device, and charge / discharge control method
JP5490713B2 (en) Battery pack including PCM using safety member
JP3212963B2 (en) Secondary battery control circuit
EP1826780B1 (en) Varistor with an alloy-type temperature fuse
US7952330B2 (en) Secondary battery protection circuit, battery pack and thermosensitive protection switch device
JP4172719B2 (en) Battery pack
US8558513B2 (en) Safety circuit and battery pack using the same
US4507368A (en) Battery device
US20130015944A1 (en) External operation thermal protector
JP2961853B2 (en) Battery protection device
US5998051A (en) Current interrupter for electrochemical cells
KR100867068B1 (en) Non-aqueous electrolytic secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees