JP2005170784A - Hydrogen generator, method of operating hydrogen generator and fuel cell power system - Google Patents

Hydrogen generator, method of operating hydrogen generator and fuel cell power system Download PDF

Info

Publication number
JP2005170784A
JP2005170784A JP2004330122A JP2004330122A JP2005170784A JP 2005170784 A JP2005170784 A JP 2005170784A JP 2004330122 A JP2004330122 A JP 2004330122A JP 2004330122 A JP2004330122 A JP 2004330122A JP 2005170784 A JP2005170784 A JP 2005170784A
Authority
JP
Japan
Prior art keywords
temperature
unit
reforming
water
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004330122A
Other languages
Japanese (ja)
Inventor
Akira Maenishi
晃 前西
Kunihiro Ukai
邦弘 鵜飼
Tomomichi Asou
智倫 麻生
Yuji Mukai
裕二 向井
Yoshihisa Tamura
佳央 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004330122A priority Critical patent/JP2005170784A/en
Publication of JP2005170784A publication Critical patent/JP2005170784A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generator with high hydrogen generation efficiency and high reliability, which is capable of reducing start time of the hydrogen generator depending on a temperature condition thereof at the start of a start operation and of increasing a temperature of a water evaporator while inhibiting an excessive temperature increase in a reforming catalyst layer, a method of operating the hydrogen generator and a fuel cell power system comprising the hydrogen generator. <P>SOLUTION: The hydrogen generator comprises a controller 20 configured to control the supply of the material from the material supply portion 3 and the supply of the water from the water supply portion 2, to observe the temperature of a water evaporator 4 and the temperature of a reforming catalyst layer 5 and to properly control the supply of water from the water supply portion 2 to the water evaporator 4 based on the observation result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、天然ガス、LPG、ガソリン、ナフサ、灯油、メタノール等の炭化水素系物質を主原料として水蒸気改質反応により水素リッチガスを生成する水素発生装置及びその運転方法に関し、特に、燃料電池等の水素利用機器に供給する水素ガスを生成する水素発生装置及びその起動時の運転方法に関する。   The present invention relates to a hydrogen generator that generates a hydrogen-rich gas by a steam reforming reaction using a hydrocarbon-based material such as natural gas, LPG, gasoline, naphtha, kerosene, and methanol as a main raw material, and an operation method thereof, in particular, a fuel cell, etc. The present invention relates to a hydrogen generator for generating hydrogen gas to be supplied to a hydrogen-using device and an operation method at the time of startup.

水素発生装置では、少なくとも炭素原子と水素原子から構成される有機化合物を含む原料が、改質触媒層を備えた改質部において水蒸気改質される。この改質反応により、改質ガスとして、水素リッチガス(以下、水素ガスと呼ぶ)が生成される。改質反応の際に改質触媒層に水が直接供給されると、改質触媒層の内部やその下流に形成されたガス流路が、水により閉塞される可能性がある。したがって、改質触媒層には、水蒸気の状態で水が供給される。   In the hydrogen generator, a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms is steam reformed in a reforming section provided with a reforming catalyst layer. By this reforming reaction, a hydrogen rich gas (hereinafter referred to as hydrogen gas) is generated as the reformed gas. When water is directly supplied to the reforming catalyst layer during the reforming reaction, there is a possibility that the gas flow path formed inside or downstream of the reforming catalyst layer may be blocked by water. Therefore, water is supplied to the reforming catalyst layer in a steam state.

例えば、従来の水素発生装置には、起動時の予熱動作の際に改質部の改質触媒の温度を検知し、検知温度が所定値に到達したら水供給部から改質部への水供給が開始されるものがある(例えば、特許文献1参照)。また、改質部の改質触媒層に連通する水の供給流路が立ち上がり構造を有するとともにこの構造によって形成された流路の底部に水蒸発部が形成されたものがある。かかる構成では、供給された水が水蒸発部で蒸発して改質触媒層に供給され、水蒸発部で蒸発しなかった水がこの底部に溜められる(例えば、特許文献2参照)。
特開2001−302207号公報 特開2002−252604号公報
For example, in a conventional hydrogen generator, the temperature of the reforming catalyst in the reforming unit is detected during the preheating operation at startup, and when the detected temperature reaches a predetermined value, water is supplied from the water supply unit to the reforming unit. Is started (see, for example, Patent Document 1). In addition, there is a structure in which a water supply channel communicating with the reforming catalyst layer of the reforming unit has a rising structure and a water evaporation unit is formed at the bottom of the channel formed by this structure. In such a configuration, the supplied water evaporates in the water evaporating unit and is supplied to the reforming catalyst layer, and water that has not evaporated in the water evaporating unit is stored in the bottom (see, for example, Patent Document 2).
JP 2001-302207 A JP 2002-252604 A

水素発生装置では、高温に加熱された改質触媒層に供給される水蒸気の量が原料の供給量に対して十分でないと、原料だけが高温となって改質部の触媒層内やガス流路を流れる。例えば、上記のように立ち上がり構造を有する水供給流路の底部に水蒸発部が形成された水素発生装置において、改質触媒層は高温に加熱されているが水蒸発部の温度が低い時には、水を供給したにもかかわらず水が蒸発せず、供給された水が水蒸発部や改質部内流路の低い位置に溜まる。したがって、十分な水蒸気が改質触媒層に供給されず、原料のみが高温の改質触媒層や流路内を流れる。ここで、原料は炭素及び水素から構成される有機化合物が主成分であるため、このような状況下では原料が熱分解し、炭素状態となって改質触媒上や流路内に析出する。このため、触媒活性の低下や流路の閉塞が引き起こされ、水素発生装置の運転に支障をきたすおそれがある。   In the hydrogen generator, if the amount of water vapor supplied to the reforming catalyst layer heated to a high temperature is not sufficient with respect to the supply amount of the raw material, only the raw material becomes hot and the inside of the catalyst layer of the reforming section and the gas flow Flowing on the road. For example, in the hydrogen generator in which the water evaporation section is formed at the bottom of the water supply flow path having the rising structure as described above, when the reforming catalyst layer is heated to a high temperature but the temperature of the water evaporation section is low, Despite the supply of water, the water does not evaporate, and the supplied water accumulates at a low position in the water evaporation section and the reforming section flow path. Therefore, sufficient steam is not supplied to the reforming catalyst layer, and only the raw material flows through the high-temperature reforming catalyst layer and the flow path. Here, since the raw material is mainly composed of an organic compound composed of carbon and hydrogen, under such circumstances, the raw material is thermally decomposed to be in a carbon state and deposited on the reforming catalyst and in the flow path. For this reason, the catalyst activity is lowered and the flow path is blocked, which may hinder the operation of the hydrogen generator.

また、改質触媒層が改質反応温度を超えた高温になると、触媒が凝集して触媒活性が低下する可能性がある。さらに、高温の改質触媒層が空気雰囲気下にあれば、改質触媒が酸化されて触媒活性が低下する可能性がある。   Further, when the reforming catalyst layer reaches a high temperature exceeding the reforming reaction temperature, the catalyst may aggregate and the catalytic activity may be reduced. Furthermore, if the high temperature reforming catalyst layer is in an air atmosphere, the reforming catalyst may be oxidized and the catalytic activity may be reduced.

一方、改質触媒の温度に従って水の供給開始を制御する上記の方法では、起動開始時の水素発生装置の温度状態に関係なく、改質触媒が所定温度に達したら水及び原料を供給して改質反応を行う。このため、例えば、運転を停止してからあまり時間が経過していない状態で水素発生装置を再起動させる場合には、水蒸発部が供給された水から直ぐに水蒸気を生成できる温度であるにもかかわらず、改質触媒が前記所定の高温に達するまで水を供給することができない。したがって、起動開始時の水蒸発部の温度が水蒸気生成可能な温度であるか否かにかかわらず、水の供給が開始されるまでの時間(以下、起動時間と呼ぶ)はほぼ一定である。   On the other hand, in the above method for controlling the start of water supply according to the temperature of the reforming catalyst, water and raw materials are supplied when the reforming catalyst reaches a predetermined temperature regardless of the temperature state of the hydrogen generator at the start of startup. Perform the reforming reaction. For this reason, for example, when the hydrogen generator is restarted in a state where not much time has passed since the operation was stopped, the water evaporation unit has a temperature at which water vapor can be generated immediately from the supplied water. Regardless, water cannot be supplied until the reforming catalyst reaches the predetermined high temperature. Therefore, regardless of whether or not the temperature of the water evaporation unit at the start of startup is a temperature at which water vapor can be generated, the time until the supply of water is started (hereinafter referred to as startup time) is substantially constant.

本発明はこれらの課題を解決するもので、起動開始時の水素発生装置の温度状態に応じて起動時間の短縮化を図ることが可能であり、また、改質触媒層の高温化を抑制しながら水蒸発部の温度を上昇させることが可能な、水素生成効率及び信頼性の高い水素発生装置及びその運転方法、ならびにこれを備えた燃料電池発電システムを提供することを目的とする。   The present invention solves these problems, and it is possible to shorten the start-up time according to the temperature state of the hydrogen generator at the start of start-up, and to suppress the temperature rise of the reforming catalyst layer. It is an object of the present invention to provide a hydrogen generation apparatus with high hydrogen generation efficiency and reliability, an operation method thereof, and a fuel cell power generation system including the same, which can raise the temperature of the water evaporation section.

上記課題を解決するため、本発明に係る水素発生装置は、少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置であって、前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、前記制御部は、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記改質温度検知部で検知された前記改質触媒層の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部からの前記水供給を制御する供給制御手段と、を備え、前記判定手段は、前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定を実行すると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知される前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定を実行し、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度を超えた場合に、又は、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度を超えた場合に、前記供給制御手段が前記改質部に対して前記水供給を開始させる装置である。   In order to solve the above problems, a hydrogen generator according to the present invention generates hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst. A reforming unit, a raw material supply unit that supplies a raw material to the reforming unit, a water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, and a raw material supply unit A control unit that controls the raw material supply and the water supply from the water supply unit, wherein the reforming unit is a water evaporation unit that evaporates the supplied water, A reforming catalyst layer including a reforming catalyst; and a reforming temperature detection unit that detects a temperature of the reforming catalyst layer; and whether the control unit has a temperature at which the water evaporation unit can generate water vapor. Whether or not based on the temperature of the reforming catalyst layer detected by the reforming temperature detector And a supply control unit that controls at least the water supply from the water supply unit based on a determination result of the determination unit, wherein the determination unit starts the heating and generates the hydrogen The first determination that the temperature of the reforming catalyst layer detected at the start of starting the apparatus is compared with a first reference temperature is executed, and as a result of the first determination, the reforming catalyst layer When the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the temperature of the reforming catalyst layer detected in the process of heating the reforming unit after the first determination is set to the first reference temperature. A second determination of comparing with a higher second reference temperature, and as a result of the first determination, when the temperature of the reforming catalyst layer exceeds the first reference temperature, or As a result of the second determination, the temperature of the reforming catalyst layer is If it exceeds the reference temperature, the supply control means is a device for initiating the water supply to the reformer unit.

これにより、起動開始時の水素発生装置の温度状態に応じて起動時間の短縮化を図ることが可能であり、また、改質触媒層の高温化を抑制しながら水蒸発部の温度を上昇させることが可能な水素生成効率及び信頼性の高い水素発生装置が得られる。   Thereby, it is possible to shorten the start-up time according to the temperature state of the hydrogen generator at the start of start-up, and to increase the temperature of the water evaporation part while suppressing the temperature increase of the reforming catalyst layer. Therefore, a hydrogen generation apparatus with high hydrogen generation efficiency and high reliability can be obtained.

前記第2の基準温度は、水蒸気不存在下において前記改質触媒層の触媒活性が劣化しない温度であることが好ましい。   The second reference temperature is preferably a temperature at which the catalytic activity of the reforming catalyst layer does not deteriorate in the absence of water vapor.

前記第1の基準温度が50℃以上150℃以下であり、前記第2の基準温度が300℃以上500℃以下であってもよい。   The first reference temperature may be 50 ° C. or more and 150 ° C. or less, and the second reference temperature may be 300 ° C. or more and 500 ° C. or less.

また、前記水素発生装置の前記改質部は前記水蒸発部の温度を検知する水蒸発部温度検知部を更に備え、前記制御部は、前記起動開始時に、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記水蒸発部検知部により検出された前記水蒸発部の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部からの前記水供給を制御する供給制御手段と、を備え、前記判定手段の判定の結果、前記水蒸発部の温度が水蒸気生成可能な温度である水蒸発部基準温度を超えた場合には、前記供給制御手段が前記水供給を開始させ、前記水蒸発部の温度が水蒸発部基準温度以下である場合には、前記加熱が実行され、前記水蒸発部基準温度を超えた時点で前記供給制御手段が前記水供給を開始させてもよい。   Further, the reforming unit of the hydrogen generator further includes a water evaporation unit temperature detection unit that detects a temperature of the water evaporation unit, and the control unit is capable of generating water vapor when the start-up is started. Determination means for determining whether or not the temperature is based on the temperature of the water evaporation section detected by the water evaporation section detection section, and at least the water from the water supply section based on the determination result of the determination means Supply control means for controlling supply, and as a result of determination by the determination means, if the temperature of the water evaporation section exceeds a water evaporation section reference temperature, which is a temperature capable of generating water vapor, the supply control section Starts the water supply, and when the temperature of the water evaporation part is equal to or lower than the water evaporation part reference temperature, the heating is performed, and when the water evaporation part reference temperature is exceeded, the supply control means Water supply may be started.

ここで、本発明に係る水素発生装置は、少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置であって、前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、前記制御部は、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記改質温度検知部で検知された前記改質触媒層の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部から供給される前記水供給を制御する供給制御手段と、を備え、前記判定手段は、前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定を実行すると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知される前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定を実行し、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下の場合に、前記第1の判定後の前記改質部に対する前記加熱の過程において検知される前記改質触媒層の温度を、前記第1の基準温度より高く前記第2の基準温度より低い第3の基準温度と比較するという第3の判定を実行し前記第3の判定の結果、前記改質触媒層の温度が前記第3の基準温度を超えた時点で前記加熱が停止されると共に、前記加熱停止後の前記改質触媒層の温度を、前記第3の基準温度よりも低く前記第1の基準温度よりも高い第4の基準温度と比較するという第4の判定を実行し、前記第4の判定の結果、前記改質触媒層の温度が前記第4の基準温度を下回った時点で前記加熱が再開される装置である。   Here, the hydrogen generator according to the present invention includes a reforming unit that generates hydrogen by reforming a raw material containing at least an organic compound composed of carbon atoms and hydrogen atoms and steam using a reforming catalyst. A raw material supply unit that supplies a raw material to the reforming unit, a water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, the raw material supply from the raw material supply unit, and A hydrogen generator comprising: a control unit that controls the water supply from the water supply unit, wherein the reforming unit includes a water evaporation unit that evaporates the supplied water, and the reforming catalyst. A reforming catalyst layer, and a reforming temperature detection unit that detects the temperature of the reforming catalyst layer, and the control unit determines whether the water evaporation unit is at a temperature at which steam can be generated. Determination means for determining based on the temperature of the reforming catalyst layer detected by the reforming temperature detector Supply control means for controlling at least the water supply supplied from the water supply unit based on the determination result of the determination means, and the determination means starts the heating and starts the hydrogen generator And performing a first determination of comparing the temperature of the reforming catalyst layer detected at the start of startup with a first reference temperature, and as a result of the first determination, the temperature of the reforming catalyst layer is When the temperature is equal to or lower than the first reference temperature, the temperature of the reforming catalyst layer detected in the process of heating the reforming portion after the first determination is higher than the first reference temperature. After the first determination, the second determination of comparing with the second reference temperature is performed, and the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature as a result of the first determination. Detected in the process of heating the reforming part A third determination is performed in which the temperature of the reforming catalyst layer is compared with a third reference temperature that is higher than the first reference temperature and lower than the second reference temperature, and as a result of the third determination, The heating is stopped when the temperature of the reforming catalyst layer exceeds the third reference temperature, and the temperature of the reforming catalyst layer after the heating is stopped is lower than the third reference temperature. A fourth determination of comparing with a fourth reference temperature higher than the first reference temperature is performed, and as a result of the fourth determination, the temperature of the reforming catalyst layer is lower than the fourth reference temperature. It is an apparatus in which the heating is resumed at the time.

こうした加熱部での加熱の停止と再開を繰り返し行うことにより、改質触媒層の高温化を抑制しつつ水蒸発部の加熱を促進することが可能となる。   By repeatedly stopping and restarting the heating in the heating unit, it is possible to promote the heating of the water evaporation unit while suppressing the temperature increase of the reforming catalyst layer.

前記第3の基準温度が200℃以上300℃以下であってもよい。   The third reference temperature may be 200 ° C. or higher and 300 ° C. or lower.

前記改質部に対する加熱の停止及び再開を前記起動開始時に1回以上の所定回数行うか、又は、前記停止及び再開を伴う前記改質部に対する加熱を所定時間行った後、前記第3の基準温度を超えて前記加熱が実行され、その後、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度を越えた時点で、前記供給制御手段が前記水供給を開始させてもよい。   The heating and stopping of the reforming part is performed at a predetermined number of times one or more times at the start of starting, or the heating of the reforming part accompanied by the stopping and restarting is performed for a predetermined time, and then the third reference When the temperature exceeds the temperature, the heating is executed, and then, as a result of the second determination, when the temperature of the reforming catalyst layer exceeds the second reference temperature, the supply control means starts the water supply You may let them.

前記制御部は、前記起動開始時に検知された前記改質触媒層の温度に応じて、前記加熱の停止及び再開の実施回数、あるいは、前記停止及び再開を伴う加熱の実施時間を予め決定してもよい。   The controller determines in advance the number of times of stopping and restarting the heating, or the time of heating with the stopping and restarting, according to the temperature of the reforming catalyst layer detected at the start of the start-up. Also good.

また、前記改質部は、前記水蒸発部の温度を検知する水蒸発部温度検知部を更に備え、
前記制御部は、前記起動開始時に、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記水蒸発部検知部により検出された前記水蒸発部の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部からの前記水供給を制御する供給制御手段と、を備え、前記判定手段の判定の結果、前記水蒸発部の温度が、水蒸気生成可能な水蒸発部基準温度以下である場合に、前記改質部に対する前記加熱が実行され、前記改質触媒層の温度が前記第3の基準温度に到達した時点で前記加熱が停止され、前記加熱停止後の前記改質触媒層の温度が前記第4の基準温度に到達した時点で前記加熱が再開されつつ、前記水蒸発部温度検知部から出力された信号に基づき前記水蒸発部の温度が前記水蒸発部基準温度を超えた場合に、前記供給制御手段が前記水供給を開始させてもよい。
The reforming unit further includes a water evaporation unit temperature detection unit that detects a temperature of the water evaporation unit,
The control unit is configured to determine, based on the temperature of the water evaporation unit detected by the water evaporation unit detection unit, whether or not the water evaporation unit has a temperature capable of generating water vapor at the start of the activation. Supply control means for controlling at least the water supply from the water supply unit based on the determination result of the determination means, and as a result of determination by the determination means, the temperature of the water evaporation unit is capable of generating water vapor. When the temperature of the reforming unit is lower than the water evaporation unit reference temperature, the heating is stopped when the temperature of the reforming catalyst layer reaches the third reference temperature, and the heating is performed. While the heating is resumed when the temperature of the reforming catalyst layer after the stop reaches the fourth reference temperature, the temperature of the water evaporation section is changed based on the signal output from the water evaporation section temperature detection section. Exceeds the water evaporation unit reference temperature If the said supply control means may initiate the water supply.

前記水蒸発部基準温度が50℃以上150℃以下であってもよい。   The water evaporation part reference temperature may be 50 ° C. or higher and 150 ° C. or lower.

前記改質部の最外周に前記水蒸発部が配設され、前記水蒸発部の内側に前記改質触媒層が配設されてもよい。   The water evaporation unit may be disposed on the outermost periphery of the reforming unit, and the reforming catalyst layer may be disposed on the inner side of the water evaporation unit.

前記加熱部は、燃焼燃料と空気を燃焼するバーナと、前記バーナに前記燃焼燃料を供給する燃料供給部と、前記バーナに前記空気を供給する空気供給部と、を備え、前記改質部では、前記バーナで発生した燃焼排気ガスと前記改質触媒層との間の熱交換が実行された後、前記燃焼排気ガスと前記水蒸発部との間の熱交換が実行されてもよい。   The heating unit includes a burner that burns combustion fuel and air, a fuel supply unit that supplies the combustion fuel to the burner, and an air supply unit that supplies the air to the burner. After the heat exchange between the combustion exhaust gas generated in the burner and the reforming catalyst layer is performed, the heat exchange between the combustion exhaust gas and the water evaporation unit may be performed.

前記供給制御手段は、前記空気供給部から前記バーナへの空気供給をさらに制御し、
前記水供給部による前記水供給が開始された後は、第1の供給量に相当する前記空気が前記バーナに供給されると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、第2の供給量に相当する前記空気が前記空気供給部から前記バーナに供給され、前記第1の供給量に相当する前記空気が供給された前記燃焼における、前記供給燃焼燃料の完全燃焼での理論空気量に対する前記第1の供給量の比が、前記第2の供給量に相当する前記空気が供給された前記燃焼における、前記供給燃焼燃料の完全燃焼での理論空気量に対する前記第2の供給量の比よりも小さくてもよい。
The supply control means further controls air supply from the air supply unit to the burner,
After the water supply by the water supply unit is started, the air corresponding to the first supply amount is supplied to the burner, and the temperature of the reforming catalyst layer is determined as a result of the first determination. When the temperature is equal to or lower than the first reference temperature, the air corresponding to the second supply amount is supplied from the air supply unit to the burner, and the air corresponding to the first supply amount is supplied. In the combustion, the supplied combustion fuel in the combustion in which the ratio of the first supply amount to the theoretical air amount in the complete combustion of the supplied combustion fuel corresponds to the second supply amount is supplied. It may be smaller than the ratio of the second supply amount to the theoretical air amount in the complete combustion.

前記第2の供給量に相当する前記空気が供給された前記燃焼における、前記供給燃焼燃料の完全燃焼での理論空気量に対する前記第2の供給量の比が2.0以上であってもよい。   In the combustion in which the air corresponding to the second supply amount is supplied, the ratio of the second supply amount to the theoretical air amount in the complete combustion of the supplied combustion fuel may be 2.0 or more. .

前記供給制御手段は、前記第3の判定の結果に従って前記燃焼部での燃焼を停止させる加熱停止期間に、前記空気供給部から前記バーナへ前記空気を噴出させてもよい。   The supply control means may cause the air to be ejected from the air supply unit to the burner during a heating stop period in which combustion in the combustion unit is stopped according to the result of the third determination.

前記供給制御手段は、前記第1の判定結果に従った前記水供給の開始から所定時間経過後、又は、前記第2の判定結果に従った前記水供給の開始から所定時間経過後に、前記原料供給部からの前記原料供給を開始させてもよい。   The supply control means is configured to supply the raw material after a predetermined time has elapsed from the start of the water supply according to the first determination result or after a predetermined time has elapsed from the start of the water supply according to the second determination result. You may start the said raw material supply from a supply part.

