JP2005172686A - Double-side machining position measuring device and its method - Google Patents

Double-side machining position measuring device and its method Download PDF

Info

Publication number
JP2005172686A
JP2005172686A JP2003415100A JP2003415100A JP2005172686A JP 2005172686 A JP2005172686 A JP 2005172686A JP 2003415100 A JP2003415100 A JP 2003415100A JP 2003415100 A JP2003415100 A JP 2003415100A JP 2005172686 A JP2005172686 A JP 2005172686A
Authority
JP
Japan
Prior art keywords
workpiece
double
processing position
image
coordinate data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415100A
Other languages
Japanese (ja)
Inventor
Junya Inoue
上 淳 也 井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2003415100A priority Critical patent/JP2005172686A/en
Publication of JP2005172686A publication Critical patent/JP2005172686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a machining position simply and accurately without using a large-size casing for fixing cameras on front-and-back both sides of a work and without performing troublesome optical axis alignment, concerning the work to which microfabrication such as a circuit pattern is applied on front-and-back both faces. <P>SOLUTION: This device is equipped with an infrared camera 2 capable of imaging the image acquired by an infrared ray transmitted through the work W, and an image processing device 4 for executing prescribed operation processing based on the image imaged by the infrared camera 2. The image processing device 4 is equipped with a coordinate calculation means 9 for calculating coordinate data of each reference point (P<SB>A</SB>, P<SB>B</SB>) based on reference marks (M<SB>A</SB>, M<SB>B</SB>) on the front and back imaged on one image by the infrared camera 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シリコンウェハなど表裏両面に回路パターン等の微細加工が施されたワークについて、その加工位置を確認する両面加工位置計測装置及びその方法に関する。   The present invention relates to a double-sided processing position measuring apparatus and method for confirming the processing position of a workpiece such as a silicon wafer that has been subjected to fine processing such as a circuit pattern on both front and back surfaces.

ICチップは、シリコンウェハの表裏両面に微細な回路パターンを形成してその機能を向上させている。
この場合に、回路パターンは、表面側に、酸化膜生成工程−レジスト塗布工程−フォト・エッチング工程−拡散工程を繰り返してシリコンウェハの片面に回路パターンを積層した後、裏面側にも同様にして回路パターンを形成しているが、この場合に、表裏両面を貫通するスルーホールを利用して表裏の回路を接続する関係上、表裏の回路パターンは正確に位置決めされる必要があり、これが位置ずれしている場合はレジスト材をはがし再度回路パターンを形成しなおす。
このため、シリコンウェハの表裏両面に回路パターンを形成した段階で、夫々の回路パターンを撮像してその位置ずれの有無を測定する計測装置が提案されている。
特開平8−201035号公報 実公平7−3320号公報 特公平7−81831号公報
The IC chip improves its function by forming fine circuit patterns on both the front and back sides of a silicon wafer.
In this case, after the circuit pattern is laminated on one side of the silicon wafer by repeating the oxide film generation step-resist coating step-photo-etching step-diffusion step on the front side, the circuit pattern is similarly applied to the back side. Although a circuit pattern is formed, in this case, the circuit pattern on the front and back sides must be accurately positioned because of the connection between the front and back circuits using through holes that penetrate both the front and back sides. If so, the resist material is removed and the circuit pattern is formed again.
For this reason, there has been proposed a measuring apparatus that images each circuit pattern and measures the presence / absence of the positional deviation at the stage where the circuit patterns are formed on the front and back surfaces of the silicon wafer.
JP-A-8-201035 No. 7-3320 Japanese Patent Publication No. 7-81831

図5はこのような従来の計測装置41を示し、シリコンウェハWを載置するステージ42にウェハWを裏面から観察する観察孔43が形成されると共に、シリコンウェハWの上から表面側に形成された回路パターンを撮像する撮像カメラ44と、前記観察孔43を通してウェハWの裏面の回路パターンを撮像する撮像カメラ45が、夫々の撮像光軸44x及び45xが同軸に位置するように配されている。   FIG. 5 shows such a conventional measuring apparatus 41, in which an observation hole 43 for observing the wafer W from the back surface is formed in the stage 42 on which the silicon wafer W is placed, and is formed from the top to the front side of the silicon wafer W. An image pickup camera 44 for picking up the circuit pattern and an image pickup camera 45 for picking up a circuit pattern on the back surface of the wafer W through the observation hole 43 are arranged so that the respective image pickup optical axes 44x and 45x are coaxially positioned. Yes.

これによれば、シリコンウェハWに回路パターンを形成するときに、その表裏両面の対応する位置に基準マークを付しておき、各撮像カメラ44及び45で表裏の基準マークを撮像して、画像上の座標データを読み取れば、撮像カメラ44及び45の撮像光軸44x及び45xは共通であるから、その座標データから位置ずれの有無を判別できる。   According to this, when the circuit pattern is formed on the silicon wafer W, the reference marks are attached to the corresponding positions on both the front and back surfaces, and the front and back reference marks are imaged by the imaging cameras 44 and 45, and the image If the upper coordinate data is read, the imaging optical axes 44x and 45x of the imaging cameras 44 and 45 are common, and therefore the presence or absence of positional deviation can be determined from the coordinate data.

