WO2019021751A1 - Power generation device, control device, and control program - Google Patents

Power generation device, control device, and control program Download PDF

Info

Publication number
WO2019021751A1
WO2019021751A1 PCT/JP2018/025100 JP2018025100W WO2019021751A1 WO 2019021751 A1 WO2019021751 A1 WO 2019021751A1 JP 2018025100 W JP2018025100 W JP 2018025100W WO 2019021751 A1 WO2019021751 A1 WO 2019021751A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
reformer
generation device
supplied
fuel gas
Prior art date
Application number
PCT/JP2018/025100
Other languages
French (fr)
Japanese (ja)
Inventor
亮 後藤
毅史 山根
泰孝 秋澤
信裕 小林
真紀 末廣
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019532466A priority Critical patent/JPWO2019021751A1/en
Publication of WO2019021751A1 publication Critical patent/WO2019021751A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a power generation device, a control device, and a control program.
  • Some power generating apparatuses provided with a fuel cell such as a solid oxide fuel cell (Solid Oxide Fuel Cell (hereinafter referred to as SOFC)) and the like include a reformer.
  • the reformer is supplied with the raw fuel gas and the reforming water to generate a fuel gas such as hydrogen (see, for example, Patent Document 1).
  • a power generation device includes a reformer that is supplied with a raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer.
  • a battery and a control unit are provided.
  • the control unit changes the timing before the raw fuel gas is supplied to the reformer.
  • Supply quality water The control unit is configured to supply the raw fuel gas to the reformer when the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started. Supply reformed water.
  • a control device is a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer. And a battery.
  • the control device changes the timing before the raw fuel gas is supplied to the reformer. Supply quality water.
  • the controller supplies the raw fuel gas to the reformer when the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started. Supply reformed water.
  • a control program includes a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electricity using the fuel gas supplied from the reformer. And a control program for a control device that controls a power generation device including the battery.
  • the control program supplies the raw fuel gas to the reformer when the temperature of a predetermined position in the power generation device is equal to or higher than a first predetermined temperature when the power generation device is started, to the control device. Before the step of supplying the reformed water.
  • the control program causes the control device to set the raw fuel gas to the reformer when the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started. And the step of supplying the reforming water.
  • the present disclosure relates to providing a power generation device, a control device, and a control program that can appropriately control the supply of raw fuel gas and reforming water to a reformer when the power generation device is started.
  • a control device and a control program that can appropriately control the supply of raw fuel gas and reforming water to a reformer when the power generation device is started.
  • FIG. 1 is a functional block diagram schematically showing a configuration of a power generation device 1 according to an embodiment of the present disclosure.
  • a power generation device 1 As shown in FIG. 1, a power generation device 1 according to an embodiment of the present disclosure is connected to a hot water storage tank 60, a load 100, and a commercial power supply (grid) 200. Further, as shown in FIG. 1, the power generation device 1 generates electric power by supplying gas, water, and air from the outside, and supplies the generated electric power to a load 100 or the like.
  • the power generation apparatus 1 includes a control unit 10, a storage unit 12, a fuel cell module 20, a gas supply unit 32 for supplying a raw fuel gas, a reforming water supply unit 34, and oxygen.
  • the air supply unit 36 for supplying air as a gas, an inverter 40, a combustion catalyst 42, a combustion catalyst heater 44, an exhaust heat recovery processing unit 50, a circulating water processing unit 52, and a bubble sensor 80 are provided.
  • the power plant 1 includes at least one processor as a controller 10 to provide control and processing capabilities to perform various functions, as will be described in more detail below.
  • the at least one processor may also be implemented as a single integrated circuit (IC) or as a plurality of communicatively coupled integrated circuits and / or discrete circuits. Good.
  • the at least one processor can be implemented according to various known techniques.
  • a processor includes one or more circuits or units configured to perform one or more data calculation procedures or processes.
  • the processor may be one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or any of these devices or configurations.
  • ASICs application specific integrated circuits
  • digital signal processors programmable logic devices, field programmable gate arrays, or any of these devices or configurations.
  • the functions described below may be performed by including a combination or a combination of other known devices or configurations.
  • the control unit 10 is connected to the storage unit 12, the fuel cell module 20, the gas supply unit 32, the reforming water supply unit 34, the air supply unit 36, the inverter 40, and the combustion catalyst heater 44. And control and manage the whole of the power generation device 1 including the respective functional units.
  • the control unit 10 acquires a program stored in the storage unit 12 and executes the program to realize various functions related to each unit of the power generation device 1.
  • the control unit 10 and the other functional units may be connected by wire or wirelessly. The control characteristic of the present embodiment performed by the control unit 10 will be further described later.
  • the storage unit 12 stores the information acquired from the control unit 10.
  • the storage unit 12 also stores programs and the like executed by the control unit 10.
  • the storage unit 12 also stores various data such as calculation results by the control unit 10, for example.
  • the storage unit 12 will be described below as being capable of including a work memory and the like when the control unit 10 operates.
  • the storage unit 12 can be configured by, for example, a semiconductor memory or a magnetic disk, but is not limited to these and can be any storage device.
  • the storage unit 12 may be an optical storage device such as an optical disk, or may be a magneto-optical disk.
  • the fuel cell module 20 includes a reformer 22, a cell stack 24, an ignition heater 26, a first temperature sensor 71, and a second temperature sensor 72.
  • the cell stack 24 of the fuel cell module 20 generates power using the fuel gas supplied from the reformer 22 and the air that is the oxygen-containing gas supplied from the air supply unit 36.
  • the fuel gas contains, for example, hydrogen.
  • the DC power generated in the fuel cell module 20 is output to the inverter 40.
  • the fuel cell module 20 is also referred to as a hot module.
  • the cell stack 24 generates heat as power is generated.
  • the cell stack 24 that actually generates power is appropriately referred to as a “fuel cell”.
  • any functional unit including the cell stack 24 may also be collectively referred to as a “fuel cell” as appropriate.
  • a fuel cell a single cell, a fuel cell module, etc. are mentioned to others.
  • the reformer 22 uses, for example, the fuel such as hydrogen and / or carbon monoxide, using the raw fuel gas supplied from the gas supply unit 32 and the reforming water supplied from the reforming water supply unit 34. Generate gas.
  • the reformer 22 generates steam using the reforming water supplied from the reforming water supply unit 34.
  • the reformer 22 generates a fuel gas such as hydrogen and / or carbon monoxide by using the raw fuel gas supplied from the gas supply unit 32 by steam reforming using the generated steam.
  • the cell stack 24 generates power by reacting a fuel gas such as hydrogen and / or carbon monoxide generated by the reformer 22 with oxygen in the air. That is, in the present embodiment, the cell stack 24 generates power by an electrochemical reaction.
  • the ignition heater 26 as an ignition device burns around the cell stack 24 and the cell stack 24 at the time of starting the power generation device 1 or the like.
  • the ignition heater 26 ignites the fuel gas discharged from the cell stack 24 without being used for power generation.
  • the first temperature sensor 71 is installed near the outlet of the reformer 22, and detects the temperature near the outlet of the reformer 22.
  • the first temperature sensor 71 may detect the temperature of the reformer 22 other than the vicinity of the outlet of the reformer 22.
  • the second temperature sensor 72 is disposed near the center of the cell stack 24 and detects the temperature near the center of the cell stack 24.
  • the second temperature sensor 72 may detect the temperature of the cell stack 24 other than near the center of the cell stack 24.
  • the first temperature sensor 71 and the second temperature sensor 72 can be configured by, for example, a thermocouple.
  • the first temperature sensor 71 and the second temperature sensor 72 are not limited to the thermocouples, and any member that can measure the temperature can be adopted.
  • the first temperature sensor 71 and the second temperature sensor 72 may be thermistors or platinum temperature measuring resistors.
  • the cell stack 24 will be described as being an SOFC (solid oxide fuel cell).
  • the cell stack 24 according to the present embodiment is not limited to the SOFC.
  • the cell stack 24 according to the present embodiment includes, for example, a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (Phosphoric Acid Fuel Cell (PAFC)), and a molten carbonate fuel cell (PEFC). It may be configured by a fuel cell such as Molten Carbonate Fuel Cell (MCFC).
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric Acid Fuel Cell
  • PEFC molten carbonate Fuel Cell
  • MCFC Molten Carbonate Fuel Cell
  • the cell stack 24 may not be included in the same casing as the reformer 22, and includes the fuel cell module 20 as described above. It does not have to be.
  • the cell stack 24 and the reformer 22 may or may not be located in the same casing.
  • the cell stack 24 may be provided with, for example, four cells that can generate about 700 W alone.
  • the fuel cell module 20 can output power of about 3 kW as a whole.
  • the cell stack 24 and the fuel cell module 20 according to the present embodiment are not limited to such a configuration, and various configurations can be adopted.
  • the fuel cell module 20 according to the present embodiment may have only one cell stack 24.
  • the power generation device 1 may be provided with a fuel cell that generates power using gas. Therefore, for example, the power generation device 1 can be assumed to have only one fuel battery cell as the fuel cell, not the cell stack 24.
  • the fuel cell according to the present embodiment may be a fuel cell without a module, such as PEFC.
  • the gas supply unit 32 supplies the raw fuel gas to the reformer 22 of the fuel cell module 20.
  • raw fuel gas is also simply referred to as "gas” as appropriate.
  • the gas supply unit 32 controls the flow rate of the gas supplied to the reformer 22 based on the control signal from the control unit 10.
  • the gas supply unit 32 can be configured by, for example, a gas pump or the like.
  • the gas supply unit 32 may perform desulfurization treatment of the gas, or may preheat the gas.
  • the exhaust heat of the cell stack 24 may be used as a heat source to heat the gas.
  • the gas is, for example, city gas or LPG, but is not limited thereto.
  • the gas may be natural gas or coal gas depending on the fuel cell.
  • the reforming water supply unit 34 supplies reforming water to the reformer 22 of the fuel cell module 20. At this time, the reforming water supply unit 34 controls the flow rate of the reforming water supplied to the reformer 22 based on the control signal from the control unit 10.
  • the reforming water supply unit 34 can be configured by, for example, a reforming water pump or the like.
  • the reforming water supply unit 34 may generate reforming water using water recovered from the exhaust of the cell stack 24 as a raw material.
  • the air supply unit 36 supplies air to the cell stack 24 of the fuel cell module 20. At this time, the air supply unit 36 controls the flow rate of air supplied to the cell stack 24 based on the control signal from the control unit 10.
  • the air supply unit 36 can be configured by, for example, an air blower or the like. Alternatively, the air supply unit 36 may preheat the air taken from the outside and supply the air to the cell stack 24. The exhaust heat of the cell stack 24 may be used as a heat source to heat the air. In the present embodiment, the air supply unit 36 supplies air used for an electrochemical reaction when the cell stack 24 generates power.
  • the gas supplied by the air supply unit 36 is not limited to air, and may be any gas that can generate electric power by reacting with a fuel gas such as hydrogen. For example, the air supply unit 36 may supply a gas other than air containing oxygen.
  • the inverter 40 is electrically connected to the cell stack 24 in the fuel cell module 20.
  • the inverter 40 converts the DC power generated by the cell stack 24 into AC power.
  • the AC power output from the inverter 40 is supplied to the load 100 via a distribution board or the like.
  • the load 100 receives the power output from the inverter 40 via a distribution board or the like.
  • the load 100 is illustrated as only one member in FIG. 1, it may be any number of various electrical devices that configure the load.
  • the load 100 can also receive power from the commercial power supply 200 via a distribution board or the like.
  • the combustion catalyst 42 burns the unburned gas contained in the exhaust gas generated by the power generation of the cell stack 24.
  • the combustion catalyst 42 burns carbon monoxide, which is an unburned gas, to carbon dioxide.
  • the combustion catalyst 42 can burn unburned gas when the temperature is equal to or higher than a predetermined temperature.
  • the combustion catalyst 42 may include, for example, a honeycomb catalyst in which a noble metal catalyst is applied to a honeycomb structure.
  • the noble metal catalyst may contain, for example, platinum and palladium.
  • the combustion catalyst heater 44 heats the exhaust flowing from the cell stack 24 to the combustion catalyst 42.
  • the exhaust heat recovery processing unit 50 recovers exhaust heat from the exhaust generated by the power generation of the cell stack 24.
  • the exhaust heat recovery processing unit 50 can be configured by, for example, a heat exchanger or the like.
  • the exhaust heat recovery processing unit 50 is connected to the circulating water processing unit 52 and the hot water storage tank 60.
  • the circulating water processing unit 52 circulates water from the hot water storage tank 60 to the exhaust heat recovery processing unit 50.
  • the water supplied to the exhaust heat recovery processing unit 50 is heated by the exhaust heat recovered by the exhaust heat recovery processing unit 50 and returns to the hot water storage tank 60.
  • the exhaust heat recovery processing unit 50 discharges the exhaust that has recovered the exhaust heat to the outside.
  • the hot water storage tank 60 is connected to the exhaust heat recovery processing unit 50 and the circulating water processing unit 52.
  • the hot water storage tank 60 can store hot water generated using exhaust heat recovered from the cell stack 24 of the fuel cell module 20 or the like.
  • the bubble sensor 80 detects bubbles in the reforming water supplied from the reforming water supply unit 34 to the reformer 22 of the fuel cell module 20 through the pipe 85.
  • the bubble sensor 80 detects an air bubble in the reforming water flowing through the pipe 85 by, for example, passing an alternating current between two electrodes and detecting a change in magnitude of the alternating current.
  • the air bubble sensor 80 may be configured to detect air bubbles using, for example, ultrasonic waves or microwaves.
  • the control unit 10 supplies the gas from the gas supply unit 32 to the reformer 22 and turns the reforming water supply unit 34 to the reformer 22 when the ignition heater 26 is turned on at the start of the power generation device 1. Start supplying reformed water. At this time, based on the temperature near the outlet of the reformer 22 acquired from the first temperature sensor 71, the control unit 10 determines which of the gas and the reforming water is to be supplied to the reformer 22 first. .
  • the control unit 10 supplies reforming water to the reformer 22 before supplying the raw fuel gas to the reformer 22 when the temperature near the outlet of the reformer 22 is equal to or higher than the first predetermined temperature.
  • the gas supply unit 32 and the reforming water supply unit 34 are controlled.
  • control unit 10 supplies the raw fuel gas to the reformer 22 and then supplies the reforming water to the reformer 22.
  • the gas supply unit 32 and the reforming water supply unit 34 are controlled.
  • the case where the temperature near the outlet of the reformer 22 is equal to or higher than the first predetermined temperature is referred to as “in the case of a hot start”, and the temperature near the outlet of the reformer 22 is less than the first predetermined temperature. Is also referred to as "cold start case”.
  • the control unit 10 determines whether it is a hot start or a cold start based on the temperature near the outlet of the reformer 22, but the temperature measurement location is It is not limited. Based on the temperature of any predetermined position in the power generation device 1, it may be determined whether it is a hot start or a cold start. As the first predetermined temperature, an appropriate temperature may be set in advance according to the measurement location.
  • the cell stack 24 has a characteristic that it becomes difficult to ignite if reforming water is first supplied to the reformer 22 in a state where the temperature is low.
  • the control unit 10 of the power generation device 1 supplies reforming water to the reformer 22 before supplying the raw fuel gas.
  • the control unit 10 can prevent the state in which only the raw fuel gas is supplied, and thus can suppress carbon deposition. Further, since the temperature is high in the case of hot start, even if the reforming water is supplied first, the cell stack 24 can be ignited without any problem.
  • control unit 10 supplies the raw fuel gas and then supplies the reforming water to the reformer 22.
  • the control unit 10 can prevent the cell stack 24 from becoming difficult to ignite at low temperature.
  • temperature since the temperature is low, carbon deposition does not occur even if only the raw fuel gas is supplied first.
  • the controller 10 ensures that reforming water is supplied to the reformer 22 earlier than the gas, so that the reforming is performed a predetermined time earlier than when the supply of the gas is started.
  • Supply of water to the reformer 22 is started.
  • the control unit 10 sets the time in which the amount of reforming water corresponding to the volume of the pipe 85 from the air bubble sensor 80 to the reformer 22 can be supplied to the reformer 22 as a predetermined time.
  • Supply of reforming water to the reformer 22 is started.
  • the control unit 10 can grasp that at least the pipe 85 in front of the air bubble sensor 80 has the reforming water.
  • the control unit 10 can reliably supply the reforming water that has reached the bubble sensor 80 to the reformer 22 before the gas.
  • the present invention is not limited to this content, for example, the gas may be supplied after all the reforming water remaining in the pipe 85 enters the reformer 22.
  • the control unit 10 acquires the temperature in the vicinity of the outlet of the reformer 22 from the first temperature sensor 71 when the power generation device 1 is started (step S101).
  • the control unit 10 determines whether the temperature near the outlet of the reformer 22 is equal to or higher than a first predetermined temperature (step S102).
  • control unit 10 improves the reforming water before supplying the gas to the reformer 22.
  • the gas supply unit 32 and the reforming water supply unit 34 are controlled so as to be supplied to 22 (step S103).
  • control unit 10 supplies the gas to the reformer 22, and then the reforming water is reformed by the reformer 22.
  • the gas supply unit 32 and the reforming water supply unit 34 are controlled so as to be supplied to (step S104).
  • the control unit 10 supplies the raw fuel gas to the reformer 22. Reforming water is supplied, and if the temperature near the outlet of the reformer 22 is less than the first predetermined temperature, the reforming water is supplied to the reformer 22 after the raw fuel gas is supplied. Thereby, in the case of hot start, carbon deposition can be prevented. In addition, in the case of cold start, it is possible to prevent the cell stack from becoming difficult to ignite.
  • the power generation device 1 can appropriately control the supply of the raw fuel gas and the reforming water to the reformer 22 when the power generation device 1 is started.
  • the control unit 10 supplies the gas so as to stop the supply of the gas and the reforming water to the reformer 22 when the ignition of the power generation device 1 fails after the gas and the reforming water are supplied to the reformer 22.
  • the unit 32 and the reforming water supply unit 34 are controlled.
  • the control unit 10 stops the supply of the reforming water, the preheating effect by the ignition heater 26 or the ease of ignition can be enhanced. That is, the temperature around the cell stack 24 and the cell stack 24 can be efficiently raised by the ignition heater 26. Therefore, it is possible to shorten the waiting time until the ignition processing is performed again.
  • the control unit 10 waits for a predetermined time after the ignition failure, and then executes the ignition processing again. If it is a hot start, the reforming water is supplied to the reformer 22 before the gas is supplied to the reformer 22.
  • the gas supply unit 32 and the reforming water supply unit 34 are controlled to be supplied.
  • control unit 10 supplies the reforming water to the reformer 22 before the gas. Thereby, carbon deposition can be suppressed.
  • the control unit 10 stops the start processing of the power generation device 1 when the ignition processing fails continuously a predetermined number of times (for example, three times).
  • the control unit 10 When the control unit 10 receives an instruction to start stop processing before supplying reforming water to the reformer 22 during start-up of the power generation device 1 in the case of hot start, the reforming water is reformed by the reforming device 22. Start the stop process. This is because in the stop process, as described later, gas may be supplied from the gas supply unit 32 to the reformer 22. In the case of hot start, carbon deposition occurs when the gas is supplied without supplying reforming water. Thus, the control unit 10 starts the stopping process after supplying the reforming water to the reformer 22. By doing this, carbon deposition can be suppressed.
  • control unit 10 When the control unit 10 receives an instruction to start the stop process during start-up of the power generation device 1 in the case of hot start (step S201), the control unit 10 determines whether reforming water has already been supplied to the reformer 22 or not. (Step S202).
  • step S203 When reforming water has already been supplied to the reformer 22 (Yes in step S202), the control unit 10 starts the stop processing of the power generation device 1 as it is (step S203).
  • control unit 10 starts the stop process of the power generation device 1 after supplying the reforming water to the reformer 22 (step S204).
  • the control unit 10 supplies gas from the gas supply unit 32 to the reformer 22 when the temperature near the center of the cell stack 24 is higher than the second predetermined temperature in the stop processing. This is because the control unit 10 supplies air from the air supply unit 36 to the cell stack 24 in the stop processing, but when the temperature near the center of the cell stack 24 is equal to or higher than the second predetermined temperature, reduction of the cell stack 24 is performed. When the pole is exposed to air, the cell stack 24 is degraded due to re-oxidation.
  • control unit 10 causes the gas supply unit 32 to supply the gas to the reformer 22, air is less likely to touch the reduction electrode, so that the deterioration of the cell stack 24 can be suppressed.
  • the control unit 10 may determine whether or not to supply gas at the time of the stop processing based on the temperature of any predetermined position near the fuel cell, not limited to the temperature near the center of the cell stack 24. As the second predetermined temperature, an appropriate temperature may be set in advance according to the measurement location.
  • control unit 10 When the control unit 10 starts the stop processing, the control unit 10 acquires the temperature near the center of the cell stack 24 from the second temperature sensor 72 (step S301).
  • the control unit 10 determines whether the temperature near the center of the cell stack 24 is higher than a second predetermined temperature (step S302).
  • control unit 10 causes the gas supply unit 32 to supply the gas to the reformer 22 (step S303).
  • control unit 10 does not supply gas from the gas supply unit 32 to the reformer 22 (step S304).
  • the embodiment of the present disclosure can also be realized as a configuration in which functional blocks corresponding to the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG. 1 are provided outside the power generation device 1.
  • FIG. 5 An example of such an embodiment is shown in FIG.
  • the control device 2 that controls the power generation device 1 from the outside includes a control unit 10 and a storage unit 12.
  • the functions of the control unit 10 and the storage unit 12 of the control device 2 shown in FIG. 5 are respectively equivalent to the functions of the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG.
  • the embodiment of the present disclosure can also be realized as, for example, a control program that is executed by the control device 2 illustrated in FIG.
  • each functional unit, each means, the functions included in each step, and the like can be rearranged so as not to be logically contradictory, and a plurality of functional units and steps are combined or divided into one. It is possible.
  • each embodiment of the present invention mentioned above is not limited to carrying out faithfully to each embodiment described respectively, and combines each feature suitably, or carries out by omitting a part. It can also be done.
  • the power generation device 1 including the cell stack 24 that is SOFC has been described as the present embodiment.
  • the power generation device 1 according to the present embodiment is not limited to one including an SOFC, and may include various fuel cells such as a PEFC without a module.
  • fuel cell means, for example, a power generation system, a power generation unit, a fuel cell module, a hot module, a cell stack, or a cell.
  • the “fuel cell” in the present disclosure may be a fuel cell mounted on a fuel cell vehicle.

Abstract

This power generation device is equipped with a reformer to which a raw fuel gas and reforming water are supplied and which generates a fuel gas therefrom, a fuel cell which generates power using the fuel gas supplied from the reformer, and a control unit. In cases in which, during activation of the power generation device, the temperature at a prescribed position within the power generation device is a first prescribed temperature or higher, the control unit supplies the reforming water to the reformer prior to supplying the raw fuel gas, and in cases in which the temperature at said prescribed position within the power generation device is lower than the first prescribed temperature, the control unit supplies the reforming water to the reformer after the raw fuel gas has been supplied.

Description

発電装置、制御装置及び制御プログラムPOWER GENERATOR, CONTROL DEVICE, AND CONTROL PROGRAM 関連出願の相互参照Cross-reference to related applications
 本出願は、日本国特許出願2017-145869号(2017年7月27日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2017-145869 (filed on July 27, 2017), the entire disclosure of which is incorporated herein by reference.
 本開示は、発電装置、制御装置及び制御プログラムに関する。 The present disclosure relates to a power generation device, a control device, and a control program.
 固体酸化物形燃料電池(Solid Oxide Fuel Cell(以下、SOFCと記す))等のような燃料電池を備える発電装置には、改質器を備えるものがある。改質器は、原燃料ガス及び改質水を供給されて、例えば水素のような燃料ガスを生成する(例えば、特許文献1参照)。 Some power generating apparatuses provided with a fuel cell such as a solid oxide fuel cell (Solid Oxide Fuel Cell (hereinafter referred to as SOFC)) and the like include a reformer. The reformer is supplied with the raw fuel gas and the reforming water to generate a fuel gas such as hydrogen (see, for example, Patent Document 1).
特開2017-016816号公報Unexamined-Japanese-Patent No. 2017-016816
 本開示の一実施形態に係る発電装置は、原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、制御部と、を備える。前記制御部は、前記発電装置の起動時に、前記発電装置内の所定の位置の温度が第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給する。前記制御部は、前記発電装置の起動時に、前記発電装置内の前記所定の位置の温度が前記第1の所定温度未満である場合、前記改質器に、前記原燃料ガスを供給した後に前記改質水を供給する。 A power generation device according to an embodiment of the present disclosure includes a reformer that is supplied with a raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer. A battery and a control unit are provided. When the temperature of a predetermined position in the power generation device is equal to or higher than a first predetermined temperature when the power generation device is started, the control unit changes the timing before the raw fuel gas is supplied to the reformer. Supply quality water. The control unit is configured to supply the raw fuel gas to the reformer when the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started. Supply reformed water.
 本開示の一実施形態に係る制御装置は、原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する。前記制御装置は、前記発電装置の起動時に、前記発電装置内の所定の位置の温度が第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給する。前記制御装置は、前記発電装置の起動時に、前記発電装置内の前記所定の位置の温度が前記第1の所定温度未満である場合、前記改質器に、前記原燃料ガスを供給した後に前記改質水を供給する。 A control device according to an embodiment of the present disclosure is a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electric power using the fuel gas supplied from the reformer. And a battery. When the temperature of a predetermined position in the power generation device is equal to or higher than a first predetermined temperature when the power generation device is started, the control device changes the timing before the raw fuel gas is supplied to the reformer. Supply quality water. The controller supplies the raw fuel gas to the reformer when the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started. Supply reformed water.
 本開示の一実施形態に係る制御プログラムは、原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する制御装置のための制御プログラムである。前記制御プログラムは、前記制御装置に、前記発電装置の起動時に、前記発電装置内の所定の位置の温度が第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給するステップを実行させる。前記制御プログラムは、前記制御装置に、前記発電装置の起動時に、前記発電装置内の前記所定の位置の温度が前記第1の所定温度未満である場合、前記改質器に、前記原燃料ガスを供給した後に前記改質水を供給するステップを実行させる。 A control program according to an embodiment of the present disclosure includes a reformer that is supplied with raw fuel gas and reforming water to generate a fuel gas, and a fuel that generates electricity using the fuel gas supplied from the reformer. And a control program for a control device that controls a power generation device including the battery. The control program supplies the raw fuel gas to the reformer when the temperature of a predetermined position in the power generation device is equal to or higher than a first predetermined temperature when the power generation device is started, to the control device. Before the step of supplying the reformed water. The control program causes the control device to set the raw fuel gas to the reformer when the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started. And the step of supplying the reforming water.
本開示の実施形態に係る発電装置の構成を概略的に示す機能ブロック図である。It is a functional block diagram showing roughly the composition of the power generator concerning the embodiment of this indication. 本開示の実施形態に係る発電装置の動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation of a power generator concerning an embodiment of this indication. 本開示の実施形態に係る発電装置が起動の途中において停止処理を開始する場合の動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation in case a power generation device concerning an embodiment of this indication starts stop processing in the middle of starting. 本開示の実施形態に係る発電装置の停止処理における動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation in stop processing of a power generator concerning an embodiment of this indication. 本開示の実施形態に係る発電装置の構成の変形例を概略的に示す機能ブロック図である。It is a functional block diagram showing roughly a modification of composition of a power generator concerning an embodiment of this indication.
 従来、発電装置の起動時における改質器への原燃料ガス及び改質水の供給の制御には改善の余地があった。本開示は、発電装置の起動時において、改質器への原燃料ガス及び改質水の供給を適切に制御することができる発電装置、制御装置及び制御プログラムを提供することに関する。以下、本開示の実施形態について、図面を参照して説明する。まず、本開示の実施形態に係る発電装置の構成を説明する。 Conventionally, there has been room for improvement in the control of the supply of the raw fuel gas and the reforming water to the reformer at the start of the power generation apparatus. The present disclosure relates to providing a power generation device, a control device, and a control program that can appropriately control the supply of raw fuel gas and reforming water to a reformer when the power generation device is started. Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. First, the configuration of a power generation device according to an embodiment of the present disclosure will be described.
 図1は、本開示の実施形態に係る発電装置1の構成を概略的に示す機能ブロック図である。 FIG. 1 is a functional block diagram schematically showing a configuration of a power generation device 1 according to an embodiment of the present disclosure.
 図1に示すように、本開示の実施形態に係る発電装置1は、貯湯タンク60と、負荷100と、商用電源(grid)200とに接続される。また、図1に示すように、発電装置1は、外部からガス、水、及び空気が供給されることにより発電し、発電した電力を負荷100等に供給する。 As shown in FIG. 1, a power generation device 1 according to an embodiment of the present disclosure is connected to a hot water storage tank 60, a load 100, and a commercial power supply (grid) 200. Further, as shown in FIG. 1, the power generation device 1 generates electric power by supplying gas, water, and air from the outside, and supplies the generated electric power to a load 100 or the like.
 図1に示すように、発電装置1は、制御部10と、記憶部12と、燃料電池モジュール20と、原燃料ガスを供給するガス供給部32と、改質水供給部34と、酸素含有ガスとしての空気を供給する空気供給部36と、インバータ40と、燃焼触媒42と、燃焼触媒ヒータ44と、排熱回収処理部50と、循環水処理部52と、気泡センサ80とを備える。 As shown in FIG. 1, the power generation apparatus 1 includes a control unit 10, a storage unit 12, a fuel cell module 20, a gas supply unit 32 for supplying a raw fuel gas, a reforming water supply unit 34, and oxygen. The air supply unit 36 for supplying air as a gas, an inverter 40, a combustion catalyst 42, a combustion catalyst heater 44, an exhaust heat recovery processing unit 50, a circulating water processing unit 52, and a bubble sensor 80 are provided.
 発電装置1は、以下にさらに詳細に述べられるように、種々の機能を実行するための制御及び処理能力を提供するために、制御部10として少なくとも1つのプロセッサを含む。種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路(IC)として、又は複数の通信可能に接続された集積回路、及び/又はディスクリート回路(discrete circuits)として実現されてもよい。少なくとも1つのプロセッサは、種々の既知の技術に従って実現されることが可能である。 The power plant 1 includes at least one processor as a controller 10 to provide control and processing capabilities to perform various functions, as will be described in more detail below. According to various embodiments, the at least one processor may also be implemented as a single integrated circuit (IC) or as a plurality of communicatively coupled integrated circuits and / or discrete circuits. Good. The at least one processor can be implemented according to various known techniques.
 ある実施形態において、プロセッサは、1以上のデータ計算手続又は処理を実行するために構成された、1以上の回路又はユニットを含む。例えば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、又はこれらのデバイス若しくは構成の任意の組み合わせ、又は他の既知のデバイス若しくは構成の組み合わせを含むことにより、以下に説明する機能を実行してもよい。 In one embodiment, a processor includes one or more circuits or units configured to perform one or more data calculation procedures or processes. For example, the processor may be one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or any of these devices or configurations. The functions described below may be performed by including a combination or a combination of other known devices or configurations.
 制御部10は、記憶部12と、燃料電池モジュール20と、ガス供給部32と、改質水供給部34と、空気供給部36と、インバータ40と、燃焼触媒ヒータ44とに接続され、これらの各機能部をはじめとして発電装置1の全体を制御及び管理する。制御部10は、記憶部12に記憶されているプログラムを取得して、このプログラムを実行することにより、発電装置1の各部に係る種々の機能を実現する。制御部10から他の機能部に制御信号又は各種の情報などを送信する場合、制御部10と他の機能部とは、有線又は無線により接続されていればよい。制御部10が行う本実施形態に特徴的な制御については、さらに後述する。 The control unit 10 is connected to the storage unit 12, the fuel cell module 20, the gas supply unit 32, the reforming water supply unit 34, the air supply unit 36, the inverter 40, and the combustion catalyst heater 44. And control and manage the whole of the power generation device 1 including the respective functional units. The control unit 10 acquires a program stored in the storage unit 12 and executes the program to realize various functions related to each unit of the power generation device 1. When a control signal or various information is transmitted from the control unit 10 to another functional unit, the control unit 10 and the other functional units may be connected by wire or wirelessly. The control characteristic of the present embodiment performed by the control unit 10 will be further described later.
 記憶部12は、制御部10から取得した情報を記憶する。また記憶部12は、制御部10によって実行されるプログラム等を記憶する。その他、記憶部12は、例えば制御部10による演算結果などの各種データも記憶する。さらに、記憶部12は、制御部10が動作する際のワークメモリ等も含むことができるものとして、以下説明する。記憶部12は、例えば半導体メモリ又は磁気ディスク等により構成することができるが、これらに限定されず、任意の記憶装置とすることができる。例えば、記憶部12は、光ディスクのような光学記憶装置としてもよいし、光磁気ディスクなどとしてもよい。 The storage unit 12 stores the information acquired from the control unit 10. The storage unit 12 also stores programs and the like executed by the control unit 10. In addition, the storage unit 12 also stores various data such as calculation results by the control unit 10, for example. Further, the storage unit 12 will be described below as being capable of including a work memory and the like when the control unit 10 operates. The storage unit 12 can be configured by, for example, a semiconductor memory or a magnetic disk, but is not limited to these and can be any storage device. For example, the storage unit 12 may be an optical storage device such as an optical disk, or may be a magneto-optical disk.
