JP2005171321A - Ultrahigh strength steel sheet having excellent formability and bending workability, and its production method - Google Patents

Ultrahigh strength steel sheet having excellent formability and bending workability, and its production method Download PDF

Info

Publication number
JP2005171321A
JP2005171321A JP2003413431A JP2003413431A JP2005171321A JP 2005171321 A JP2005171321 A JP 2005171321A JP 2003413431 A JP2003413431 A JP 2003413431A JP 2003413431 A JP2003413431 A JP 2003413431A JP 2005171321 A JP2005171321 A JP 2005171321A
Authority
JP
Japan
Prior art keywords
phase
mass
less
temperature transformation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003413431A
Other languages
Japanese (ja)
Other versions
JP4385754B2 (en
Inventor
Tetsuya Mega
哲也 妻鹿
Kohei Hasegawa
浩平 長谷川
Yasushi Tanaka
靖 田中
Hiroshi Sawada
弘 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003413431A priority Critical patent/JP4385754B2/en
Publication of JP2005171321A publication Critical patent/JP2005171321A/en
Application granted granted Critical
Publication of JP4385754B2 publication Critical patent/JP4385754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrahigh strength steel sheet in which, particularly, tensile strength of ≥980 MPa is attained, further, formability expressed by stretch and stretch flange formability is excellent, and further, bending workability is excellent, and which is suitable for the forming of an automobile component, and to provide its production method. <P>SOLUTION: The ultrahigh strength steel sheet has a composition comprising, by mass, 0.12 to 0.15% C, 1.0 to 1.5% Si, 2.0 to 2.5% Mn, 0.002 to 0.01% N, ≤0.04% P, ≤0.005% S and ≤0.05% Al, and the balance Fe with inevitable impurities, and has a composite structure of a ferritic phase and a low temperature transformation production phase, wherein the average crystal grain size of the ferritic phase is ≤7 μm, and the volume fraction of the low temperature transformation production phase is 40 to 60%. Also, the Vickers hardness HV(F) of the ferritic phase and the Vickers hardness HV(M) of the low temperature transformation production phase satisfy the relation of HV(M)-HV(F)≤350. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として、成形されたのち自動車用の構造部品などに用いて好適な引張強さTSが980MPa以上であり、伸びおよび伸びフランジ特性で表される成形性、および曲げ加工性に優れる超高強度鋼板およびその製造方法に関するものである。   The present invention mainly has a tensile strength TS of 980 MPa or more suitable for use in automobile structural parts after being molded, and is excellent in formability represented by elongation and stretch flange characteristics, and excellent bending workability. The present invention relates to a high-strength steel plate and a manufacturing method thereof.

近年、自動車の安全性向上及び軽量化に対する社会的要請が厳しくなるのに伴い、自動車構造用部材には、従来の軟鋼板及び引張強さTSが390〜440MPaクラスの高強度冷延鋼板に代えて、引張強さTSが980MPa以上の超高強度鋼板が急速に使用されるようになりつつある。また、自動車構造用部材に使用される鋼板には、伸び特性、伸びフランジ特性、曲げ加工性などの材料特性が求められる。   In recent years, as social demands for improving safety and weight reduction of automobiles have become stricter, automotive structural members have been replaced with conventional mild steel sheets and high-strength cold-rolled steel sheets with a tensile strength TS of 390 to 440 MPa class. Therefore, ultra-high strength steel sheets having a tensile strength TS of 980 MPa or more are being used rapidly. In addition, steel sheets used for automobile structural members are required to have material characteristics such as stretch characteristics, stretch flange characteristics, and bending workability.

一般に、このような超高強度冷延鋼板は、その金属組織形態がマルテンサイト相やベイナイト相のような比較的硬質な低温変態生成相で構成される、いわゆる組織強化型の高強度鋼板である。このような比較的硬質な低温変態生成相を強化機構に活用した高強度鋼板としては、軟質なフェライト地に比較的硬質な低温変態生成相を分散させて、強度と加工性を同時に高めた、いわゆる複合組織鋼板があり、かかる複合組織鋼板は、近年の連続焼鈍技術の普及と進歩に伴なって、伸び及び伸びフランジ特性に優れる高強度冷延鋼板が、広く利用されるに至っている。   In general, such an ultra-high-strength cold-rolled steel sheet is a so-called structure-strengthened high-strength steel sheet whose metal structure is composed of a relatively hard low-temperature transformation generation phase such as a martensite phase or a bainite phase. . As a high-strength steel sheet that utilizes such a relatively hard low-temperature transformation generation phase as a strengthening mechanism, a relatively hard low-temperature transformation generation phase is dispersed in a soft ferrite ground to simultaneously improve strength and workability. There is a so-called composite structure steel sheet. With the spread and advance of the continuous annealing technology in recent years, high strength cold-rolled steel sheets having excellent elongation and stretch flange characteristics have been widely used.

なかでも、水焼入れ装置を有する連続焼鈍設備は、冷却速度を極めて大きくすることが可能であるため、合金元素添加量の低減や低温変態生成相の制御、ついては、製品性能においても特性の優れた鋼板を製造することが可能である。   Above all, the continuous annealing equipment with water quenching equipment can greatly increase the cooling rate, so it has excellent characteristics in terms of reducing alloy element addition and controlling the low temperature transformation generation phase, as well as product performance. It is possible to produce a steel plate.

高強度冷延鋼板に関する技術としては、例えば、特許文献1および特許文献2に、引張強度980MPa以上の鋼板が開示されているが、かかる鋼板は、十分な加工性を有するものであるとは言い難い。また、特許文献3には、局部延性に優れた高強度冷延鋼板の製造法が開示されており、かかる鋼板は、良好な伸び特性を示すものの、十分な伸びフランジ特性が得られていない。さらに、特許文献4には、伸びフランジ特性に優れた鋼板について開示されているが、かかる鋼板は、引張強度が780MPaに満たないレベルのものである。   For example, Patent Document 1 and Patent Document 2 disclose steel sheets having a tensile strength of 980 MPa or more as technologies related to high-strength cold-rolled steel sheets, but it is said that such steel sheets have sufficient workability. hard. Patent Document 3 discloses a method for producing a high-strength cold-rolled steel sheet having excellent local ductility. Such a steel sheet exhibits good elongation characteristics but does not have sufficient stretch flange characteristics. Further, Patent Document 4 discloses a steel plate excellent in stretch flange characteristics, but this steel plate has a tensile strength of less than 780 MPa.