改質部への水供給と原料供給のタイミングを意図的にずらすことにより、水蒸発部で生成された水蒸気を用いて、改質反応が行われる前に水素発生装置内を容易にパージすることが可能となる。   By intentionally shifting the timing of water supply and raw material supply to the reforming section, the steam generated in the water evaporation section is used to easily purge the hydrogen generator before the reforming reaction is performed. Is possible.

前記水蒸発部が水素生成可能な温度となる前に、予め前記水蒸発部に前記水を貯留しておいてもよい。   The water may be stored in advance in the water evaporation unit before the water evaporation unit reaches a temperature at which hydrogen can be generated.

本発明に係る水素発生装置の運転方法は、少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置の運転方法であって、前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、前記制御部によって前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定が実行されると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知された前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定が実行され、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度を超えた場合に、又は、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度以上を超えた場合に、前記水供給部から前記改質部への前記水供給が開始される方法である。   The operation method of the hydrogen generator according to the present invention includes a reforming unit that generates hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst. A raw material supply unit that supplies a raw material to the reforming unit, a water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, the raw material supply from the raw material supply unit, and A control unit that controls the water supply from the water supply unit, wherein the reforming unit includes a water evaporation unit that evaporates the supplied water, and the reforming unit. A reforming catalyst layer provided with a catalyst and a reforming temperature detector for detecting the temperature of the reforming catalyst layer, and starting the heating by starting the heating by the controller The temperature of the reforming catalyst layer sometimes detected is a first reference temperature. A first determination is performed, and if the result of the first determination is that the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the first determination after the first determination A second determination is performed in which the temperature of the reforming catalyst layer detected in the process of heating the reforming unit is compared with a second reference temperature higher than the first reference temperature, and the first determination is performed. As a result of the determination, when the temperature of the reforming catalyst layer exceeds the first reference temperature, or as a result of the second determination, the temperature of the reforming catalyst layer exceeds the second reference temperature. In this case, the water supply from the water supply unit to the reforming unit is started.

これにより、起動開始時の水素発生装置の温度状態に応じて起動時間の短縮化を図ることが可能であり、また、改質触媒層の高温化を抑制しながら水蒸発部の温度を上昇させることが可能な水素生成効率及び信頼性の高い水素発生装置の運転方法が得られる。   Thereby, it is possible to shorten the start-up time according to the temperature state of the hydrogen generator at the start of start-up, and to increase the temperature of the water evaporation part while suppressing the temperature increase of the reforming catalyst layer. Therefore, it is possible to obtain a method of operating a hydrogen generation apparatus that is capable of generating hydrogen and having high reliability.

前記改質部は、前記水蒸発部の温度を検知する水蒸発部温度検知部を更に備え、前記水蒸発部温度検知部により検知された水蒸発部の温度が、水蒸気生成可能な温度である水蒸発部基準温度を超えた場合には、前記水供給が開始される一方、前記水蒸発部の温度が水蒸発部基準温度以下である場合には、前記改質部に対する加熱が実行され、その後、前記水蒸発部の温度が前記水蒸発部基準温度を超えた時点で前記水供給が開始されてもよい。   The reforming unit further includes a water evaporation unit temperature detection unit that detects the temperature of the water evaporation unit, and the temperature of the water evaporation unit detected by the water evaporation unit temperature detection unit is a temperature at which water vapor can be generated. When the water evaporation unit reference temperature is exceeded, the water supply is started, while when the temperature of the water evaporation unit is equal to or lower than the water evaporation unit reference temperature, the reforming unit is heated, Thereafter, the water supply may be started when the temperature of the water evaporation unit exceeds the water evaporation unit reference temperature.

ここで、本発明に係る水素発生装置の運転方法は、少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置の運転方法であって、前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、前記制御部によって前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定が実行されると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知された前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定が実行され、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下の場合には、前記第1の判定後の前記改質部に対する加熱の過程において検知される前記改質触媒層の温度を、前記第1の基準温度より高く前記第2の基準温度より低い第3の基準温度と比較するという第3の判定が実行され、前記第3の判定の結果、前記改質触媒層の温度が前記第3の基準温度を越えた時点で前記加熱が停止されると共に、前記加熱停止後の前記改質触媒層の温度を、前記第3の基準温度よりも低く前記第1の基準温度よりも高い第4の基準温度と比較するという第4の判定が実行され、前記第4の判定の結果、前記改質触媒層の温度が前記第4の基準温度を下回った時点で前記加熱が再開される方法である。   Here, the operation method of the hydrogen generator according to the present invention is a modified method for generating hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst. A raw material supply unit for supplying raw material to the reforming unit, a water supply unit for supplying water to the reforming unit, a heating unit for heating the reforming unit, and the raw material supply unit And a control unit that controls the water supply from the raw material supply and the water supply unit, wherein the reforming unit includes a water evaporation unit that evaporates the supplied water, A reforming catalyst layer including the reforming catalyst; and a reforming temperature detection unit that detects a temperature of the reforming catalyst layer, and starts the heating by the control unit to start the hydrogen generator The temperature of the reforming catalyst layer detected at the start of starting When the first determination of comparing with the temperature is executed and the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature as a result of the first determination, the first determination is performed. A second determination is performed in which the temperature of the reforming catalyst layer detected in the process of heating the reforming unit is compared with a second reference temperature higher than the first reference temperature, If the result of determination 1 is that the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the reforming catalyst layer detected in the process of heating the reforming unit after the first determination. Is compared with a third reference temperature that is higher than the first reference temperature and lower than the second reference temperature, and as a result of the third determination, the reforming catalyst layer If the heating is stopped when the temperature exceeds the third reference temperature, A fourth determination is performed in which the temperature of the reforming catalyst layer after stopping the heating is compared with a fourth reference temperature lower than the third reference temperature and higher than the first reference temperature; As a result of the fourth determination, the heating is resumed when the temperature of the reforming catalyst layer falls below the fourth reference temperature.

こうした加熱部での加熱の停止と再開を繰り返し行うことにより、改質触媒層の高温化を抑制しつつ水蒸発部の加熱を促進することが可能となる。   By repeatedly stopping and restarting the heating in the heating unit, it is possible to promote the heating of the water evaporation unit while suppressing the temperature increase of the reforming catalyst layer.

前記制御部は、前記起動開始時に検知される前記改質触媒層の温度に応じて、前記改質部に対する加熱の停止及び再開の実施回数又は前記停止及び再開を伴う前記改質部に対する加熱の実施時間を予め決定し、前記加熱の停止及び再開を、決定された前記実施回数あるいは前記実施時間、実行した後、前記第3の基準温度を超えて前記加熱が実行され、その後、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度を超えた時点で、前記水供給部から前記改質部への前記水供給が開始されてもよい。   The controller controls the number of times heating is stopped and restarted for the reforming unit or the heating of the reforming unit with the stopping and restarting according to the temperature of the reforming catalyst layer detected at the start of startup. An execution time is determined in advance, and after stopping and restarting the heating for the determined number of executions or the execution time, the heating is executed exceeding the third reference temperature, and then the second As a result of the determination, the water supply from the water supply unit to the reforming unit may be started when the temperature of the reforming catalyst layer exceeds the second reference temperature.

前記改質部は、前記水蒸発部の温度を検知する水蒸発部温度検知部をさらに備え、前記水蒸発部検知部により検知された水蒸発部の温度が、水蒸気生成可能な水蒸発部基準温度以下である場合には、前記改質部に対する加熱が実行され、前記改質触媒層の温度が前記第3の基準温度を超えた時点で前記加熱が停止され、前記加熱停止後の前記改質触媒層の温度が前記第4の基準温度を下回った時点で前記加熱が再開されつつ、前記水蒸発部温度検知部から出力された信号に基づき前記水蒸発部の温度が前記水蒸発部基準温度を超えた時点で、前記水供給が開始されてもよい。   The reforming unit further includes a water evaporation unit temperature detection unit that detects the temperature of the water evaporation unit, and the temperature of the water evaporation unit detected by the water evaporation unit detection unit is a water evaporation unit reference capable of generating water vapor. When the temperature is equal to or lower than the temperature, heating of the reforming unit is performed, the heating is stopped when the temperature of the reforming catalyst layer exceeds the third reference temperature, and the reforming after the heating is stopped. The heating is resumed when the temperature of the catalyst layer falls below the fourth reference temperature, and the temperature of the water evaporation part is determined based on the signal output from the water evaporation part temperature detection part. When the temperature is exceeded, the water supply may be started.

前記加熱部は、燃焼燃料と空気とを燃焼させるバーナと、前記バーナに前記燃焼燃料を供給する燃料供給部と、前記バーナに前記空気を供給する空気供給部と、を備え、前記制御部が前記空気供給部を制御し、前記水供給部による前記水供給が開始された後の前記加熱においては、第1の供給量に相当する前記空気が前記バーナに供給されると共に、前記起動開始時の前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、第2の供給量に相当する前記空気が前記空気供給部から前記バーナに供給され、前記第1の供給量に相当する前記空気が供給される前記燃焼における、前記供給燃焼燃料の完全燃焼の理論空気量に対する前記第1の供給量の比が、前記第2の供給量に相当する前記空気が供給される前記燃焼における、前記供給燃焼燃料の完全燃焼の理論空気量に対する前記第2の供給量の比よりも小さくてもよい。   The heating unit includes a burner that burns combustion fuel and air, a fuel supply unit that supplies the combustion fuel to the burner, and an air supply unit that supplies the air to the burner, and the control unit includes In the heating after the air supply unit is controlled and the water supply by the water supply unit is started, the air corresponding to a first supply amount is supplied to the burner and at the start of the start-up. As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the air corresponding to the second supply amount is supplied from the air supply unit to the burner. In the combustion in which the air corresponding to the first supply amount is supplied, the ratio of the first supply amount to the theoretical air amount of complete combustion of the supplied combustion fuel is the second supply amount. Before the corresponding air is supplied In the combustion, it may be smaller than the ratio of the second supply amount to the theoretical air amount of complete combustion of the supplied fuel burned.

前記加熱部は、燃焼燃料と空気を燃焼させるバーナと、前記バーナに前記燃焼燃料を供給する燃料供給部と、前記バーナに前記空気を供給する空気供給部と、を備え、前記第3の判定の結果に従って前記バーナでの燃焼を停止させた加熱停止期間に、前記空気供給部から前記バーナへ前記空気を噴出させてもよい。   The heating unit includes a burner that burns combustion fuel and air, a fuel supply unit that supplies the combustion fuel to the burner, and an air supply unit that supplies the air to the burner. The air may be ejected from the air supply unit to the burner during a heating stop period in which the combustion in the burner is stopped according to the result.

前記第1の判定後の前記水供給の開始から所定時間経過後、又は、前記第2の判定後の前記水供給の開始から所定時間経過後に、前記制御部が、前記原料供給部から前記改質部への前記原料の供給を開始させてもよい。   After a predetermined time has elapsed from the start of the water supply after the first determination, or after a predetermined time has elapsed from the start of the water supply after the second determination, the control unit changes the revision from the raw material supply unit. You may start supply of the said raw material to a mass part.

改質部への水供給と原料供給のタイミングを意図的にずらすことにより、水蒸発部で生成された水蒸気を用いて、改質反応が行われる前に水素発生装置内を容易にパージすることが可能となる。   By intentionally shifting the timing of water supply and raw material supply to the reforming section, the steam generated in the water evaporation section is used to easily purge the hydrogen generator before the reforming reaction is performed. Is possible.

本発明に係る燃焼電池発電システムは、上記記載の水素発生装置と、空気供給装置と、前記水素発生装置から供給される水素と前記空気供給装置から供給される空気とを反応させることにより発電を行う燃料電池と、を備えたものである。   A combustion battery power generation system according to the present invention generates power by reacting the hydrogen generator described above, an air supply device, hydrogen supplied from the hydrogen generator and air supplied from the air supply device. A fuel cell to perform.

本発明に係る水素発生装置及びその運転方法によれば、水素発生装置の起動開始時の温度状態に応じて水供給開始のタイミングを適切に調整可能なため、水素発生装置の起動時間の短縮化が図れる。また、改質触媒層が高温化する前に水蒸発部で水蒸気を生成してこれを改質触媒層に供給することができるため、改質触媒の触媒性能の劣化や原料からの炭素析出等による流路閉塞を防止することができ、高い信頼性を実現できる。   According to the hydrogen generator and the operation method thereof according to the present invention, since the timing of water supply start can be appropriately adjusted according to the temperature state at the start of startup of the hydrogen generator, the startup time of the hydrogen generator is shortened Can be planned. In addition, since the steam can be generated in the water evaporation section before the reforming catalyst layer is heated and supplied to the reforming catalyst layer, the catalyst performance of the reforming catalyst is deteriorated, carbon is deposited from the raw material, etc. Therefore, it is possible to prevent the blockage of the channel from being blocked and to achieve high reliability.

以下に、本発明の実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る水素発生装置の構成を示す模式的な断面図であり、特に、水素発生装置の主要構成要素である改質部とその周辺の構成を詳細に示している。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing the configuration of the hydrogen generator according to Embodiment 1 of the present invention. In particular, the reforming unit, which is the main component of the hydrogen generator, and the configuration around it are shown in detail. Show.

図1に示すように、水素発生装置は、上端及び下端が閉鎖された円筒状の本体50から構成される改質部3と、炭素及び水素を含む有機化合物から構成される原料を改質部3に供給する原料供給部1と、水を改質部3に供給する水供給部2と、改質部3を加熱する燃焼部12(加熱部)と、燃焼部12に燃焼燃料を供給する燃料供給部8と、燃焼部12に空気を供給する空気供給部7と、制御部20とを備えている。   As shown in FIG. 1, the hydrogen generator includes a reforming unit 3 composed of a cylindrical main body 50 whose upper and lower ends are closed, and a raw material composed of an organic compound containing carbon and hydrogen. 3, a water supply unit 2 for supplying water to the reforming unit 3, a combustion unit 12 (heating unit) for heating the reforming unit 3, and a combustion fuel to the combustion unit 12 A fuel supply unit 8, an air supply unit 7 that supplies air to the combustion unit 12, and a control unit 20 are provided.

改質部3では、円筒状の本体50の内部に、半径及び軸方向の長さがそれぞれ異なる円筒状の複数の縦壁51が同心的に配置され、それにより、本体50の内部が半径方向に区画されている。この縦壁51の所定の端部に、円板状又は中空円板状の横壁52が適宜配設されている。詳細には、本体50の内部に複数の縦壁51が同心的に直立配置されることにより縦壁51間に間隙53が形成され、この間隙53を利用して所望のガス流路が形成されるように、縦壁51の所定端部が横壁52によって適宜閉鎖されている。それにより、本体50の内部に、改質原料流路aと、燃焼ガス流路b1と、改質ガス流路cと、改質触媒層5と、燃焼ガス流路b2とが形成され、これらの流路が、本体半径方向の外周側から中心に向けてこの順に配置されている。   In the reforming unit 3, a plurality of cylindrical vertical walls 51 having different radii and axial lengths are concentrically arranged inside the cylindrical main body 50, whereby the inside of the main body 50 is radially aligned. It is divided into. A disc-like or hollow disc-like lateral wall 52 is appropriately disposed at a predetermined end of the vertical wall 51. Specifically, a plurality of vertical walls 51 are concentrically arranged upright inside the main body 50 to form a gap 53 between the vertical walls 51, and a desired gas flow path is formed using the gap 53. As shown, the predetermined end of the vertical wall 51 is appropriately closed by the horizontal wall 52. As a result, the reforming raw material flow path a, the combustion gas flow path b1, the reformed gas flow path c, the reforming catalyst layer 5, and the combustion gas flow path b2 are formed in the main body 50. Are arranged in this order from the outer peripheral side in the radial direction of the main body toward the center.

改質原料流路aは上流側の端部が、本体50の外部に設けられた原料供給部1及び水供給部2に接続されており、また、下流側の端部が、改質触媒層5の上端面に接続されている。改質原料流路aは二重構造を有して、流路内を移動する物質の移動方向が軸方向下向きから軸方向上向き変化するよう立ち上がり構造となっている。そして、改質原料流路aの底部に、水蒸発部4が形成されている。後述するように、水供給部2から供給された水は、この水蒸発部4に一旦溜められてここで蒸発する。   The reforming raw material flow path a has an upstream end connected to the raw material supply unit 1 and the water supply unit 2 provided outside the main body 50, and a downstream end has a reforming catalyst layer. 5 is connected to the upper end surface. The reforming raw material flow path a has a double structure, and has a rising structure so that the moving direction of the substance moving in the flow path changes from the axially downward direction to the axially upward direction. And the water evaporation part 4 is formed in the bottom part of the reforming raw material flow path a. As will be described later, the water supplied from the water supply unit 2 is temporarily stored in the water evaporation unit 4 and evaporated here.

改質触媒層5は、間隙53に改質触媒が充填されて形成されており、後述する燃焼部12の輻射筒13の上端面及び外周面に沿って配置されている。ここでは、Ruを主成分とする改質触媒が用いられているが、改質反応が可能であれば、改質触媒は特に限定されるものではない。例えば、PtやRhのような貴金属やNi等から構成される改質触媒であってもよい。改質触媒層5の上端面は改質原料流路aに接続されており、下端面は改質ガス流路cの上流側端部に接続されている。改質ガス流路cの下流側端部は、改質ガスを改質部3の外部に取り出し可能に構成されている。この改質ガス流路cの内部には、改質触媒層5を通過して該流路内を流れるガスの温度を検知する改質温度検知手段15が配設されており、ここでは、改質温度検知手段15として、熱電対が設けられている。改質温度検知手段15の設置場所は、改質触媒層5を通過したガスの温度を検知できる場所であれば、特に限定されるものではない。ここでは、改質触媒層5を通過した直後のガスの温度を検知するように改質温度検知手段15が設けられ、検知されたガスの温度を改質触媒層5の温度としているが、例えば、改質触媒層5内の温度を直接検知する構成であってもよく、また、改質触媒層5を構成する縦壁51や横壁52の温度を検知する構成であってもよい。改質温度検知手段15で検知された改質触媒層5の温度情報は、制御部20に伝達される。制御部20の構成及び機能については後述するが、制御部20は、この温度情報に従って、原料供給部1及び水供給部2に、原料及び水の供給開始信号を出力する。   The reforming catalyst layer 5 is formed by filling the gap 53 with the reforming catalyst, and is disposed along the upper end surface and the outer peripheral surface of the radiant cylinder 13 of the combustion section 12 described later. Here, a reforming catalyst containing Ru as a main component is used, but the reforming catalyst is not particularly limited as long as a reforming reaction is possible. For example, a reforming catalyst composed of a noble metal such as Pt or Rh, Ni or the like may be used. The upper end surface of the reforming catalyst layer 5 is connected to the reforming raw material channel a, and the lower end surface is connected to the upstream end of the reformed gas channel c. The downstream end portion of the reformed gas flow path c is configured so that the reformed gas can be taken out of the reforming unit 3. Inside the reformed gas channel c, reforming temperature detecting means 15 for detecting the temperature of the gas that passes through the reforming catalyst layer 5 and flows in the channel is disposed. A thermocouple is provided as the mass temperature detecting means 15. The installation location of the reforming temperature detection means 15 is not particularly limited as long as the temperature of the gas that has passed through the reforming catalyst layer 5 can be detected. Here, the reforming temperature detecting means 15 is provided so as to detect the temperature of the gas immediately after passing through the reforming catalyst layer 5, and the detected temperature of the gas is used as the temperature of the reforming catalyst layer 5. Further, the temperature in the reforming catalyst layer 5 may be directly detected, or the temperature of the vertical wall 51 and the horizontal wall 52 constituting the reforming catalyst layer 5 may be detected. The temperature information of the reforming catalyst layer 5 detected by the reforming temperature detecting means 15 is transmitted to the control unit 20. Although the configuration and function of the control unit 20 will be described later, the control unit 20 outputs a raw material and water supply start signal to the raw material supply unit 1 and the water supply unit 2 in accordance with this temperature information.

燃焼部12は、バーナ9と、バーナ9の外周に形成された空気流路6と、バーナ9の空気流路6から上方に突出した部分を囲むように空気流路6の上に配置された輻射筒13とを備え、輻射筒13が、改質部3の本体50内部に収納され同心的に配置されている。バーナ9は燃料供給部8に接続されており、空気流路6は空気供給部7に接続されている。輻射筒13の内部にバーナ9から燃焼燃料が供給されるとともに空気が供給され、燃焼が行われて火炎が形成される。このように、輻射筒13の内部に燃焼空間14が形成される。燃焼空間14は、輻射筒13の上端に形成された開口13aを介して改質部3の燃焼ガス流路b2に連通している。燃焼ガス流路b2と燃焼ガス流路b1とは改質部3の底部で連通しており、燃焼ガス流路b1の下流側端部は、燃焼ガスを改質部3の外部に取り出し可能に構成されている。   The combustion section 12 is disposed on the air flow path 6 so as to surround the burner 9, the air flow path 6 formed on the outer periphery of the burner 9, and the portion of the burner 9 protruding upward from the air flow path 6. The radiation cylinder 13 is provided, and the radiation cylinder 13 is housed inside the main body 50 of the reforming unit 3 and is disposed concentrically. The burner 9 is connected to the fuel supply unit 8, and the air flow path 6 is connected to the air supply unit 7. Combustion fuel is supplied from the burner 9 to the inside of the radiant tube 13 and air is supplied, and combustion is performed to form a flame. Thus, the combustion space 14 is formed inside the radiation cylinder 13. The combustion space 14 communicates with the combustion gas flow path b <b> 2 of the reforming unit 3 through an opening 13 a formed at the upper end of the radiation cylinder 13. The combustion gas flow path b2 and the combustion gas flow path b1 communicate with each other at the bottom of the reforming section 3, and the downstream end of the combustion gas flow path b1 can extract the combustion gas to the outside of the reforming section 3. It is configured.

図2は、水素発生装置の制御部20の構成を示すブロック図であり、図3は、図2の制御部20に格納されたプログラムの内容を概略的に示すフローチャートである。図2に示すように、制御部20は、マイコン等のコンピュータから構成され、処理制御部21と、操作入力部22と、表示部23と記憶部24とを備えている。この制御部20によって、原料供給部1、水供給部2、燃料供給部8、及び、空気供給部7が制御され、原料、水、燃焼燃料、及び空気、の供給量が調整される。図示を省略しているが、原料供給部1、水供給部2、空気供給部7、及び燃料供給部8は、供給対象物の流量を調整可能に構成されている。例えば、これらの供給部1,2,7,8は、ポンプやファン等の駆動手段を備え、この駆動手段が制御部20によって制御されて各供給流量の調整が行われる構成であってもよく、また、駆動手段の下流側流路にバルブ等の流量調整手段がさらに設けられこの流量調整手段が制御部20によって制御されて各供給量の調整が行われる構成であってもよい。   FIG. 2 is a block diagram showing the configuration of the control unit 20 of the hydrogen generator, and FIG. 3 is a flowchart schematically showing the contents of the program stored in the control unit 20 of FIG. As illustrated in FIG. 2, the control unit 20 includes a computer such as a microcomputer, and includes a processing control unit 21, an operation input unit 22, a display unit 23, and a storage unit 24. The control unit 20 controls the raw material supply unit 1, the water supply unit 2, the fuel supply unit 8, and the air supply unit 7, and adjusts the supply amounts of the raw material, water, combustion fuel, and air. Although not shown, the raw material supply unit 1, the water supply unit 2, the air supply unit 7, and the fuel supply unit 8 are configured to be able to adjust the flow rate of the supply object. For example, the supply units 1, 2, 7, and 8 may include a driving unit such as a pump and a fan, and the driving unit may be controlled by the control unit 20 to adjust each supply flow rate. Further, a flow rate adjusting means such as a valve may be further provided in the downstream flow path of the driving means, and the flow rate adjusting means may be controlled by the control unit 20 to adjust each supply amount.