 燃料電池モジュール20は、改質器22と、セルスタック24と、着火ヒータ26と、第1温度センサ71と、第2温度センサ72とを備えている。燃料電池モジュール20のセルスタック24は、改質器22から供給される燃料ガス、及び空気供給部36から供給される酸素含有ガスである空気を用いて発電する。燃料ガスは、例えば水素を含む。燃料電池モジュール20内で発電した直流電力は、インバータ40に出力される。燃料電池モジュール20は、ホットモジュールとも呼ばれる。燃料電池モジュール20において、セルスタック24は、発電に伴い発熱する。本開示において、実際に発電を行うセルスタック24を、適宜、「燃料電池」と記す。また、本開示において、セルスタック24を含めた任意の機能部も、適宜、「燃料電池」と総称することがある。例えば、「燃料電池」としては、他に、単体のセル、又は燃料電池モジュールなどが挙げられる。 The fuel cell module 20 includes a reformer 22, a cell stack 24, an ignition heater 26, a first temperature sensor 71, and a second temperature sensor 72. The cell stack 24 of the fuel cell module 20 generates power using the fuel gas supplied from the reformer 22 and the air that is the oxygen-containing gas supplied from the air supply unit 36. The fuel gas contains, for example, hydrogen. The DC power generated in the fuel cell module 20 is output to the inverter 40. The fuel cell module 20 is also referred to as a hot module. In the fuel cell module 20, the cell stack 24 generates heat as power is generated. In the present disclosure, the cell stack 24 that actually generates power is appropriately referred to as a “fuel cell”. Further, in the present disclosure, any functional unit including the cell stack 24 may also be collectively referred to as a “fuel cell” as appropriate. For example, as a "fuel cell", a single cell, a fuel cell module, etc. are mentioned to others.
 改質器22は、ガス供給部32から供給される原燃料ガス、及び、改質水供給部34から供給される改質水を用いて、例えば、水素及び/又は一酸化炭素のような燃料ガスを生成する。例えば、改質器22は、改質水供給部34から供給される改質水を用いて水蒸気を生成する。さらに、改質器22は、生成した水蒸気を用いた水蒸気改質により、ガス供給部32から供給される原燃料ガスを用いて、水素及び/又は一酸化炭素のような燃料ガスを生成する。セルスタック24は、改質器22で生成された水素及び/又は一酸化炭素のような燃料ガスと、空気中の酸素とを反応させることにより、発電する。すなわち、本実施形態において、セルスタック24は、電気化学反応により発電する。 The reformer 22 uses, for example, the fuel such as hydrogen and / or carbon monoxide, using the raw fuel gas supplied from the gas supply unit 32 and the reforming water supplied from the reforming water supply unit 34. Generate gas. For example, the reformer 22 generates steam using the reforming water supplied from the reforming water supply unit 34. Furthermore, the reformer 22 generates a fuel gas such as hydrogen and / or carbon monoxide by using the raw fuel gas supplied from the gas supply unit 32 by steam reforming using the generated steam. The cell stack 24 generates power by reacting a fuel gas such as hydrogen and / or carbon monoxide generated by the reformer 22 with oxygen in the air. That is, in the present embodiment, the cell stack 24 generates power by an electrochemical reaction.
 着火装置としての着火ヒータ26は、発電装置1の起動時などにおいて、セルスタック24及びセルスタック24の周辺を燃焼する。着火ヒータ26は、発電に用いられずにセルスタック24から排出された燃料ガスを着火する。 The ignition heater 26 as an ignition device burns around the cell stack 24 and the cell stack 24 at the time of starting the power generation device 1 or the like. The ignition heater 26 ignites the fuel gas discharged from the cell stack 24 without being used for power generation.
 第1温度センサ71は、改質器22の出口付近に設置され、改質器22の出口付近の温度を検出する。なお、第1温度センサ71は、改質器22の出口付近以外の改質器22の温度を検出してもよい。 The first temperature sensor 71 is installed near the outlet of the reformer 22, and detects the temperature near the outlet of the reformer 22. The first temperature sensor 71 may detect the temperature of the reformer 22 other than the vicinity of the outlet of the reformer 22.
 第2温度センサ72は、セルスタック24の中心付近に設置され、セルスタック24の中心付近の温度を検出する。なお、第2温度センサ72は、セルスタック24の中心付近以外のセルスタック24の温度を検出してもよい。 The second temperature sensor 72 is disposed near the center of the cell stack 24 and detects the temperature near the center of the cell stack 24. The second temperature sensor 72 may detect the temperature of the cell stack 24 other than near the center of the cell stack 24.
 第1温度センサ71及び第2温度センサ72は、例えば熱電対などにより構成することができる。また、第1温度センサ71及び第2温度センサ72は、熱電対に限定されず、温度を測定できる部材であれば任意のものを採用することができる。例えば、第1温度センサ71及び第2温度センサ72は、サーミスタ又は白金測温抵抗体としてもよい。 The first temperature sensor 71 and the second temperature sensor 72 can be configured by, for example, a thermocouple. In addition, the first temperature sensor 71 and the second temperature sensor 72 are not limited to the thermocouples, and any member that can measure the temperature can be adopted. For example, the first temperature sensor 71 and the second temperature sensor 72 may be thermistors or platinum temperature measuring resistors.
 以下、セルスタック24は、SOFC(固体酸化物形燃料電池)であるとして説明する。しかしながら、本実施形態に係るセルスタック24はSOFCに限定されない。本実施形態に係るセルスタック24は、例えば固体高分子形燃料電池(Polymer Electrolyte Fuel Cell(PEFC))、リン酸形燃料電池(Phosphoric Acid Fuel Cell(PAFC))、及び溶融炭酸塩形燃料電池(Molten Carbonate Fuel Cell(MCFC))などのような燃料電池で構成してもよい。なお、セルスタック24が例えばPEFC等、SOFCと異なるタイプの場合、セルスタック24は、改質器22と同じ筺体内に含まれなくてもよく、前述したような燃料電池モジュール20を有していなくてもよい。また、セルスタック24が例えばPEFC等、SOFCと異なるタイプの場合、セルスタック24と改質器22が同じ筺体内であっても近傍に位置しなくてもよい。また、本実施形態において、セルスタック24は、例えば単体で700W程度の発電ができるものを4つ備えてもよい。この場合、燃料電池モジュール20は、全体として3kW程度の電力を出力することができる。しかしながら、本実施形態に係るセルスタック24及び燃料電池モジュール20は、このような構成に限定されるものではなく、種々の構成を採用することができる。例えば、本実施形態に係る燃料電池モジュール20は、セルスタック24を1つのみ備えるようにしてもよい。本実施形態において、発電装置1は、ガスを利用して発電を行う燃料電池を備えていればよい。したがって、例えば、発電装置1は、燃料電池として、セルスタック24ではなく、単に燃料電池セル1つのみを備えるものも想定できる。また、本実施形態に係る燃料電池は、例えばPEFCのように、モジュールのない燃料電池としてもよい。 Hereinafter, the cell stack 24 will be described as being an SOFC (solid oxide fuel cell). However, the cell stack 24 according to the present embodiment is not limited to the SOFC. The cell stack 24 according to the present embodiment includes, for example, a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (Phosphoric Acid Fuel Cell (PAFC)), and a molten carbonate fuel cell (PEFC). It may be configured by a fuel cell such as Molten Carbonate Fuel Cell (MCFC). When the cell stack 24 is of a type different from SOFC, such as PEFC, for example, the cell stack 24 may not be included in the same casing as the reformer 22, and includes the fuel cell module 20 as described above. It does not have to be. Also, in the case where the cell stack 24 is of a type different from SOFC, such as PEFC, for example, the cell stack 24 and the reformer 22 may or may not be located in the same casing. Further, in the present embodiment, the cell stack 24 may be provided with, for example, four cells that can generate about 700 W alone. In this case, the fuel cell module 20 can output power of about 3 kW as a whole. However, the cell stack 24 and the fuel cell module 20 according to the present embodiment are not limited to such a configuration, and various configurations can be adopted. For example, the fuel cell module 20 according to the present embodiment may have only one cell stack 24. In the present embodiment, the power generation device 1 may be provided with a fuel cell that generates power using gas. Therefore, for example, the power generation device 1 can be assumed to have only one fuel battery cell as the fuel cell, not the cell stack 24. Also, the fuel cell according to the present embodiment may be a fuel cell without a module, such as PEFC.
 ガス供給部32は、燃料電池モジュール20の改質器22に原燃料ガスを供給する。以下、適宜、「原燃料ガス」を単に「ガス」とも記す。このとき、ガス供給部32は、制御部10からの制御信号に基づいて、改質器22に供給するガスの流量を制御する。本実施形態において、ガス供給部32は、例えばガスポンプ等によって構成することができる。またガス供給部32は、ガスの脱硫処理を行ってもよいし、ガスを予備的に加熱してもよい。ガスを加熱する熱源として、セルスタック24の排熱が利用されてもよい。ガスは、例えば、都市ガス、又はLPG等であるが、これらに限定されない。例えば、ガスは、燃料電池に応じて、天然ガス又は石炭ガスなどとしてもよい。 The gas supply unit 32 supplies the raw fuel gas to the reformer 22 of the fuel cell module 20. Hereinafter, "raw fuel gas" is also simply referred to as "gas" as appropriate. At this time, the gas supply unit 32 controls the flow rate of the gas supplied to the reformer 22 based on the control signal from the control unit 10. In the present embodiment, the gas supply unit 32 can be configured by, for example, a gas pump or the like. In addition, the gas supply unit 32 may perform desulfurization treatment of the gas, or may preheat the gas. The exhaust heat of the cell stack 24 may be used as a heat source to heat the gas. The gas is, for example, city gas or LPG, but is not limited thereto. For example, the gas may be natural gas or coal gas depending on the fuel cell.
 改質水供給部34は、燃料電池モジュール20の改質器22に改質水を供給する。このとき、改質水供給部34は、制御部10からの制御信号に基づいて、改質器22に供給する改質水の流量を制御する。本実施形態において、改質水供給部34は、例えば改質水ポンプ等によって構成することができる。改質水供給部34は、セルスタック24の排気から回収された水を原料として改質水を生成してもよい。 The reforming water supply unit 34 supplies reforming water to the reformer 22 of the fuel cell module 20. At this time, the reforming water supply unit 34 controls the flow rate of the reforming water supplied to the reformer 22 based on the control signal from the control unit 10. In the present embodiment, the reforming water supply unit 34 can be configured by, for example, a reforming water pump or the like. The reforming water supply unit 34 may generate reforming water using water recovered from the exhaust of the cell stack 24 as a raw material.
 空気供給部36は、燃料電池モジュール20のセルスタック24に空気を供給する。このとき、空気供給部36は、制御部10からの制御信号に基づいて、セルスタック24に供給する空気の流量を制御する。本実施形態において、空気供給部36は、例えば空気ブロワ等によって構成することができる。また空気供給部36は、外部から取り込んだ空気を予備的に加熱して、セルスタック24に供給してもよい。空気を加熱する熱源として、セルスタック24の排熱が利用されてもよい。本実施形態において、空気供給部36は、セルスタック24が発電する際の電気化学反応に用いられる空気を供給する。空気供給部36が供給する気体は空気に限定されず、水素等の燃料ガスと反応して発電できる気体であればよい。例えば、空気供給部36は、酸素を含有する空気以外の気体を供給してもよい。 The air supply unit 36 supplies air to the cell stack 24 of the fuel cell module 20. At this time, the air supply unit 36 controls the flow rate of air supplied to the cell stack 24 based on the control signal from the control unit 10. In the present embodiment, the air supply unit 36 can be configured by, for example, an air blower or the like. Alternatively, the air supply unit 36 may preheat the air taken from the outside and supply the air to the cell stack 24. The exhaust heat of the cell stack 24 may be used as a heat source to heat the air. In the present embodiment, the air supply unit 36 supplies air used for an electrochemical reaction when the cell stack 24 generates power. The gas supplied by the air supply unit 36 is not limited to air, and may be any gas that can generate electric power by reacting with a fuel gas such as hydrogen. For example, the air supply unit 36 may supply a gas other than air containing oxygen.
 インバータ40は、燃料電池モジュール20内のセルスタック24に電気的に接続される。インバータ40は、セルスタック24が発電した直流電力を、交流電力に変換する。インバータ40から出力される交流電力は、分電盤などを介して、負荷100に供給される。負荷100は、分電盤などを介して、インバータ40から出力された電力を受電する。図1において、負荷100は、1つのみの部材として図示してあるが、負荷を構成する任意の個数の各種電気機器とすることができる。また、負荷100は、分電盤などを介して、商用電源200から受電することもできる。 The inverter 40 is electrically connected to the cell stack 24 in the fuel cell module 20. The inverter 40 converts the DC power generated by the cell stack 24 into AC power. The AC power output from the inverter 40 is supplied to the load 100 via a distribution board or the like. The load 100 receives the power output from the inverter 40 via a distribution board or the like. Although the load 100 is illustrated as only one member in FIG. 1, it may be any number of various electrical devices that configure the load. The load 100 can also receive power from the commercial power supply 200 via a distribution board or the like.
 燃焼触媒42は、セルスタック24の発電により生じる排気に含まれる未燃ガスを燃焼させる。燃焼触媒42は、例えば、未燃ガスである一酸化炭素を燃焼させて、二酸化炭素にする。燃焼触媒42は、所定の温度以上であるときに、未燃ガスを燃焼させることができる。燃焼触媒42は、例えばハニカム構造に貴金属触媒が塗布されたハニカム触媒を含んでもよい。貴金属触媒は、例えば白金及びパラジウム等を含んでもよい。 The combustion catalyst 42 burns the unburned gas contained in the exhaust gas generated by the power generation of the cell stack 24. For example, the combustion catalyst 42 burns carbon monoxide, which is an unburned gas, to carbon dioxide. The combustion catalyst 42 can burn unburned gas when the temperature is equal to or higher than a predetermined temperature. The combustion catalyst 42 may include, for example, a honeycomb catalyst in which a noble metal catalyst is applied to a honeycomb structure. The noble metal catalyst may contain, for example, platinum and palladium.
 燃焼触媒ヒータ44は、セルスタック24から燃焼触媒42に流入する排気を加熱する。 The combustion catalyst heater 44 heats the exhaust flowing from the cell stack 24 to the combustion catalyst 42.
 排熱回収処理部50は、セルスタック24の発電により生じる排気から排熱を回収する。排熱回収処理部50は、例えば熱交換器等で構成することができる。排熱回収処理部50は、循環水処理部52及び貯湯タンク60に接続される。 The exhaust heat recovery processing unit 50 recovers exhaust heat from the exhaust generated by the power generation of the cell stack 24. The exhaust heat recovery processing unit 50 can be configured by, for example, a heat exchanger or the like. The exhaust heat recovery processing unit 50 is connected to the circulating water processing unit 52 and the hot water storage tank 60.
 循環水処理部52は、貯湯タンク60から排熱回収処理部50へ水を循環させる。排熱回収処理部50に供給された水は、排熱回収処理部50で回収された排熱によって加熱され、貯湯タンク60に戻る。排熱回収処理部50は、排熱を回収した排気を外部に排出する。 The circulating water processing unit 52 circulates water from the hot water storage tank 60 to the exhaust heat recovery processing unit 50. The water supplied to the exhaust heat recovery processing unit 50 is heated by the exhaust heat recovered by the exhaust heat recovery processing unit 50 and returns to the hot water storage tank 60. The exhaust heat recovery processing unit 50 discharges the exhaust that has recovered the exhaust heat to the outside.
 貯湯タンク60は、排熱回収処理部50及び循環水処理部52に接続される。貯湯タンク60は、燃料電池モジュール20のセルスタック24などから回収された排熱を利用して生成された湯を、貯えることができる。 The hot water storage tank 60 is connected to the exhaust heat recovery processing unit 50 and the circulating water processing unit 52. The hot water storage tank 60 can store hot water generated using exhaust heat recovered from the cell stack 24 of the fuel cell module 20 or the like.
 気泡センサ80は、改質水供給部34から配管85を通して燃料電池モジュール20の改質器22に供給される改質水の中の気泡を検出する。気泡センサ80は、例えば、2つの電極の間に交流電流を流し、交流電流の大きさの変化を検出することにより、配管85を流れる改質水の中の気泡を検出する。また、気泡センサ80は、例えば、超音波又はマイクロ波を用いて気泡を検出する構成でもよい。 The bubble sensor 80 detects bubbles in the reforming water supplied from the reforming water supply unit 34 to the reformer 22 of the fuel cell module 20 through the pipe 85. The bubble sensor 80 detects an air bubble in the reforming water flowing through the pipe 85 by, for example, passing an alternating current between two electrodes and detecting a change in magnitude of the alternating current. Also, the air bubble sensor 80 may be configured to detect air bubbles using, for example, ultrasonic waves or microwaves.
 次に、制御部10の動作について説明する。 Next, the operation of the control unit 10 will be described.
 制御部10は、発電装置1の起動時において、着火ヒータ26をオンすると、ガス供給部32から改質器22へのガスの供給、及び、改質水供給部34から改質器22への改質水の供給を開始する。この際、制御部10は、第1温度センサ71から取得した改質器22の出口付近の温度に基づいて、ガスと改質水のどちらを先に改質器22に供給するかを決定する。 The control unit 10 supplies the gas from the gas supply unit 32 to the reformer 22 and turns the reforming water supply unit 34 to the reformer 22 when the ignition heater 26 is turned on at the start of the power generation device 1. Start supplying reformed water. At this time, based on the temperature near the outlet of the reformer 22 acquired from the first temperature sensor 71, the control unit 10 determines which of the gas and the reforming water is to be supplied to the reformer 22 first. .
 制御部10は、改質器22の出口付近の温度が第1の所定温度以上である場合、原燃料ガスを改質器22に供給する前に、改質水を改質器22に供給するように、ガス供給部32及び改質水供給部34を制御する。 The control unit 10 supplies reforming water to the reformer 22 before supplying the raw fuel gas to the reformer 22 when the temperature near the outlet of the reformer 22 is equal to or higher than the first predetermined temperature. Thus, the gas supply unit 32 and the reforming water supply unit 34 are controlled.
 制御部10は、改質器22の出口付近の温度が第1の所定温度未満である場合、原燃料ガスを改質器22に供給した後に、改質水を改質器22に供給するように、ガス供給部32及び改質水供給部34を制御する。 When the temperature in the vicinity of the outlet of the reformer 22 is lower than the first predetermined temperature, the control unit 10 supplies the raw fuel gas to the reformer 22 and then supplies the reforming water to the reformer 22. In addition, the gas supply unit 32 and the reforming water supply unit 34 are controlled.
 以後、改質器22の出口付近の温度が第1の所定温度以上である場合を「ホットスタートの場合」と称し、改質器22の出口付近の温度が第1の所定温度未満である場合を「コールドスタートの場合」とも称する。 Hereinafter, the case where the temperature near the outlet of the reformer 22 is equal to or higher than the first predetermined temperature is referred to as “in the case of a hot start”, and the temperature near the outlet of the reformer 22 is less than the first predetermined temperature. Is also referred to as "cold start case".
 なお、本実施形態においては、制御部10は、改質器22の出口付近の温度に基づいて、ホットスタートであるかコールドスタートであるかを判定しているが、温度の測定場所はこれに限定されない。発電装置1内の任意の所定の位置の温度に基づいて、ホットスタートであるかコールドスタートであるかを判定してよい。第1の所定の温度は、測定場所に応じて、適切な温度を予め設定しておけばよい。 In the present embodiment, the control unit 10 determines whether it is a hot start or a cold start based on the temperature near the outlet of the reformer 22, but the temperature measurement location is It is not limited. Based on the temperature of any predetermined position in the power generation device 1, it may be determined whether it is a hot start or a cold start. As the first predetermined temperature, an appropriate temperature may be set in advance according to the measurement location.
 温度が高い状態でガスだけが改質器22に供給されると、炭素析出が起こる。また、セルスタック24は、温度が低い状態で改質水が先に改質器22に供給されると、着火しにくくなる特性がある。 When only gas is supplied to the reformer 22 at high temperature, carbon deposition occurs. In addition, the cell stack 24 has a characteristic that it becomes difficult to ignite if reforming water is first supplied to the reformer 22 in a state where the temperature is low.
 上述のように、本実施形態に係る発電装置1の制御部10は、ホットスタートの場合は、原燃料ガスを供給する前に改質水を改質器22に供給する。これにより、制御部10は、原燃料ガスだけが供給される状態があることを防ぐことができるため、炭素析出を抑制することができる。また、ホットスタートの場合は温度が高いため、改質水が先に供給されても、セルスタック24は、問題なく着火することができる。 As described above, in the case of hot start, the control unit 10 of the power generation device 1 according to the present embodiment supplies reforming water to the reformer 22 before supplying the raw fuel gas. Thus, the control unit 10 can prevent the state in which only the raw fuel gas is supplied, and thus can suppress carbon deposition. Further, since the temperature is high in the case of hot start, even if the reforming water is supplied first, the cell stack 24 can be ignited without any problem.
 また、上述のように、制御部10は、コールドスタートの場合は、原燃料ガスを供給した後に改質水を改質器22に供給する。これにより、制御部10は、低い温度においてセルスタック24が着火しにくくなることを防ぐことができる。また、コールドスタートの場合は温度が低いため、原燃料ガスだけが先に供給されても、炭素析出は起こらない。 Further, as described above, in the case of cold start, the control unit 10 supplies the raw fuel gas and then supplies the reforming water to the reformer 22. Thus, the control unit 10 can prevent the cell stack 24 from becoming difficult to ignite at low temperature. In the case of cold start, since the temperature is low, carbon deposition does not occur even if only the raw fuel gas is supplied first.
 制御部10は、ホットスタートの場合、確実にガスよりも先に改質水が改質器22に供給されるようにするため、ガスの供給を開始するよりも所定の時間だけ早く、改質水の改質器22への供給を開始する。制御部10は、例えば、気泡センサ80から改質器22までの配管85の容積に相当する量の改質水を改質器22に供給可能な時間を所定の時間として、所定の時間だけ早く、改質水の改質器22への供給を開始する。制御部10は、気泡センサ80で気泡が検出されていない場合、少なくとも気泡センサ80の手前の配管85までは、改質水が来ていると把握できる。したがって、たとえ、気泡センサ80から改質器22までの配管85に空気が混在していたとしても、上述のように、所定の時間だけ早く、改質水の改質器22への供給を開始することにより、制御部10は、確実にガスよりも先に、気泡センサ80のところまで来ている改質水を改質器22に供給することができる。この内容に限定されず、例えば、配管85に残っている改質水が全て改質器22に入ってからガスを供給してもよい。 In the case of hot start, the controller 10 ensures that reforming water is supplied to the reformer 22 earlier than the gas, so that the reforming is performed a predetermined time earlier than when the supply of the gas is started. Supply of water to the reformer 22 is started. For example, the control unit 10 sets the time in which the amount of reforming water corresponding to the volume of the pipe 85 from the air bubble sensor 80 to the reformer 22 can be supplied to the reformer 22 as a predetermined time. , Supply of reforming water to the reformer 22 is started. When no air bubble is detected by the air bubble sensor 80, the control unit 10 can grasp that at least the pipe 85 in front of the air bubble sensor 80 has the reforming water. Therefore, even if air is mixed in the pipe 85 from the air bubble sensor 80 to the reformer 22, as described above, the supply of the reforming water to the reformer 22 is started earlier by a predetermined time. By doing this, the control unit 10 can reliably supply the reforming water that has reached the bubble sensor 80 to the reformer 22 before the gas. The present invention is not limited to this content, for example, the gas may be supplied after all the reforming water remaining in the pipe 85 enters the reformer 22.
 続いて、本実施形態に係る発電装置1の動作の一例について図2のフローチャートを参照して説明する。 Subsequently, an example of the operation of the power generation device 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 制御部10は、発電装置1の起動時に、第1温度センサ71から、改質器22の出口付近の温度を取得する(ステップS101)。 The control unit 10 acquires the temperature in the vicinity of the outlet of the reformer 22 from the first temperature sensor 71 when the power generation device 1 is started (step S101).
 制御部10は、改質器22の出口付近の温度が第1の所定温度以上であるか否かを判定する(ステップS102)。 The control unit 10 determines whether the temperature near the outlet of the reformer 22 is equal to or higher than a first predetermined temperature (step S102).
 改質器22の出口付近の温度が第1の所定温度以上である場合(ステップS102のYes)、制御部10は、ガスを改質器22に供給する前に、改質水を改質器22に供給するように、ガス供給部32及び改質水供給部34を制御する(ステップS103)。 When the temperature in the vicinity of the outlet of the reformer 22 is equal to or higher than the first predetermined temperature (Yes in step S102), the control unit 10 improves the reforming water before supplying the gas to the reformer 22. The gas supply unit 32 and the reforming water supply unit 34 are controlled so as to be supplied to 22 (step S103).
 改質器22の出口付近の温度が第1の所定温度未満である場合(ステップS102のNo)、制御部10は、ガスを改質器22に供給した後に、改質水を改質器22に供給するように、ガス供給部32及び改質水供給部34を制御する(ステップS104)。 If the temperature in the vicinity of the outlet of the reformer 22 is lower than the first predetermined temperature (No in step S102), the control unit 10 supplies the gas to the reformer 22, and then the reforming water is reformed by the reformer 22. The gas supply unit 32 and the reforming water supply unit 34 are controlled so as to be supplied to (step S104).
 このように、制御部10は、発電装置1の起動時に、改質器22の出口付近の温度が第1の所定温度以上である場合、改質器22に、原燃料ガスを供給する前に改質水を供給し、改質器22の出口付近の温度が第1の所定温度未満である場合、改質器22に、原燃料ガスを供給した後に改質水を供給する。これにより、ホットスタートの場合に、炭素析出を防ぐことができる。また、コールドスタートの場合に、セルスタックが着火しにくくなることを防ぐことができる。このように、本実施形態によれば、発電装置1は、発電装置1の起動時において、改質器22への原燃料ガス及び改質水の供給を適切に制御することができる。 As described above, when the temperature in the vicinity of the outlet of the reformer 22 is equal to or higher than the first predetermined temperature at the start of the power generation device 1, the control unit 10 supplies the raw fuel gas to the reformer 22. Reforming water is supplied, and if the temperature near the outlet of the reformer 22 is less than the first predetermined temperature, the reforming water is supplied to the reformer 22 after the raw fuel gas is supplied. Thereby, in the case of hot start, carbon deposition can be prevented. In addition, in the case of cold start, it is possible to prevent the cell stack from becoming difficult to ignite. As described above, according to the present embodiment, the power generation device 1 can appropriately control the supply of the raw fuel gas and the reforming water to the reformer 22 when the power generation device 1 is started.
(起動時において着火を失敗した場合の処理)
 続いて、発電装置1の起動時において、着火を失敗した場合の処理について説明する。
(Processing when ignition fails at startup)
Subsequently, processing at the time of starting of the power generation device 1 when ignition fails will be described.
 制御部10は、改質器22にガス及び改質水を供給した後に発電装置1の着火に失敗した場合、改質器22へのガス及び改質水の供給を停止するように、ガス供給部32及び改質水供給部34を制御する。 The control unit 10 supplies the gas so as to stop the supply of the gas and the reforming water to the reformer 22 when the ignition of the power generation device 1 fails after the gas and the reforming water are supplied to the reformer 22. The unit 32 and the reforming water supply unit 34 are controlled.
 このように制御部10が改質水の供給を停止することにより、着火ヒータ26による予熱効果、又は着火容易性を高めることができる。すなわち、着火ヒータ26により、セルスタック24及びセルスタック24の周辺の温度を効率的に高くすることができる。そのため、着火処理を再度実行するまでに待機する時間を短くすることができる。 As described above, when the control unit 10 stops the supply of the reforming water, the preheating effect by the ignition heater 26 or the ease of ignition can be enhanced. That is, the temperature around the cell stack 24 and the cell stack 24 can be efficiently raised by the ignition heater 26. Therefore, it is possible to shorten the waiting time until the ignition processing is performed again.
 制御部10は、着火失敗後に所定時間待機した後、再度着火処理を実行する際、ホットスタートである場合は、ガスを改質器22に供給する前に、改質水を改質器22に供給するように、ガス供給部32及び改質水供給部34を制御する。 The control unit 10 waits for a predetermined time after the ignition failure, and then executes the ignition processing again. If it is a hot start, the reforming water is supplied to the reformer 22 before the gas is supplied to the reformer 22. The gas supply unit 32 and the reforming water supply unit 34 are controlled to be supplied.
 このように、着火失敗後の再度の着火処理においても、ホットスタートの場合は、制御部10は、ガスの前に改質水を改質器22に供給する。これにより、炭素析出を抑制することができる。 As described above, also in the case of the hot start in the second ignition processing after the ignition failure, the control unit 10 supplies the reforming water to the reformer 22 before the gas. Thereby, carbon deposition can be suppressed.
 制御部10は、着火処理を所定回数(例えば3回)連続して失敗すると、発電装置1の起動処理を停止する。 The control unit 10 stops the start processing of the power generation device 1 when the ignition processing fails continuously a predetermined number of times (for example, three times).
(起動の途中において停止処理を開始する場合の処理)
 続いて、発電装置1の起動の途中において停止処理を開始する場合の処理について説明する。例えば、発電装置1の起動時に、発電装置1を制御するリモコンの停止ボタンが押された場合などに、発電装置1の起動の途中において、停止処理が開始し得る。
(Processing when starting the stop process in the middle of startup)
Then, the process in the case of starting a stop process in the middle of starting of the electric power generating apparatus 1 is demonstrated. For example, when the stop button of the remote control for controlling the power generation device 1 is pressed when the power generation device 1 is started, the stop processing may start in the middle of the start of the power generation device 1.
 制御部10は、ホットスタートの場合の発電装置1の起動の途中において、改質水を改質器22に供給する前に停止処理開始の指示を受けた場合、改質水を改質器22に供給した後に、停止処理を開始する。これは、停止処理においては、後述のように、ガス供給部32から改質器22にガスを供給する場合があるからである。ホットスタートの場合、改質水を供給していない状態でガスを供給すると炭素析出が起こるが、このように、制御部10が、改質水を改質器22に供給した後に停止処理を開始することにより、炭素析出を抑制することができる。 When the control unit 10 receives an instruction to start stop processing before supplying reforming water to the reformer 22 during start-up of the power generation device 1 in the case of hot start, the reforming water is reformed by the reforming device 22. Start the stop process. This is because in the stop process, as described later, gas may be supplied from the gas supply unit 32 to the reformer 22. In the case of hot start, carbon deposition occurs when the gas is supplied without supplying reforming water. Thus, the control unit 10 starts the stopping process after supplying the reforming water to the reformer 22. By doing this, carbon deposition can be suppressed.
 発電装置1の起動の途中において停止処理を開始する場合の処理について、図3のフローチャートを参照して説明する。 The process in the case of starting a stop process in the middle of starting of the electric power generating apparatus 1 is demonstrated with reference to the flowchart of FIG.
 制御部10は、ホットスタートの場合の発電装置1の起動の途中において、停止処理開始の指示を受けると(ステップS201)、すでに改質水を改質器22に供給しているか否かを判定する(ステップS202)。 When the control unit 10 receives an instruction to start the stop process during start-up of the power generation device 1 in the case of hot start (step S201), the control unit 10 determines whether reforming water has already been supplied to the reformer 22 or not. (Step S202).
 すでに改質水を改質器22に供給している場合(ステップS202のYes)、制御部10は、そのまま発電装置1の停止処理を開始する(ステップS203)。 When reforming water has already been supplied to the reformer 22 (Yes in step S202), the control unit 10 starts the stop processing of the power generation device 1 as it is (step S203).
 まだ改質水を改質器22に供給していない場合(ステップS202のNo)、制御部10は、改質水を改質器22に供給した後に発電装置1の停止処理を開始する(ステップS204)。 When the reforming water has not been supplied to the reformer 22 (No in step S202), the control unit 10 starts the stop process of the power generation device 1 after supplying the reforming water to the reformer 22 (step S204).
(停止処理におけるガスの供給)
 制御部10は、停止処理において、セルスタック24の中心付近の温度が第2の所定温度より大きい場合、ガス供給部32から改質器22にガスを供給する。これは、制御部10は、停止処理において空気供給部36からセルスタック24に空気を供給するが、セルスタック24の中心付近の温度が第2の所定温度以上である場合、セルスタック24の還元極に空気が触れると、再酸化が起こることにより、セルスタック24が劣化するためである。
(Supply of gas in shutdown process)
The control unit 10 supplies gas from the gas supply unit 32 to the reformer 22 when the temperature near the center of the cell stack 24 is higher than the second predetermined temperature in the stop processing. This is because the control unit 10 supplies air from the air supply unit 36 to the cell stack 24 in the stop processing, but when the temperature near the center of the cell stack 24 is equal to or higher than the second predetermined temperature, reduction of the cell stack 24 is performed. When the pole is exposed to air, the cell stack 24 is degraded due to re-oxidation.
 制御部10が、ガス供給部32から改質器22にガスを供給させると、還元極に空気が触れにくくなるため、セルスタック24の劣化を抑制することができる。 When the control unit 10 causes the gas supply unit 32 to supply the gas to the reformer 22, air is less likely to touch the reduction electrode, so that the deterioration of the cell stack 24 can be suppressed.
 なお、制御部10は、セルスタック24の中心付近の温度に限らず、燃料電池付近の任意の所定の位置の温度に基づいて、停止処理時にガスを供給するか否かを判定してよい。第2の所定の温度は、測定場所に応じて、適切な温度を予め設定しておけばよい。 The control unit 10 may determine whether or not to supply gas at the time of the stop processing based on the temperature of any predetermined position near the fuel cell, not limited to the temperature near the center of the cell stack 24. As the second predetermined temperature, an appropriate temperature may be set in advance according to the measurement location.
 発電装置1の停止処理における動作について、図4のフローチャートを参照して説明する。 The operation in the stop processing of the power generation device 1 will be described with reference to the flowchart of FIG. 4.
 制御部10は、停止処理を開始すると、第2温度センサ72から、セルスタック24の中心付近の温度を取得する(ステップS301)。 When the control unit 10 starts the stop processing, the control unit 10 acquires the temperature near the center of the cell stack 24 from the second temperature sensor 72 (step S301).
 制御部10は、セルスタック24の中心付近の温度が第2の所定温度より大きいか否かを判定する(ステップS302)。 The control unit 10 determines whether the temperature near the center of the cell stack 24 is higher than a second predetermined temperature (step S302).
 セルスタック24の中心付近の温度が第2の所定温度より大きい場合(ステップS302のYes)、制御部10は、ガス供給部32から改質器22にガスを供給させる(ステップS303)。 If the temperature near the center of the cell stack 24 is higher than the second predetermined temperature (Yes in step S302), the control unit 10 causes the gas supply unit 32 to supply the gas to the reformer 22 (step S303).
 セルスタック24の中心付近の温度が第2の所定温度以下である場合(ステップS302のNo)、制御部10は、ガス供給部32から改質器22にガスを供給させない(ステップS304)。 If the temperature near the center of the cell stack 24 is equal to or lower than the second predetermined temperature (No in step S302), the control unit 10 does not supply gas from the gas supply unit 32 to the reformer 22 (step S304).
[制御装置を外部に有する構成]
 本開示の実施形態は、図1に示す発電装置1の制御部10及び記憶部12に相当する機能ブロックを、発電装置1の外部に有する構成として実現することもできる。このような実施形態の一例を図5に示す。図5に示す例においては、発電装置1を外部から制御する制御装置2は、制御部10と、記憶部12とを備える。図5に示す制御装置2の制御部10及び記憶部12の機能は、図1に示す発電装置1の制御部10及び記憶部12の機能とそれぞれ同等である。
[Configuration having control device outside]
The embodiment of the present disclosure can also be realized as a configuration in which functional blocks corresponding to the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG. 1 are provided outside the power generation device 1. An example of such an embodiment is shown in FIG. In the example illustrated in FIG. 5, the control device 2 that controls the power generation device 1 from the outside includes a control unit 10 and a storage unit 12. The functions of the control unit 10 and the storage unit 12 of the control device 2 shown in FIG. 5 are respectively equivalent to the functions of the control unit 10 and the storage unit 12 of the power generation device 1 shown in FIG.
 また、本開示の実施形態は、例えば、図5に示す制御装置2に実行させる制御プログラムとして実現することもできる。 Further, the embodiment of the present disclosure can also be realized as, for example, a control program that is executed by the control device 2 illustrated in FIG.
 本発明を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。したがって、これらの変形及び修正は本発明の範囲に含まれることに留意されたい。例えば、各機能部、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部及びステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本発明の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, each functional unit, each means, the functions included in each step, and the like can be rearranged so as not to be logically contradictory, and a plurality of functional units and steps are combined or divided into one. It is possible. Moreover, each embodiment of the present invention mentioned above is not limited to carrying out faithfully to each embodiment described respectively, and combines each feature suitably, or carries out by omitting a part. It can also be done.
 以上の開示においては、本実施形態として、SOFCとするセルスタック24を備える発電装置1について説明した。しかしながら、上述したように、本実施形態に係る発電装置1は、SOFCを備えるものに限定されず、例えばモジュールのないPEFCなど、各種の燃料電池を備えるものとすることができる。本開示において「燃料電池」とは、例えば発電システム、発電ユニット、燃料電池モジュール、ホットモジュール、セルスタック、又はセルなどを意味する。また、本開示における「燃料電池」は、燃料電池車に搭載される燃料電池であってもよい。 In the above disclosure, the power generation device 1 including the cell stack 24 that is SOFC has been described as the present embodiment. However, as described above, the power generation device 1 according to the present embodiment is not limited to one including an SOFC, and may include various fuel cells such as a PEFC without a module. In the present disclosure, “fuel cell” means, for example, a power generation system, a power generation unit, a fuel cell module, a hot module, a cell stack, or a cell. In addition, the “fuel cell” in the present disclosure may be a fuel cell mounted on a fuel cell vehicle.
 1 発電装置
 2 制御装置
 10 制御部
 12 記憶部
 20 燃料電池モジュール
 22 改質器
 24 セルスタック
 26 着火ヒータ(着火装置)
 32 ガス供給部
 34 改質水供給部
 36 空気供給部
 40 インバータ
 42 燃焼触媒
 44 燃焼触媒ヒータ
 50 排熱回収処理部
 52 循環水処理部
 60 貯湯タンク
 71 第1温度センサ
 72 第2温度センサ
 80 気泡センサ
 85 配管
 100 負荷
 200 商用電源
DESCRIPTION OF SYMBOLS 1 electric power generation apparatus 2 control apparatus 10 control part 12 memory | storage part 20 fuel cell module 22 reformer 24 cell stack 26 ignition heater (ignition apparatus)
32 gas supply unit 34 reforming water supply unit 36 air supply unit 40 inverter 42 combustion catalyst 44 combustion catalyst heater 50 exhaust heat recovery processing unit 52 circulating water processing unit 60 hot water storage tank 71 first temperature sensor 72 second temperature sensor 80 air bubble sensor 85 Piping 100 Load 200 Commercial Power Supply