一般に、強度と加工性は相反する関係を有しており、現状では、引張強さが980MPa以上でかつ成形性および曲げ加工性にも優れる超高強度鋼板を開示した公知文献は見当たらない。
特開平3−277742号公報 特開平4−236741号公報 特公平7−59726号公報 特開平4−350号公報
In general, strength and workability have a contradictory relationship, and at present, there is no known document that discloses an ultra-high-strength steel sheet having a tensile strength of 980 MPa or more and excellent formability and bending workability.
JP-A-3-277742 JP-A-4-236741 Japanese Examined Patent Publication No. 7-59726 JP-A-4-350

本発明の目的は、このような従来技術の問題を解決するための新規な冷延鋼板およびその製造方法を提案するものであり、より具体的には、980MPa以上の引張強さを達成するとともに、伸びおよび伸びフランジ特性で表される成形性に優れ、さらに曲げ加工性にも優れる自動車部品の成形に適した、超高強度鋼板とその製造方法を提案することにある。   The object of the present invention is to propose a novel cold-rolled steel sheet and a method for producing the same for solving such problems of the prior art. More specifically, while achieving a tensile strength of 980 MPa or more. Another object of the present invention is to propose an ultra-high-strength steel sheet suitable for forming automobile parts that are excellent in formability represented by elongation and stretch flange characteristics and also have excellent bending workability, and a method for producing the same.

発明者らは、上記の目的を達成すべく、鋼成分、製造条件、金属組織などの面から鋭意実験を行い検討を重ねた。その結果、一般的に相反する特性とされる、伸び特性と伸びフランジ特性を共に高い特性レベルに維持して、超高強度を得るためには、成分を最適化し、製造条件を適正範囲に制御して、フェライト粒径、低温変態生成相の分率および硬さを最適化することにより、強度レベルを低下させることなく、局所的な変形能の差を解消しマクロ的に均一変形させることができる結果、上記目的が達成されることを知見した。   In order to achieve the above object, the inventors have conducted extensive experiments from the viewpoints of steel components, production conditions, metal structures, and so forth. As a result, the components are optimized and the manufacturing conditions are controlled within an appropriate range in order to maintain both the stretch properties and stretch flange properties, which are generally contradictory properties, at a high property level and to obtain ultra-high strength. By optimizing the ferrite grain size, the fraction of the low-temperature transformation generation phase, and the hardness, the difference in local deformability can be eliminated and the macro uniform deformation can be achieved without reducing the strength level. As a result, it has been found that the above object is achieved.

さらに、このような組織形態を得るためには、水焼入れ過程で、大きな冷却速度で鋼板内部に歪を均一に発生させ、続く再加熱帯での昇温速度を大きくして、内部の歪を均一に開放していくことが必要で、急速加熱を行わないで再加熱帯で昇温して長時間保持する従来の熱処理より優れた特性が、容易に安定して得られることが判明した。   Furthermore, in order to obtain such a microstructure, in the water quenching process, strain is uniformly generated inside the steel plate at a large cooling rate, and the temperature rising rate in the subsequent reheating zone is increased to reduce the internal strain. It has been found that it is necessary to open uniformly, and characteristics superior to conventional heat treatment in which the temperature is raised in the reheating zone and maintained for a long time without rapid heating can be easily and stably obtained.

本発明はこのような知見に基づいて完成されたものであり、その要旨とするところは次のとおりである。
(1)
C:0.12〜0.15mass%、
Si:1.0〜1.5mass%、
Mn:2.0〜2.5mass%、
N:0.002〜0.01mass%、
P:0.04mass%以下、
S:0.005mass%以下および
Al:0.05mass%以下
を含有し、残部はFe及び不可避的不純物の組成からなり、フェライト相と低温変態生成相の複合組織からなり、上記フェライト相の平均結晶粒径が7μm以下であり、上記低温変態生成相の体積分率が40〜60%であり、かつ、フェライト相のビッカース硬さHV(F)と低温変態生成相のビッカース硬さHV(M)が、HV(M)−HV(F)≦350の関係を満足することを特徴とする成形性および曲げ加工性に優れる超高強度鋼板。
The present invention has been completed based on such findings, and the gist thereof is as follows.
(1)
C: 0.12-0.15 mass%
Si: 1.0-1.5mass%,
Mn: 2.0-2.5mass%,
N: 0.002 to 0.01 mass%
P: 0.04 mass% or less,
S: 0.005 mass% or less and
Al: 0.05 mass% or less, the balance is composed of Fe and inevitable impurities, is composed of a composite structure of a ferrite phase and a low-temperature transformation generation phase, the average crystal grain size of the ferrite phase is 7 μm or less, The volume fraction of the low temperature transformation phase is 40-60%, and the Vickers hardness HV (F) of the ferrite phase and the Vickers hardness HV (M) of the low temperature transformation phase are HV (M) -HV ( F) An ultra-high-strength steel sheet excellent in formability and bending workability characterized by satisfying the relationship of ≦ 350.

(2)C:0.12〜0.15mass%、
Si:1.0〜1.5mass%、
Mn:2.0〜2.5mass%、
N:0.002〜0.01mass%、
P:0.04mass%以下、
S:0.005mass%以下および
Al:0.05mass%以下
を含有し、残部はFe及び不可避的不純物の組成からなる鋼素材を、熱間圧延後に酸洗し、さらに必要に応じて冷間圧延した後、Ac1変態点以上850℃以下の温度域で均熱してから、急冷開始温度から少なくとも200℃の温度まで100℃/s以上の冷却速度で急冷する焼入れ処理を施し、その後、急冷停止温度から少なくとも100℃上昇させるまで20℃/s以上の昇温速度で加熱し、300〜500℃で均熱してから冷却する焼もどし処理を施し、その後、調質圧延することを特徴とする成形性および曲げ加工性に優れる超高強度鋼板の製造方法。
(2) C: 0.12 to 0.15 mass%,
Si: 1.0-1.5mass%,
Mn: 2.0-2.5mass%,
N: 0.002 to 0.01 mass%
P: 0.04 mass% or less,
S: 0.005 mass% or less and
Al: containing less 0.05 mass%, the balance being a steel material having a composition of Fe and inevitable impurities, pickling after hot rolling, after cold rolling, if necessary, Ac 1 transformation point or more 850 After soaking in a temperature range of ℃ or less, quenching treatment is performed by quenching at a cooling rate of 100 ℃ / s or more from the rapid cooling start temperature to at least 200 ℃, and then increasing by at least 100 ℃ from the quenching stop temperature. Super high with excellent formability and bending workability, characterized by heating at a heating rate of ℃ / s or higher, soaking at 300-500 ° C, cooling, and then temper rolling A method for producing a strength steel plate.

(3)焼戻し処理における加熱は、誘導加熱方式により行うことを特徴とする上記(2)に記載の成形性および曲げ加工性に優れる超高強度鋼板の製造方法。 (3) The method for producing an ultra-high strength steel sheet having excellent formability and bending workability as described in (2) above, wherein the heating in the tempering treatment is performed by an induction heating method.

本発明によると、伸び特性と伸びフランジ特性で表される成形性に優れ、さらに曲げ特性にも良好な超高強度鋼板が製造可能となる。   According to the present invention, it is possible to produce an ultra-high strength steel sheet that is excellent in formability represented by elongation characteristics and stretch flange characteristics and also has good bending characteristics.

本発明における超高強度鋼板の鋼成分を限定した理由について、以下で説明する。
・C:0.12〜0.15mass%
Cは、低温変態相を利用して鋼を強化するためには必要不可欠な元素である。C含有量は、980MPa以上の引張強さと40%以上の低温変態生成相の双方を得るため、0.12mass%以上であることが必要である。一方、C含有量が0.15mass%を超えると、溶接性が著しく劣化するとともに、オーステナイト中のC濃度が高くなって低温変態生成相の硬さが高くなりすぎ、伸びフランジ特性が低下し、加えて、低温変態生成相の体積分率が60%超えとなって、伸びが低下する。従って、C含有量は0.12〜0.15mass%の範囲とした。
The reason which limited the steel component of the ultra high strength steel plate in this invention is demonstrated below.
・ C: 0.12-0.15 mass%
C is an indispensable element for strengthening steel using the low temperature transformation phase. The C content needs to be 0.12 mass% or more in order to obtain both a tensile strength of 980 MPa or more and a low temperature transformation generation phase of 40% or more. On the other hand, if the C content exceeds 0.15 mass%, the weldability deteriorates remarkably, the C concentration in the austenite increases, the hardness of the low-temperature transformation generation phase becomes too high, and the stretch flange characteristic decreases. Thus, the volume fraction of the low-temperature transformation generation phase exceeds 60%, and the elongation decreases. Therefore, the C content is in the range of 0.12 to 0.15 mass%.

・Si:1.0〜1.5mass%
Siは、強度向上に寄与する元素であるとともに、焼鈍中のフェライト相とオーステナイト相の2相分離を促進して、適切な低温変態生成相を得るには、必要不可欠な元素である。上記効果はSi含有量が1.0mass%未満では発揮されない。一方、Siを1.5mass%を超えて含有させると、連続焼鈍中にSiが表面に濃化し、雰囲気中に存在する微量の水蒸気と反応して、表面でSi系の酸化物を形成し、塗装の前処理として行なう化成処理性を著しく劣化させ、塗装との密着性が著しく低下する。従って、Si含有量は1.0〜1.5mass%の範囲とした。
・ Si: 1.0-1.5mass%
Si is an element that contributes to strength improvement and is an indispensable element for obtaining a suitable low-temperature transformation generation phase by promoting two-phase separation of the ferrite phase and austenite phase during annealing. The above effect is not exhibited when the Si content is less than 1.0 mass%. On the other hand, when Si exceeds 1.5 mass%, Si concentrates on the surface during continuous annealing, reacts with a small amount of water vapor present in the atmosphere, and forms Si-based oxide on the surface. The chemical conversion treatment performed as a pre-treatment is significantly deteriorated, and the adhesion to the coating is remarkably lowered. Therefore, the Si content is in the range of 1.0 to 1.5 mass%.

・Mn:2.0〜2.5mass%
Mnは、フェライト変態を抑制し、低温変態生成相を得るために重要な役割を担っている元素である。また、Mnは、Ar変態点を低下させ、結晶粒の繊細化に寄与し、同一強度での伸び特性と伸びフランジ特性の特性バランスを高める作用を有する。Mn含有量は、安定的に低温変態生成相を得ることで引張強さTSを確保する観点から、2.0mass%以上であることが必要である。一方、Mn含有量が2.5mass%を超えると、軟質なフェライト相の生成が過度に抑制され、強度特性(特に引張強さTS)と延性(特に伸び特性と伸びフランジ特性)の特性ハランスが低下する。また、Mn含有量は、低温変態生成相の体積分率を40〜60%の範囲に制御する観点からも2.0〜2.5mass%の範囲にする必要がある。従って、Mn含有量は2.0〜2.5mass%の範囲とした。
・ Mn: 2.0-2.5mass%
Mn is an element that plays an important role in suppressing ferrite transformation and obtaining a low-temperature transformation generation phase. Mn also lowers the Ar 3 transformation point, contributes to finer crystal grains, and has the effect of increasing the balance between the elongation characteristics and the elongation flange characteristics at the same strength. The Mn content needs to be 2.0 mass% or more from the viewpoint of securing the tensile strength TS by stably obtaining the low-temperature transformation generation phase. On the other hand, if the Mn content exceeds 2.5 mass%, the formation of a soft ferrite phase is excessively suppressed, and the characteristic balance of strength characteristics (especially tensile strength TS) and ductility (especially elongation characteristics and stretch flange characteristics) decreases. To do. Moreover, it is necessary to make Mn content into the range of 2.0-2.5 mass% also from a viewpoint of controlling the volume fraction of a low temperature transformation production | generation phase in the range of 40-60%. Therefore, the Mn content is in the range of 2.0 to 2.5 mass%.

・N:0.002〜0.01mass%
Nは、Cと同様に鋼の強化と低温変態生成相の形成に寄与する元素である。また、フェライト中にも一部固溶して、フェライト相の硬さHV(F)と低温変態生成相HV(M)の硬さの差HV(M)−HV(F)を制御する上でも有効な元素である。上記効果は、0.002mass%以上のNの含有により発現する。また、N含有量を0.002mass%未満にすることは、生産性の低下やコストアップを招くことになるので、N含有量の下限を0.002mass%とした。さらに、Nは、AlNとして鋼中に存在するため、多量のN含有は、加工性を低下させるとともに、スポット溶接性の低下や表面性状の劣化を招くため、N含有量の上限を0.01mass%とした。
・ N: 0.002 ~ 0.01mass%
N, like C, is an element that contributes to the strengthening of steel and the formation of a low-temperature transformation generation phase. It is also partly dissolved in ferrite to control the difference in hardness between the ferrite phase hardness HV (F) and the low temperature transformation phase HV (M) HV (M)-HV (F) It is an effective element. The said effect is expressed by containing N of 0.002 mass% or more. Moreover, since making N content less than 0.002 mass% causes the fall of productivity and a cost increase, the minimum of N content was made into 0.002 mass%. Furthermore, since N is present in the steel as AlN, a large amount of N decreases the workability and also causes a decrease in spot weldability and a deterioration in surface properties, so the upper limit of the N content is 0.01 mass%. It was.

そして、本発明では、上記した成分以外の残部は実質的に鉄および不可避的不純物の組成である。なお、上記以外の元素を本発明の効果に影響を及ぼさない範囲で微量含有することは許容される。   In the present invention, the balance other than the above components is substantially the composition of iron and inevitable impurities. In addition, it is permissible to contain a trace amount of elements other than those described above as long as the effects of the present invention are not affected.

・P:0.04mass%以下
Pは、固溶強化能が高く、強度上昇に寄与する元素であるが、P含有量が0.04mass%を超えると、鋳造時の凝固偏析が著しくなり、内部割れや加工性低下が生じやすくなる。このため、P含有量は0.04mass%以下にすることが好ましい。
・ P: 0.04 mass% or less P is an element that has a high solid solution strengthening ability and contributes to an increase in strength. However, if the P content exceeds 0.04 mass%, solidification segregation during casting becomes significant, and internal cracks and Workability deterioration tends to occur. For this reason, it is preferable to make P content 0.04 mass% or less.

・S:0.005mass%以下
Sは、伸びフランジの応力集中源となるため、S含有量を0.005mass%以下にすることが好ましい。
-S: 0.005 mass% or less Since S becomes a stress concentration source of the stretch flange, the S content is preferably 0.005 mass% or less.

・Al:0.05mass%以下
Alは、脱酸性や炭化物形成に有効な元素であるが、0.05mass%を超えるAlの含有は、効果が飽和するだけでなく、加工性劣化や表面性状の低下を招くおそれがある。このため、Al含有量は0.05mass%にすることが好ましい。
・ Al: 0.05 mass% or less
Al is an element effective for deacidification and carbide formation. However, the inclusion of Al in excess of 0.05 mass% may not only saturate the effect but also cause deterioration of workability and surface properties. For this reason, it is preferable that Al content shall be 0.05 mass%.

次に、鋼組織の限定理由について説明する。
・フェライト相の平均結晶粒径:7μm以下
フェライト相の平均結晶粒径を7μm以下にしてフェライト結晶粒を微細にすることにより、引張強さTSを低下させずに伸び及び伸びフランジ特性の向上が可能であること、また、フェライト結晶粒の微細化により、鋼板組織の均一化が進むため、伸びフランジ成形でのフェライト相と低温相との界面での亀裂の進展が抑制される結果として、高い伸びフランジ特性の達成が可能である。フェライト相の平均結晶粒径が7μmを超えると、上記効果の発現が認められなくなる。従って、フェライト相の平均結晶粒径は7μm以下とした。
Next, the reason for limiting the steel structure will be described.
-Average grain size of ferrite phase: 7 μm or less By making the average crystal grain size of ferrite phase 7 μm or less and making the ferrite crystal grains finer, the elongation and stretch flange characteristics can be improved without reducing the tensile strength TS. It is possible, and because the refinement of ferrite crystal grains makes the steel sheet structure more uniform, it is high as a result of suppressing the progress of cracks at the interface between the ferrite phase and the low-temperature phase in stretch flange molding Stretch flange characteristics can be achieved. When the average crystal grain size of the ferrite phase exceeds 7 μm, the above effect is not observed. Therefore, the average crystal grain size of the ferrite phase is set to 7 μm or less.

・低温変態生成相の体積分率:40〜60%
強度一定(例えば、TS=980MPa)のもとで、低温変態生成相の体積分率を増加させると、伸びは減少して伸び特性が低下する傾向にあるのに対し、伸びフランジ特性は向上する傾向にある。かかる傾向は、以下に起因するものであると考えられる。すなわち、低温変態生成相の生成量の増加とともに、低温変態生成相でのC濃度が減少し、フェライト相と低温変態生成相との硬さの差HV(M)−HV(F)が小さくなり、伸びフランジ成形でのフェライト相と低温相との界面での亀裂の発生が抑制されため、伸びフランジ特性は向上する。しかしながら、フェライト相の加工硬化能は低下するため、伸び特性は低下する。
-Volume fraction of low temperature transformation phase: 40-60%
When the volume fraction of the low-temperature transformation phase is increased under constant strength (for example, TS = 980 MPa), the elongation tends to decrease and the elongation characteristics tend to decrease, whereas the stretch flange characteristics improve. There is a tendency. This tendency is considered to be caused by the following. That is, as the amount of low-temperature transformation product phase increases, the C concentration in the low-temperature transformation product phase decreases, and the hardness difference HV (M) -HV (F) between the ferrite phase and the low-temperature transformation product phase decreases. In addition, since the occurrence of cracks at the interface between the ferrite phase and the low temperature phase in the stretch flange molding is suppressed, stretch flange characteristics are improved. However, since the work hardening ability of the ferrite phase is lowered, the elongation characteristic is lowered.

一方、低温変態生成相が減少すると、低温変態生成相中のC濃度が増加し、フェライト相と低温変態生成相との硬さの差HV(M)−HV(F)が大きくなり、伸びフランジ成形での相界面での亀裂発生が促進されるため、伸びフランジ特性は低下する。しかしながら、フェライト相の加工硬化能は増加するため、伸び特性は向上する。   On the other hand, when the low-temperature transformation generation phase decreases, the C concentration in the low-temperature transformation generation phase increases, and the hardness difference HV (M) -HV (F) between the ferrite phase and the low-temperature transformation generation phase increases. Since the crack generation at the phase interface in the molding is promoted, the stretch flange characteristic is deteriorated. However, since the work hardening ability of the ferrite phase is increased, the elongation characteristics are improved.

本発明者らは、低温変態生成相の体積分率を40〜60%の範囲に制御することで、従来の技術には無い極めて良好な、伸びと伸びフランジ特性の両立するところがあることを見出した。上述のごとく、低温変態生成相の体積分率は、40%より少ないと伸び特性はさらに向上するが、伸びフランジ特性は著しく低下し、また、60%を超えると伸びフランジ特性は向上するが、伸び特性が著しく低下する。従って、本発明では、低温変態生成相の体積分率を40〜60%の範囲とした。   The present inventors have found that there is a place where both elongation and stretch flange characteristics are extremely good, which is not found in the prior art, by controlling the volume fraction of the low-temperature transformation generation phase in the range of 40 to 60%. It was. As described above, when the volume fraction of the low temperature transformation generation phase is less than 40%, the elongation characteristics are further improved, but the stretch flange characteristics are remarkably deteriorated, and when it exceeds 60%, the stretch flange characteristics are improved. Elongation characteristics are significantly reduced. Therefore, in the present invention, the volume fraction of the low-temperature transformation generation phase is set in the range of 40 to 60%.

尚、ここでいう「低温変態生成相」とは、具体的には、焼戻しマルテンサイト相を意味する。   The “low-temperature transformation generation phase” here means specifically a tempered martensite phase.

・フェライト相のビッカース硬さHV(F)と低温変態生成相のビッカース硬さHV(M)が、HV(M)−HV(F)≦350の関係を満足すること
フェライト相のビッカース硬さHV(F)と低温変態生成相のビッカース硬さHV(M)の差HV(M)−HV(F)が350を超えると、均一な組織ではなく、フェライト相のような軟質相中に低温変態生成相のような硬質相が局所的に存在することになり、ひずみ導入時に変形能が異なり不均一な変形となるため成形性が低下する。すなわち、ひずみの導入によりフェライト相は変形するが、焼戻しマルテンサイト相のような低温変態生成相は変形しにくくなるため、低温変態生成相の界面でボイドが容易に発生すること、また、伸びフランジ成形中に界面において亀裂の進展が容易に起こるため、伸びフランジ特性は低下する。従って、フェライト相のビッカース硬さHV(F)と低温変態生成相のビッカース硬さHV(M)の差HV(M)−HV(F)を350以下とした。
-The Vickers hardness HV (F) of the ferrite phase and the Vickers hardness HV (M) of the low-temperature transformation phase satisfy the relationship of HV (M)-HV (F) ≤ 350. Vickers hardness HV of the ferrite phase When the difference HV (M) -HV (F) between Vickers hardness HV (M) of (F) and the low-temperature transformation formation phase exceeds 350, it is not a uniform structure but a low-temperature transformation in a soft phase such as a ferrite phase. A hard phase such as a generated phase is locally present, and deformability is different at the time of strain introduction, resulting in uneven deformation. In other words, the ferrite phase is deformed by the introduction of strain, but the low-temperature transformation generation phase such as the tempered martensite phase is difficult to deform, so that voids are easily generated at the interface of the low-temperature transformation generation phase. Since the progress of cracks easily occurs at the interface during molding, the stretch flange characteristic is deteriorated. Therefore, the difference HV (M) −HV (F) between the Vickers hardness HV (F) of the ferrite phase and the Vickers hardness HV (M) of the low temperature transformation generation phase was set to 350 or less.

次に、本発明に従う超高強度鋼板の製造方法における製造条件の限定理由ついて以下で説明する。尚、かかる製造方法で用いる鋼素材の成分を限定した理由については、上述した超高強度鋼板の鋼成分の限定理由と実質的に同様であるので、説明を省略する。   Next, the reason for limiting the production conditions in the method for producing an ultra high strength steel sheet according to the present invention will be described below. The reason for limiting the components of the steel material used in the manufacturing method is substantially the same as the reason for limiting the steel components of the ultra-high-strength steel plate described above, and thus the description thereof is omitted.

まず、上記成分に調整した鋼素材である鋼スラブを加熱した後、熱間圧延を行う。スラブ加熱温度は1150〜1300℃の範囲であれば良い。熱間圧延条件はとくに規定しないが、熱延仕上げ温度がAr変態点を下回ったり、熱間圧延終了後の冷却速度が5℃/s以下と緩冷却であるなど、熱延板粒径が著しく大きくならなければ、とくに問題は生じない。逆に、熱間圧延終了後、1秒以内に100〜300℃/sといった急冷却を活用したり、これにさらに熱間仕上げ圧延での大圧下の適用を組み合わせるなど、熱延板粒径を小さくする行為に関しては、本発明の効果を阻害しない。巻取り温度は、400〜650℃の条件であれば本発明の効果に影響を及ぼさない。 First, after heating the steel slab which is the steel raw material adjusted to the said component, hot rolling is performed. The slab heating temperature may be in the range of 1150 to 1300 ° C. The hot rolling conditions are not specified, but the hot rolled plate grain size is low, such as the hot rolling finishing temperature is lower than the Ar 3 transformation point, or the cooling rate after the hot rolling is 5 ° C / s or less. If it does not grow significantly, there will be no problem. Conversely, after hot rolling is completed, the rapid rolling of 100 to 300 ° C / s within 1 second is used, and this is combined with the application of large reductions in hot finish rolling. With respect to the act of reducing, the effect of the present invention is not hindered. The coiling temperature does not affect the effect of the present invention as long as the temperature is 400 to 650 ° C.

以上のような条件下で製造された熱延鋼帯は、酸洗後、あるいはさらに冷間圧延後、続く連続焼鈍ラインにおいて、所望のオーステナイト相の体積分率を得るため、Ac変態点以上850℃以下の温度域にて均熱して、オーステナイト相の体積分率を調整するため、所望の急冷開始温度まで緩冷却してから、少なくとも200℃の温度まで100℃/s以上の冷却速度で急冷する焼入れ処理を施す。ここで、均熱温度を850℃以下と限定したのは、フェライト及び初期オーステナイトの粒径の粗大化を抑制するためであって、850℃を超えると、均熱時の粒径が粗大になって、最終組織のフェライト相の平均結晶粒径を7μm以下に調整することが出来ないためである。また、均熱温度をAc変態点以上と限定したのは、オーステナイト相を生成させるためである。 The hot-rolled steel strip manufactured under the above conditions is not less than the Ac 1 transformation point in order to obtain the desired austenite phase volume fraction in the subsequent continuous annealing line after pickling or further cold rolling. In order to adjust the volume fraction of the austenite phase by soaking in a temperature range of 850 ° C or lower, after slowly cooling to the desired quenching start temperature, at a cooling rate of 100 ° C / s or higher to a temperature of at least 200 ° C Apply quenching treatment for rapid cooling. Here, the reason for limiting the soaking temperature to 850 ° C. or less is to suppress the grain size of ferrite and initial austenite, and when it exceeds 850 ° C., the grain size during soaking becomes coarse. This is because the average crystal grain size of the ferrite phase in the final structure cannot be adjusted to 7 μm or less. Moreover, the reason why the soaking temperature is limited to the Ac 1 transformation point or more is to generate an austenite phase.

急冷開始温度からの冷却速度は、マルテンサイト相やベイナイト相といった低温変態生成相を得るためには、ある一定速度以上が必要であるが、上述したとおり、本発明で主眼とする形状改善の効果についても重要なポイントとなる。ここでは、できるだけ均一な変態歪と熱歪を鋼板内部に導入することが必要であり、このためには100℃/s以上の冷却速度が必要となる。もちろん高強度化が必要であるので、少なくとも200℃まで急冷することが必要である。急冷停止温度が200℃よりも高い場合には、硬質のマルテンサイト相が得られないからである。尚、冷却速度については、とくに300℃/s以上にすれば、歪の導入が顕著になり組織が徹細かつ均一に分散することになり、効果が大きくなるため好ましい。加えて、噴流水中での冷却は、均一でかつ急速な冷却を可能とし、本発明の効果がより効率的に得られる点で好ましい。   The cooling rate from the rapid cooling start temperature requires a certain rate or more in order to obtain a low-temperature transformation generation phase such as a martensite phase or a bainite phase. Is also an important point. Here, it is necessary to introduce transformation strain and thermal strain as uniform as possible into the steel plate, and for this purpose, a cooling rate of 100 ° C./s or more is required. Of course, since high strength is required, it is necessary to rapidly cool to at least 200 ° C. This is because if the quenching stop temperature is higher than 200 ° C., a hard martensite phase cannot be obtained. The cooling rate of 300 ° C./s or more is particularly preferable because the introduction of strain becomes remarkable and the structure is finely and uniformly dispersed, and the effect is increased. In addition, cooling in the jet water is preferable in that uniform and rapid cooling is possible and the effects of the present invention can be obtained more efficiently.