次に、水素発生装置の動作について説明する。水素発生装置の動作は、水蒸発部4が水蒸気生成可能な温度となるまで改質部3を加熱する動作(以下、これを起動動作と呼ぶ)と、前記温度まで加熱された水蒸発部4へ水を供給しつつ改質触媒層5が改質反応温度となるまで改質部3を加熱する動作(以下、これを予熱動作と呼ぶ)と、改質触媒層5における改質反応により水素を生成する動作(以下、これを水素生成動作と呼ぶ)とに分けられる。   Next, the operation of the hydrogen generator will be described. The operation of the hydrogen generator includes an operation of heating the reforming unit 3 until the water evaporation unit 4 reaches a temperature at which steam can be generated (hereinafter referred to as a start-up operation), and a water evaporation unit 4 heated to the temperature. An operation of heating the reforming unit 3 until the reforming catalyst layer 5 reaches the reforming reaction temperature while supplying water to the reforming reaction temperature (hereinafter referred to as a preheating operation), and hydrogen by the reforming reaction in the reforming catalyst layer 5 Can be divided into an operation (hereinafter referred to as a hydrogen generation operation).

起動動作では、改質部3への原料及び水の供給は何れも停止しており、水蒸発部4が水蒸気生成可能温度に達すると原料及び水の供給が改質部5に対して開始されて起動動作から予熱動作に切り換わる。この予熱動作によって改質触媒層5が改質反応温度(例えば、500℃〜700℃)に達すると、原料と水蒸気から改質触媒を用いた改質反応による水素ガス生成が行われ、それにより、予熱動作から水素生成動作に切り換わる。なおここでは、水素発生装置の起動開始時(起動開始時とは、具体的には、燃焼部12での燃焼開始時に相当する。)から水蒸発部4に対して水を供給するまでの期間を、水素発生装置の起動動作に要する時間として起動時間と呼ぶ。  In the start-up operation, the supply of the raw material and water to the reforming unit 3 is stopped, and the supply of the raw material and water is started to the reforming unit 5 when the water evaporation unit 4 reaches a temperature capable of generating steam. Switch from starting operation to preheating operation. When the reforming catalyst layer 5 reaches the reforming reaction temperature (for example, 500 ° C. to 700 ° C.) by this preheating operation, hydrogen gas is generated from the raw material and steam by the reforming reaction using the reforming catalyst, thereby Then, the preheating operation is switched to the hydrogen generation operation. Here, the period from the start of startup of the hydrogen generator (specifically, the start of startup corresponds to the start of combustion in the combustion unit 12) until the water is supplied to the water evaporation unit 4. Is called the startup time as the time required for the startup operation of the hydrogen generator.

このような起動動作、予熱動作、及び、水素生成動作は、図3に示すように、制御部20に格納されたプログラムに従って実行される。以下、図3に示すプログラムの実行プロセスに沿って、水素発生装置の動作を説明する。   Such start-up operation, preheating operation, and hydrogen generation operation are executed in accordance with a program stored in the control unit 20, as shown in FIG. Hereinafter, the operation of the hydrogen generator will be described in accordance with the program execution process shown in FIG.

図3に示すように、制御部20の処理制御部21から運転開始信号が出力されて起動動作が開始される。具体的には、燃料供給部8から燃焼燃料が所定流量で燃焼部12に供給されるとともに、空気供給部7から空気が所定流量で燃焼部12に供給される。ここでは、燃焼部12に供給される燃焼燃料の完全燃焼における理論空気量の1.5倍の空気が燃焼部12に供給される。燃焼部12において安定した燃焼を実現するために、水素発生装置の運転時における燃焼部12への燃焼燃料及び空気の供給量は一定に保持されている。   As shown in FIG. 3, an operation start signal is output from the process control unit 21 of the control unit 20 to start the starting operation. Specifically, combustion fuel is supplied from the fuel supply unit 8 to the combustion unit 12 at a predetermined flow rate, and air is supplied from the air supply unit 7 to the combustion unit 12 at a predetermined flow rate. Here, 1.5 times the theoretical air amount in the complete combustion of the combustion fuel supplied to the combustion unit 12 is supplied to the combustion unit 12. In order to realize stable combustion in the combustion section 12, the supply amounts of combustion fuel and air to the combustion section 12 during operation of the hydrogen generator are kept constant.

燃焼部12では、供給された燃焼燃料と空気との燃焼反応により、燃焼空間14に火炎が形成される。そして、燃焼で生じた燃焼熱により改質触媒層5が加熱されるとともに、燃焼空間14から燃焼ガス流路b2に導入されて流路内を流れる燃焼ガスの保有熱によっても改質触媒層5が加熱される。さらに、燃焼ガスは燃焼ガス流路b2から燃焼ガス流路b1に導入されて流路内を流れるが、燃焼ガス流路b1は縦壁51を介して改質原料流路a接しているため、燃焼ガス流路b1を流れる燃焼ガスの熱が改質原料流路a側に伝熱される。それにより、改質原料流路aの底部に形成された水蒸発部4が加熱される。このように、改質触媒層5と水蒸発部4とは共に燃焼部12での燃焼によって加熱され、伝熱経路の上流側に位置する改質触媒層5が、下流側に位置する水蒸発部4に先んじて加熱される。   In the combustion unit 12, a flame is formed in the combustion space 14 by a combustion reaction between the supplied combustion fuel and air. The reforming catalyst layer 5 is heated by the combustion heat generated by the combustion, and the reforming catalyst layer 5 is also introduced by the retained heat of the combustion gas introduced from the combustion space 14 into the combustion gas channel b2 and flowing in the channel. Is heated. Further, the combustion gas is introduced from the combustion gas flow path b2 to the combustion gas flow path b1 and flows in the flow path, but the combustion gas flow path b1 is in contact with the reforming raw material flow path a through the vertical wall 51. The heat of the combustion gas flowing through the combustion gas channel b1 is transferred to the reforming material channel a. Thereby, the water evaporation part 4 formed in the bottom part of the reforming raw material flow path a is heated. Thus, both the reforming catalyst layer 5 and the water evaporation unit 4 are heated by the combustion in the combustion unit 12, and the reforming catalyst layer 5 located on the upstream side of the heat transfer path becomes the water evaporation located on the downstream side. Heated prior to section 4.

ここで、上記の改質部3の加熱では、改質触媒層5の温度が、改質温度検知部15によって常時検知され、その検知温度が制御部20に伝達される。そして、図3に示すように、水蒸発部4が水蒸気生成可能な温度であるか否かを改質温度検知部15で検知された改質触媒層の温度に基づいて判定する判定手段として機能する処理制御部21が、予め処理制御部21に設定された第1の基準温度T1と改質触媒層5の検知温度とを比較し、改質触媒層5の温度が第1の基準温度T1よりも高いか否かを判定する(ステップS1)。ここでは第1の基準温度T1は100℃である。改質触媒層5の温度が第1の基準温度T1よりも高ければ、水蒸発部4に対し水供給を制御する供給制御手段としても機能する処理制御部21から原料供給部1及び水供給部2に制御信号が出力され、それにより、改質部3への原料及び水の供給が開始されて予熱動作に移行する(ステップS4)。   Here, in the heating of the reforming unit 3, the temperature of the reforming catalyst layer 5 is constantly detected by the reforming temperature detection unit 15, and the detected temperature is transmitted to the control unit 20. Then, as shown in FIG. 3, it functions as a determination unit that determines whether or not the water evaporation unit 4 has a temperature capable of generating water vapor based on the temperature of the reforming catalyst layer detected by the reforming temperature detection unit 15. The processing control unit 21 that compares the first reference temperature T1 preset in the processing control unit 21 and the detected temperature of the reforming catalyst layer 5 compares the temperature of the reforming catalyst layer 5 with the first reference temperature T1. It is judged whether it is higher than (step S1). Here, the first reference temperature T1 is 100 ° C. If the temperature of the reforming catalyst layer 5 is higher than the first reference temperature T1, the raw material supply unit 1 and the water supply unit from the processing control unit 21 that also functions as a supply control unit that controls the water supply to the water evaporation unit 4. A control signal is output to No. 2, whereby supply of the raw material and water to the reforming unit 3 is started, and the process proceeds to a preheating operation (step S4).

一方、改質触媒層5の温度が第1の基準温度T1以下であれば、原料及び水が供給されない状態で引き続き加熱が行われる(ステップS2)。そして、この加熱プロセスにおいて、処理制御部21が、予め処理制御部21に設定された第2の基準温度T2と改質触媒層5の検知温度とを比較し、改質触媒層5の温度が第2の基準温度T2よりも高いか否かを判定する(ステップS3)。ここでは第2の基準温度T2は400℃である。改質触媒層5の温度が第2の基準温度T2以下であれば、引き続きこの状態で加熱が行われる。一方、第2の基準温度T2よりも改質触媒層5の温度が高ければ、処理制御部21から原料供給部1及び水供給部2に制御信号が出力されて原料及び水の供給が開始されて予熱動作に移行する(ステップS4)。   On the other hand, if the temperature of the reforming catalyst layer 5 is equal to or lower than the first reference temperature T1, the heating is continued without supplying the raw material and water (step S2). In this heating process, the process controller 21 compares the second reference temperature T2 preset in the process controller 21 with the detected temperature of the reforming catalyst layer 5, and the temperature of the reforming catalyst layer 5 is It is determined whether or not the temperature is higher than the second reference temperature T2 (step S3). Here, the second reference temperature T2 is 400 ° C. If the temperature of the reforming catalyst layer 5 is equal to or lower than the second reference temperature T2, heating is continued in this state. On the other hand, if the temperature of the reforming catalyst layer 5 is higher than the second reference temperature T2, a control signal is output from the processing control unit 21 to the raw material supply unit 1 and the water supply unit 2, and supply of the raw material and water is started. Then, the operation proceeds to the preheating operation (step S4).

予熱動作では、原料供給部1から供給された原料と、水供給部2から供給された水が水蒸発部4で蒸発して生成された水蒸気とが、改質原料流路aを通じて改質触媒層5に供給され、改質触媒層5を通流した後に改質ガス流路cに供給される。そして、改質ガス流路cを介して改質部3の外部に取り出される。このように原料及び水蒸気を通流させた状態で加熱される改質触媒層5では、改質反応温度に達すると、原料と水蒸気とにより改質反応が行われて水素が生成する(ステップS5)。ここで、改質反応は、ある温度を閾値として急に反応が開始されるのではなく、改質触媒層5の温度が500℃程度になると供給された原料及び水蒸気の一部が反応し始め、温度の上昇に伴って反応する原料及び水蒸気の割合が増加し、700℃程度になるとほぼ完全に反応するようになる。したがって、上記のように原料及び水蒸気が供給された状態で改質部3の加熱が行われる予熱動作では、改質触媒層5の温度条件が整えば、適宜、改質反応が開始される。そこで、ここでは、改質触媒層5の温度が例えば700℃程度であって、改質部4に供給された原料及び水蒸気がほぼ完全に反応して水素生成が行われる状態のことを水素生成動作と呼ぶ。よって、改質触媒層5が改質反応温度となるまで改質部3を加熱する動作が予熱動作として定義されているが、この予熱動作期間中であっても、原料と水蒸気から改質反応により部分的に水素が生成されることになる。   In the preheating operation, the raw material supplied from the raw material supply unit 1 and the water vapor generated by evaporating the water supplied from the water supply unit 2 in the water evaporation unit 4 are reformed through the reforming raw material channel a. After being supplied to the layer 5 and flowing through the reforming catalyst layer 5, it is supplied to the reformed gas flow path c. Then, it is taken out of the reforming unit 3 through the reformed gas flow path c. Thus, in the reforming catalyst layer 5 heated in a state where the raw material and the steam are passed, when the reforming reaction temperature is reached, the reforming reaction is performed by the raw material and the steam to generate hydrogen (step S5). ). Here, the reforming reaction does not start suddenly with a certain temperature as a threshold value, but when the temperature of the reforming catalyst layer 5 reaches about 500 ° C., the supplied raw material and a part of the steam start to react. As the temperature rises, the proportion of the raw material and water vapor that react with each other increases, and when it reaches about 700 ° C., it reacts almost completely. Therefore, in the preheating operation in which the reforming unit 3 is heated in a state where the raw material and the steam are supplied as described above, the reforming reaction is appropriately started when the temperature condition of the reforming catalyst layer 5 is adjusted. Therefore, here, the temperature of the reforming catalyst layer 5 is, for example, about 700 ° C., and the raw material and water vapor supplied to the reforming unit 4 are almost completely reacted to generate hydrogen. This is called operation. Therefore, the operation of heating the reforming unit 3 until the reforming catalyst layer 5 reaches the reforming reaction temperature is defined as the preheating operation. Even during the preheating operation period, the reforming reaction is performed from the raw material and steam. As a result, hydrogen is partially generated.

なお、この水素生成動作は、既存の水素発生装置の動作と同様である。すなわち、改質原料流路aを通じて改質触媒層5に供給された原料及び水蒸気と改質触媒とにより、改質触媒層5で、水素を主成分とする改質ガスが生成する。生成した改質ガス、すなわち水素ガスは、改質ガス流路cを通じて改質部3の外部へ取り出される。   This hydrogen generation operation is the same as the operation of the existing hydrogen generator. That is, a reformed gas containing hydrogen as a main component is generated in the reforming catalyst layer 5 by the raw material, the water vapor, and the reforming catalyst supplied to the reforming catalyst layer 5 through the reforming material channel a. The generated reformed gas, that is, hydrogen gas, is taken out of the reforming unit 3 through the reformed gas flow path c.

上記起動動作のステップS1及びステップS3において原料及び水の供給開始時期の判定基準となる第1及び第2の基準温度T1,T2は、改質部3の加熱時及び水素発生装置の停止時における改質触媒層5及び水蒸発部4の温度変化と、改質触媒層5と水蒸発部4との温度状態の関係とを考慮して設定されており、この第1及び第2の基準温度T1,T2に基づいて原料及び水の供給開始のタイミングを制御することにより、起動時間を短縮できる。   The first and second reference temperatures T1 and T2 that are the determination criteria for the starting timing of the raw material and water supply in Steps S1 and S3 of the start-up operation are the values when the reforming unit 3 is heated and when the hydrogen generator is stopped. The first and second reference temperatures are set in consideration of the temperature changes of the reforming catalyst layer 5 and the water evaporation unit 4 and the relationship between the temperature states of the reforming catalyst layer 5 and the water evaporation unit 4. The start-up time can be shortened by controlling the timing of starting the supply of the raw materials and water based on T1 and T2.

以下、図4を参照してこの効果を詳細に説明する。   Hereinafter, this effect will be described in detail with reference to FIG.

図4(a)は、水素発生装置の停止動作及び水素発生装置停止後における改質触媒層5及び水蒸発部4の温度の経時変化の一例を示す図である。なお、停止動作とは、制御部20の処理制御部21が運転停止信号を出力してから水素発生装置が完全に停止するまでの動作である。   FIG. 4A is a diagram illustrating an example of a stop operation of the hydrogen generator and a change over time of the temperatures of the reforming catalyst layer 5 and the water evaporation unit 4 after the hydrogen generator is stopped. The stop operation is an operation from when the process control unit 21 of the control unit 20 outputs an operation stop signal until the hydrogen generator is completely stopped.

図4(a)に示すように、水素生成動作時の水素発生装置では、改質触媒層5の温度が700℃程度に保持されており、一方、水蒸発部4の温度は120℃程度に保持されている。処理制御部21から運転停止信号が出力されて停止動作に入ると、原料供給部1及び水供給部2が停止すると共に燃料供給部8が停止し、それに伴って、改質部3での改質反応と燃焼部12での燃焼とが停止する。   As shown in FIG. 4A, in the hydrogen generator during the hydrogen generation operation, the temperature of the reforming catalyst layer 5 is maintained at about 700 ° C., while the temperature of the water evaporation unit 4 is about 120 ° C. Is retained. When the operation stop signal is output from the processing control unit 21 and the stop operation is started, the raw material supply unit 1 and the water supply unit 2 are stopped and the fuel supply unit 8 is stopped. The quality reaction and the combustion in the combustion section 12 are stopped.

なおこの際、空気供給部7から送風される空気は、改質触媒層5の温度を速やかに奪う一方、加熱された空気に基づき、改質触媒層5よりも空気流れの下流に位置する水蒸発部4を昇温させる目的で、バーナ9に供給され続ける。   At this time, the air blown from the air supply unit 7 quickly takes away the temperature of the reforming catalyst layer 5, while the water located downstream of the reforming catalyst layer 5 based on the heated air. It continues to be supplied to the burner 9 for the purpose of raising the temperature of the evaporator 4.

燃焼部12での燃焼が停止して改質部3に対する加熱が停止すると、水素生成動作時に高温に保持されていた改質触媒層5では、急激に温度が低下する。一方、水蒸発部4では、その水素生成動作時の温度が改質触媒層5の温度よりも低いため、改質触媒層5のように加熱停止により急激に温度が低下することはなく、むしろ逆に、吸熱反応である改質反応が行われない分、水蒸発部4は、改質触媒層5からもたらされる放熱や上記空気との熱交換によって引き続き加熱されて昇温する。このように、燃焼停止動作では、改質触媒層5で温度が低下する一方、水蒸発部4で温度が上昇するため、燃焼停止動作開始から所定時間経過後には、改質触媒層5よりも水蒸発部4の温度が高くなる。改質触媒層5と水蒸発部4との間で温度の逆転が起こった後は、水蒸発部4の温度上昇も止まる。そして、改質触媒層5の温度が150℃程度、及び、水蒸発部4の温度が180℃程度の状態において、空気供給部7の作動も停止して、これにより水素発生装置が完全に停止する。水素発生装置が停止した後は、改質触媒層5及び水蒸発部4を含め、水素発生装置の温度が室温まで徐々に低下していく。   When combustion in the combustion unit 12 stops and heating of the reforming unit 3 stops, the temperature of the reforming catalyst layer 5 that has been maintained at a high temperature during the hydrogen generation operation rapidly decreases. On the other hand, in the water evaporation section 4, since the temperature during the hydrogen generation operation is lower than the temperature of the reforming catalyst layer 5, the temperature does not drop suddenly due to the stop of heating like the reforming catalyst layer 5, but rather On the contrary, the water evaporation part 4 is continuously heated by the heat release from the reforming catalyst layer 5 and the heat exchange with the air, and the temperature rises, as the reforming reaction which is an endothermic reaction is not performed. As described above, in the combustion stop operation, the temperature is reduced in the reforming catalyst layer 5, while the temperature is increased in the water evaporation unit 4. Therefore, after a predetermined time has elapsed from the start of the combustion stop operation, the temperature is higher than that in the reforming catalyst layer 5. The temperature of the water evaporation part 4 becomes high. After the reversal of temperature occurs between the reforming catalyst layer 5 and the water evaporation unit 4, the temperature increase of the water evaporation unit 4 also stops. Then, when the temperature of the reforming catalyst layer 5 is about 150 ° C. and the temperature of the water evaporation unit 4 is about 180 ° C., the operation of the air supply unit 7 is also stopped, and thus the hydrogen generator is completely stopped. To do. After the hydrogen generator stops, the temperature of the hydrogen generator including the reforming catalyst layer 5 and the water evaporation unit 4 gradually decreases to room temperature.

ここで、水素発生装置が停止してから短時間で運転が再開される場合には、水蒸発部4及び改質触媒部5が比較的高温に保持されており、特に、水蒸発部4が100℃以上であれば直ぐに水を供給して水蒸気を生成することが可能である。   Here, when the operation is resumed in a short time after the hydrogen generator is stopped, the water evaporation unit 4 and the reforming catalyst unit 5 are maintained at a relatively high temperature. If it is 100 degreeC or more, it is possible to supply water immediately and to produce | generate water vapor | steam.

したがって、図4(a)から理解されるとおり、改質触媒層5の温度が100℃以上であれば、水蒸発部4の温度は常に100℃を超えた状態にあり、このことから改質触媒層5の第1基準温度として100℃に設定して、起動開始時に改質温度検知部15により検知される改質触媒層5の温度が、この第1基準温度を超えていれば水供給部2から水蒸発部4に水を供給しても、水蒸発部4において水蒸気を生成することができる。   Therefore, as understood from FIG. 4A, if the temperature of the reforming catalyst layer 5 is 100 ° C. or higher, the temperature of the water evaporation section 4 is always over 100 ° C. If the temperature of the reforming catalyst layer 5 detected by the reforming temperature detection unit 15 at the start of startup exceeds the first reference temperature, water supply is performed. Even if water is supplied from the unit 2 to the water evaporation unit 4, water vapor can be generated in the water evaporation unit 4.

これに対して、水素発生装置が停止してから長時間経過すると、水蒸発部4及び改質触媒部5の温度は室温レベル近くまで低下して、これにより、この状態から運転を再開する場合には、水蒸発部4を水蒸気生成可能な温度とするのに充分に加熱を行う必要がある。   On the other hand, when a long time has passed since the hydrogen generator stopped, the temperature of the water evaporation unit 4 and the reforming catalyst unit 5 decreases to near the room temperature level, thereby restarting the operation from this state. Therefore, it is necessary to sufficiently heat the water evaporation part 4 to a temperature at which water vapor can be generated.

図4(b)は、水素発生装置が停止してから長時間経過して水蒸発部4及び改質触媒部5の温度が室温まで低下した状態から水素発生装置を再起動させた際の改質触媒層5及び水蒸発部4の温度の経時変化の一例を示す図である。   FIG. 4B shows a modification when the hydrogen generator is restarted from a state where the temperature of the water evaporation unit 4 and the reforming catalyst unit 5 has decreased to room temperature after a long time has passed since the hydrogen generator stopped. It is a figure which shows an example of the time-dependent change of the temperature of the quality catalyst layer 5 and the water evaporation part 4. FIG.

図4(b)に示すように、燃焼部12の加熱により、燃焼部12に近い改質触媒層5が優先的に昇温され始め、その後、改質触媒層5の昇温に遅れて水蒸発部4の温度が上昇する。改質部3の加熱では水蒸発部4よりも改質触媒層5の加熱が優先的であることから、水蒸発部4を水蒸気生成可能温度まで加熱するには時間がかかるが、改質触媒層5の温度が400℃になれば、水蒸発部4の温度が100℃を越えていると判断され得る。したがって、改質触媒層5の第2基準温度として400℃に設定して、改質温度検知部15により改質触媒層5の温度を検知して改質触媒層5がこの第2基準温度を超えた時点で水供給部2から水蒸発部4に水を供給すれば、水蒸発部4の温度は100℃を上回っており、確実に水蒸気を生成することができる。   As shown in FIG. 4B, the reforming catalyst layer 5 near the combustion unit 12 starts to be preferentially heated by the heating of the combustion unit 12, and then the water is delayed after the temperature of the reforming catalyst layer 5 rises. The temperature of the evaporation unit 4 rises. Since heating of the reforming catalyst layer 5 is prioritized over heating of the reforming unit 3, it takes time to heat the water evaporating unit 4 to a temperature capable of generating steam. If the temperature of the layer 5 reaches 400 ° C., it can be determined that the temperature of the water evaporation unit 4 exceeds 100 ° C. Therefore, the second reference temperature of the reforming catalyst layer 5 is set to 400 ° C., the reforming temperature detector 15 detects the temperature of the reforming catalyst layer 5 and the reforming catalyst layer 5 sets the second reference temperature to the second reference temperature. If water is supplied from the water supply unit 2 to the water evaporation unit 4 at a time exceeding this, the temperature of the water evaporation unit 4 exceeds 100 ° C., and water vapor can be reliably generated.

このように、水素発生装置では、運転開始時(いいかえれば起動開始時)における水素発生装置の温度状態により、水蒸気が生成できるタイミングが変わり、起動時間の長さが異なってくる。そこで、本実施の形態では、以下のように、起動開始時の水素発生装置の温度状態(具体的には改質触媒層5の温度状態)に応じて、改質部3への水の供給開始のタイミングを調整し起動時間の短縮化を図る。   Thus, in the hydrogen generator, the timing at which water vapor can be generated varies depending on the temperature state of the hydrogen generator at the start of operation (in other words, at the start of startup), and the length of the startup time varies. Therefore, in the present embodiment, as described below, water is supplied to the reforming unit 3 in accordance with the temperature state of the hydrogen generator at the start of startup (specifically, the temperature state of the reforming catalyst layer 5). The start time is shortened by adjusting the start timing.

具体的に、本実施の形態では、起動開始時の水蒸発部4が直ぐに水を供給可能な状態(すなわち、供給された水から水蒸気を生成可能な状態)であるか否かを判定するために、第1の基準温度T1が設定されており、また、起動動作で水蒸発部4が水蒸気生成可能な状態まで加熱されたか否かを判定するために、第2の基準温度T2が設定されている。前述のように、ここでは第1の基準温度T1が100℃に設定されており、第2の基準温度T2が400℃に設定されている。   Specifically, in this embodiment, in order to determine whether or not the water evaporation unit 4 at the start of startup is in a state where water can be supplied immediately (that is, a state where water vapor can be generated from the supplied water). In addition, the first reference temperature T1 is set, and the second reference temperature T2 is set in order to determine whether or not the water evaporation unit 4 has been heated to a state where water vapor can be generated by the start-up operation. ing. As described above, here, the first reference temperature T1 is set to 100 ° C., and the second reference temperature T2 is set to 400 ° C.

例えば、運転停止から短時間で運転が再開された場合、改質触媒層5及び水蒸発部4の温度は高く保持されており、図4に示すように、第1の基準温度T1である100℃よりも改質触媒層5の温度が高ければ、水蒸発部4は100℃以上になっている。したがって、改質温度検知部15で検知された改質触媒層5の温度が第1の基準温度T1よりも高ければ、改質部3への水の供給を速やかに開始することができ、起動時間を短くできる。この場合、水蒸気が十分に供給された状態で改質触媒層5の加熱が行われるため、改質触媒層5の高温化に伴う触媒性能の劣化や、水蒸気不足による原料の炭素析出等を防止することが可能となる。   For example, when the operation is resumed in a short time after the operation is stopped, the temperatures of the reforming catalyst layer 5 and the water evaporation unit 4 are kept high, and as shown in FIG. 4, the first reference temperature T1 is 100. If the temperature of the reforming catalyst layer 5 is higher than ° C., the water evaporation section 4 is 100 ° C. or higher. Therefore, if the temperature of the reforming catalyst layer 5 detected by the reforming temperature detecting unit 15 is higher than the first reference temperature T1, the supply of water to the reforming unit 3 can be started quickly and started. Time can be shortened. In this case, since the reforming catalyst layer 5 is heated in a state where water vapor is sufficiently supplied, deterioration of catalyst performance due to the high temperature of the reforming catalyst layer 5 and carbon deposition of raw materials due to insufficient steam are prevented. It becomes possible to do.

上記においては第1の基準温度T1が100℃に設定された場合を説明したが、水蒸発部4が水蒸気生成可能な状態であることを判定できるのであれば、第1の基準温度T1の設定値はこれ以外であってもよく、例えば改質部3の構成等に応じて適宜設定される。第1の基準温度T1は50〜150℃の範囲であってもよく、この範囲であれば、水蒸発部4が前回の運転における熱を保有するため、直ぐに水蒸気生成可能であると推定される。なお、第1の基準温度T1が50℃程度の低い温度であってもよいのは、例えば、水素発生装置の運転停止動作の際に、燃焼部12の空気流路6を通じて空気を改質部3に多量に供給して改質部3の冷却を行う等の冷却動作が行われると、改質触媒層5の温度がこのように低くても水蒸発部4は100℃以上となっている場合があるからである。   In the above description, the case where the first reference temperature T1 is set to 100 ° C. has been described. However, if it can be determined that the water evaporation unit 4 is in a state capable of generating water vapor, the first reference temperature T1 is set. The value may be other than this, and is appropriately set according to, for example, the configuration of the reforming unit 3. 50-150 degreeC may be sufficient as the 1st reference temperature T1, and since it is the range, since the water evaporation part 4 retains the heat | fever in the last driving | operating, it is estimated that water vapor | steam production | generation is possible immediately. . The first reference temperature T1 may be as low as about 50 ° C., for example, when the operation of the hydrogen generator is stopped, the air is reformed through the air flow path 6 of the combustion unit 12. When a cooling operation such as supplying a large amount to 3 to cool the reforming section 3 is performed, the water evaporation section 4 is 100 ° C. or higher even if the temperature of the reforming catalyst layer 5 is so low. Because there are cases.

一方、停止から長時間経過後に運転が再開された場合、改質触媒層5及び水蒸発部4は室温まで温度が低下しており、起動開始時における改質触媒層5の温度は、第1の基準温度である100℃よりも低くなっている。したがって、この場合には、水蒸発部4に水を供給しても水蒸気生成を行うことができない。それゆえ、この場合には直ぐに水の供給を開始せず、所定時間、燃焼部12での燃焼により改質部3を加熱する。そして、加熱された水蒸発部4が水蒸気生成可能な状態であるか否かを、第2の基準温度T2を用いて判定する。起動動作の加熱では改質触媒層5が水蒸発部4に優先して加熱されるため、改質触媒層5の温度がある程度上昇するまでは、水蒸発部4の温度は水蒸気生成可能な温度まで上昇せず、改質触媒層5の温度が第2の基準温度T2である400℃よりも高くなると、水蒸発部4も十分に加熱されて温度が100℃以上になっている。したがって、改質温度検知部15で検知される改質触媒層5の温度が第2の基準温度T2よりも高ければ、水蒸発部4への水供給を開始することができる。このように第2の基準温度T2との比較判定により水を供給するタイミングを制御することにより、水蒸気が十分に供給された状態で改質触媒層5のさらなる加熱が行われる。したがって、改質触媒層5の高温化に伴う触媒性能の劣化や、水蒸気不足による原料の炭素析出等を防止することが可能となる。   On the other hand, when the operation is restarted after a long time has elapsed since the stop, the temperature of the reforming catalyst layer 5 and the water evaporation unit 4 has decreased to room temperature, and the temperature of the reforming catalyst layer 5 at the start of startup is the first It is lower than the standard temperature of 100 ° C. Therefore, in this case, even if water is supplied to the water evaporation unit 4, water vapor cannot be generated. Therefore, in this case, the supply of water is not started immediately, but the reforming unit 3 is heated by combustion in the combustion unit 12 for a predetermined time. And it is determined using the 2nd reference temperature T2 whether the heated water evaporation part 4 is a state which can produce | generate water vapor | steam. Since the reforming catalyst layer 5 is preferentially heated over the water evaporation unit 4 in the heating of the starting operation, the temperature of the water evaporation unit 4 is a temperature at which water vapor can be generated until the temperature of the reforming catalyst layer 5 rises to some extent. When the temperature of the reforming catalyst layer 5 becomes higher than 400 ° C. which is the second reference temperature T2, the water evaporation unit 4 is also sufficiently heated and the temperature is 100 ° C. or higher. Therefore, if the temperature of the reforming catalyst layer 5 detected by the reforming temperature detection unit 15 is higher than the second reference temperature T2, water supply to the water evaporation unit 4 can be started. As described above, by controlling the timing of supplying water by comparison with the second reference temperature T2, the reforming catalyst layer 5 is further heated in a state where water vapor is sufficiently supplied. Therefore, it becomes possible to prevent the catalyst performance from being deteriorated due to the high temperature of the reforming catalyst layer 5 and the carbon deposition of the raw material due to the lack of water vapor.

上記においては第2の基準温度T2が400℃に設定された場合を説明したが、第2の基準温度T2はこれに限定されるものではなく、水蒸発部4が水蒸気生成可能な状態にある改質触媒層5の温度でありかつ水蒸気不存在下において改質触媒の劣化や供給原料の炭素析出が生じない温度であれば、第2の基準温度T2はこれ以外であってもよく、改質部3の構成等に応じて、第2の基準温度T2は適宜設定される。例えば、改質触媒層5の温度が500℃を上回ると、改質触媒や改質触媒を充填している容器及びガス流路も500℃を上回り、この温度状態で水蒸気が不存在であると、改質部3に原料の供給があれば原料の熱分解により改質部3の流路内や改質触媒上で炭素析出が生じ、仮に改質部3に原料の供給が無くとも改質触媒の凝集や酸化が起き、何れにしても、その結果、流路の閉塞や触媒の活性低下といった不具合が誘発される可能性がある。したがって、第2の基準温度T2は300〜500℃の範囲に設定することが好ましい。   In the above description, the case where the second reference temperature T2 is set to 400 ° C. has been described. However, the second reference temperature T2 is not limited to this, and the water evaporation unit 4 is in a state capable of generating water vapor. If the temperature is the temperature of the reforming catalyst layer 5 and does not cause deterioration of the reforming catalyst or carbon deposition of the feedstock in the absence of water vapor, the second reference temperature T2 may be other than this, and The second reference temperature T2 is appropriately set according to the configuration of the mass portion 3 and the like. For example, if the temperature of the reforming catalyst layer 5 exceeds 500 ° C., the reforming catalyst, the container filled with the reforming catalyst and the gas flow path also exceed 500 ° C., and water vapor is not present at this temperature state. If the raw material is supplied to the reforming unit 3, carbon deposition occurs in the flow path of the reforming unit 3 or on the reforming catalyst due to the thermal decomposition of the raw material. In any case, aggregation of the catalyst and oxidation occur, and as a result, there is a possibility that problems such as blockage of the flow path and decrease in the activity of the catalyst are induced. Therefore, the second reference temperature T2 is preferably set in the range of 300 to 500 ° C.

以上のように、本実施の形態の水素発生装置では、起動開始時の水蒸発部4の温度状態に応じて水の供給開始のタイミングを調整できるため、起動開始時の水蒸発部4の温度が水蒸気生成可能な温度である場合には、起動動作に要する時間を短縮することができる。また、水蒸気を十分に供給した状態で改質触媒層5の加熱が行われるので、原料の熱分解による改質部3の流路内や改質触媒上での炭素析出や改質触媒の凝集や酸化を防止することが可能となる。また、水蒸気生成可能な状態の水蒸発部4に水が供給されるため、確実に水蒸気の生成を行うことが可能となり、よって、液体の水による流路閉塞等を防止することが可能となる。以上のことから、このような本実施の形態の水素発生装置では、高い信頼性を実現することができる。   As described above, in the hydrogen generator of the present embodiment, the timing of the water supply start can be adjusted according to the temperature state of the water evaporation unit 4 at the start of startup, so the temperature of the water evaporation unit 4 at the start of startup When the temperature is such that water vapor can be generated, the time required for the start-up operation can be shortened. Further, since the reforming catalyst layer 5 is heated in a state where water vapor is sufficiently supplied, carbon deposition or reforming catalyst aggregation in the flow path of the reforming unit 3 or on the reforming catalyst due to thermal decomposition of the raw material. And oxidation can be prevented. Further, since water is supplied to the water evaporation unit 4 in a state where water vapor can be generated, it is possible to reliably generate water vapor, and thus it is possible to prevent blockage of the flow path due to liquid water. . From the above, high reliability can be realized in the hydrogen generator of this embodiment.

また、上記の水素発生装置の構成では、改質部3の最外周に水蒸発部4が配設されているため、高温の改質触媒層5から外周側に放熱される熱が、水蒸発部4における水の蒸発潜熱として利用される。したがって、水蒸発部4では温度の上昇が抑制される。このように、改質部3の最外周に位置する水蒸発部4の温度が低く抑えられると、改質部3の本体50の表面温度が下がることから、本体表面からの放熱を抑制することが可能となり、よって、水素発生装置の熱エネルギー効率が向上する。   Further, in the configuration of the hydrogen generator described above, the water evaporation unit 4 is disposed on the outermost periphery of the reforming unit 3, so that heat radiated from the high-temperature reforming catalyst layer 5 to the outer peripheral side is water evaporation. It is used as the latent heat of vaporization of water in the section 4. Therefore, the temperature increase in the water evaporation unit 4 is suppressed. Thus, if the temperature of the water evaporation part 4 located in the outermost periphery of the modification | reformation part 3 is restrained low, since the surface temperature of the main body 50 of the modification | reformation part 3 will fall, it will suppress the heat radiation from the main body surface. Therefore, the thermal energy efficiency of the hydrogen generator is improved.

なお、改質部3の構成は上記の構成に限定されるものではなく、本体50の形状や内部構造、改質部3内の各流路の配置等は上記以外であってもよい。ここで、上記のように表面からの放熱を抑制すべく水蒸発部4が改質部3の最外周に配置された構成では、燃焼部12での燃焼により発生した熱が水蒸発部4に伝達されにくいため、従来の起動動作における加熱方法では、改質部3の温度が顕著に上昇するのに対して水蒸発部4の温度は上昇しにくく、触媒の劣化や原料の炭素析出等の問題が生じやすい。したがって、かかる構成では、本発明の効果がより有効に奏される。   The configuration of the reforming unit 3 is not limited to the above-described configuration, and the shape and internal structure of the main body 50, the arrangement of each flow path in the reforming unit 3 and the like may be other than those described above. Here, in the configuration in which the water evaporation part 4 is arranged on the outermost periphery of the reforming part 3 so as to suppress the heat radiation from the surface as described above, the heat generated by the combustion in the combustion part 12 is transferred to the water evaporation part 4. In the conventional heating method in the start-up operation, the temperature of the reforming unit 3 rises remarkably, whereas the temperature of the water evaporation unit 4 hardly rises, and deterioration of the catalyst, carbon deposition of raw materials, etc. Problems are likely to occur. Therefore, with this configuration, the effect of the present invention is more effectively achieved.

さらに、上記水素発生装置の構成で改質触媒層4の温度を検知する温度検知部は、改質触媒層5を通過した改質ガス流路内を流れるガスの温度を検知する箇所に設けられ、ここで検知された温度を基に水供給のタイミングを変えているが、改質触媒層5を含む改質部3の構造体表面の適所に設置された温度検知部から得られる温度、改質部3内部の水蒸気および原料並びに改質反応したガスが流れる流路aの適所に設置された温度検知部から得られる温度、燃焼空間14の適所に設置された温度検知部から得られる温度、または、燃焼ガス流路b1、b2の適所に設置された温度検知部から得られる温度であっても、改質触媒層4またはその近傍で改質触媒層5の温度と高い相関性を有する温度を検知可能であり、かつ水蒸発部4が水蒸気生成可能な温度である否かを判断可能な範囲であれば、何れの箇所に設置してもよい。   Further, the temperature detector that detects the temperature of the reforming catalyst layer 4 in the configuration of the hydrogen generator is provided at a location that detects the temperature of the gas flowing in the reformed gas flow path that has passed through the reforming catalyst layer 5. Although the timing of water supply is changed based on the detected temperature, the temperature obtained from the temperature detecting unit installed at the appropriate position on the surface of the structure of the reforming unit 3 including the reforming catalyst layer 5 is improved. The temperature obtained from the temperature detection unit installed at a proper position of the flow path a through which the water vapor and the raw material and the reformed gas flow in the mass part 3, the temperature obtained from the temperature detection unit installed at a proper position of the combustion space 14, Alternatively, even if the temperature is obtained from a temperature detector installed at appropriate positions in the combustion gas flow paths b1 and b2, the temperature has a high correlation with the temperature of the reforming catalyst layer 5 at or near the reforming catalyst layer 4 Can be detected, and the water evaporation section 4 can generate steam. If whether a possible determination range is a temperature capable, it may be installed in any location.

もっともこの場合に、第2の基準温度T2は、改質触媒層5の最高温度との相関関係により、水蒸気不存在下において改質触媒の劣化や供給原料による炭素析出が生じない温度として設定されなければならない。   In this case, however, the second reference temperature T2 is set as a temperature at which deterioration of the reforming catalyst and carbon deposition due to the feedstock do not occur in the absence of steam due to the correlation with the maximum temperature of the reforming catalyst layer 5. There must be.

なお、水蒸発部4の外表面又は水蒸発部4の内部の適所に、後ほど説明するように、図8に示した水蒸発部4の温度を検知する水蒸発部温度検知部16を設けて水蒸発部4の蒸発に関与する温度を直接的に測れば、より精度良く水蒸発部4の状態を把握することができ、水蒸気の確実な供給が可能となる。   As will be described later, a water evaporation unit temperature detection unit 16 for detecting the temperature of the water evaporation unit 4 shown in FIG. 8 is provided at an appropriate position on the outer surface of the water evaporation unit 4 or inside the water evaporation unit 4. If the temperature involved in the evaporation of the water evaporation unit 4 is directly measured, the state of the water evaporation unit 4 can be grasped more accurately, and the water vapor can be reliably supplied.

(実施の形態2)
本発明の実施の形態2に係る水発生装置の構成は、実施の形態1の水素発生装置の構成と同様であり、よって、ここでは説明を省略する。かかる本実施の形態の水素発生装置の起動動作では、実施の形態1の場合と同様に第1及び第2の基準温度T1,T2を設定して水蒸発部4の温度状態を判定するが、ここではさらに、第3及び第4の基準温度T3,T4を設定し、この第3及び第4の基準温度T3,T4に基づいて改質触媒層5の加熱状態が制御される。より具体的には、本実施の形態においては、上記実施の形態1に比べて改質部3をより積極的に加熱させることにより、水素発生装置が停止してから長時間経過して水蒸発部4及び改質触媒部5の温度が室温まで低下した状態からこの水素発生装置を再起動させた際であっても、水蒸発部4を水蒸気生成可能温度にまで加熱する時間が短縮されることが期待される。もっとも、改質部3(改質触媒層5)の温度を昇温させ過ぎると、改質触媒が劣化して望ましくなく、こうした改質触媒の劣化を無くすために改質部3の昇温を停止させることにより、改質部3が冷え過ぎても望ましくない。よって改質部3は、以下に説明するように制御部20により温度制御されている。
(Embodiment 2)
The configuration of the water generator according to Embodiment 2 of the present invention is the same as the configuration of the hydrogen generator of Embodiment 1, and therefore the description thereof is omitted here. In the start-up operation of the hydrogen generator of the present embodiment, the first and second reference temperatures T1 and T2 are set and the temperature state of the water evaporation unit 4 is determined as in the first embodiment. Here, the third and fourth reference temperatures T3 and T4 are further set, and the heating state of the reforming catalyst layer 5 is controlled based on the third and fourth reference temperatures T3 and T4. More specifically, in the present embodiment, the reforming unit 3 is more actively heated than in the first embodiment, so that water evaporates over a long time after the hydrogen generator stops. Even when the hydrogen generator is restarted from the state in which the temperatures of the unit 4 and the reforming catalyst unit 5 are lowered to room temperature, the time for heating the water evaporation unit 4 to a steam generating temperature is shortened. It is expected. However, if the temperature of the reforming section 3 (reforming catalyst layer 5) is excessively raised, the reforming catalyst deteriorates and is not desirable. To eliminate such deterioration of the reforming catalyst, the temperature of the reforming section 3 is increased. By stopping, it is not desirable that the reforming unit 3 is too cold. Therefore, the temperature of the reforming unit 3 is controlled by the control unit 20 as described below.

以下、本実施の形態の起動動作について、図5及び図6を参照して説明する。   Hereinafter, the start-up operation of the present embodiment will be described with reference to FIGS.

図5は、本実施の形態の水素発生装置の制御部20(図1)に格納されたプログラムの内容を概略的に示すフローチャートである。図5に示すように、本実施の形態では、実施の形態1の場合と同様、制御部20の処理制御部21から運転開始信号が出力されて水素発生装置の運転が開始され、燃料供給部8及び空気供給部7から燃焼部12に燃焼燃料及び空気が供給されて燃焼が行われる。それにより、起動動作が開始される。起動開始時の改質触媒層5の温度が改質温度検知部15で検知され、検知温度情報が処理制御部21に伝達される。処理制御部21は、検知された改質触媒層5の温度と第1の基準温度T1(100℃)と比較を行う(ステップS1)。改質触媒層5の温度が第1の基準温度T1より高ければ、実施の形態1で前述したように、ステップS4のプロセスに進む。一方、改質触媒層5の温度が第1の基準温度T1以下であると、実施の形態1で前述したように、ステップS2のプロセスに進む。そして、ステップS3のプロセスに進むべく、改質触媒層5及び水蒸発部4の加熱が行われる。   FIG. 5 is a flowchart schematically showing the contents of the program stored in the control unit 20 (FIG. 1) of the hydrogen generator of the present embodiment. As shown in FIG. 5, in the present embodiment, as in the case of the first embodiment, an operation start signal is output from the processing control unit 21 of the control unit 20 to start the operation of the hydrogen generator, and the fuel supply unit Combustion fuel and air are supplied from the air supply unit 8 and the air supply unit 7 to the combustion unit 12 for combustion. Thereby, the starting operation is started. The temperature of the reforming catalyst layer 5 at the start of activation is detected by the reforming temperature detection unit 15, and the detected temperature information is transmitted to the processing control unit 21. The process control unit 21 compares the detected temperature of the reforming catalyst layer 5 with the first reference temperature T1 (100 ° C.) (step S1). If the temperature of the reforming catalyst layer 5 is higher than the first reference temperature T1, the process proceeds to step S4 as described in the first embodiment. On the other hand, if the temperature of the reforming catalyst layer 5 is equal to or lower than the first reference temperature T1, the process proceeds to step S2 as described in the first embodiment. Then, the reforming catalyst layer 5 and the water evaporation unit 4 are heated to proceed to the process of step S3.