Claims (9)

  1.  原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、
     前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、
     制御部と、を備える発電装置であって、
     前記制御部は、前記発電装置の起動時に、
      前記発電装置内の所定の位置の温度が第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給し、
      前記発電装置内の前記所定の位置の温度が前記第1の所定温度未満である場合、前記改質器に、前記原燃料ガスを供給した後に前記改質水を供給する、発電装置。
    A reformer which is supplied with raw fuel gas and reforming water to generate fuel gas;
    A fuel cell generating electricity using the fuel gas supplied from the reformer;
    A control unit;
    The control unit is configured to start up the power generation device.
    When the temperature of a predetermined position in the power generation apparatus is equal to or higher than a first predetermined temperature, the reforming water is supplied to the reformer before the raw fuel gas is supplied;
    A power generator, wherein the reformed water is supplied after supplying the raw fuel gas to the reformer when the temperature of the predetermined position in the power generator is less than the first predetermined temperature.
  2.  請求項1に記載の発電装置において、
     前記改質器に供給される前記改質水の中の気泡を検出する気泡センサを更に備え、
     前記制御部は、前記発電装置の起動時に、前記発電装置内の前記所定の位置の温度が前記第1の所定温度以上である場合、少なくとも、前記気泡センサから前記改質器までの配管の容積に相当する前記改質水を供給可能な時間だけ早く、前記原燃料ガスの供給を開始する前に前記改質水の供給を開始する、発電装置。
    In the power generation device according to claim 1,
    It further comprises a bubble sensor for detecting bubbles in the reforming water supplied to the reformer,
    When the temperature of the predetermined position in the power generation device is equal to or higher than the first predetermined temperature when the power generation device is started, the control unit at least determines the volume of the pipe from the air bubble sensor to the reformer A power generator, wherein the supply of the reforming water is started before the supply of the raw fuel gas is started as early as the time in which the reforming water corresponding to the above can be supplied.
  3.  請求項1又は2に記載の発電装置において、
     前記燃料電池より排出される燃料ガスを着火する着火装置をさらに含み、
     前記制御部は、前記発電装置の起動時に前記発電装置の着火に失敗した場合、前記原燃料ガス及び前記改質水の供給を停止する、発電装置。
    In the power generation device according to claim 1 or 2,
    An ignition device for igniting a fuel gas discharged from the fuel cell;
    The power generation device, wherein the control unit stops the supply of the raw fuel gas and the reformed water when the ignition of the power generation device fails at startup of the power generation device.
  4.  請求項3に記載の発電装置において、
     前記制御部は、前記発電装置の着火に失敗した後に再度着火処理を実行する際、前記発電装置内の前記所定の位置の温度が前記第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給する、発電装置。
    In the power generator according to claim 3,
    When the control unit executes the ignition process again after failing to ignite the power generation device, if the temperature of the predetermined position in the power generation device is equal to or higher than the first predetermined temperature, the reformer A power generator for supplying the reforming water before supplying the raw fuel gas;
  5.  請求項4に記載の発電装置において、
     前記制御部は、前記着火処理を所定回数失敗すると、前記発電装置の起動処理を停止する、発電装置。
    In the power generator according to claim 4,
    The power generation device, wherein the control unit stops the start processing of the power generation device when the ignition processing fails a predetermined number of times.
  6.  請求項1から5のいずれか一項に記載の発電装置において、
     前記制御部は、前記発電装置の起動時に、前記改質器に前記改質水を供給する前に停止処理を開始する場合、前記改質水を供給した後に停止処理を行う、発電装置。
    The power generation apparatus according to any one of claims 1 to 5.
    The power generation device, wherein the control unit performs stop processing after supplying the reforming water, when starting the stop processing before supplying the reforming water to the reformer when starting the power generation device.
  7.  請求項6に記載の発電装置において、
     前記制御部は、前記停止処理において、前記燃料電池付近の温度が第2の所定温度より大きい場合、前記改質器に前記原燃料ガスを供給する、発電装置。
    In the power generation device according to claim 6,
    The control unit is configured to supply the raw fuel gas to the reformer when the temperature in the vicinity of the fuel cell is higher than a second predetermined temperature in the stop process.
  8.  原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する制御装置であって、
     前記発電装置の起動時に、
      前記発電装置内の所定の位置の温度が第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給し、
      前記発電装置内の前記所定の位置の温度が前記第1の所定温度未満である場合、前記改質器に、前記原燃料ガスを供給した後に前記改質水を供給する、制御装置。
    Control device for controlling a power generation apparatus, comprising: a reformer supplied with raw fuel gas and reforming water to generate a fuel gas; and a fuel cell generating electricity using the fuel gas supplied from the reformer And
    At the start of the generator,
    When the temperature of a predetermined position in the power generation apparatus is equal to or higher than a first predetermined temperature, the reforming water is supplied to the reformer before the raw fuel gas is supplied;
    The control device, wherein the reforming water is supplied to the reformer after the raw fuel gas is supplied, when the temperature of the predetermined position in the power generation device is lower than the first predetermined temperature.
  9.  原燃料ガス及び改質水を供給されて燃料ガスを生成する改質器と、前記改質器から供給される前記燃料ガスを用いて発電する燃料電池と、を備える発電装置を制御する制御装置に、
     前記発電装置の起動時に、前記発電装置内の所定の位置の温度が第1の所定温度以上である場合、前記改質器に、前記原燃料ガスを供給する前に前記改質水を供給するステップと、
     前記発電装置の起動時に、前記発電装置内の前記所定の位置の温度が前記第1の所定温度未満である場合、前記改質器に、前記原燃料ガスを供給した後に前記改質水を供給するステップと、を実行させる制御プログラム。
    Control device for controlling a power generation apparatus, comprising: a reformer supplied with raw fuel gas and reforming water to generate a fuel gas; and a fuel cell generating electricity using the fuel gas supplied from the reformer To
    When the temperature of a predetermined position in the power generation device is equal to or higher than a first predetermined temperature at the time of starting the power generation device, the reforming water is supplied to the reformer before the raw fuel gas is supplied. Step and
    When the temperature of the predetermined position in the power generation device is less than the first predetermined temperature when the power generation device is started, the reformer is supplied with the raw fuel gas and then the reformed water is supplied. And a control program to execute.
PCT/JP2018/025100 2017-07-27 2018-07-02 Power generation device, control device, and control program WO2019021751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532466A JPWO2019021751A1 (en) 2017-07-27 2018-07-02 Power generation device, control device, and control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145869 2017-07-27
JP2017-145869 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021751A1 true WO2019021751A1 (en) 2019-01-31