急冷後は、急冷停止温度から少なくとも100℃上昇させるまで20℃/s以上の昇温速度で加熱し、300〜500℃で均熱してから冷却する焼もどし処理を施す。この焼もどし処理は、100℃/s以上の急冷により生成した低温変態生成相中の炭化物を粗大化させて、軟質化し、フェライト相と低温変態生成相との硬さの差HV(M)−HV(F)を350以下にするとともに、鋼板内部に均一に蓄えられた歪を、均一に解放して形状を改善させるために行なう。急冷停止温度から少なくとも100℃上昇させるのは、これ未満だと低温変態生成相の軟質化は不十分であり、また、その後の昇温速度を20℃/s以上とするのは、20℃/s未満だと、炭化物の粗大化と軟質化が不十分となり、また歪の解放が不均一となり形状が不良となるからである。焼もどし温度は、炭化物の粗大化とそれに伴なう低温変態生成相が軟質化する点から300℃以上とする。しかしながら、焼もどし温度が500℃を超えると、強度低下が著しく、所望の強度が得られなくなる。従って、焼もどし温度は300〜500℃とする。なお、300〜500℃での均熱後の冷却については、特に限定はしない。   After the rapid cooling, a tempering process is performed in which heating is performed at a temperature increase rate of 20 ° C./s or more until the temperature is increased by at least 100 ° C. from the rapid cooling stop temperature, soaking at 300 to 500 ° C. and then cooling. This tempering treatment coarsens and softens the carbide in the low-temperature transformation product phase generated by rapid cooling at 100 ° C / s or higher, and the difference in hardness between the ferrite phase and the low-temperature transformation product phase HV (M)- The HV (F) is set to 350 or less, and the strain accumulated uniformly in the steel sheet is uniformly released to improve the shape. If the temperature is raised at least 100 ° C. from the quenching stop temperature, the softening of the low temperature transformation phase is insufficient if the temperature is lower than this, and the rate of temperature increase after that is 20 ° C./s or more. If it is less than s, coarsening and softening of the carbide will be insufficient, and strain release will be uneven and the shape will be poor. The tempering temperature is set to 300 ° C. or more from the viewpoint of coarsening of the carbide and softening of the low-temperature transformation generation phase accompanying it. However, when the tempering temperature exceeds 500 ° C., the strength is remarkably reduced and the desired strength cannot be obtained. Therefore, the tempering temperature is 300 to 500 ° C. The cooling after soaking at 300 to 500 ° C. is not particularly limited.

また、急冷後の焼もどし処理における加熱は、誘導加熱方式により実施すると、雰囲気加熱に比べて、C拡散の著しい増加により、炭化物の粗大化がより促進されるため、低温変態生成相の軟質化の観点からより好ましい。   In addition, when the heating in the tempering process after the rapid cooling is performed by the induction heating method, the coarsening of the carbide is further promoted by the remarkable increase of C diffusion compared with the atmospheric heating, so that the low temperature transformation generation phase is softened. From the viewpoint of

調質圧延は、伸び率で0.1〜1%で行なうのが好ましい。   The temper rolling is preferably performed at an elongation of 0.1 to 1%.

その他の製造条件については、とくに言及していないが、造塊あるいは連続鋳造によるスラブ製造法や、熱間圧延での粗熱延バー接続による連続熱間圧延、また、熱間圧延過程でのインダクションヒーターを利用した200℃以内の昇温などは、本発明の効果に対して影響を及ばさない。   Other manufacturing conditions are not mentioned in particular, but slab manufacturing method by ingot or continuous casting, continuous hot rolling with hot hot rolled bar connection in hot rolling, and induction in hot rolling process A temperature rise within 200 ° C. using a heater does not affect the effects of the present invention.

上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

以下、実施例について記述する。
まず、表1に示す成分組成を有する、本発明鋼A〜Cと比較鋼D〜Iを転炉で出鋼し、連続鋳造により鋼スラブとした。これらの鋼スラブを1250℃で加熱した後、仕上げ温度870℃で熱間圧延して600℃で巻き取って熱延鋼帯とした。続いて、酸洗し、あるいはさらに冷間圧延を行って、焼鈍原板を準備した。なお、焼鈍原板の幅は、いずれの実施例においても1000mmで、熱延板(酸洗板)の板厚は1.8〜2.0mm、冷延板の板厚は1.0〜1.4mmであった。続いて、連続焼鈍ラインにて、表2に示す条件で熱処理を行った。熱処理後に酸洗し、その後、調質圧延を行い、供試鋼板を得た。また、作製した各供試鋼板中の成分を分析したところ、表1に示す鋼スラブ中の成分と実質的に差がなかった。各供試鋼板の、フェライト相の平均結晶粒径(μm)、低温変態生成相の体積分率(%)、およびフェライト相と低温変態生成相との硬さの差HV(M)−HV(F)については表2に示す。また、各供試鋼板の特性を評価した結果も併せて表2に示す。尚、フェライト相の平均結晶粒径、低温変態生成相の体積分率、およびフェライト相と低温変態生成相の硬さの測定方法、ならびに、特性評価を行なうための試験方法については以下に示す。
Examples will be described below.
First, the inventive steels A to C and the comparative steels D to I having the component compositions shown in Table 1 were steeled out in a converter and made into steel slabs by continuous casting. After heating these steel slabs at 1250 ° C, they were hot-rolled at a finishing temperature of 870 ° C and wound up at 600 ° C to form hot-rolled steel strips. Subsequently, pickling or further cold rolling was performed to prepare an annealed original sheet. In addition, the width | variety of the annealing raw sheet was 1000 mm in any Example, the plate | board thickness of the hot rolled sheet (pickling board) was 1.8-2.0 mm, and the plate | board thickness of the cold rolled sheet was 1.0-1.4 mm. Subsequently, heat treatment was performed in the continuous annealing line under the conditions shown in Table 2. After the heat treatment, pickling was performed, and then temper rolling was performed to obtain a test steel plate. Moreover, when the component in each produced test steel plate was analyzed, it was not substantially different from the component in the steel slab shown in Table 1. The average grain size (μm) of ferrite phase, volume fraction of low-temperature transformation phase (%), and hardness difference between ferrite phase and low-temperature transformation phase HV (M)-HV ( Table 2 shows F). Table 2 also shows the results of evaluating the characteristics of each test steel plate. In addition, the measurement method of the average crystal grain diameter of a ferrite phase, the volume fraction of a low temperature transformation production | generation phase, the hardness of a ferrite phase and a low temperature transformation production phase, and the test method for performing characteristic evaluation are shown below.