ここで、本実施の形態の起動動作では、実施の形態1のようにステップS2からステップS3のプロセスが行われるまでの間に、さらにステップS6〜S10のプロセスが行われる。それにより、第2の基準温度T2まで改質触媒層5の温度が上昇するまでの間に、図6に示すように改質触媒層5の温度状態に従って燃焼部12での燃焼を停止及び再開させて改質触媒層5の加熱量を調節している。   Here, in the start-up operation of the present embodiment, the processes of steps S6 to S10 are further performed during the period from the step S2 to the process of step S3 as in the first embodiment. Thereby, until the temperature of the reforming catalyst layer 5 rises to the second reference temperature T2, the combustion in the combustion unit 12 is stopped and restarted according to the temperature state of the reforming catalyst layer 5 as shown in FIG. Thus, the heating amount of the reforming catalyst layer 5 is adjusted.

図6は、本実施の形態の水素発生装置の起動動作における改質触媒層5及び水蒸発部4の加熱状態を示す図である。図5に示すように、本実施の形態では、実施の形態1の第1及び第2の基準温度T1,T2の間に、第3の基準温度T3と、第4の基準温度T4とが設定されている。第3の基準温度T3は第4の基準温度T4よりも高く(T3>T4)、ここでは、第3の基準温度T3が250℃に設定されるとともに、第4の基準温度T4が200℃に設定されている。   FIG. 6 is a diagram showing a heating state of the reforming catalyst layer 5 and the water evaporation unit 4 in the start-up operation of the hydrogen generator of the present embodiment. As shown in FIG. 5, in the present embodiment, a third reference temperature T3 and a fourth reference temperature T4 are set between the first and second reference temperatures T1 and T2 of the first embodiment. Has been. The third reference temperature T3 is higher than the fourth reference temperature T4 (T3> T4). Here, the third reference temperature T3 is set to 250 ° C., and the fourth reference temperature T4 is set to 200 ° C. Is set.

例えば、この場合、水素発生装置の運転開始時の温度は第1の基準温度(100℃)よりも低く、よって、図5のステップS2に示すように、直ぐには水の供給が開始されずに引き続き改質触媒層5及び水蒸発部4の加熱が行われる。そして、この加熱時に、改質触媒層5の検知温度が第3の基準温度T3以上であるか否かの判定が行われる(ステップS6)。この判定で、第3の基準温度T3よりも低ければ、引き続き加熱が行われる。一方、改質触媒層5の検知温度が第3の基準温度T3以上であれば、燃焼部12での燃焼を停止させる(ステップS7)。この燃焼停止に伴って改質触媒層5の温度は低下し、一方、水蒸発部4は改質触媒層5からの放熱によって温度が上昇する。続いて、改質触媒層5の温度が第4の基準温度T4まで低下したら(ステップS8)、再び燃焼を開始する(ステップS9)。この燃焼の再開に伴って改質触媒層5の温度は再び上昇し、水蒸発部4も引き続き温度が上昇する。燃焼再開により改質触媒層5の温度が再び第3の基準温度T3以上となったら、再び燃焼を停止させる。ここでは、制御部20の処理制御部21が、燃料供給部8から燃焼部12への燃料の供給を制御することにより、燃焼の停止及び再開を制御している(ステップS10)。   For example, in this case, the temperature at the start of the operation of the hydrogen generator is lower than the first reference temperature (100 ° C.), so that the supply of water is not started immediately as shown in step S2 of FIG. Subsequently, the reforming catalyst layer 5 and the water evaporation unit 4 are heated. Then, during this heating, it is determined whether or not the detected temperature of the reforming catalyst layer 5 is equal to or higher than the third reference temperature T3 (step S6). If it is determined that the temperature is lower than the third reference temperature T3, heating is continued. On the other hand, if the detected temperature of the reforming catalyst layer 5 is equal to or higher than the third reference temperature T3, the combustion in the combustion unit 12 is stopped (step S7). As the combustion is stopped, the temperature of the reforming catalyst layer 5 is decreased, while the temperature of the water evaporation unit 4 is increased by heat radiation from the reforming catalyst layer 5. Subsequently, when the temperature of the reforming catalyst layer 5 decreases to the fourth reference temperature T4 (step S8), combustion is started again (step S9). As the combustion resumes, the temperature of the reforming catalyst layer 5 rises again, and the temperature of the water evaporation unit 4 continues to rise. When the temperature of the reforming catalyst layer 5 becomes equal to or higher than the third reference temperature T3 by restarting combustion, the combustion is stopped again. Here, the process control unit 21 of the control unit 20 controls the stop and restart of combustion by controlling the supply of fuel from the fuel supply unit 8 to the combustion unit 12 (step S10).

上記のような燃焼の停止及び再開は、予め設定された回数行われる。この設定回数は、1回以上であって、好ましくは、改質触媒層5と水蒸発部4との位置関係や燃焼ガス流路b1,b2の構成による伝熱状態に応じて設定されている。燃焼の停止及び再開が設定回数行われた後、第3の基準温度T3を超えてさらに加熱が行われ(ステップ11)、前述のように第2の基準温度T2との比較が行われる(ステップS3)。   The combustion stop and restart as described above are performed a preset number of times. The set number of times is one or more, and is preferably set according to the positional relationship between the reforming catalyst layer 5 and the water evaporation unit 4 and the heat transfer state according to the configuration of the combustion gas flow paths b1 and b2. . After the combustion is stopped and restarted for the set number of times, the heating is further performed after exceeding the third reference temperature T3 (step 11), and the comparison with the second reference temperature T2 is performed as described above (step 11). S3).

このように第3及び第4の基準温度T3,T4に基づいて燃焼部12を制御して改質触媒層5の加熱量を調整することにより、改質触媒層5の温度上昇を500℃以下に抑制しつつ、水蒸発部4の温度上昇を促進することができる。   In this way, by controlling the combustion unit 12 based on the third and fourth reference temperatures T3 and T4 and adjusting the heating amount of the reforming catalyst layer 5, the temperature rise of the reforming catalyst layer 5 is reduced to 500 ° C. or less. The temperature rise of the water evaporation part 4 can be accelerated | stimulated, suppressing.

上記においては、第3の基準温度T3を250℃に設定するとともに第4の基準温度T4を200℃に設定しているが、第3及び第4の基準温度T3,T4はこれに限定されるものではなく、第1の基準温度T1と第2の基準温度T2との間であって改質触媒層5の温度を500℃以上に高温化させることなく水蒸発部4の温度上昇を促進させることが可能であれば、これ以外であってもよい。   In the above, the third reference temperature T3 is set to 250 ° C. and the fourth reference temperature T4 is set to 200 ° C., but the third and fourth reference temperatures T3 and T4 are limited to this. Instead, it is between the first reference temperature T1 and the second reference temperature T2, and the temperature of the reforming catalyst layer 5 is not increased to 500 ° C. or more, and the temperature increase of the water evaporation section 4 is promoted. Other than this, if possible.

ここで、燃焼部12での燃焼を停止した際の改質触媒層5の温度変化では、改質触媒層5の温度が第3基準温度T3に達した時点P1で燃焼を停止しても、オーバーシュートにより改質触媒層5が加熱されるので、燃焼停止後も所定期間は継続して改質触媒層5の温度が上昇する。そして、時点P2において、改質触媒層5の温度がピークに達して第3の基準温度T3よりも高い温度となる。このことから、第3の基準温度T3を設定するにあたっては、このようなオーバーシュートによる温度上昇を考慮し、ピーク時P2の温度が第2の基準温度T2を超えないようにする必要がある。例えば、第3の基準温度T3は、200〜300℃の範囲で設定する。一方、第4の基準温度T4は、第3の基準温度T3が決まれば、第3の基準温度T3と第1の基準温度T1との間で設定すればよい。   Here, in the temperature change of the reforming catalyst layer 5 when the combustion in the combustion unit 12 is stopped, even if the combustion is stopped at the time point P1 when the temperature of the reforming catalyst layer 5 reaches the third reference temperature T3, Since the reforming catalyst layer 5 is heated by the overshoot, the temperature of the reforming catalyst layer 5 continues to rise for a predetermined period after the combustion is stopped. At time P2, the temperature of the reforming catalyst layer 5 reaches a peak and becomes higher than the third reference temperature T3. For this reason, in setting the third reference temperature T3, it is necessary to consider the temperature increase due to such overshoot so that the temperature at the peak time P2 does not exceed the second reference temperature T2. For example, the third reference temperature T3 is set in the range of 200 to 300 ° C. On the other hand, the fourth reference temperature T4 may be set between the third reference temperature T3 and the first reference temperature T1 if the third reference temperature T3 is determined.

以上のように、本実施の形態によれば、燃焼部12における燃焼を制御して改質触媒層5の加熱量を制御することが可能となるため、実施の形態1において前述した効果がより有効に奏され、よって、さらに高い信頼性が実現される。   As described above, according to the present embodiment, it is possible to control the amount of heating of the reforming catalyst layer 5 by controlling the combustion in the combustion section 12, so that the effects described in the first embodiment are more effective. It is effectively played, and thus higher reliability is realized.

上記においては、燃焼部12における燃焼の停止及び再開を行う回数を予め設定し、その回数分実施した後に第2の基準温度T2に基づく判定が行われる場合について説明したが、本実施の形態の変形例として、燃焼の停止及び再開を行う回数を設定するのではなく、燃焼の停止及び再開を伴う加熱動作が行われる時間を予め設定してもよい。例えば、燃焼の停止及び再開を伴う加熱時間を予め10分間と設定し、この期間は、第3及び第4の基準温度T3,T4に基づいて燃焼の停止と再開が行われ、10分経過後に第3の基準温度T3を越える加熱が行われる構成であってもよい。また、もし10分経過後に燃焼部12で失火が生じて改質触媒層5の温度が低下した際には、改質触媒層5の温度が第4の基準温度T4に達した時に燃焼部12での燃焼が再開されるよう構成されていてもよい。   In the above description, the number of times of stopping and resuming the combustion in the combustion unit 12 is set in advance, and the case where the determination based on the second reference temperature T2 is performed after the number of times has been performed has been described. As a modification, instead of setting the number of times of stopping and restarting combustion, the time for performing the heating operation with stopping and restarting combustion may be set in advance. For example, the heating time that accompanies the stop and restart of combustion is set to 10 minutes in advance, and during this period, stop and restart of combustion are performed based on the third and fourth reference temperatures T3 and T4, and after 10 minutes have elapsed. The configuration may be such that heating exceeding the third reference temperature T3 is performed. Further, if a misfire occurs in the combustion section 12 after 10 minutes and the temperature of the reforming catalyst layer 5 is lowered, the combustion section 12 is reached when the temperature of the reforming catalyst layer 5 reaches the fourth reference temperature T4. It may be configured such that combustion at is resumed.

またここまで、燃焼部12における燃焼の停止及び再開が反復して実行されることにより、改質触媒層5の加熱量を調整しつつ、水蒸発部4を効率的に加熱する例を述べたが、こうした燃焼部12の停止及び再開という燃焼動作の変形例として、燃焼部12を停止させることなく、燃焼部12を所定回数、高熱量加熱状態と低熱量加熱状態とに切り替えることによっても、同様の効果が得られる(なお、第3および第4の基準温度T3,T4は適切に設定し直す必要がある。)。例えば、低熱量に対する高熱量の熱量比率が約1.5倍程度になるように、燃焼部12への燃焼燃料量が調整されてもよい。   Further, the example in which the water evaporation unit 4 is efficiently heated while adjusting the heating amount of the reforming catalyst layer 5 by repeatedly executing the stop and restart of the combustion in the combustion unit 12 has been described so far. However, as a modified example of the combustion operation of stopping and resuming the combustion unit 12, by switching the combustion unit 12 between a high heat amount heating state and a low heat amount heating state a predetermined number of times without stopping the combustion unit 12, Similar effects can be obtained (the third and fourth reference temperatures T3 and T4 need to be reset appropriately). For example, the amount of combustion fuel to the combustion unit 12 may be adjusted so that the ratio of the heat quantity of the high heat quantity to the low heat quantity is about 1.5 times.

若しくは、燃焼部12による低熱量の加熱は、例えば、後ほど詳しく述べるように、燃焼燃料量に対する空気量を通常の燃焼時に比べて高めて燃焼火炎の温度を下げることによっても実現させ得る。   Alternatively, the heating of the low calorific value by the combustion unit 12 can be realized, for example, by increasing the amount of air relative to the amount of combustion fuel and lowering the temperature of the combustion flame as compared with normal combustion, as will be described in detail later.

(実施の形態3)
本実施の形態の水素発生装置は、実施の形態1の水素発生装置と同様の構成を有しており、よって、ここでは詳細な説明を省略する。また、本実施の形態の水素発生装置では、実施の形態2の場合と同様に燃焼部12における燃焼が制御されて改質触媒層5の加熱量が調整されるが、以下の点が実施の形態2とは異なっている。
(Embodiment 3)
The hydrogen generator according to the present embodiment has the same configuration as that of the hydrogen generator according to the first embodiment, and thus detailed description thereof is omitted here. Further, in the hydrogen generator of the present embodiment, the combustion in the combustion section 12 is controlled and the heating amount of the reforming catalyst layer 5 is adjusted as in the case of the second embodiment. It is different from Form 2.

すなわち、実施の形態2では第3及び第4の基準温度T3,T4に基づいて燃焼部12での燃焼の停止及び再開を制御しているが、本実施の形態では、水素発生装置の起動開始時の改質触媒層5の温度に応じて、燃焼の停止及び再開を行う回数及びタイミングが自動で予め設定されるとともに、この設定に従って燃焼の停止及び再開が実施される。燃焼の停止及び再開を行う回数及びタイミングは、実施の形態2の場合と同様、改質触媒層5の温度が500℃以上の高温になるのを抑制しつつ水蒸発部4の温度上昇を促進するように設定される。例えば、燃焼の停止及び再開を行う回数及びタイミングと改質触媒層5及び水蒸発部4の温度変化との相関関係を示すデータが予め制御部20の記憶部24に格納されており、起動開始時に検知されて処理制御部21に伝達された改質触媒層5の温度情報に従って、記憶部24のデータから最適な回数及びタイミングが選択されて設定される。この場合、検知された改質触媒層5の温度が低いと、水蒸発部4の温度も低いと推定され、よって、この場合には予熱回数を多くする。一方、検知された改質触媒層5の温度が高いと、水蒸発部4の温度も高いと推定され、よって、この場合には、予熱回数を少なくする。具体的例として、第1の基準温度T1が100℃である場合に、起動開始時における改質触媒層5の検知温度が80〜99℃であれば、燃焼の停止及び再開の一連の動作の回数を1回とし、60〜79℃であれば2回とし、40〜59℃であれば3回とし、それよりも低い時には4回と設定する。   That is, in the second embodiment, the stop and restart of combustion in the combustion unit 12 are controlled based on the third and fourth reference temperatures T3 and T4. In the present embodiment, the start of the hydrogen generator is started. Depending on the temperature of the reforming catalyst layer 5 at the time, the number and timing of the stop and restart of the combustion are automatically set in advance, and the stop and restart of the combustion are performed according to this setting. The number and timing of stopping and resuming the combustion are the same as in the second embodiment, and the temperature of the reforming catalyst layer 5 is suppressed from becoming a high temperature of 500 ° C. or higher, and the temperature increase of the water evaporation unit 4 is promoted. Set to do. For example, data indicating the correlation between the number and timing of the stop and restart of combustion and the temperature changes of the reforming catalyst layer 5 and the water evaporation unit 4 are stored in the storage unit 24 of the control unit 20 in advance, and start-up is started. In accordance with the temperature information of the reforming catalyst layer 5 that is sometimes detected and transmitted to the processing control unit 21, the optimal number and timing are selected and set from the data in the storage unit 24. In this case, if the detected temperature of the reforming catalyst layer 5 is low, it is estimated that the temperature of the water evaporation unit 4 is also low. Therefore, in this case, the number of preheating is increased. On the other hand, if the detected temperature of the reforming catalyst layer 5 is high, it is estimated that the temperature of the water evaporation unit 4 is also high. Therefore, in this case, the number of times of preheating is reduced. As a specific example, when the first reference temperature T1 is 100 ° C. and the detected temperature of the reforming catalyst layer 5 at the start of startup is 80 to 99 ° C., a series of operations of stopping and restarting combustion are performed. The number of times is set to 1, if it is 60-79 ° C., it is 2 times, if it is 40-59 ° C., it is 3 times, and if it is lower, it is set to 4 times.

以上のように、本実施の形態の起動動作によれば、起動開始時の水素発生装置の状態、具体的には改質触媒層5の温度、に応じて、燃焼部12での燃焼の停止及び再開の実施回数を適正化することが可能となる。したがって、実施の形態2と同様の効果が奏されるとともに、この場合にはより効率よく加熱を行うことが可能となる。     As described above, according to the start-up operation of the present embodiment, the combustion in the combustion unit 12 is stopped according to the state of the hydrogen generator at the start of start-up, specifically, the temperature of the reforming catalyst layer 5. In addition, it is possible to optimize the number of restarts. Therefore, the same effect as in the second embodiment can be obtained, and in this case, heating can be performed more efficiently.

なお、上記においては、予め燃焼の停止及び再開の回数が設定される場合について説明したが、実施の形態2の変形例の場合と同様、回数ではなく、燃焼の停止及び再開を伴う加熱の実施時間が予め設定されてもよい。   In the above description, the case where the number of times of stopping and resuming the combustion is set in advance has been described. However, as in the case of the modification of the second embodiment, not the number of times but the heating involving the stopping and resuming of combustion is performed. The time may be set in advance.

(実施の形態4)
図8は、本発明の実施の形態4に係る水素発生装置の構成を示す模式的な断面図である。
(Embodiment 4)
FIG. 8 is a schematic cross-sectional view showing the configuration of the hydrogen generator according to Embodiment 4 of the present invention.

本実施の形態による水素発生装置では、実施の形態1(図1参照)で説明した水素発生装置の改質部に、水蒸発部4の温度を検知する水蒸発部温度検知部16が追加的に設置され、これにより、水蒸発温度検知部16から出力された信号(温度情報)が制御部20に伝達されるように構成されている。   In the hydrogen generator according to the present embodiment, a water evaporation unit temperature detection unit 16 that detects the temperature of the water evaporation unit 4 is additionally provided in the reforming unit of the hydrogen generation device described in the first embodiment (see FIG. 1). Accordingly, a signal (temperature information) output from the water evaporation temperature detection unit 16 is transmitted to the control unit 20.

また、図9は、本実施の形態による水素発生装置の制御部に格納されたプラグラムの内容を概略的に示したフローチャートである。   FIG. 9 is a flowchart schematically showing the contents of a program stored in the control unit of the hydrogen generator according to this embodiment.

図9に示したフローチャートでは、図5に示したフローチャートのステップS1の「第1基準温度」とステップS3の「第2基準温度」が各々、「水蒸発部基準温度」となっている。   In the flowchart shown in FIG. 9, the “first reference temperature” in step S1 and the “second reference temperature” in step S3 of the flowchart shown in FIG.

詰まりは、本実施の形態では、水蒸発部4の温度を改質温度検知部15から間接的に予測するのではなく、水蒸発部温度検知部16により測定することによって、図9に示したステップS1およびステップS3における水蒸発部4の状態をより直接かつ正確に検知して、水を供給して水蒸気を生成することができるか否かを判断している。よって、燃焼の停止及び再開が実行される際に、図9に示したステップS6〜S10の間の処理の実施を、実施の形態3のようにその処理回数や処理時間に応じて決定するのではなく、水蒸発部4の温度状態により直接的に決定することができる。   In this embodiment, the clogging is shown in FIG. 9 by measuring the temperature of the water evaporation unit 4 by the water evaporation unit temperature detection unit 16 instead of indirectly predicting the temperature of the water evaporation unit 4 from the reforming temperature detection unit 15. The state of the water evaporation part 4 in step S1 and step S3 is detected more directly and accurately, and it is determined whether water can be generated by supplying water. Therefore, when the combustion is stopped and restarted, the execution of the process between steps S6 to S10 shown in FIG. 9 is determined according to the number of processes and the processing time as in the third embodiment. Instead, it can be determined directly by the temperature state of the water evaporation section 4.

また、燃焼の停止及び再開のタイミングの判断は、実施の形態3と同様、改質触媒温度検知部15から出力される温度情報に基づき制御部20により実行され、これにより、改質触媒層5の高温化による触媒の劣化が防止されている。   Further, the determination of the timing of stopping and resuming combustion is performed by the control unit 20 based on the temperature information output from the reforming catalyst temperature detection unit 15 as in the third embodiment, whereby the reforming catalyst layer 5 The catalyst is prevented from deteriorating due to the high temperature of the catalyst.

なお、水蒸発部温度検知部16は水蒸発部4の構造体外表面や構造体内部の水が蒸発する蒸発空間等、水蒸発部4において水蒸気が生成可能か否かを精度良く把握できる位置に設置すればよい。ここで、水蒸発部4が水蒸気を生成できる水蒸発部基準温度は、水蒸発部4の構成や水蒸発部温度検知部16の設置位置等に依存して可変するが、例えば50℃から150℃であれば、水蒸発部4の主に水蒸発が行われる箇所では100℃になって水の蒸発が適切に促進される。   In addition, the water evaporation part temperature detection part 16 is a position which can grasp | ascertain accurately whether water vapor | steam is generable in the water evaporation part 4, such as the outer surface of the structure of the water evaporation part 4, and the evaporation space where the water inside a structure evaporates. Install it. Here, the water evaporation unit reference temperature at which the water evaporation unit 4 can generate water vapor varies depending on the configuration of the water evaporation unit 4, the installation position of the water evaporation unit temperature detection unit 16, and the like. If it is degreeC, it will become 100 degreeC in the location where water evaporation is mainly performed of the water evaporation part 4, and evaporation of water is accelerated | stimulated appropriately.

なお、以上に説明した本実施の形態による水素発生装置の構成は、水蒸発部温度検知部16を追加した点を除き、実施の形態1で説明した水素発生装置の構成と同じであり、両者に共通する構成の説明は省略する。   The configuration of the hydrogen generator according to the present embodiment described above is the same as the configuration of the hydrogen generator described in the first embodiment except that the water evaporation unit temperature detector 16 is added. The description of the common configuration is omitted.

また、図9に示したステップS1およびステップS3における処理動作以外の本実施の形態による動作は、実施の形態2(図6)で説明した処理動作と同じであり、両者に共通する動作の説明も省略する。   Further, the operations according to the present embodiment other than the processing operations in step S1 and step S3 shown in FIG. 9 are the same as the processing operations described in the second embodiment (FIG. 6), and an explanation of operations common to both of them. Is also omitted.

(実施の形態5)
本発明の実施の形態5に係る水素発生装置は、実施の形態1の水素発生装置100と同様の構成を有しており、よって、ここでは詳細な説明を省略する。本実施の形態では、実施の形態1と同様の起動動作が行われるが、起動動作の燃焼における燃焼部12への空気の供給量が、予熱動作や水素生成動作で実施される通常の燃焼での空気供給量よりも多い点が、実施の形態1とは異なっている。以下、この相違点について説明する。
(Embodiment 5)
The hydrogen generator according to Embodiment 5 of the present invention has the same configuration as that of hydrogen generator 100 of Embodiment 1, and therefore detailed description thereof is omitted here. In the present embodiment, the startup operation similar to that of the first embodiment is performed, but the amount of air supplied to the combustion unit 12 in the combustion of the startup operation is the normal combustion performed in the preheating operation or the hydrogen generation operation. This is different from the first embodiment in that it is larger than the air supply amount. Hereinafter, this difference will be described.

通常の燃焼では、燃料供給部8から燃焼部12に供給される燃焼燃料の完全燃焼における理論空気量と、実際に空気供給部7から燃焼部12に供給される空気量との比(以下、空気比と呼ぶ)が、約1.5に設定されている。これは、燃焼部12の構成や燃焼方法にもよるが、通常の燃焼では、燃料特性が最も良好な燃焼における空気比が1.5前後であることによる。したがって、本実施の形態では、予熱動作及び水素発生動作における空気比が、通常の燃焼における空気比、すなわち1.5に設定されている。一方、本実施の形態の起動動作では、燃焼における空気比が、通常の燃焼での空気比(すなわち1.5)よりも大きく設定されている。具体的には、起動動作時の燃焼における空気比は、2.0以上であって燃焼特性が劣化しない範囲、例えば、2.0〜5.0の範囲内に設定される。ここでは2.0である。このような設定とするのは、以下の理由による。   In normal combustion, the ratio of the theoretical air amount in the complete combustion of the combustion fuel supplied from the fuel supply unit 8 to the combustion unit 12 and the air amount actually supplied from the air supply unit 7 to the combustion unit 12 (hereinafter, (Referred to as air ratio) is set to about 1.5. This depends on the fact that the air ratio in combustion with the best fuel characteristics is around 1.5 in normal combustion, although it depends on the configuration of the combustion section 12 and the combustion method. Therefore, in the present embodiment, the air ratio in the preheating operation and the hydrogen generation operation is set to the air ratio in normal combustion, that is, 1.5. On the other hand, in the starting operation of the present embodiment, the air ratio in combustion is set to be larger than the air ratio in normal combustion (that is, 1.5). Specifically, the air ratio in the combustion at the start-up operation is set to 2.0 or more and the combustion characteristics are not deteriorated, for example, in the range of 2.0 to 5.0. Here, it is 2.0. The reason for this setting is as follows.

燃焼部12に供給される燃焼燃料の供給量が一定であると、燃焼部12での発熱量は一定となる。このため、この状態では、空気供給部7から燃焼部12への空気供給量の変化に伴って、燃焼部12の輻射筒内に形成される火炎の温度が変化する。例えば、空気比を通常の燃焼における空気比(1.5)よりも大きくして空気供給量を通常の燃焼よりも多くすると、燃焼によって生じる燃焼排気ガスの量が多くなるため、この燃焼排気ガスによって火炎の温度が低下する。ここでは、火炎の外炎の温度を火炎の温度としている。このことから、起動動作時の空気比が2.0となるように制御部20が空気供給部7を制御して空気供給量を調整すると、通常の燃焼よりも多くの空気が燃焼部12に供給されて燃焼が行われるので、起動動作時に形成される火炎の温度は、予熱動作時及び水素生成動作時に形成される通常の燃焼での火炎の温度よりも低くなる。そして、このような火炎温度の低下により、起動動作時には、燃焼部12から燃焼ガス流路b2に導入される燃焼排気ガスの温度が、通常の燃焼に比べて低くなる。それゆえ、起動動作時には、加熱対象である改質触媒層5と熱源である燃焼排気ガスとの温度差が小さくなり、よって、予熱動作時及び水素生成動作時に比べて、燃焼排気ガスから改質触媒層5へ伝熱される熱量が減少する。一方、このように改質触媒層5への伝熱量が減少することから、改質触媒層5との間の熱交換を経て燃焼ガス流路b1内を移動する燃焼排気ガスでは、保有する熱量が多くなる。   When the amount of combustion fuel supplied to the combustion unit 12 is constant, the amount of heat generated in the combustion unit 12 is constant. For this reason, in this state, the temperature of the flame formed in the radiant cylinder of the combustion unit 12 changes as the air supply amount from the air supply unit 7 to the combustion unit 12 changes. For example, if the air ratio is made larger than the air ratio (1.5) in normal combustion and the air supply amount is made larger than that in normal combustion, the amount of combustion exhaust gas generated by the combustion increases. As a result, the temperature of the flame decreases. Here, the flame temperature of the flame is the flame temperature. From this, when the control unit 20 controls the air supply unit 7 to adjust the air supply amount so that the air ratio at the start-up operation becomes 2.0, more air than the normal combustion is supplied to the combustion unit 12. Since the fuel is supplied and combusted, the temperature of the flame formed during the start-up operation becomes lower than the temperature of the flame in normal combustion formed during the preheating operation and the hydrogen generation operation. Due to such a decrease in the flame temperature, the temperature of the combustion exhaust gas introduced from the combustion section 12 into the combustion gas flow path b2 becomes lower than that in normal combustion during the start-up operation. Therefore, during the start-up operation, the temperature difference between the reforming catalyst layer 5 that is the heating target and the combustion exhaust gas that is the heat source is reduced, and therefore, the reforming is performed from the combustion exhaust gas compared to the preheating operation and the hydrogen generation operation. The amount of heat transferred to the catalyst layer 5 is reduced. On the other hand, since the amount of heat transfer to the reforming catalyst layer 5 is reduced in this way, the combustion exhaust gas moving in the combustion gas flow path b1 through heat exchange with the reforming catalyst layer 5 holds the amount of heat held. Will increase.

ここで、改質触媒層5との熱交換を経た燃焼排気ガスは、燃焼ガス流路b1内を移動して改質部3の外部に取り出されるが、この移動の際に、燃焼排気ガスと水蒸発部4との間で熱交換が行われ、水蒸発部4に熱が伝熱される。ここで、前述のように、空気比を2.0とした起動動作では、空気比を1.5とした場合に比べて、水蒸発部4との間で熱交換を行う燃焼排気ガスの保有する熱量が多くなるので、水蒸発部4と燃焼排気ガスとの間の温度差が大きくなり、それゆえ、水蒸発部4に伝熱される熱量が、空気比を1.5とした場合に比べて多くなる。以上のことから、起動動作における燃焼の空気比を2.0して通常の燃焼の空気比よりも大きくすることにより、改質触媒層5の温度上昇を抑制しつつ水蒸発部4の加熱を促進することが可能となる。その結果、起動動作時間の短縮化が図られた信頼性の高い水素発生装置を実現できる。   Here, the combustion exhaust gas that has undergone heat exchange with the reforming catalyst layer 5 moves in the combustion gas flow path b1 and is taken out of the reforming unit 3. During this movement, the combustion exhaust gas and the combustion exhaust gas Heat exchange is performed with the water evaporation unit 4, and heat is transferred to the water evaporation unit 4. Here, as described above, in the start-up operation in which the air ratio is 2.0, the combustion exhaust gas that performs heat exchange with the water evaporation unit 4 is retained as compared with the case where the air ratio is 1.5. Since the amount of heat to be increased increases, the temperature difference between the water evaporation unit 4 and the combustion exhaust gas becomes large. Therefore, the amount of heat transferred to the water evaporation unit 4 is larger than that when the air ratio is 1.5. And increase. From the above, the water evaporation part 4 can be heated while suppressing the temperature rise of the reforming catalyst layer 5 by setting the combustion air ratio in the start-up operation to 2.0 to be larger than the normal combustion air ratio. It becomes possible to promote. As a result, it is possible to realize a highly reliable hydrogen generator in which the startup operation time is shortened.

なお、通常の燃焼よりも燃焼部12に供給する燃焼燃料量を少なくしたうえで、上記の空気比を高めれば、より効果的に改質触媒層5の温度上昇を抑制しつつ水蒸発部4の加熱を促進することができる。   It should be noted that if the amount of combustion fuel supplied to the combustion unit 12 is reduced compared to normal combustion and the air ratio is increased, the water evaporation unit 4 can be more effectively suppressed while suppressing the temperature rise of the reforming catalyst layer 5. Heating can be promoted.

なお、上記においては、本実施の形態の起動動作が、空気比を通常の燃焼よりも大きくすることを除いて実施の形態1の起動動作と同様である場合について説明したが、実施の形態2及び実施の形態3の起動動作を基本とする構成であってもよい。   In the above description, the case where the start-up operation of the present embodiment is the same as the start-up operation of Embodiment 1 except that the air ratio is made larger than that of normal combustion has been described. And the structure based on the starting operation | movement of Embodiment 3 may be sufficient.

また、実施の形態2及び実施の形態3の構成を基本とする起動動作において、既に述べたように、燃焼部12での燃焼を停止する際に、空気供給部7から燃焼部12に改質触媒層5の冷却用に空気を供給している。このように冷却用に空気を供給することにより、改質部3の熱が、供給された空気を介して改質触媒層5よりも空気流れの下流側に位置する水蒸発部4に伝熱されるが、ここでは特に、供給される空気の量が通常よりも多いことから、水蒸発部4への伝熱量が多くなり好適である。したがって、より有効に上記の効果が奏される。   Further, in the starting operation based on the configuration of the second and third embodiments, as already described, when the combustion in the combustion unit 12 is stopped, the reforming from the air supply unit 7 to the combustion unit 12 is performed. Air is supplied for cooling the catalyst layer 5. By supplying air for cooling in this way, the heat of the reforming unit 3 is transferred to the water evaporation unit 4 located downstream of the reforming catalyst layer 5 through the supplied air. However, since the amount of supplied air is larger than usual, the amount of heat transferred to the water evaporation unit 4 is particularly large. Therefore, the above-described effect can be achieved more effectively.

(実施の形態6)
本発明の実施の形態6に係る水素発生装置は、実施の形態1の水素発生装置と同様の構成を有しており、よって、ここでは詳細な説明を省略する。本実施の形態においては、起動動作から予熱動作への移行の過程が、実施の形態1とは異なっている。以下、この相違点について説明し、それ以外は実施の形態1と同様とする。
(Embodiment 6)
The hydrogen generator according to Embodiment 6 of the present invention has the same configuration as the hydrogen generator of Embodiment 1, and therefore detailed description thereof is omitted here. In the present embodiment, the transition process from the startup operation to the preheating operation is different from that of the first embodiment. Hereinafter, this difference will be described, and the rest is the same as in the first embodiment.

実施の形態1においては、前述のように予熱動作の開始時に水と原料とが揃って改質部3へ供給されるが、本実施の形態では、水の供給が先に開始され、その後に原料の供給が開始される。すなわち、本実施の形態では、起動動作において、改質触媒層5の温度が第1の基準温度T1以上であるか(図3のステップS1)、又は、第2の基準温度T2以上である(図3のステップS3)と、水供給部2から改質部3の改質原料流路aに水が供給され、起動動作から予熱動作に移行する。この時、原料供給部1から改質部3への原料供給はまだ行われない。供給された水は水蒸発部4で蒸発して水蒸気となり、この水蒸気が、改質触媒層5及び改質ガス流路cに供給されてこれらを通流する。ここで、原料供給流路a内、改質触媒層5内及び改質ガス流路c内には、前回の運転における生成ガスや運転停止後に流入した空気などの気体等が多少なりとも存在している可能性があり、例えば、これらの気体存在下で予熱動作により改質触媒層5を高温に加熱すると、改質触媒が酸化されて触媒活性が低下し、原料が酸化される可能性がある。したがって、水素発生装置の信頼性を向上させるためには、改質部3の本体50内部を、不特定物質が存在しない状態とすることが好ましい。   In the first embodiment, as described above, water and raw materials are supplied together and supplied to the reforming unit 3 at the start of the preheating operation, but in this embodiment, the supply of water is started first, and thereafter The supply of raw materials is started. That is, in the present embodiment, in the start-up operation, the temperature of the reforming catalyst layer 5 is equal to or higher than the first reference temperature T1 (step S1 in FIG. 3), or equal to or higher than the second reference temperature T2 ( In step S3) of FIG. 3, water is supplied from the water supply unit 2 to the reforming raw material flow path a of the reforming unit 3, and the start operation is shifted to the preheating operation. At this time, the raw material supply from the raw material supply unit 1 to the reforming unit 3 is not yet performed. The supplied water evaporates in the water evaporation unit 4 to become water vapor, and this water vapor is supplied to the reforming catalyst layer 5 and the reformed gas flow path c and flows through them. Here, in the raw material supply flow path a, the reforming catalyst layer 5, and the reformed gas flow path c, there are some gases such as the generated gas in the previous operation and the air that flows in after the operation is stopped. For example, when the reforming catalyst layer 5 is heated to a high temperature by a preheating operation in the presence of these gases, the reforming catalyst is oxidized and the catalytic activity is lowered, and the raw material may be oxidized. is there. Therefore, in order to improve the reliability of the hydrogen generator, it is preferable that the inside of the main body 50 of the reforming unit 3 be in a state where no unspecified substances are present.

そこで、本実施の形態では、ステップS1及びステップS3において改質触媒層5の温度が第1の基準温度T1及び第2の基準温度T2に達したら、原料を改質部3に供給する前に、まず、上記のように水を先に改質部3に供給して水蒸気を生成し、この水蒸気を改質原料流路a、改質触媒層5及び改質ガス流路cに通流させることにより、これらの内部を水蒸気によりパージする。このようにして予熱動作の開始時に、所定時間、水蒸気パージを行った後、原料供給部1から改質部3への原料供給を開始する。このように水蒸気パージに要する時間は、改質部3内に形成された流路、すなわち、改質原料流路a、改質触媒層5及び改質ガス流路cを含め水素発生装置内に形成された流路全体を水蒸気でパージするのに要する時間である。例えば、水素発生装置内に形成された流路の合計容積が1Lの場合、水を18g/分の供給量で水素発生装置の改質部3に供給すると、水蒸発部4で
発生する水蒸気の量は22.4L/分であることから、パージに要する時間(すなわち、
予熱動作において水のみを供給する時間)は、1/22.4分となる。実際には、安全係数を考慮して、この2〜3倍の時間がパージの時間に設定される。
Therefore, in the present embodiment, when the temperature of the reforming catalyst layer 5 reaches the first reference temperature T1 and the second reference temperature T2 in step S1 and step S3, before the raw material is supplied to the reforming unit 3. First, as described above, water is first supplied to the reforming unit 3 to generate water vapor, and this water vapor is passed through the reforming raw material channel a, the reforming catalyst layer 5 and the reformed gas channel c. Thus, the inside is purged with water vapor. In this way, at the start of the preheating operation, after performing a steam purge for a predetermined time, the raw material supply from the raw material supply unit 1 to the reforming unit 3 is started. Thus, the time required for the steam purge is within the hydrogen generator including the flow path formed in the reforming unit 3, that is, the reforming raw material flow path a, the reforming catalyst layer 5, and the reformed gas flow path c. This is the time required for purging the entire formed channel with water vapor. For example, when the total volume of the flow paths formed in the hydrogen generator is 1 L, when water is supplied to the reforming unit 3 of the hydrogen generator at a supply rate of 18 g / min, the water vapor generated in the water evaporation unit 4 is reduced. Since the amount is 22.4 L / min, the time required for purging (ie,
The time during which only water is supplied in the preheating operation) is 1 / 22.4 minutes. Actually, in consideration of the safety factor, the time of 2 to 3 times is set as the purge time.

以上のように、本実施の形態によれば、改質部3に原料を供給する前に水蒸気によりパージするので、より信頼性の高い水素発生装置を実現できる。また、従来のパージでは、別途設けた供給手段から窒素などの不活性ガスを供給して該ガスによるパージを行う必要があるが、本実施の形態では、水蒸発部4で生成した水蒸気を用いてパージを行うことができるので、パージ用ガスの供給手段を別途設ける必要がない。したがって、予熱動作開始時の水と原料との供給のタイミングを調節するだけで、容易にパージを行うことができる。   As described above, according to this embodiment, since the purge is performed with the steam before the raw material is supplied to the reforming unit 3, a more reliable hydrogen generator can be realized. Further, in the conventional purge, it is necessary to supply an inert gas such as nitrogen from a separately provided supply means to perform the purge with the gas. In the present embodiment, the water vapor generated in the water evaporation unit 4 is used. Therefore, it is not necessary to separately provide a purge gas supply means. Therefore, the purge can be easily performed only by adjusting the supply timing of the water and the raw material at the start of the preheating operation.

なお、上記においては、本実施の形態が、水蒸発部4で生成した水蒸気を用いてパージを行う点を除いて実施の形態1と同様である場合について説明したが、実施の形態2、実施の形態3、実施の形態4及び実施の形態5の動作を基本とする構成であってもよい。   In the above description, the case has been described in which the present embodiment is the same as the first embodiment except that the water vapor generated in the water evaporation unit 4 is used for purging. The configuration based on the operation of the third embodiment, the fourth embodiment, and the fifth embodiment may be used.

(実施の形態7)
本発明の実施の形態7に係る水素発生装置の構成は、実施の形態1の水素発生装置の構成と同様であり、よって、ここでは詳細な説明を省略する。
(Embodiment 7)
The configuration of the hydrogen generator according to Embodiment 7 of the present invention is the same as the configuration of the hydrogen generator of Embodiment 1, and thus detailed description thereof is omitted here.

かかる構成の本実施の形態では、実施の形態6の場合と同様、改質部3に原料を供給する前に水のみを供給し、この水から生成された水蒸気を用いて改質部3のパージを行うが、実施の形態6のように水蒸発部4が水蒸気生成可能温度となってから水供給を開始するのではなく、水蒸気生成可能温度まで加熱される前に予め水蒸発部4に水が供給された状態を実現し、この水の飽和水蒸気を用いて水蒸気パージを行う。以下、詳細を説明する。   In the present embodiment having such a configuration, as in the case of the sixth embodiment, only the water is supplied before the raw material is supplied to the reforming unit 3, and the water vapor generated from the water is used for the reforming unit 3. Although purging is performed, water supply is not started after the water evaporation unit 4 reaches the temperature at which water vapor can be generated as in the sixth embodiment. A state in which water is supplied is realized, and a water vapor purge is performed using the saturated water vapor of the water. Details will be described below.

ところで、上記の実施の形態1〜6では改質部3への水の供給開始時を起動動作から予熱動作への移行時とするが、本実施の形態では、改質部3への水の供給開始時を該移行時とするのではなく、水蒸発部4における水の蒸発開始時を移行時とする。すなわち、ここでは、予め水が供給された状態の水蒸発部4が水蒸気生成可能温度まで加熱する動作を起動動作と呼び、水蒸発部4での水蒸気生成が開始されてから改質反応が行われるまでの動作を予熱動作と呼ぶ。   By the way, in the first to sixth embodiments, the supply of water to the reforming unit 3 is started at the time of transition from the start-up operation to the preheating operation. In this embodiment, the water to the reforming unit 3 is started. Instead of setting the supply start time as the transition time, the water evaporation start time in the water evaporation unit 4 is set as the transition time. That is, here, an operation in which the water evaporation unit 4 in a state where water is supplied in advance is heated to a temperature capable of generating steam is called a start-up operation, and the reforming reaction is performed after the generation of water vapor in the water evaporation unit 4 is started. This operation is called preheating operation.

本実施の形態では、水素発生装置の起動開始時の改質触媒層5及び水蒸発部4の温度にかかわらず、水供給部2から改質部3に所定量の水が供給されて水が水蒸発部4に溜められている。水素発生装置の起動開始時の改質触媒層5の温度が第1の基準温度T1よりも低い場合、起動開始時直後では水蒸発部4に溜められた水は蒸発しないが、燃焼部12での燃焼による加熱によって水蒸発部4の温度が徐々に上昇し始めると、水蒸発部4では、その温度に応じた飽和水蒸気が発生する。本実施の形態では、この飽和水蒸気を用いて改質部3のパージを行う。一方、起動開始時の改質触媒層5の温度が第1の基準温度T1よりも高い場合(図3のステップS1)、及び、上記のように飽和水蒸気によるパージを行いながら加熱を行って改質触媒層5の温度が第2の基準温度T2よりも高くなった時には(図3のステップS3)、水蒸発部4が水蒸気生成可能な状態であるため、水蒸発部4に溜められていた水が水蒸気となって改質触媒層5に供給されて起動動作から予熱動作に切り換わる。予熱動作が開始されたら、水供給部1から改質部3に水を供給するとともに、水供給開始から所定時間経過後に原料供給部2から改質部3に原料を供給する。それにより、実施の形態6の場合と同様、改質部3が水蒸気によってパージされる。   In the present embodiment, a predetermined amount of water is supplied from the water supply unit 2 to the reforming unit 3 regardless of the temperature of the reforming catalyst layer 5 and the water evaporation unit 4 at the start of startup of the hydrogen generator. It is stored in the water evaporation unit 4. When the temperature of the reforming catalyst layer 5 at the start of startup of the hydrogen generator is lower than the first reference temperature T1, the water stored in the water evaporation unit 4 does not evaporate immediately after the start of startup, but the combustion unit 12 When the temperature of the water evaporation unit 4 starts to gradually increase due to heating by combustion, saturated water vapor corresponding to the temperature is generated in the water evaporation unit 4. In the present embodiment, the reforming unit 3 is purged using this saturated steam. On the other hand, when the temperature of the reforming catalyst layer 5 at the start of startup is higher than the first reference temperature T1 (step S1 in FIG. 3), the reforming catalyst layer 5 is heated and purged with saturated steam as described above. When the temperature of the catalyst catalyst layer 5 becomes higher than the second reference temperature T2 (step S3 in FIG. 3), the water evaporation unit 4 is in a state capable of generating water vapor, and is thus stored in the water evaporation unit 4. Water is supplied to the reforming catalyst layer 5 as water vapor, and the start operation is switched to the preheating operation. When the preheating operation is started, water is supplied from the water supply unit 1 to the reforming unit 3, and the raw material is supplied from the raw material supply unit 2 to the reforming unit 3 after a predetermined time has elapsed from the start of water supply. Thereby, as in the case of the sixth embodiment, the reforming unit 3 is purged with water vapor.

以上のように、本実施の形態によれば、実施の形態6の場合と同様、水蒸気を用いて改質部3をパージすることが可能となるので、実施の形態6において前述した効果と同様の効果が得られる。さらに、ここでは、水素発生装置の起動開始時の改質触媒層5の温度が第1の基準温度T1よりも低い場合に、改質触媒層5や水蒸発部4や改質部3内の各流路の温度が上昇しない状態においても、水蒸発部4に貯められた水の飽和水蒸気を用いて改質部3を随時パージすることが可能となる。したがって、パージによる物質除去能力が向上し、また、予熱動作の開始時に実施されるパージに要する時間を短縮することが可能となる。   As described above, according to the present embodiment, as in the case of the sixth embodiment, it is possible to purge the reforming unit 3 using water vapor, and thus the same effects as those described in the sixth embodiment. The effect is obtained. Furthermore, here, when the temperature of the reforming catalyst layer 5 at the start of the start-up of the hydrogen generator is lower than the first reference temperature T1, the inside of the reforming catalyst layer 5, the water evaporation unit 4 and the reforming unit 3 Even in a state in which the temperature of each flow path does not rise, the reforming unit 3 can be purged at any time using the saturated steam of the water stored in the water evaporation unit 4. Therefore, the substance removal capability by purging is improved, and the time required for purging performed at the start of the preheating operation can be shortened.

本発明に係る水素発生装置の構成及び動作方法は、上記の実施の形態1〜6に示す構成及び動作方法に限定されるものではない。例えば、上記の実施の形態1〜6では改質部3の加熱を燃焼部12における燃焼により行っているが、電気ヒータや高温の不活性ガスを利用する加熱手段等によって改質部3の加熱を行ってもよい。また、上記の実施の形態1〜6では特に水素発生装置の改質部3の構成について説明したが、水素発生装置は、その用途に応じて、改質部以外の処理部を適宜有していてもよい。例えば、実施の形態8において後述するように、燃料電池発電システムに用いられる水素発生装置では、改質部3で生成された改質ガスを処理するCO変成部及びCO選択酸化部が設けられている。   The configuration and operation method of the hydrogen generator according to the present invention are not limited to the configurations and operation methods shown in the above first to sixth embodiments. For example, in the first to sixth embodiments, the reforming unit 3 is heated by the combustion in the combustion unit 12. However, the reforming unit 3 is heated by an electric heater or a heating means using a high-temperature inert gas. May be performed. In the first to sixth embodiments described above, the configuration of the reforming unit 3 of the hydrogen generator has been particularly described. However, the hydrogen generator appropriately includes a processing unit other than the reforming unit depending on the application. May be. For example, as will be described later in Embodiment 8, the hydrogen generator used in the fuel cell power generation system is provided with a CO conversion unit and a CO selective oxidation unit that process the reformed gas generated in the reforming unit 3. Yes.

(実施の形態8)
図7は、本発明の実施の形態8に係る燃焼電池発電システムの構成を模式的に示すブロック図である。この燃料電池発電システムは、水素発生装置100と、燃料電池101と、熱回収装置102と、ブロワ103とを主たる構成要素として備えている。この燃料電池101は、例えば、固体高分子型燃料電池である。
(Embodiment 8)
FIG. 7 is a block diagram schematically showing the configuration of the combustion battery power generation system according to Embodiment 8 of the present invention. This fuel cell power generation system includes a hydrogen generator 100, a fuel cell 101, a heat recovery device 102, and a blower 103 as main components. The fuel cell 101 is, for example, a solid polymer fuel cell.

水素発生装置100は、実施の形態1〜7のいずれかの水素発生装置であるが、ここでは、前述した改質部3及び燃焼部12の他に、さらにCO変成部20とCO選択酸化部21とを備えている。具体的には、図1の改質部3の改質ガス流路cがCO変成部20に接続されており、CO変成部20とCO選択酸化部21とが変成後ガス流路dによって接続されている。かかる構成の水素発生装置100では、改質触媒層5で生成された改質ガスが改質ガス流路cを介してCO変成部20に供給され、ここでCO濃度の低減化が行われる。CO変成部20で得られた変成後ガスは、変成後ガス流路dを介してCO選択酸化部21に供給され、ここでさらにCO濃度の低減化が行われる。このようにCO変成部20及びCO選択酸化部21によってCO低減化処理が行われることにより、水素発生装置100では、CO濃度の低い水素リッチガス(水素ガス)が得られる。   The hydrogen generator 100 is the hydrogen generator according to any one of the first to seventh embodiments. Here, in addition to the reforming unit 3 and the combustion unit 12 described above, a CO conversion unit 20 and a CO selective oxidation unit are further provided. 21. Specifically, the reformed gas flow path c of the reforming section 3 in FIG. 1 is connected to the CO shift section 20, and the CO shift section 20 and the CO selective oxidation section 21 are connected by the post-shift gas path d. Has been. In the hydrogen generator 100 having such a configuration, the reformed gas generated in the reforming catalyst layer 5 is supplied to the CO shifter 20 via the reformed gas flow path c, and the CO concentration is reduced here. The post-transform gas obtained in the CO shift section 20 is supplied to the CO selective oxidation section 21 via the post-shift gas flow path d, where the CO concentration is further reduced. As described above, by performing the CO reduction process by the CO conversion unit 20 and the CO selective oxidation unit 21, the hydrogen generation apparatus 100 can obtain a hydrogen rich gas (hydrogen gas) having a low CO concentration.

燃料電池発電システムでは、水素発生装置100が発電燃料配管104及び燃料オフガス配管105を介して燃料電池101に接続されている。また、燃料電池101は、空気配管106を介してブロワ103に接続されている。また、熱回収装置102は、燃焼電池101の発電時に発生する熱を回収可能に構成されている。ここでは、熱回収装置102が、貯留タンクを備えた温水生成装置から構成され、この貯留タンク内の水によって燃料電池101の発電時の熱を回収して温水を生成する。なお、ここでは図示を省略しているが、燃料電池発電システムは、発電により得られた電力を電力負荷端末に供給可能に構成されるとともに、熱回収装置102で回収した熱を熱負荷端末に供給可能に構成されている。   In the fuel cell power generation system, the hydrogen generator 100 is connected to the fuel cell 101 via a power generation fuel pipe 104 and a fuel offgas pipe 105. The fuel cell 101 is connected to the blower 103 via the air pipe 106. Further, the heat recovery device 102 is configured to be able to recover heat generated when the combustion battery 101 generates power. Here, the heat recovery device 102 is configured by a hot water generating device provided with a storage tank, and recovers heat during power generation of the fuel cell 101 with water in the storage tank to generate hot water. In addition, although illustration is abbreviate | omitted here, while the fuel cell power generation system is comprised so that the electric power obtained by electric power generation can be supplied to an electric power load terminal, the heat collect | recovered with the heat recovery apparatus 102 is made into a heat load terminal. It can be supplied.

燃料電池発電システムのコージェネレーション運転では、まず、前述のように、水素発生装置100において、起動動作、予熱動作、及び水素生成動作が行われる。これらの動作については、実施の形態1〜7において前述した通りであり、ここでは説明を省略する。水素発生装置100では、実施の形態1〜7において前述したように、起動動作に要する時間を短縮できるとともに、信頼性の高い運転を実現することが可能となる。   In the cogeneration operation of the fuel cell power generation system, first, the start-up operation, the preheating operation, and the hydrogen generation operation are performed in the hydrogen generator 100 as described above. These operations are the same as those described in the first to seventh embodiments, and a description thereof is omitted here. In the hydrogen generator 100, as described above in the first to seventh embodiments, it is possible to reduce the time required for the starting operation and to realize a highly reliable operation.

水素発生装置100で製造された水素ガスは、発電燃料として、発電燃料配管104を通じて燃料電池101の燃料極側に供給される。一方、燃料電池101の空気極側には、空気配管106を介して、ブロワ103から空気が供給される。燃料電池101では、供給された水素ガスと空気とが反応(以下、発電反応と呼ぶ)して発電が行われるとともに、この発電反応に伴って熱が発生する。発電反応で得られた電力は、電力負荷端末(図示せず)に供給されて使用される。また、発電反応に伴って発生した熱は、熱回収手段102に回収され、その後、熱負荷端末(図示せず)に供給されて種々の用途で利用される。また、発電反応に利用されなかった未使用の水素ガス(いわゆる燃料オフガス)は、燃料電池101から回収され、燃料オフガス配管105を介して水素発生装置100の燃焼部12に燃焼燃料として供給される。   Hydrogen gas produced by the hydrogen generator 100 is supplied to the fuel electrode side of the fuel cell 101 through the power generation fuel pipe 104 as power generation fuel. On the other hand, air is supplied from the blower 103 to the air electrode side of the fuel cell 101 via the air pipe 106. In the fuel cell 101, the supplied hydrogen gas and air react (hereinafter referred to as a power generation reaction) to generate power, and heat is generated along with this power generation reaction. The electric power obtained by the power generation reaction is supplied to an electric power load terminal (not shown) and used. Further, the heat generated with the power generation reaction is recovered by the heat recovery means 102, and then supplied to a heat load terminal (not shown) for use in various applications. In addition, unused hydrogen gas (so-called fuel offgas) that has not been used for the power generation reaction is recovered from the fuel cell 101 and supplied to the combustion unit 12 of the hydrogen generator 100 via the fuel offgas pipe 105 as combustion fuel. .

本実施の形態の燃料電池発電システムでは、前述のように水素発生装置100において信頼性の高い水素ガス製造を行うことが可能であるため、燃料電池101に安定して水素ガスの供給を行うことが可能となる。それゆえ、燃料電池101において、効率よく安定して電力エネルギー及び熱エネルギーを発生させることが可能となり、省エネルギー性及び経済性に優れたコージェネレーションシステムを実現することが可能となる。   In the fuel cell power generation system of the present embodiment, as described above, it is possible to produce hydrogen gas with high reliability in the hydrogen generator 100, so that hydrogen gas can be stably supplied to the fuel cell 101. Is possible. Therefore, in the fuel cell 101, it is possible to efficiently and stably generate electric power energy and thermal energy, and it is possible to realize a cogeneration system that is excellent in energy saving and economical efficiency.

なお、上記の実施の形態8では、本発明に係る水素発生装置が燃料電池発電システムに利用される場合について説明したが、燃料電池発電システム以外にも本発明の水素発生装置は適用可能である。   In the eighth embodiment, the case where the hydrogen generator according to the present invention is used in a fuel cell power generation system has been described. However, the hydrogen generator of the present invention can be applied to other than the fuel cell power generation system. .

本発明に係る水素発生装置は、起動動作に要する時間を短縮できかつ信頼性の高い運転を実施することが可能な水素発生装置として有用である。   The hydrogen generator according to the present invention is useful as a hydrogen generator capable of shortening the time required for the start-up operation and performing a highly reliable operation.

特に、この水素発生装置を備えた燃料電池システムでは、経済性及び省エネルギー性に優れたコージェネレーション運転を安定して行うことが可能となる。   In particular, in a fuel cell system equipped with this hydrogen generator, it is possible to stably perform cogeneration operation that is excellent in economy and energy saving.

本発明の実施の形態1に係る水素発生装置の改質部の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the reforming part of the hydrogen generator which concerns on Embodiment 1 of this invention. 図1の水素発生装置の制御部の構成を示す模式図である。It is a schematic diagram which shows the structure of the control part of the hydrogen generator of FIG. 図2の制御部に格納されたプログラムの内容を概略的に示すフローチャートである。It is a flowchart which shows roughly the content of the program stored in the control part of FIG. 図1の水素発生装置の運転動作における改質触媒層及び水蒸発部の温度変化を示す図である。It is a figure which shows the temperature change of the reforming catalyst layer and the water evaporation part in the driving | operation operation | movement of the hydrogen generator of FIG. 本発明の実施の形態2に係る水素発生装置の制御部に格納されたプログラムの内容を概略的に示すフローチャートである。It is a flowchart which shows roughly the content of the program stored in the control part of the hydrogen generator which concerns on Embodiment 2 of this invention. 図5のプログラムに沿って加熱された改質触媒層及び水蒸発部の温度変化を示す図である。It is a figure which shows the temperature change of the reforming catalyst layer and water evaporation part which were heated according to the program of FIG. 本発明の実施の形態8に係る燃料電池発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell power generation system which concerns on Embodiment 8 of this invention. 本発明の実施の形態4に係る水素発生装置の改質部の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the reforming part of the hydrogen generator which concerns on Embodiment 4 of this invention. 本発明の実施の形態4による水素発生装置の制御部に格納されたプラグラムの内容を概略的に示すフローチャートである。It is a flowchart which shows roughly the content of the program stored in the control part of the hydrogen generator by Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 原料供給部
2 水供給部
3 改質部
4 水蒸発部
5 改質触媒層
6 空気流路
7 空気供給部
8 燃料供給部
9 バーナ
12 燃焼部
15 改質温度検知部
20 制御部
100 水素発生装置
101 燃料電池
102 熱回収装置
103 ブロワ
DESCRIPTION OF SYMBOLS 1 Raw material supply part 2 Water supply part 3 Reforming part 4 Water evaporation part 5 Reforming catalyst layer 6 Air flow path 7 Air supply part 8 Fuel supply part 9 Burner 12 Combustion part 15 Reforming temperature detection part 20 Control part 100 Hydrogen generation Device 101 Fuel cell 102 Heat recovery device 103 Blower

Claims (26)

少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置であって、
前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、
前記制御部は、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記改質温度検知部で検知された前記改質触媒層の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部からの前記水供給を制御する供給制御手段と、を備え、
前記判定手段は、前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定を実行すると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知される前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定を実行し、
前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度を超えた場合に、又は、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度を超えた場合に、前記供給制御手段が前記改質部に対して前記水供給を開始させる水素発生装置。
A reforming unit that generates a hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst, and a raw material supply that supplies the raw material to the reforming unit A water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, the raw material supply from the raw material supply unit, and the water supply from the water supply unit A hydrogen generator comprising a control unit,
The reforming unit includes a water evaporation unit that evaporates the supplied water, a reforming catalyst layer that includes the reforming catalyst, and a reforming temperature detection unit that detects the temperature of the reforming catalyst layer. Prepared,
The control unit determines whether or not the water evaporation unit has a temperature capable of generating steam based on the temperature of the reforming catalyst layer detected by the reforming temperature detection unit, and the determination unit Supply control means for controlling at least the water supply from the water supply unit based on the determination result of
The determination means performs a first determination of comparing the temperature of the reforming catalyst layer detected at the start of startup for starting the heating and starting the hydrogen generator with a first reference temperature. As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the temperature is detected in the process of heating the reforming unit after the first determination. Performing a second determination of comparing the temperature of the reforming catalyst layer with a second reference temperature higher than the first reference temperature;
As a result of the first determination, when the temperature of the reforming catalyst layer exceeds the first reference temperature, or as a result of the second determination, the temperature of the reforming catalyst layer is equal to the second reference temperature. A hydrogen generator in which the supply control means starts the water supply to the reforming unit when a reference temperature is exceeded.
前記第2の基準温度は、水蒸気不存在下において前記改質触媒層の触媒活性を劣化させない温度である請求項1記載の水素発生装置。   2. The hydrogen generation apparatus according to claim 1, wherein the second reference temperature is a temperature at which the catalytic activity of the reforming catalyst layer is not deteriorated in the absence of water vapor. 前記第1の基準温度が50℃以上150℃以下であり、前記第2の基準温度が300℃以上500℃以下である請求項1記載の水素発生装置。   The hydrogen generator according to claim 1, wherein the first reference temperature is 50 ° C or higher and 150 ° C or lower, and the second reference temperature is 300 ° C or higher and 500 ° C or lower. 前記改質部は前記水蒸発部の温度を検知する水蒸発部温度検知部を更に備え、
前記制御部は、前記起動開始時に、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記水蒸発部検知部により検出された前記水蒸発部の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部からの前記水供給を制御する供給制御手段と、を備え、
前記判定手段の判定の結果、前記水蒸発部の温度が水蒸気生成可能な温度である水蒸発部基準温度を超えた場合には、前記供給制御手段が前記水供給を開始させ、前記水蒸発部の温度が水蒸発部基準温度以下である場合には、前記加熱が実行され、前記水蒸発部基準温度を超えた時点で前記供給制御手段が前記水供給を開始させる請求項1記載の水素発生装置。
The reforming unit further includes a water evaporation unit temperature detection unit that detects the temperature of the water evaporation unit,
The control unit is configured to determine, based on the temperature of the water evaporation unit detected by the water evaporation unit detection unit, whether or not the water evaporation unit has a temperature capable of generating water vapor at the start of the activation. Supply control means for controlling at least the water supply from the water supply unit based on the determination result of the determination means,
As a result of determination by the determination unit, when the temperature of the water evaporation unit exceeds a water evaporation unit reference temperature that is a temperature capable of generating water vapor, the supply control unit starts the water supply, and the water evaporation unit 2. The hydrogen generation according to claim 1, wherein the heating is performed when the temperature of the water evaporation section is equal to or lower than a water evaporation section reference temperature, and the supply control means starts the water supply when the water evaporation section reference temperature is exceeded. apparatus.
少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置であって、
前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、
前記制御部は、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記改質温度検知部で検知された前記改質触媒層の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部から供給される前記水供給を制御する供給制御手段と、を備え、
前記判定手段は、前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定を実行すると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知される前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定を実行し、
前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下の場合に、前記第1の判定後の前記改質部に対する前記加熱の過程において検知される前記改質触媒層の温度を、前記第1の基準温度より高く前記第2の基準温度より低い第3の基準温度と比較するという第3の判定を実行し、前記第3の判定の結果、前記改質触媒層の温度が前記第3の基準温度を超えた時点で前記加熱が停止されると共に、前記加熱停止後の前記改質触媒層の温度を、前記第3の基準温度よりも低く前記第1の基準温度よりも高い第4の基準温度と比較するという第4の判定を実行し、前記第4の判定の結果、前記改質触媒層の温度が前記第4の基準温度を下回った時点で前記加熱が再開される水素発生装置。
A reforming unit that generates a hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst, and a raw material supply that supplies the raw material to the reforming unit A water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, the raw material supply from the raw material supply unit, and the water supply from the water supply unit A hydrogen generator comprising a control unit,
The reforming unit includes a water evaporation unit that evaporates the supplied water, a reforming catalyst layer that includes the reforming catalyst, and a reforming temperature detection unit that detects the temperature of the reforming catalyst layer. Prepared,
The control unit determines whether or not the water evaporation unit has a temperature capable of generating steam based on the temperature of the reforming catalyst layer detected by the reforming temperature detection unit, and the determination unit Supply control means for controlling the water supply supplied from at least the water supply unit based on the determination result of
The determination means performs a first determination of comparing the temperature of the reforming catalyst layer detected at the start of startup for starting the heating and starting the hydrogen generator with a first reference temperature. As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the temperature is detected in the process of heating the reforming unit after the first determination. Performing a second determination of comparing the temperature of the reforming catalyst layer with a second reference temperature higher than the first reference temperature;
As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the reforming detected in the process of heating the reforming unit after the first determination. A third determination is performed in which the temperature of the catalyst layer is compared with a third reference temperature that is higher than the first reference temperature and lower than the second reference temperature, and as a result of the third determination, the reforming is performed. The heating is stopped when the temperature of the catalyst layer exceeds the third reference temperature, and the temperature of the reforming catalyst layer after the heating is stopped is lower than the third reference temperature. A fourth determination of comparing with a fourth reference temperature that is higher than the reference temperature of the first reference temperature, and when the temperature of the reforming catalyst layer falls below the fourth reference temperature as a result of the fourth determination. A hydrogen generator in which the heating is resumed.
前記第3の基準温度が200℃以上300℃以下である請求項5記載の水素発生装置。   The hydrogen generator according to claim 5, wherein the third reference temperature is 200 ° C or higher and 300 ° C or lower. 前記改質部に対する加熱の停止及び再開を前記起動開始時に1回以上の所定回数行うか、又は、前記停止及び再開を伴う前記改質部に対する加熱を所定時間行った後、前記第3の基準温度を超えて前記加熱が実行され、その後、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度を越えた時点で、前記供給制御手段が前記水供給を開始させる請求項6記載の水素発生装置。   The heating and stopping of the reforming unit is performed at a predetermined number of times at least once at the start of starting, or after the heating of the reforming unit with the stopping and restarting is performed for a predetermined time, the third reference When the temperature exceeds the temperature, the heating is executed, and then, as a result of the second determination, when the temperature of the reforming catalyst layer exceeds the second reference temperature, the supply control means starts the water supply The hydrogen generator according to claim 6. 前記制御部は、前記起動開始時に検知された前記改質触媒層の温度に応じて、前記加熱の停止及び再開の実施回数、あるいは、前記停止及び再開を伴う加熱の実施時間を予め決定する請求項7記載の水素発生装置。   The controller determines in advance the number of times of stopping and restarting the heating, or the time of heating with the stopping and restarting, according to the temperature of the reforming catalyst layer detected at the start of the start-up. Item 8. The hydrogen generator according to Item 7. 前記改質部は、前記水蒸発部の温度を検知する水蒸発部温度検知部を更に備え、
前記制御部は、前記起動開始時に、前記水蒸発部が水蒸気生成可能な温度であるか否かを前記水蒸発部検知部により検出された前記水蒸発部の温度に基づいて判定する判定手段と、前記判定手段の判定結果に基づいて少なくとも前記水供給部からの前記水供給を制御する供給制御手段と、を備え、
前記判定手段の判定の結果、前記水蒸発部の温度が、水蒸気生成可能な水蒸発部基準温度以下である場合に、前記改質部に対する前記加熱が実行され、前記改質触媒層の温度が前記第3の基準温度に到達した時点で前記加熱が停止され、前記加熱停止後の前記改質触媒層の温度が前記第4の基準温度に到達した時点で前記加熱が再開されつつ、前記水蒸発部温度検知部から出力された信号に基づき前記水蒸発部の温度が前記水蒸発部基準温度を超えた場合に、前記供給制御手段が前記水供給を開始させる請求項8記載の水素発生装置。
The reforming unit further includes a water evaporation unit temperature detection unit that detects the temperature of the water evaporation unit,
The control unit is configured to determine, based on the temperature of the water evaporation unit detected by the water evaporation unit detection unit, whether or not the water evaporation unit has a temperature capable of generating water vapor at the start of the activation. Supply control means for controlling at least the water supply from the water supply unit based on the determination result of the determination means,
As a result of the determination by the determination means, when the temperature of the water evaporation section is equal to or lower than the water evaporation section reference temperature at which water vapor can be generated, the heating of the reforming section is performed, and the temperature of the reforming catalyst layer is The heating is stopped when the third reference temperature is reached, and the heating is resumed when the temperature of the reforming catalyst layer after the heating stops reaches the fourth reference temperature, 9. The hydrogen generator according to claim 8, wherein the supply control means starts the water supply when the temperature of the water evaporation unit exceeds the water evaporation unit reference temperature based on a signal output from the evaporation unit temperature detection unit. .
前記水蒸発部基準温度が50℃以上150℃以下である請求項9記載の水素発生装置。   The hydrogen generator according to claim 9, wherein the water evaporation part reference temperature is 50 ° C. or higher and 150 ° C. or lower. 前記改質部の最外周に前記水蒸発部が配設され、前記水蒸発部の内側に前記改質触媒層が配設された請求項1、4、5および9の何れかに記載の水素発生装置。   The hydrogen according to any one of claims 1, 4, 5, and 9, wherein the water evaporation section is disposed on an outermost periphery of the reforming section, and the reforming catalyst layer is disposed on the inner side of the water evaporation section. Generator. 前記加熱部は、燃焼燃料と空気を燃焼するバーナと、前記バーナに前記燃焼燃料を供給する燃料供給部と、前記バーナに前記空気を供給する空気供給部と、を備え、
前記改質部では、前記バーナで発生した燃焼排気ガスと前記改質触媒層との間の熱交換が実行された後、前記燃焼排気ガスと前記水蒸発部との間の熱交換が実行される請求項1、4、5および9の何れかに記載の水素発生装置。
The heating unit includes a burner that burns combustion fuel and air, a fuel supply unit that supplies the combustion fuel to the burner, and an air supply unit that supplies the air to the burner,
In the reforming section, heat exchange between the combustion exhaust gas generated in the burner and the reforming catalyst layer is performed, and then heat exchange between the combustion exhaust gas and the water evaporation section is performed. The hydrogen generator according to any one of claims 1, 4, 5 and 9.
前記供給制御手段は、前記空気供給部から前記バーナへの空気供給をさらに制御し、
前記水供給部による前記水供給が開始された後は、第1の供給量に相当する前記空気が前記バーナに供給されると共に、
前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、第2の供給量に相当する前記空気が前記空気供給部から前記バーナに供給され、
前記第1の供給量に相当する前記空気が供給された前記燃焼における、前記供給燃焼燃料の完全燃焼での理論空気量に対する前記第1の供給量の比が、前記第2の供給量に相当する前記空気が供給された前記燃焼における、前記供給燃焼燃料の完全燃焼での理論空気量に対する前記第2の供給量の比よりも小さい請求項1、4、5および9の何れかに記載の水素発生装置。
The supply control means further controls air supply from the air supply unit to the burner,
After the water supply by the water supply unit is started, the air corresponding to the first supply amount is supplied to the burner,
As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the air corresponding to the second supply amount is supplied from the air supply unit to the burner. ,
In the combustion in which the air corresponding to the first supply amount is supplied, the ratio of the first supply amount to the theoretical air amount in the complete combustion of the supplied combustion fuel corresponds to the second supply amount. The combustion according to any one of claims 1, 4, 5 and 9, wherein the ratio of the second supply amount to the theoretical air amount in the complete combustion of the supplied combustion fuel in the combustion supplied with the air is smaller. Hydrogen generator.
前記第2の供給量に相当する前記空気が供給された前記燃焼における、前記供給燃焼燃料の完全燃焼での理論空気量に対する前記第2の供給量の比が2.0以上である請求項13記載の水素発生装置。   The ratio of the second supply amount to the theoretical air amount in the complete combustion of the supplied combustion fuel in the combustion in which the air corresponding to the second supply amount is supplied is 2.0 or more. The hydrogen generator described. 前記供給制御手段は、前記第3の判定の結果に従って前記バーナでの燃焼を停止させる加熱停止期間に、前記空気供給部から前記バーナに前記空気を噴出させる請求項5または9記載の水素発生装置。   The hydrogen generation device according to claim 5 or 9, wherein the supply control means causes the air to be ejected from the air supply unit to the burner during a heating stop period in which combustion in the burner is stopped according to the result of the third determination. . 前記供給制御手段は、前記第1の判定結果に従った前記水供給の開始から所定時間経過後、又は、前記第2の判定結果に従った前記水供給の開始から所定時間経過後に、前記原料供給部からの前記原料供給を開始させる請求項1、4、5および9の何れかに記載の水素発生装置。   The supply control means is configured to supply the raw material after a predetermined time has elapsed from the start of the water supply according to the first determination result or after a predetermined time has elapsed from the start of the water supply according to the second determination result. The hydrogen generator according to claim 1, wherein the raw material supply from a supply unit is started. 前記水蒸発部が水蒸気生成可能な温度となる前に、予め前記水蒸発部に前記水が貯留される請求項1、4、5および9の何れかに記載の水素発生装置。   The hydrogen generator according to any one of claims 1, 4, 5, and 9, wherein the water is stored in the water evaporation unit in advance before the water evaporation unit reaches a temperature at which water vapor can be generated. 少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置の運転方法であって、
前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、
前記制御部によって前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定が実行されると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知された前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定が実行され、
前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度を超えた場合に、又は、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度以上を超えた場合に、前記水供給部から前記改質部への前記水供給が開始される水素発生装置の運転方法。
A reforming unit that generates a hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst, and a raw material supply that supplies the raw material to the reforming unit A water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, the raw material supply from the raw material supply unit, and the water supply from the water supply unit A control unit, and a method for operating a hydrogen generator,
The reforming unit includes a water evaporation unit that evaporates the supplied water, a reforming catalyst layer that includes the reforming catalyst, and a reforming temperature detection unit that detects the temperature of the reforming catalyst layer. Prepared,
A first determination is performed in which the temperature of the reforming catalyst layer detected at the start of startup for starting the heating and starting the hydrogen generator is compared with a first reference temperature by the control unit. As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the temperature detected in the process of heating the reforming unit after the first determination. A second determination of comparing the temperature of the reforming catalyst layer with a second reference temperature higher than the first reference temperature is performed;
As a result of the first determination, when the temperature of the reforming catalyst layer exceeds the first reference temperature, or as a result of the second determination, the temperature of the reforming catalyst layer is equal to the second reference temperature. The operation method of the hydrogen generator in which the water supply from the water supply unit to the reforming unit is started when the temperature exceeds the reference temperature.
前記改質部は、前記水蒸発部の温度を検知する水蒸発部温度検知部を更に備え、
前記水蒸発部温度検知部により検知された水蒸発部の温度が、水蒸気生成可能な温度である水蒸発部基準温度を超えた場合には、前記水供給が開始される一方、
前記水蒸発部の温度が水蒸発部基準温度以下である場合には、前記改質部に対する加熱が実行され、その後、前記水蒸発部の温度が前記水蒸発部基準温度を超えた時点で前記水供給が開始される請求項18記載の水素発生装置の運転方法。
The reforming unit further includes a water evaporation unit temperature detection unit that detects the temperature of the water evaporation unit,
When the temperature of the water evaporation unit detected by the water evaporation unit temperature detection unit exceeds the water evaporation unit reference temperature, which is a temperature capable of generating water vapor, the water supply is started,
When the temperature of the water evaporation part is equal to or lower than the water evaporation part reference temperature, heating of the reforming part is performed, and then the temperature of the water evaporation part exceeds the water evaporation part reference temperature. The operation method of the hydrogen generator according to claim 18, wherein water supply is started.
少なくとも炭素原子と水素原子から構成される有機化合物を含む原料と水蒸気とを改質触媒を用いて改質反応させて水素を生成する改質部と、前記改質部に原料を供給する原料供給部と、前記改質部に水を供給する水供給部と、前記改質部を加熱する加熱部と、前記原料供給部からの前記原料供給及び前記水供給部からの前記水供給を制御する制御部と、を備えた水素発生装置の運転方法であって、
前記改質部は、供給された前記水を蒸発させる水蒸発部と、前記改質触媒を備えた改質触媒層と、前記改質触媒層の温度を検知する改質温度検知部と、を備え、
前記制御部によって前記加熱を開始して前記水素発生装置を起動させる起動開始時に検知される前記改質触媒層の温度を、第1の基準温度と比較するという第1の判定が実行されると共に、前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、前記第1の判定後の前記改質部に対する加熱の過程で検知された前記改質触媒層の温度を、前記第1の基準温度よりも高い第2の基準温度と比較するという第2の判定が実行され、
前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下の場合には、前記第1の判定後の前記改質部に対する加熱の過程において検知される前記改質触媒層の温度を、前記第1の基準温度より高く前記第2の基準温度より低い第3の基準温度と比較するという第3の判定が実行され、前記第3の判定の結果、前記改質触媒層の温度が前記第3の基準温度を越えた時点で前記加熱が停止されると共に、前記加熱停止後の前記改質触媒層の温度を、前記第3の基準温度よりも低く前記第1の基準温度よりも高い第4の基準温度と比較するという第4の判定が実行され、前記第4の判定の結果、前記改質触媒層の温度が前記第4の基準温度を下回った時点で前記加熱が再開される水素発生装置の運転方法。
A reforming unit that generates a hydrogen by reforming a raw material containing an organic compound composed of at least carbon atoms and hydrogen atoms and steam using a reforming catalyst, and a raw material supply that supplies the raw material to the reforming unit A water supply unit that supplies water to the reforming unit, a heating unit that heats the reforming unit, the raw material supply from the raw material supply unit, and the water supply from the water supply unit A control unit, and a method for operating a hydrogen generator,
The reforming unit includes a water evaporation unit that evaporates the supplied water, a reforming catalyst layer that includes the reforming catalyst, and a reforming temperature detection unit that detects the temperature of the reforming catalyst layer. Prepared,
A first determination is performed in which the temperature of the reforming catalyst layer detected at the start of startup for starting the heating and starting the hydrogen generator is compared with a first reference temperature by the control unit. As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the temperature detected in the process of heating the reforming unit after the first determination. A second determination of comparing the temperature of the reforming catalyst layer with a second reference temperature higher than the first reference temperature is performed;
As a result of the first determination, when the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the reforming detected in the process of heating the reforming section after the first determination. A third determination is performed in which the temperature of the catalyst layer is compared with a third reference temperature that is higher than the first reference temperature and lower than the second reference temperature. As a result of the third determination, the reforming is performed. The heating is stopped when the temperature of the catalyst layer exceeds the third reference temperature, and the temperature of the reforming catalyst layer after the heating is stopped is lower than the third reference temperature. A fourth determination is performed to compare with a fourth reference temperature that is higher than the reference temperature, and as a result of the fourth determination, the temperature of the reforming catalyst layer falls below the fourth reference temperature. A method for operating the hydrogen generator in which the heating is resumed.
前記制御部は、前記起動開始時に検知される前記改質触媒層の温度に応じて、前記改質部に対する加熱の停止及び再開の実施回数又は前記停止及び再開を伴う前記改質部に対する加熱の実施時間を予め決定し、前記加熱の停止及び再開を、決定された前記実施回数あるいは前記実施時間、実行した後、前記第3の基準温度を超えて前記加熱が実行され、その後、前記第2の判定の結果、前記改質触媒層の温度が前記第2の基準温度を超えた時点で、前記水供給部から前記改質部への前記水供給が開始される請求項20記載の水素発生装置の運転方法。   The control unit performs the number of times heating is stopped and restarted for the reforming unit or the heating of the reforming unit with the stopping and restarting according to the temperature of the reforming catalyst layer detected at the start of startup. An execution time is determined in advance, and after stopping and restarting the heating for the determined number of executions or the execution time, the heating is executed exceeding the third reference temperature, and then the second 21. The hydrogen generation according to claim 20, wherein, as a result of the determination, the water supply from the water supply unit to the reforming unit is started when the temperature of the reforming catalyst layer exceeds the second reference temperature. How to operate the device. 前記改質部は、前記水蒸発部の温度を検知する水蒸発部温度検知部をさらに備え、
前記水蒸発部検知部により検知された水蒸発部の温度が、水蒸気生成可能な水蒸発部基準温度以下である場合には、前記改質部に対する加熱が実行され、前記改質触媒層の温度が前記第3の基準温度を超えた時点で前記加熱が停止され、前記加熱停止後の前記改質触媒層の温度が前記第4の基準温度を下回った時点で前記加熱が再開されつつ、前記水蒸発部温度検知部から出力された信号に基づき前記水蒸発部の温度が前記水蒸発部基準温度を超えた時点で、前記水供給が開始される請求項21記載の水素発生装置の運転方法。
The reforming unit further includes a water evaporation unit temperature detection unit that detects the temperature of the water evaporation unit,
When the temperature of the water evaporation part detected by the water evaporation part detection part is equal to or lower than the water evaporation part reference temperature at which water vapor can be generated, heating of the reforming part is performed, and the temperature of the reforming catalyst layer The heating is stopped when the temperature exceeds the third reference temperature, and the heating is restarted when the temperature of the reforming catalyst layer after the heating is lower than the fourth reference temperature. The operation method of the hydrogen generator according to claim 21, wherein the water supply is started when the temperature of the water evaporation unit exceeds the water evaporation unit reference temperature based on a signal output from the water evaporation unit temperature detection unit. .
前記加熱部は、燃焼燃料と空気とを燃焼させるバーナと、前記バーナに前記燃焼燃料を供給する燃料供給部と、前記バーナに前記空気を供給する空気供給部と、を備え、
前記制御部が前記空気供給部を制御し、
前記水供給部による前記水供給が開始された後の前記加熱においては、第1の供給量に相当する前記空気が前記バーナに供給されると共に、前記起動開始時の前記第1の判定の結果、前記改質触媒層の温度が前記第1の基準温度以下である場合には、第2の供給量に相当する前記空気が前記空気供給部から前記バーナに供給され、
前記第1の供給量に相当する前記空気が供給される前記燃焼における、前記供給燃焼燃料の完全燃焼の理論空気量に対する前記第1の供給量の比が、前記第2の供給量に相当する前記空気が供給される前記燃焼における、前記供給燃焼燃料の完全燃焼の理論空気量に対する前記第2の供給量の比よりも小さい請求項18、19、20および22の何れかに記載の水素発生装置の運転方法。
The heating unit includes a burner that burns combustion fuel and air, a fuel supply unit that supplies the combustion fuel to the burner, and an air supply unit that supplies the air to the burner.
The control unit controls the air supply unit;
In the heating after the water supply by the water supply unit is started, the air corresponding to the first supply amount is supplied to the burner, and the result of the first determination at the start of the start-up When the temperature of the reforming catalyst layer is equal to or lower than the first reference temperature, the air corresponding to the second supply amount is supplied from the air supply unit to the burner,
In the combustion in which the air corresponding to the first supply amount is supplied, the ratio of the first supply amount to the theoretical air amount of complete combustion of the supplied combustion fuel corresponds to the second supply amount. The hydrogen generation according to any one of claims 18, 19, 20 and 22, wherein in the combustion supplied with the air, a ratio of the second supply amount to a theoretical air amount of complete combustion of the supplied combustion fuel is smaller. How to operate the device.
前記加熱部は、燃焼燃料と空気を燃焼させるバーナと、前記バーナに前記燃焼燃料を供給する燃料供給部と、前記バーナに前記空気を供給する空気供給部と、を備え、
前記第3の判定の結果に従って前記バーナでの燃焼を停止させた加熱停止期間に、前記空気供給部から前記バーナへ前記空気を噴出させる請求項20または22記載の水素発生装置の運転方法。
The heating unit includes a burner that burns combustion fuel and air, a fuel supply unit that supplies the combustion fuel to the burner, and an air supply unit that supplies the air to the burner,
The operation method of the hydrogen generator according to claim 20 or 22, wherein the air is jetted from the air supply unit to the burner during a heating stop period in which combustion in the burner is stopped according to the result of the third determination.
前記第1の判定後の前記水供給の開始から所定時間経過後、又は、前記第2の判定後の前記水供給の開始から所定時間経過後に、前記制御部が、前記原料供給部から前記改質部への前記原料の供給を開始させる請求項18、19、20および22の何れかに記載の水素発生装置の運転方法。   After a predetermined time has elapsed from the start of the water supply after the first determination, or after a predetermined time has elapsed from the start of the water supply after the second determination, the control unit changes from the raw material supply unit to the revision. The operation method of the hydrogen generator according to any one of claims 18, 19, 20 and 22, wherein the supply of the raw material to the mass part is started. 請求項1〜17の何れかに記載の水素発生装置と、空気供給装置と、前記水素発生装置から供給される水素と前記空気供給装置から供給される空気とを反応させて発電を行う燃料電池と、を備えたことを特徴とする燃料電池発電システム。   18. A fuel cell for generating electricity by reacting the hydrogen generator according to any one of claims 1 to 17, an air supply device, hydrogen supplied from the hydrogen generator and air supplied from the air supply device. And a fuel cell power generation system.
JP2004330122A 2003-11-20 2004-11-15 Hydrogen generator, method of operating hydrogen generator and fuel cell power system Withdrawn JP2005170784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330122A JP2005170784A (en) 2003-11-20 2004-11-15 Hydrogen generator, method of operating hydrogen generator and fuel cell power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003391317 2003-11-20
JP2004330122A JP2005170784A (en) 2003-11-20 2004-11-15 Hydrogen generator, method of operating hydrogen generator and fuel cell power system

Publications (1)

Publication Number Publication Date
JP2005170784A true JP2005170784A (en) 2005-06-30

Family

ID=34741991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330122A Withdrawn JP2005170784A (en) 2003-11-20 2004-11-15 Hydrogen generator, method of operating hydrogen generator and fuel cell power system

Country Status (1)

Country Link
JP (1) JP2005170784A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070130A (en) * 2005-09-05 2007-03-22 Fuji Electric Holdings Co Ltd Hydrogen generating apparatus and power generating system equipped with the same
KR100731147B1 (en) 2006-06-20 2007-06-22 주식회사 하이젠 A reliability test equipments of hydrogen reforming systems
WO2007111124A1 (en) * 2006-03-27 2007-10-04 Toyota Jidosha Kabushiki Kaisha Method of shutdown of reforming apparatus
WO2007145321A1 (en) * 2006-06-15 2007-12-21 Panasonic Corporation Hydrogen generator and fuel cell system
JP2008001594A (en) * 2007-08-09 2008-01-10 Aisin Seiki Co Ltd Method for stopping operation of reformer
JP2008063159A (en) * 2006-09-05 2008-03-21 Ebara Ballard Corp Method for stopping reformer, reformer, and fuel cell system
JP2008105900A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Reforming apparatus
JP2008218355A (en) * 2007-03-07 2008-09-18 Toshiba Corp Fuel cell power generation system
JP2009046318A (en) * 2007-08-13 2009-03-05 Japan Energy Corp Method for starting hydrogen production apparatus
JP2010037158A (en) * 2008-08-06 2010-02-18 Aisin Seiki Co Ltd Reformer and fuel cell system
JP2010052965A (en) * 2008-08-27 2010-03-11 Aisin Seiki Co Ltd Reforming apparatus and fuel cell system
WO2011027520A1 (en) * 2009-09-04 2011-03-10 パナソニック株式会社 Hydrogen generator and method for starting same
JP2011178637A (en) * 2010-03-03 2011-09-15 Eneos Celltech Co Ltd Reformer and fuel cell system
JP2011210643A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system, and control method of the fuel cell system
JP2011210628A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system and control method of the system
JP2013161533A (en) * 2012-02-01 2013-08-19 Ngk Spark Plug Co Ltd Fuel cell system and operation method thereof
WO2019021751A1 (en) * 2017-07-27 2019-01-31 京セラ株式会社 Power generation device, control device, and control program

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640052B2 (en) * 2005-09-05 2011-03-02 富士電機システムズ株式会社 Hydrogen generator and power generation system provided with the same
JP2007070130A (en) * 2005-09-05 2007-03-22 Fuji Electric Holdings Co Ltd Hydrogen generating apparatus and power generating system equipped with the same
WO2007111124A1 (en) * 2006-03-27 2007-10-04 Toyota Jidosha Kabushiki Kaisha Method of shutdown of reforming apparatus
US8202333B2 (en) 2006-03-27 2012-06-19 Toyota Jidosha Kabushiki Kaisha Method of shutdown of reforming apparatus
WO2007145321A1 (en) * 2006-06-15 2007-12-21 Panasonic Corporation Hydrogen generator and fuel cell system
JP5064387B2 (en) * 2006-06-15 2012-10-31 パナソニック株式会社 Hydrogen generator and fuel cell system
US8048577B2 (en) 2006-06-15 2011-11-01 Panasonic Corporation Hydrogen generator with a combustor with a control unit
KR100731147B1 (en) 2006-06-20 2007-06-22 주식회사 하이젠 A reliability test equipments of hydrogen reforming systems
JP2008063159A (en) * 2006-09-05 2008-03-21 Ebara Ballard Corp Method for stopping reformer, reformer, and fuel cell system
JP2008105900A (en) * 2006-10-25 2008-05-08 Aisin Seiki Co Ltd Reforming apparatus
JP2008218355A (en) * 2007-03-07 2008-09-18 Toshiba Corp Fuel cell power generation system
JP2008001594A (en) * 2007-08-09 2008-01-10 Aisin Seiki Co Ltd Method for stopping operation of reformer
JP2009046318A (en) * 2007-08-13 2009-03-05 Japan Energy Corp Method for starting hydrogen production apparatus
JP2010037158A (en) * 2008-08-06 2010-02-18 Aisin Seiki Co Ltd Reformer and fuel cell system
JP2010052965A (en) * 2008-08-27 2010-03-11 Aisin Seiki Co Ltd Reforming apparatus and fuel cell system
JP4759656B2 (en) * 2009-09-04 2011-08-31 パナソニック株式会社 Hydrogen generator and its startup method
WO2011027520A1 (en) * 2009-09-04 2011-03-10 パナソニック株式会社 Hydrogen generator and method for starting same
US8501102B2 (en) 2009-09-04 2013-08-06 Panasonic Corporation Hydrogen generator and startup method thereof
JP2011178637A (en) * 2010-03-03 2011-09-15 Eneos Celltech Co Ltd Reformer and fuel cell system
JP2011210628A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system and control method of the system
JP2011210643A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system, and control method of the fuel cell system
JP2013161533A (en) * 2012-02-01 2013-08-19 Ngk Spark Plug Co Ltd Fuel cell system and operation method thereof
WO2019021751A1 (en) * 2017-07-27 2019-01-31 京セラ株式会社 Power generation device, control device, and control program
JPWO2019021751A1 (en) * 2017-07-27 2020-07-02 京セラ株式会社 Power generation device, control device, and control program

Similar Documents

Publication Publication Date Title
EP1557395B1 (en) Hydrogen generator and fuel cell system
JP2005170784A (en) Hydrogen generator, method of operating hydrogen generator and fuel cell power system
JPWO2006088018A1 (en) Hydrogen generator, operating method thereof, and fuel cell system
JP5064387B2 (en) Hydrogen generator and fuel cell system
JP5334034B2 (en) Reformer and fuel cell system
US20050129997A1 (en) Hydrogen generator, method of operating hydrogen generator, and fuel cell system
WO2010082507A1 (en) Hydrogen generator, fuel cell system, and method of stopping hydrogen generator
JP2003300704A (en) Fuel reforming system and fuel cell system
JP2008192425A (en) Fuel cell system and its operation method
JP2009099264A (en) Solid oxide fuel cell power generation system and its starting method
JP6138378B2 (en) Fuel cell system
JP2003095611A (en) Method for starting hydrogen producing apparatus
JP2005174745A (en) Operation method of fuel cell system and fuel cell system
JP2005200260A (en) Hydrogen production apparatus and fuel cell power generation system
JP2006008458A (en) Hydrogen production apparatus and fuel cell system
JP2009539749A (en) Method for regenerating a reformer
JP4640052B2 (en) Hydrogen generator and power generation system provided with the same
JP5513209B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP4847759B2 (en) Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus
JP2018055944A (en) Fuel cell device
JP2016138016A (en) Hydrogen generator, and operational method of hydrogen generator
JP2008081331A (en) Reformer
JP7478987B2 (en) Method for operating fuel processor, computer program, recording medium, and fuel processor
JP2019169256A (en) High temperature operation fuel cell system
JP2011210643A (en) Fuel cell system, and control method of the fuel cell system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205