Family

ID=65040117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025100 WO2019021751A1 (en) 2017-07-27 2018-07-02 Power generation device, control device, and control program

Country Status (2)

Country Link
JP (1) JPWO2019021751A1 (en)
WO (1) WO2019021751A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201818A (en) * 2020-08-28 2021-01-08 广西玉柴机器股份有限公司 Control strategy for protecting electric pile in cold start failure of fuel cell system
JP7439622B2 (en) 2020-04-02 2024-02-28 株式会社アイシン fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044621A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell power generation device and its operation method
JP2005170784A (en) * 2003-11-20 2005-06-30 Matsushita Electric Ind Co Ltd Hydrogen generator, method of operating hydrogen generator and fuel cell power system
JP2005317405A (en) * 2004-04-30 2005-11-10 Kyocera Corp Operation method of fuel cell structure
JP2012069390A (en) * 2010-09-24 2012-04-05 Toto Ltd Fuel cell system
JP2014101257A (en) * 2012-11-21 2014-06-05 Toshiba Fuel Cell Power Systems Corp Fuel treatment apparatus and operational method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044621A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell power generation device and its operation method
JP2005170784A (en) * 2003-11-20 2005-06-30 Matsushita Electric Ind Co Ltd Hydrogen generator, method of operating hydrogen generator and fuel cell power system
JP2005317405A (en) * 2004-04-30 2005-11-10 Kyocera Corp Operation method of fuel cell structure
JP2012069390A (en) * 2010-09-24 2012-04-05 Toto Ltd Fuel cell system
JP2014101257A (en) * 2012-11-21 2014-06-05 Toshiba Fuel Cell Power Systems Corp Fuel treatment apparatus and operational method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439622B2 (en) 2020-04-02 2024-02-28 株式会社アイシン fuel cell system
CN112201818A (en) * 2020-08-28 2021-01-08 广西玉柴机器股份有限公司 Control strategy for protecting electric pile in cold start failure of fuel cell system

Also Published As

Publication number Publication date
JPWO2019021751A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
KR20030012932A (en) Fuel cell system
JP2012038689A (en) Operation method of fuel cell
EP2605320A1 (en) Fuel cell system and operating method for same
WO2019021751A1 (en) Power generation device, control device, and control program
JPWO2012132181A1 (en) Fuel cell system and operation method thereof
JP6495563B1 (en) Power generation device, control device, and control program
JP7005628B2 (en) Power generators, controls and control programs
JP6765340B2 (en) Power generator, control device and control program
JP2019009069A (en) Power generation device, control device and control program
JP2018206480A (en) Power generation apparatus, control unit, and control program
JP5853154B2 (en) Hydrogen generator, fuel cell system including the same, method of operating hydrogen generator, and method of operating fuel cell system
JP2011210637A (en) Fuel cell system
JP6912928B2 (en) Power generators, controls, and control programs
JP2019009063A (en) Power generation device, control device, and control program
JP2009081112A (en) Operation method of fuel cell power generation device and fuel cell power generation device
WO2018199251A1 (en) Power generating device, control device, and control program
WO2018216811A1 (en) Electric generation device, control device, and control program
JP6803547B2 (en) How to operate high temperature operation type fuel cell system and high temperature operation type fuel cell system
JP6606665B2 (en) Fuel cell system and operation method thereof
JP2019009066A (en) Power generation device, control device, and control program
JP2019040663A (en) Power generation device, control device, and control program
JP2019036487A (en) Power generator, controller, and control program
WO2019087833A1 (en) Fuel cell apparatus, control device, and control program
JP2016157571A (en) Solid oxide fuel battery
WO2019003942A1 (en) Power generation apparatus, control apparatus, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837788

Country of ref document: EP

Kind code of ref document: A1