(測定方法)
(i)フェライト相の平均結晶粒径
フェライト相の平均結晶粒径は、板厚中心付近での添加元素の偏析による特異な組織の形成部分を避けるため、測定位置を、板厚中心位置と板厚表面位置とを板厚方向に結ぶ線分の中点位置に相当する1/4面位置近傍とし、3000倍のSEM像を基に画像解析にてフェライト相の面積および、フェライト相の個数を導出し求積法にて算出した、n=3単純平均の値である。
(Measuring method)
(I) Average crystal grain size of ferrite phase The average crystal grain size of the ferrite phase is determined by measuring the position of the center of the plate and the center of the plate thickness in order to avoid the formation of a peculiar structure due to segregation of additive elements in the vicinity of the plate thickness center. The area of the ferrite phase and the number of ferrite phases are determined by image analysis based on the 3000 times SEM image, with the vicinity of the 1/4 position corresponding to the midpoint position of the line segment connecting the thick surface position in the thickness direction. It is a value of n = 3 simple average derived and calculated by the quadrature method.

(ii)低温変態生成相の体積分率
低温変態生成相の体積分率は、測定位置を、前記板厚1/4面位置近傍とし、5000倍のSEM像を基に画像解析にて2階調化、面積率を求め、n=5で単純平均して算出した。
(Ii) Volume fraction of the low-temperature transformation generation phase The volume fraction of the low-temperature transformation generation phase is the second floor by image analysis based on the SEM image of 5000 times, with the measurement position being in the vicinity of the 1/4 thickness position. Adjustment and area ratio were calculated and calculated by simple averaging with n = 5.

(iii)フェライト相と低温変態生成相の硬さの差
フェライト相と低温変態生成相の硬さの差HV(M)−HV(F)は、フェライト相と低温変態生成相の硬さを、測定位置は板厚1/4面位置近傍、ビッカース硬さ計を用いてそれぞれ求め、荷重3gのときの硬さHV0.003の値をn=5で単純平均して算出した。
(Iii) Difference in hardness between ferrite phase and low-temperature transformation generation phase Difference in hardness between ferrite phase and low-temperature transformation generation phase HV (M) -HV (F) is the hardness of ferrite phase and low-temperature transformation generation phase. The measurement position was obtained by using a Vickers hardness meter near the plate thickness 1/4 surface position, and the value of hardness HV0.003 at a load of 3 g was calculated by simple averaging at n = 5.

(試験方法)
(I)引張特性
引張特性(降伏応力YS、引張強さTS、伸びEl)は、JIS Z 2201に規定される5号試験片を用い、JIS Z 2241に規定される引張試験方法に基づいて評価した。
(Test method)
(I) Tensile properties Tensile properties (yield stress YS, tensile strength TS, elongation El) were evaluated based on the tensile test method specified in JIS Z 2241 using No. 5 test piece specified in JIS Z 2201. did.

(II)伸びフランジ特性
伸びフランジ特性は、穴拡げ率λにより評価した。穴拡げ率λは、日本鉄鋼連盟規格JFST1001に基づき、初期直径do=10mmの穴を打抜き、60°の円錐ポンチを上昇させて穴を拡げた際に、亀裂が板の板厚方向に貫通したところでポンチ上昇を止め、亀裂貫通後の打抜き穴径dを測定し、穴拡げ率(%)=((d−do)/do)×100として算出した。尚、伸びフランジ特性は、穴拡げ率λが大きいほど優れていることを示す。
(II) Stretch flange characteristics The stretch flange characteristics were evaluated by the hole expansion ratio λ. The hole expansion ratio lambda, based on the Japan Iron and Steel Federation Standard JFST1001, punched holes initial diameter d o = 10 mm, when the expanding holes by increasing the cone punch 60 °, cracks through the thickness direction of the plate Then, the punch was stopped and the punched hole diameter d after penetration through the crack was measured and calculated as hole expansion rate (%) = ((d−d o ) / d o ) × 100. The stretch flange characteristic indicates that the larger the hole expansion ratio λ, the better.

(III)曲げ加工性
曲げ加工性は、JIS Z 2204に規定される3号試験片を用い、JIS Z 2248に規定される曲げ試験方法に基づき、L方向限界曲げ半径を測定し、この測定値から評価した。尚、曲げ加工性は、L方向限界曲げ半径の数値が小さいほど優れていることを示す。
(III) Bending workability The bending workability was measured by measuring the limit bending radius in the L direction based on the bending test method specified in JIS Z 2248 using No. 3 test piece specified in JIS Z 2204. It was evaluated from. In addition, bending workability shows that it is so excellent that the numerical value of the L direction limit bending radius is small.

Figure 2005171321
Figure 2005171321

Figure 2005171321

Figure 2005171321

Figure 2005171321

Figure 2005171321

表2に示す評価結果から、本発明例は、引張強さTSが980MPa以上であり、伸びおよび伸びフランジ特性に優れ、さらに曲げ加工性にも優れている。一方、比較例は、引張強さTSについては980MPa以上であるものの、伸び、伸びフランジ特性および曲げ加工性のいずれかの特性が劣っている。   From the evaluation results shown in Table 2, the examples of the present invention have a tensile strength TS of 980 MPa or more, excellent elongation and stretch flange characteristics, and excellent bending workability. On the other hand, the comparative example has a tensile strength TS of 980 MPa or more, but is inferior in any of elongation, stretch flange characteristics and bending workability.

本発明によると、980MPa以上の引張強さを達成するとともに、伸びおよび伸びフランジ特性で表される成形性に優れ、さらに曲げ加工性にも優れる自動車部品の成形に適した、超高強度鋼板の製造が可能になる。   According to the present invention, an ultra-high-strength steel sheet that achieves a tensile strength of 980 MPa or more, is excellent in formability represented by elongation and stretch flange characteristics, and is suitable for forming automobile parts that are also excellent in bending workability. Manufacturing becomes possible.