しかしながら、シリコンウェハWを挟んでその両側に離れて配置される各撮像カメラ44及び45の撮像光軸44x及び45xを完全に一致させるためには、一方の撮像光軸44xを固定した状態で、他方の撮像光軸45xについてまずXY座標を一致させ、さらにXθ,Yθの傾きを一致させなければならず、正確に光軸を合わせる作業が非常に面倒であった。 However, in order to completely match the imaging optical axes 44x and 45x of the imaging cameras 44 and 45 arranged on both sides of the silicon wafer W, with one imaging optical axis 44x fixed, to match the first XY coordinates for the other imaging optical axis 45x, further X theta, must match the inclination of the Y theta, the task of accurately align the optical axis was very troublesome.

特に、二台のカメラ44及び45を複数の部品を組み合わせたフレームなどで支持させようとすると、夫々の部品同士に振動を生じるだけでなく、精度良く位置決めするのに十分な剛性が得られないので、二つの撮像光軸44x及び45xを一致させることは実質的に不可能であった。   In particular, if the two cameras 44 and 45 are supported by a frame in which a plurality of parts are combined, the parts do not vibrate with each other, and sufficient rigidity for accurate positioning cannot be obtained. Therefore, it is virtually impossible to match the two imaging optical axes 44x and 45x.

また、大型の一体型鋳造筐体などでカメラ44及び45を支持させれば、ガタもなく十分な剛性が得られるため、かなり精度良く位置決めすることができる。
しかしながら、この場合は、その鋳造筐体だけで製造コストが極めて高価であるため、装置全体の製造コストが嵩み、このタイプの計測装置の市販価格は数千万円にも達してしまう。
Further, if the cameras 44 and 45 are supported by a large integral casting housing or the like, sufficient rigidity can be obtained without play, and positioning can be performed with high accuracy.
However, in this case, since the manufacturing cost is extremely high only by the cast casing, the manufacturing cost of the entire apparatus increases, and the commercial price of this type of measuring device reaches tens of millions of yen.

そこで本発明は、表裏両面に回路パターン等の微細加工が施されたワークについて、大型の筐体を用いることなく簡単且つ正確に加工位置を計測できるようにすることを技術的課題としている。   Therefore, the present invention has a technical problem to enable easy and accurate measurement of a processing position without using a large casing for a work that has been subjected to fine processing such as circuit patterns on both sides.

この課題を解決するために、請求項1の発明は、表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準点を有する基準マークが付されたワークについてその加工位置を確認する両面加工位置計測装置であって、ワークを透過する赤外線により得られる画像を撮像可能な赤外線カメラと、該赤外線カメラにより撮像された画像に基づいて所定の演算処理を実行する画像処理装置とを備え、前記画像処理装置は、前記赤外線カメラにより一枚の画像上に撮像された表裏の基準マークに基づき夫々の基準点の座標データを算出する座標データ算出手段を備えたことを特徴とする。   In order to solve this problem, the invention of claim 1 is directed to processing a workpiece having a reference mark having a reference point at a corresponding position on the front and back sides, and fine processing such as circuit patterns is performed on both sides. A double-sided processing position measuring apparatus for confirming a position, an infrared camera capable of capturing an image obtained by infrared rays passing through a workpiece, and image processing for executing predetermined arithmetic processing based on an image captured by the infrared camera And the image processing device includes coordinate data calculation means for calculating coordinate data of each reference point based on front and back reference marks captured on a single image by the infrared camera. And

請求項2に係る両面加工位置計測装置は、画像処理装置が、座標データ算出手段により算出された各基準点の座標データに基づいて、基準点間の位置ずれ量を算出する位置ずれ量算出手段を備えている。   The double-sided processing position measuring apparatus according to claim 2 is a positional deviation amount calculation unit in which the image processing apparatus calculates a positional deviation amount between the reference points based on the coordinate data of each reference point calculated by the coordinate data calculation unit. It has.

請求項3に係る両面加工位置計測装置は、ワークを透過して赤外線カメラに向かう赤外線透過照明光を照射すると共に、必要に応じてワークに落射照明光を照射する照明装置を備えている。   According to a third aspect of the present invention, there is provided a double-sided processing position measuring apparatus that includes an illuminating device that irradiates the work with epi-illumination light as necessary, while irradiating the work with infrared transmissive illumination light that passes through the work and travels toward the infrared camera.

請求項4に係る両面加工位置計測装置は、赤外線カメラの感光特性が可視光域から赤外域まである場合に、前記落射照明光として可視光を照射する照明装置を備えている。   A double-sided processing position measuring apparatus according to a fourth aspect includes an illuminating device that emits visible light as the incident illumination light when the photosensitive characteristic of the infrared camera is from the visible light region to the infrared region.

請求項5に係る発明は、表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準点を有する基準マークが付されたワークについてその加工位置を確認する両面加工位置計測方法であって、ワークの片面側に配された1台の赤外線カメラで、ワークを透過してくる赤外線を利用してワークの表裏の基準マークを一枚の画像上に重ねて撮像し、その画像に映し出された表裏の基準マークに基づき夫々の基準点の座標データを算出することを特徴としている。   The invention according to claim 5 is a double-sided processing position for confirming the processing position of a work having a reference mark having a reference point at a corresponding position on the front and back sides, and fine processing such as a circuit pattern is performed on both front and back surfaces. A measuring method, using a single infrared camera arranged on one side of a workpiece, using infrared rays that are transmitted through the workpiece, the reference marks on the front and back of the workpiece are superimposed on a single image and imaged. It is characterized in that the coordinate data of each reference point is calculated based on the front and back reference marks displayed in the image.

請求項6に係る両面加工位置計測方法は、各基準点の座標データに基づき、基準点間の位置ずれ量を算出することとしている。   The double-side machining position measurement method according to claim 6 calculates the amount of positional deviation between the reference points based on the coordinate data of each reference point.

請求項7に係る発明は、表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準マークが付されたワークについてその加工位置を確認する両面加工位置計測装置であって、ワークの片面側を表とし、表の基準マークを撮像するカメラ及びワークを透過する赤外線により裏の基準マークを撮像する赤外線カメラが、夫々の撮像光軸をワークに対してその表から同軸的に配向する光学系に取り付けられると共に、前記各カメラにより撮像された画像に基づいて所定の演算処理を実行する画像処理装置を備え、
前記画像処理装置は、各カメラで個別に撮像された表裏の各基準マークに基づき夫々の基準点の座標データを算出する座標データ算出手段を備えたことを特徴としている。
The invention according to claim 7 is a double-sided processing position measuring device for confirming a processing position of a work having a reference mark attached to a corresponding position on the front and back sides while fine processing such as a circuit pattern is performed on both front and back surfaces. The front side of the workpiece is taken as the front, and the camera that picks up the reference mark on the front and the infrared camera that picks up the back reference mark with infrared rays that pass through the work are coaxial with respect to the work. And an image processing device that is attached to an optical system that is orientated and that executes predetermined arithmetic processing based on an image captured by each camera,
The image processing apparatus includes coordinate data calculation means for calculating coordinate data of each reference point based on front and back reference marks individually captured by each camera.

請求項8に係る発明は、表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準マークが付されたワークについてその加工位置を確認する両面加工位置計測方法であって、ワークの片面側を表とし、表の基準マークを撮像するカメラ及びワークを透過する赤外線により裏の基準マークを撮像する赤外線カメラの夫々の撮像光軸をワークに対してその表から同軸的に配向し、各カメラで個別に撮像された表裏の各基準マークに基づき夫々の基準点の座標データを算出することを特徴とする。   The invention according to claim 8 is a double-sided machining position measuring method for confirming a machining position of a workpiece having a reference mark at a corresponding position on the front and back sides while fine machining such as a circuit pattern is performed on both sides. The imaging optical axis of the camera that images the reference mark on the front and the infrared camera that images the back reference mark by infrared rays that pass through the work are coaxial with respect to the work. The coordinate data of each reference point is calculated on the basis of the reference marks on the front and back sides that are individually imaged by each camera.

請求項1及び請求項5によれば、赤外線が透過されるワークを1台の赤外線カメラで撮像するだけで、一枚の画像上に表裏両面の基準マークが撮像され、表裏の基準マークに基づいて夫々の基準点の座標データが算出されるので、その座標データの値を比較することにより加工位置のずれを確認することができ、面倒な光軸合せを行う必要は一切ないというメリットがある。
また、光軸合せが不要なことから、光軸のずれに起因する測定誤差がなく、離れた位置に二台のカメラを精度良く支持する必要もないので大型の一体型鋳造筐体を用いる必要もなく、装置全体が小型軽量で、精度よく、低コストで製造することができるという効果がある。
According to the first and fifth aspects, the reference mark on both the front and back sides is imaged on a single image only by imaging the work through which infrared rays are transmitted with one infrared camera, and based on the reference mark on the front and back sides. Since the coordinate data of each reference point is calculated, the deviation of the processing position can be confirmed by comparing the values of the coordinate data, and there is an advantage that there is no need for troublesome optical axis alignment. .
In addition, since there is no need for optical axis alignment, there is no measurement error due to optical axis misalignment, and it is not necessary to support two cameras accurately at remote locations, so it is necessary to use a large integral casting case. In addition, there is an effect that the entire apparatus is small and light, can be manufactured accurately, and at low cost.

請求項2及び請求項6によれば、各基準点の座標データに基づいて基準点間の位置ずれ量が算出されるので、位置ずれ量の数値を知ることができる。   According to the second and sixth aspects, since the positional deviation amount between the reference points is calculated based on the coordinate data of each reference point, the numerical value of the positional deviation amount can be known.

請求項3によれば、ワークを透過して赤外線カメラに向かう赤外線透過照明光により、裏の基準マークを確実に撮像でき、また、必要に応じてワークに落射照明光を照射することにより表の基準マークを確実に撮像できる。
ここで、請求項4に記載されたように赤外線カメラの感光特性が可視光域から赤外域まである場合は、落射照明として可視光を用いることもできる。
According to the third aspect, the reference mark on the back can be reliably imaged by the infrared transmissive illumination light that passes through the workpiece and travels toward the infrared camera, and the workpiece is irradiated with epi-illumination light as necessary. The reference mark can be reliably imaged.
Here, when the photosensitive characteristic of the infrared camera is from the visible light region to the infrared region as described in claim 4, visible light can also be used as the epi-illumination.

請求項7および請求項8によれば、表の基準マークを撮像するカメラと、裏の基準マークを撮像する赤外線カメラの二台のカメラを使用するので、光軸合せを行なう作業は必要となるが、夫々のカメラをワークの表となる片面側に配することによりカメラ同士を近接させて設けることができるので、二台のカメラを取付支持する部材も小型のもので足り、装置全体が大型化することもなく、低コストで製造できる。   According to the seventh and eighth aspects, since two cameras are used, that is, a camera that captures the front reference mark and an infrared camera that captures the back reference mark, the work of aligning the optical axes is required. However, since each camera can be provided close to each other by placing it on the front side of the workpiece, the members for mounting and supporting the two cameras can be small, and the entire device is large. And can be manufactured at low cost.

本例では、表裏両面に回路パターン等の微細加工が施されたワークについて、大型の筐体を用いることなく簡単且つ正確に加工位置を計測できるようにするという課題を、ワークの表となる片面側に一台又は二台のカメラを配することで実現した。   In this example, for a work that has been subjected to micromachining such as circuit patterns on both front and back sides, the problem of enabling easy and accurate measurement of the machining position without using a large case is Realized by arranging one or two cameras on the side.

以下本発明を図面に示す実施例に基づいて具体的に説明する。
図1は本発明に係る両面加工位置計測装置を示す説明図、図2は画像処理手順を示すフローチャートである。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is an explanatory view showing a double-sided processing position measuring apparatus according to the present invention, and FIG. 2 is a flowchart showing an image processing procedure.

図1に示す両面加工位置計測装置1は、表裏両面に回路パターンの微細加工が施されたシリコンウェハ(ワーク)Wの加工位置のずれを検出するものである。
この種のシリコンウェハWには、表裏の回路パターンが位置ずれなく形成されたときにお互いに重なる表裏の基準点P、Pを中心点とする基準マークM、MがウェハWの表裏に形成されている。
そして、表裏の基準マークM、Mは、例えば、表がひし形、裏が正方形というように、その中心点が特定し易く、且つ、表裏両面で形状又は大きさが異なるマークであることが好ましい。
基準マークM、Mはその形状又は大きさが異なるので、表裏の回路パターンが位置ずれなく理想的に形成されても、各マークM、Mが完全に重なることがなく、一方のマークが撮像されなかったときは、異常と判断することができる。
A double-sided processing position measuring apparatus 1 shown in FIG. 1 detects a shift in the processing position of a silicon wafer (work) W in which circuit patterns are finely processed on both front and back surfaces.
In this type of silicon wafer W, when the front and back circuit patterns are formed without misalignment, the reference marks M A and M B centered on the front and back reference points P A and P B that overlap each other are formed on the wafer W. It is formed on the front and back.
Then, the front and back of the reference mark M A, M B, for example, the table is diamond, so that the back square, easy to identify its center point, and, that the shape or size at both sides are different mark preferable.
Reference mark M A, since M B have different shape or size, also the front and back of the circuit pattern is formed ideally without displacement, without the mark M A, is M B completely overlap, the one When the mark is not imaged, it can be determined that there is an abnormality.

また、両面加工位置計測装置1は、ウェハWの裏から透過してくる赤外線により得られる画像を撮像可能な赤外線カメラ2がウェハWの表側に配され、ウェハWの裏面側からウェハWを透過して赤外線カメラに向かう赤外線透過照明光を照射すると共に、必要に応じてウェハWに落射照明光を照射する照明装置3と、赤外線カメラ2により撮像された画像に基づいて所定の演算処理を実行する画像処理装置4とを備えている。   In the double-sided processing position measuring apparatus 1, an infrared camera 2 capable of capturing an image obtained by infrared rays transmitted from the back side of the wafer W is arranged on the front side of the wafer W, and the wafer W is transmitted from the back side of the wafer W. And irradiating the infrared camera with infrared transmission illumination light, and performing predetermined calculation processing based on the illumination device 3 that irradiates the wafer W with epi-illumination light and an image captured by the infrared camera 2 as necessary. The image processing apparatus 4 is provided.

本例の照明装置3は、同じ赤外光源5から照射された赤外光を分岐させて、ウェハWの裏側に導く光路6と、カメラ2のレンズ鏡筒内に導く光路7が形成され、透過照明及び落射照明の双方とも赤外光を使用している。
なお、図示は省略するが、赤外線カメラ2の感光特性が可視光域から赤外域まである場合は、赤外光源と可視光源とを用いて、落射照明を可視光としても良い。
これにより、裏の基準マークMは赤外線透過光により撮像され、表の基準マークMは赤外線透過光及び反射光の双方で撮像されることになる。
In the illumination device 3 of this example, an optical path 6 for branching infrared light emitted from the same infrared light source 5 to be led to the back side of the wafer W and an optical path 7 to be led into the lens barrel of the camera 2 are formed. Both transmitted illumination and epi-illumination use infrared light.
In addition, although illustration is abbreviate | omitted, when the photosensitive characteristic of the infrared camera 2 has a visible light region to an infrared region, it is good also considering incident light as visible light using an infrared light source and a visible light source.
Thus, the back of the reference mark M B is imaged by the infrared light transmitted through the reference mark M A table will be captured by both the infrared transmitted light and reflected light.

画像処理装置4は、赤外線カメラ2により一枚の画像上に撮像された表裏の基準マークM、Mに基づきその中心点である夫々の基準点P,Pの座標データを算出する座標データ算出手段8と、その座標データ算出手段8により算出された各基準点P,Pの座標データに基づいて、基準点P,P間の位置ずれ量を算出する位置ずれ量算出手段9を備えている。 The image processing device 4 calculates the coordinate data of the respective reference points P A and P B that are the center points based on the front and back reference marks M A and M B imaged on one image by the infrared camera 2. A positional deviation amount for calculating a positional deviation amount between the reference points P A and P B based on the coordinate data calculating means 8 and the coordinate data of the respective reference points P A and P B calculated by the coordinate data calculating means 8 Calculation means 9 is provided.

図2は、画像処理装置4における処理手順を示すフローチャートで、まず、ステップSTP1で、予め登録された基準マークの形状(例えばひし形と正方形)に基づいてパターン認識により画像に映しだされた表裏の基準マークM、Mを識別する。
次いで、図3に示すように、ステップSTP2で、ひし形の表の基準マークMから読み取られる四つの頂点A〜Aの座標に基づいてその対角線の交点を基準点Pの座標データとして算出する。
そして、ステップSTP3で、正方形の裏の基準マークMから読み取られる四つの頂点B〜Bの座標に基づいて対角線の交点を基準点Pの座標データとして算出する。
次いで、ステップSTP4に移行して、各基準点P、Pの座標データに基づき、基準点P、P間の位置ずれ量を算出すれば、表裏の回路パターンがどの程度ずれているかを正確に測定することができる。
そして最後に、ステップSTP5では、ステップSTP4で算出された位置ずれ量を予め設定された許容位置ずれ量と比較して、これが許容範囲であれば処理を終了し、許容範囲より大きければステップSTP6に移行して、ステップSTP4で算出された位置ずれ量を出力する。
FIG. 2 is a flowchart showing a processing procedure in the image processing apparatus 4. First, in step STP 1, the front and back images projected on the image by pattern recognition based on the shape of a reference mark (for example, a rhombus and a square) registered in advance. The reference marks M A and M B are identified.
Then, as shown in FIG. 3, in step STP2, as the coordinate data of the reference point P A to the intersection of the diagonals on the basis of the four coordinates of the vertices A 1 to A 4 to be read from the reference mark M A diamond table calculate.
Then, at step STP3, and calculates the intersection of diagonal lines as the coordinate data of the reference point P B on the basis of the four coordinates of the vertices B 1 .about.B 4 to be read from the reference mark M B of the back of the square.
Then, it goes to step STP4, each reference point P A, based on the coordinate data of P B, by calculating the reference point P A, the positional deviation amount between the P B, whether the front and back of the circuit pattern is how much deviation Can be measured accurately.
Finally, in step STP5, the positional deviation amount calculated in step STP4 is compared with a preset allowable positional deviation amount, and if this is within the allowable range, the process ends. If it is larger than the allowable range, step STP6 is entered. Then, the positional deviation amount calculated in step STP4 is output.

なお、ステップSTP1〜4の処理が座標データ算出手段8の具体例であり、ステップSTP5が位置ずれ量算出手段9の具体例である。   Note that the processing of steps STP1 to STP4 is a specific example of the coordinate data calculation means 8, and step STP5 is a specific example of the positional deviation amount calculation means 9.

図4は本発明の第二実施例を示し、本例の両面加工位置計測装置11は、ウェハ(ワーク)Wの片面側を表とし、表の基準マークMを撮像するカメラ12A及びウェハWを透過する赤外線により裏の基準マークMを撮像する赤外線カメラ12Bが、夫々の撮像光軸X及びXをウェハWに対してその表から同軸的に配向する光学系13に取り付けられている。 Figure 4 shows a second embodiment of the present invention, both surfaces processing position measuring device 11 of this embodiment, the one side of the wafer (work) W and the table, the camera 12A and the wafer W to image the reference mark M A table infrared camera 12B for imaging the back of the reference mark M B by infrared radiation transmitted through is attached to the imaging optical axis X a and X B each in an optical system 13 oriented coaxially from the table relative to the wafer W Yes.

そして、各カメラ12A、12Bで撮像された画像に基づいて所定の演算処理を実行する画像処理装置14を備えており、各カメラ12A、12Bで個別に撮像された表裏の各基準マークM、Mに基づき夫々の基準点P、Pの座標データを算出する座標データ算出手段15を備えている。 The image processing device 14 is configured to execute a predetermined calculation process based on images captured by the cameras 12A and 12B. The front and back reference marks M A and the individual images captured by the cameras 12A and 12B are provided. husband based on M B 's reference point P a, and a coordinate data calculating means 15 for calculating the coordinate data of the P B.

なお、各カメラ12A、12Bは撮像倍率が等しく設定されている。
これにより、各カメラ12A、12Bで撮像された個別の画像に基づいて夫々の基準点P、Pの座標を算出しても同一座標によるデータとして扱うことができる。
しかも、表を撮像するカメラ12Aは表の基準マークMしか撮像できないように、また、裏を撮像するカメラ12Bは裏の基準マークMしか撮像できないように、その被写界深度が設定されている。
これにより、二つの基準マークM及びMが同時に撮像されることはないので、基準マークM、Mとして同一形状同大のマークを使用しても差し支えない。
The cameras 12A and 12B have the same imaging magnification.
Thereby, even if the coordinates of the respective reference points P A and P B are calculated based on the individual images captured by the cameras 12A and 12B, they can be handled as data by the same coordinates.
Moreover, the camera 12A for imaging the table so that it can not be captured only reference marks M A table The camera 12B for imaging the back so as not only be imaged behind the reference mark M B, the depth of field is set ing.
Thus, since there is no possibility that two reference mark M A and M B are simultaneously imaged, reference marks M A, no problem even using the mark having the same shape and size as M B.

そして、実施例1と同様にして、カメラ12Aで撮像された表の画像に基づき、画像処理装置14により表の基準マークMの中心点である基準点Pの座標データが算出され、赤外線カメラ12Bで撮像された裏の画像に基づいて、裏の基準マークMの中心点である基準点Pの座標データが算出される。
次いで、各基準点P、Pの座標データに基づいて、基準点P、P間の位置ずれ量を算出すれば、表裏の回路パターンがどの程度ずれているかを正確に測定することができる。
Then, in the same manner as in Example 1, based on the table of the image captured by the camera 12A, the image processing apparatus 14 the coordinate data of the reference point P A is the center point of the reference mark M A table is calculated, infrared based on the back of the image captured by the camera 12B, the coordinate data of the reference point P B is the center point of the back of the reference mark M B is calculated.
Then, the respective reference point P A, based on the coordinate data of P B, by calculating the reference point P A, the positional deviation amount between the P B, to accurately measure how the front and back of the circuit pattern is how much deviation Can do.

なお、ワークとしてはシリコンウェハに限るものではなく赤外線透過材料で形成された任意ワークについて適用し得る。
また、基準点としては中心点を用いる場合に限らず、基準マークから特定し得る任意の点を用いることができる。
The work is not limited to a silicon wafer, and can be applied to an arbitrary work made of an infrared transmitting material.
Further, the reference point is not limited to using the center point, and any point that can be specified from the reference mark can be used.

以上述べたように本発明によれば、ワークの片面側に配された一台の赤外線カメラで、ワークの表裏両面側の基準マークを1枚の画像に同時に撮像することができるので、何らの光軸あわせをする必要がなく、極めて簡単且つ正確に、表裏両面の加工位置を計測することができる。
また、ワークの表面撮像用と裏面撮像用の二台のカメラを使用する場合は、光軸合せを行なう作業は必要となるが、二台のカメラともワークの表となる片面側に配されており、カメラ同士を近接させて設けることができるので、二台のカメラを取付支持する部材も小型のもので足り、装置全体が大型化することもなく、低コストで製造できる。
As described above, according to the present invention, the reference marks on both the front and back sides of the workpiece can be simultaneously captured on one image with one infrared camera arranged on one side of the workpiece. It is not necessary to align the optical axes, and the processing positions on both the front and back surfaces can be measured extremely easily and accurately.
Also, when using two cameras for imaging the front and back surfaces of the workpiece, the work of aligning the optical axes is necessary, but both cameras are placed on one side of the workpiece surface. In addition, since the cameras can be provided close to each other, a member for mounting and supporting the two cameras may be small, and the entire apparatus can be manufactured at a low cost without increasing the size.

以上述べたように、本発明は、シリコンウェハなど表裏両面に回路パターン等の微細加工が施されたワークについて、その加工位置を確認する製品検査の用途に適用することができる。   As described above, the present invention can be applied to the use of product inspection for confirming the processing position of a workpiece such as a silicon wafer that has been subjected to fine processing such as a circuit pattern on both front and back surfaces.

本発明に係る両面加工位置計測装置を示す説明図。Explanatory drawing which shows the double-sided processing position measuring device which concerns on this invention. 画像処理装置の処理手順を示すフローチャート。5 is a flowchart showing a processing procedure of the image processing apparatus. 撮像された画像を示す説明図。Explanatory drawing which shows the imaged image. 他の実施例を示す説明図。Explanatory drawing which shows another Example. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus.

符号の説明Explanation of symbols

1,11 両面加工位置計測装置
W シリコンウェハ(ワーク)
、P基準点
、M基準マーク
2 赤外線カメラ
3 照明装置
4、14 画像処理装置
12A カメラ
12B 赤外線カメラ
1,11 Double-sided processing position measuring device W Silicon wafer (work)
P A, P B reference points M A, M B reference mark 2 infrared camera 3 illuminating device 4,14 image processing apparatus 12A camera 12B infrared camera

Claims (8)

表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準点を有する基準マークが付されたワークについてその加工位置を確認する両面加工位置計測装置であって、
ワークを透過する赤外線により得られる画像を撮像可能な赤外線カメラと、該赤外線カメラにより撮像された画像に基づいて所定の演算処理を実行する画像処理装置とを備え、
前記画像処理装置は、前記赤外線カメラにより一枚の画像上に撮像された表裏の基準マークに基づき夫々の基準点の座標データを算出する座標データ算出手段を備えたことを特徴とする両面加工位置計測装置。
It is a double-sided processing position measuring device that confirms the processing position of a workpiece with a reference mark having a reference point at the corresponding position on the front and back, as well as fine processing such as a circuit pattern on both front and back surfaces,
An infrared camera capable of capturing an image obtained by infrared rays that pass through the workpiece, and an image processing device that executes predetermined arithmetic processing based on the image captured by the infrared camera;
The double-sided processing position, wherein the image processing apparatus includes coordinate data calculation means for calculating coordinate data of each reference point based on front and back reference marks captured on one image by the infrared camera. Measuring device.
前記画像処理装置が、座標データ算出手段により算出された各基準点の座標データに基づいて、基準点間の位置ずれ量を算出する位置ずれ量算出手段を備えた請求項1記載の両面加工位置計測装置。   The double-sided processing position according to claim 1, wherein the image processing apparatus includes a positional deviation amount calculation unit that calculates a positional deviation amount between the reference points based on the coordinate data of each reference point calculated by the coordinate data calculation unit. Measuring device. ワークを透過して赤外線カメラに向かう赤外線透過照明光を照射すると共に、必要に応じてワークに落射照明光を照射する照明装置を備えた請求項1記載の両面加工位置計測装置。   The double-sided processing position measuring apparatus according to claim 1, further comprising an illuminating device that irradiates the workpiece with infrared transmission illumination light that passes through the workpiece and travels toward the infrared camera, and irradiates the workpiece with epi-illumination light as necessary. 前記赤外線カメラの感光特性が可視光域から赤外域まである場合に、前記落射照明光として可視光を照射する照明装置を備えた請求項3記載の両面加工位置計測装置。   The double-sided processing position measuring apparatus according to claim 3, further comprising an illuminating device that emits visible light as the epi-illumination light when a photosensitive characteristic of the infrared camera is from a visible light region to an infrared region. 表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準点を有する基準マークが付されたワークについてその加工位置を確認する両面加工位置計測方法であって、
ワークの片面側に配された1台の赤外線カメラで、ワークを透過してくる赤外線を利用してワークの表裏の基準マークを一枚の画像上に重ねて撮像し、その画像に映し出された表裏の基準マークに基づき夫々の基準点の座標データを算出することを特徴とする両面加工位置計測方法。
It is a double-sided processing position measurement method for confirming the processing position of a workpiece with a reference mark having a reference point at a corresponding position on the front and back, as well as fine processing such as a circuit pattern on both the front and back surfaces,
Using one infrared camera placed on one side of the workpiece, the reference marks on the front and back of the workpiece were superimposed on a single image using infrared rays transmitted through the workpiece, and displayed on that image. A double-sided processing position measuring method, wherein coordinate data of each reference point is calculated based on front and back reference marks.
前記各基準点の座標データに基づき、基準点間の位置ずれ量を算出するように成された請求項5記載の両面加工位置計測方法。   The double-sided processing position measuring method according to claim 5, wherein a positional deviation amount between the reference points is calculated based on the coordinate data of each reference point. 表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準マークが付されたワークについてその加工位置を確認する両面加工位置計測装置であって、
ワークの片面側を表とし、表の基準マークを撮像するカメラ及びワークを透過する赤外線により裏の基準マークを撮像する赤外線カメラが、夫々の撮像光軸をワークに対してその表から同軸的に配向する光学系に取り付けられると共に、前記各カメラにより撮像された画像に基づいて所定の演算処理を実行する画像処理装置を備え、
前記画像処理装置は、各カメラで個別に撮像された表裏の各基準マークに基づき夫々の基準点の座標データを算出する座標データ算出手段を備えたことを特徴とする両面加工位置計測装置。
It is a double-sided processing position measurement device that confirms the processing position of a workpiece that has been subjected to fine processing such as a circuit pattern on both the front and back surfaces, and a reference mark attached to the corresponding position on the front and back surfaces,
A camera that images one side of the workpiece as a front, and a camera that images the front reference mark and an infrared camera that images the back reference mark using infrared rays that pass through the workpiece, each imaging optical axis is coaxial with respect to the workpiece from the front. An image processing device that is attached to an optical system that is oriented, and that executes predetermined arithmetic processing based on an image captured by each of the cameras;
The double-sided processing position measurement apparatus according to claim 1, further comprising coordinate data calculation means for calculating coordinate data of each reference point based on front and back reference marks individually captured by each camera.
表裏両面に回路パターン等の微細加工が施されると共に、表裏の対応する位置に基準マークが付されたワークについてその加工位置を確認する両面加工位置計測方法であって、
ワークの片面側を表とし、表の基準マークを撮像するカメラ及びワークを透過する赤外線により裏の基準マークを撮像する赤外線カメラの夫々の撮像光軸をワークに対してその表から同軸的に配向し、
各カメラで個別に撮像された表裏の各基準マークに基づき夫々の基準点の座標データを算出することを特徴とする両面加工位置計測方法。
It is a double-sided processing position measurement method for confirming the processing position of a workpiece with a reference mark at the corresponding position on the front and back, as well as fine processing such as circuit patterns on both front and back surfaces,
With one side of the workpiece as the front, the imaging optical axis of the camera that images the front fiducial mark and the infrared camera that captures the back fiducial mark with infrared rays that pass through the workpiece are oriented coaxially from the front with respect to the workpiece. And
A double-sided processing position measuring method, comprising: calculating coordinate data of each reference point based on front and back reference marks individually captured by each camera.
JP2003415100A 2003-12-12 2003-12-12 Double-side machining position measuring device and its method Pending JP2005172686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415100A JP2005172686A (en) 2003-12-12 2003-12-12 Double-side machining position measuring device and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415100A JP2005172686A (en) 2003-12-12 2003-12-12 Double-side machining position measuring device and its method

Publications (1)

Publication Number Publication Date
JP2005172686A true JP2005172686A (en) 2005-06-30

Family

ID=34734709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415100A Pending JP2005172686A (en) 2003-12-12 2003-12-12 Double-side machining position measuring device and its method

Country Status (1)

Country Link
JP (1) JP2005172686A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508907A (en) * 2007-12-28 2011-03-17 ローリング オプティクス エービー Method for producing a microstructured product
JP2012189358A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Printing apparatus
JP2015060493A (en) * 2013-09-20 2015-03-30 大日本印刷株式会社 Pattern inspection apparatus and pattern inspection method
US9022519B2 (en) 2011-03-09 2015-05-05 Seiko Epson Corporation Printing device
JP2015175749A (en) * 2014-03-17 2015-10-05 日本ピラー工業株式会社 planar antenna inspection method and planar antenna
CN106370105A (en) * 2016-09-26 2017-02-01 昆山昆尚电子科技有限公司 Double-sided graphic position relative deviation measurement apparatus
JP2017215346A (en) * 2017-08-30 2017-12-07 日本ピラー工業株式会社 Planar antenna inspection method and planar antenna
CN109554662A (en) * 2017-09-27 2019-04-02 株式会社爱发科 Position detecting device, method for detecting position and evaporation coating device
CN110954007A (en) * 2019-11-27 2020-04-03 长江存储科技有限责任公司 Wafer detection system and detection method
CN114758969A (en) * 2022-04-18 2022-07-15 无锡九霄科技有限公司 Wafer back visual detection structure, detection method and related equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508907A (en) * 2007-12-28 2011-03-17 ローリング オプティクス エービー Method for producing a microstructured product
US8755101B2 (en) 2007-12-28 2014-06-17 Rolling Optics Ab Method of producing a microstructured product
JP2012189358A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Printing apparatus
US9022519B2 (en) 2011-03-09 2015-05-05 Seiko Epson Corporation Printing device
JP2015060493A (en) * 2013-09-20 2015-03-30 大日本印刷株式会社 Pattern inspection apparatus and pattern inspection method
JP2015175749A (en) * 2014-03-17 2015-10-05 日本ピラー工業株式会社 planar antenna inspection method and planar antenna
CN106370105A (en) * 2016-09-26 2017-02-01 昆山昆尚电子科技有限公司 Double-sided graphic position relative deviation measurement apparatus
JP2017215346A (en) * 2017-08-30 2017-12-07 日本ピラー工業株式会社 Planar antenna inspection method and planar antenna
CN109554662A (en) * 2017-09-27 2019-04-02 株式会社爱发科 Position detecting device, method for detecting position and evaporation coating device
KR20190036450A (en) * 2017-09-27 2019-04-04 가부시키가이샤 알박 Position detection device, position detection method, and vapor deposition apparatus
JP2019062105A (en) * 2017-09-27 2019-04-18 株式会社アルバック Position detection apparatus, position detection method, and vapor deposition apparatus
KR102125839B1 (en) 2017-09-27 2020-06-23 가부시키가이샤 알박 Position detection device, position detection method, and vapor deposition apparatus
CN110954007A (en) * 2019-11-27 2020-04-03 长江存储科技有限责任公司 Wafer detection system and detection method
CN114758969A (en) * 2022-04-18 2022-07-15 无锡九霄科技有限公司 Wafer back visual detection structure, detection method and related equipment
CN114758969B (en) * 2022-04-18 2023-09-12 无锡九霄科技有限公司 Wafer back vision detection structure, detection method and related equipment

Similar Documents

Publication Publication Date Title
JP4493272B2 (en) Backside alignment system and method
KR101379538B1 (en) Rotational misalignment measuring device of bonded substrate, rotational misalignment measuring method of bonded substrate, and method of manufacturing bonded substrate
JP3203719B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method
JP2003092248A (en) Position detection apparatus and positioning apparatus and their methods, projection aligner, and manufacturing method of device
KR20010107760A (en) Focusing control mechanism, and inspection apparatus using same
JP2015190826A (en) Substrate inspection device
US20110149062A1 (en) Apparatus and Method for Aligning a Wafer&#39;s Backside to a Wafer&#39;s Frontside
JP2005172686A (en) Double-side machining position measuring device and its method
TW552623B (en) Position measuring apparatus and exposure apparatus
JP5060821B2 (en) Substrate inspection apparatus and substrate inspection method
KR102346335B1 (en) Laser processing apparatus and its control method
JP2021060251A (en) Position detection apparatus, position detection method, lithography apparatus, and method of manufacturing article
JP6608130B2 (en) Measuring apparatus, lithographic apparatus, and article manufacturing method
JP3466893B2 (en) Positioning apparatus and projection exposure apparatus using the same
TW202234175A (en) Detection apparatus, detection method, programme, lithography apparatus, and method of manufacturing article A high-precision detection apparatus that is useful for pattern matching.
JP2006332480A (en) Position measurement method, exposure method, device-manufacturing method, position-measurement apparatus, and exposure apparatus
JP2006078262A (en) Position detection device, exposure device, measuring system and position detection method
JP2006234769A (en) Position measuring method and position measuring apparatus
KR102720076B1 (en) Alignment apparatus, alignment method, lithography apparatus, and method of manufacturing article
TWI824145B (en) Alignment apparatus, alignment method, lithography apparatus, and method of manufacturing article
JP3337499B2 (en) Printed circuit board inspection equipment
JP5672919B2 (en) Mask inspection apparatus, drawing method, and wafer exposure method
JP2017139377A (en) Detector, detection method, lithography device and article manufacturing method
JP2006071483A (en) Position measuring method, its device, device manufacturing method and exposure system
JP2005129786A (en) Aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701