Claims (3)

C:0.12〜0.15mass%、
Si:1.0〜1.5mass%、
Mn:2.0〜2.5mass%、
N:0.002〜0.01mass%、
P:0.04mass%以下、
S:0.005mass%以下および
Al:0.05mass%以下
を含有し、残部はFe及び不可避的不純物の組成からなり、フェライト相と低温変態生成相の複合組織からなり、上記フェライト相の平均結晶粒径が7μm以下であり、上記低温変態生成相の体積分率が40〜60%であり、かつ、フェライト相のビッカース硬さHV(F)と低温変態生成相のビッカース硬さHV(M)が、HV(M)−HV(F)≦350の関係を満足することを特徴とする成形性および曲げ加工性に優れる超高強度鋼板。
C: 0.12-0.15 mass%
Si: 1.0-1.5mass%,
Mn: 2.0-2.5mass%,
N: 0.002 to 0.01 mass%
P: 0.04 mass% or less,
S: 0.005 mass% or less and
Al: 0.05 mass% or less, the balance is composed of Fe and inevitable impurities, is composed of a composite structure of a ferrite phase and a low-temperature transformation generation phase, the average crystal grain size of the ferrite phase is 7 μm or less, The volume fraction of the low temperature transformation phase is 40-60%, and the Vickers hardness HV (F) of the ferrite phase and the Vickers hardness HV (M) of the low temperature transformation phase are HV (M) -HV ( F) An ultra-high-strength steel sheet excellent in formability and bending workability characterized by satisfying the relationship of ≦ 350.
C:0.12〜0.15mass%、
Si:1.0〜1.5mass%、
Mn:2.0〜2.5mass%、
N:0.002〜0.01mass%、
P:0.04mass%以下、
S:0.005mass%以下および
Al:0.05mass%以下
を含有し、残部はFe及び不可避的不純物の組成からなる鋼素材を、熱間圧延後に酸洗し、さらに必要に応じて冷間圧延した後、Ac1変態点以上850℃以下の温度域で均熱してから、急冷開始温度から少なくとも200℃の温度まで100℃/s以上の冷却速度で急冷する焼入れ処理を施し、その後、急冷停止温度から少なくとも100℃上昇させるまで20℃/s以上の昇温速度で加熱し、300〜500℃で均熱してから冷却する焼もどし処理を施し、その後、調質圧延することを特徴とする成形性および曲げ加工性に優れる超高強度鋼板の製造方法。
C: 0.12-0.15 mass%
Si: 1.0-1.5mass%,
Mn: 2.0-2.5mass%,
N: 0.002 to 0.01 mass%
P: 0.04 mass% or less,
S: 0.005 mass% or less and
Al: containing less 0.05 mass%, the balance being a steel material having a composition of Fe and inevitable impurities, pickling after hot rolling, after cold rolling, if necessary, Ac 1 transformation point or more 850 After soaking in a temperature range of ℃ or less, quenching treatment is performed by quenching at a cooling rate of 100 ℃ / s or more from the rapid cooling start temperature to at least 200 ℃, and then increasing by at least 100 ℃ from the quenching stop temperature. Super high with excellent formability and bending workability, characterized by heating at a heating rate of ℃ / s or higher, soaking at 300-500 ° C, cooling, and then temper rolling A method for producing a strength steel plate.
焼戻し処理における加熱は、誘導加熱方式により行うことを特徴とする請求項2に記載の成形性および曲げ加工性に優れる超高強度鋼板の製造方法。   The method for producing an ultra-high strength steel sheet having excellent formability and bending workability according to claim 2, wherein heating in the tempering treatment is performed by an induction heating method.
JP2003413431A 2003-12-11 2003-12-11 Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof Expired - Fee Related JP4385754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413431A JP4385754B2 (en) 2003-12-11 2003-12-11 Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413431A JP4385754B2 (en) 2003-12-11 2003-12-11 Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005171321A true JP2005171321A (en) 2005-06-30
JP4385754B2 JP4385754B2 (en) 2009-12-16

Family

ID=34733572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413431A Expired - Fee Related JP4385754B2 (en) 2003-12-11 2003-12-11 Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4385754B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092154A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
WO2009016881A1 (en) 2007-08-01 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in bendability and fatigue strength
WO2009096596A1 (en) * 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
WO2009110607A1 (en) * 2008-03-07 2009-09-11 株式会社神戸製鋼所 Cold-rolled steel sheets
EP2194153A2 (en) 2008-11-28 2010-06-09 Kabushiki Kaisha Kobe Seiko Sho Ultrahigh-strength steel sheet excellent in hydrogen embrittlement resistance and workablility, and manufacturing method therefor
JP2013067866A (en) * 2012-11-16 2013-04-18 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet superior in bending property
CN109371318A (en) * 2018-09-26 2019-02-22 武汉钢铁有限公司 The low high-strength hot-dip galvanizing sheet steel of 1180MPa grade of hydrogen embrittlement crack sensitivity and preparation method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092154A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
WO2009016881A1 (en) 2007-08-01 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in bendability and fatigue strength
US8257513B2 (en) 2007-08-01 2012-09-04 Kobe Steel, Ltd. High strength steel sheet excellent in bending workability and fatigue strength
WO2009096596A1 (en) * 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
JP2009203550A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
WO2009110607A1 (en) * 2008-03-07 2009-09-11 株式会社神戸製鋼所 Cold-rolled steel sheets
US8343288B2 (en) 2008-03-07 2013-01-01 Kobe Steel, Ltd. Cold rolled steel sheet
CN101960038B (en) * 2008-03-07 2013-01-23 株式会社神户制钢所 Cold-rolled steel sheets
EP2194153A2 (en) 2008-11-28 2010-06-09 Kabushiki Kaisha Kobe Seiko Sho Ultrahigh-strength steel sheet excellent in hydrogen embrittlement resistance and workablility, and manufacturing method therefor
US8298356B2 (en) 2008-11-28 2012-10-30 Kobe Steel, Ltd. Ultrahigh-strength steel sheet excellent in hydrogen embrittlement resistance and workability, and manufacturing method therefor
JP2013067866A (en) * 2012-11-16 2013-04-18 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet superior in bending property
CN109371318A (en) * 2018-09-26 2019-02-22 武汉钢铁有限公司 The low high-strength hot-dip galvanizing sheet steel of 1180MPa grade of hydrogen embrittlement crack sensitivity and preparation method

Also Published As

Publication number Publication date
JP4385754B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
CN110959049B (en) Flat steel product with good aging resistance and method for the production thereof
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP5402191B2 (en) Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP7280364B2 (en) Plated steel sheet for hot forming with excellent impact properties after hot forming, hot formed member, and manufacturing method thereof
JP2012237042A (en) High-strength cold-rolled steel sheet excellent in workability and method for production thereof
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
WO2016113781A1 (en) High-strength steel sheet and production method therefor
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP4385754B2 (en) Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof
CN110402298B (en) High-strength cold-rolled steel sheet and method for producing same
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP2018502992A (en) Composite steel sheet with excellent formability and method for producing the same
KR102451005B1 (en) High-strength steel sheet having excellent thermal stability and method for mnufacturing thereof
JP2005171319A (en) Method for manufacturing high-strength cold-rolled steel sheet having superior ductility and formability for extension flange
JP4114522B2 (en) Ultra-high strength cold-rolled steel sheet and method for producing the same
CN113862563A (en) High-strength cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4385754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees