JP2005169703A - 光学ヘッド及びその制御装置 - Google Patents
光学ヘッド及びその制御装置 Download PDFInfo
- Publication number
- JP2005169703A JP2005169703A JP2003410112A JP2003410112A JP2005169703A JP 2005169703 A JP2005169703 A JP 2005169703A JP 2003410112 A JP2003410112 A JP 2003410112A JP 2003410112 A JP2003410112 A JP 2003410112A JP 2005169703 A JP2005169703 A JP 2005169703A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- data
- shift register
- register
- scanning direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
- Electroluminescent Light Sources (AREA)
- Facsimile Heads (AREA)
Abstract
【課題】 多重露光方式で感光体に潜像を形成する光学ヘッドをより高速に駆動する。
【解決手段】 所定方向に配列した複数の発光素子79と、1画素分のデータを受信しストアするストア手段70と、前記複数の発光素子にそれぞれ対応する複数のレジスタを有するシフトレジスタ71であって、前記ストア手段にストアされたデータを受信し、各レジスタのデータを順次シフトするシフトレジスタと、前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路78と、を備え、前記所定方向に配列した複数の発光素子を順次発光させ、1画素を多重露光する。
【選択図】 図8
【解決手段】 所定方向に配列した複数の発光素子79と、1画素分のデータを受信しストアするストア手段70と、前記複数の発光素子にそれぞれ対応する複数のレジスタを有するシフトレジスタ71であって、前記ストア手段にストアされたデータを受信し、各レジスタのデータを順次シフトするシフトレジスタと、前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路78と、を備え、前記所定方向に配列した複数の発光素子を順次発光させ、1画素を多重露光する。
【選択図】 図8
Description
本発明は、電子写真方式のプリンタや複写機などにおける感光体に、多重露光方式で潜像を形成する光学ヘッド及びその制御装置に関する。
プリンタや複写機などの画像形成装置においては、予め帯電させた感光体上に静電潜像を形成するために所定パターンの露光光を高速に照射する光学ヘッドが用いられている。
特開昭61−182966号公報は、発光素子を副走査方向に複数並べ、感光体の同一位置に複数回記録することで、発光出力の低い発光素子を用いても1回の発光時間を長期化することなく印字の高速化を実現する画像形成装置を開示している。
この画像形成装置は、m×n個の画像データを記憶する記憶手段を有し、(A)m個の画像データ1列分を記憶手段へ入力、(B)記憶手段に記憶されている画像データにより記録アレイヘッドを点灯し、感光ドラムに静電潜像を記録、(C)記憶手段内の1列分の画像データを次の列にシフト、というステップをn回繰り返すことにより、n回の多重露光を実現している。
しかし、上記特開昭61−182966号公報の画像形成装置では、上記(A)においてm個の画像データ1列分を記憶手段に入力している間は、(B)の画像データを用いた点灯をすることができない。このため、高速印字はなお十分に実現できているとは言えない。
そこで、本発明は上述の問題点を解決し、多重露光方式で感光体に潜像を形成する光学ヘッドをより高速に駆動することのできる制御装置及びこれを用いた光学ヘッドを提供することを課題とする。
上記の課題を解決するため、本発明の制御装置は、所定方向に配列した複数の発光素子を順次発光させ、1画素を多重露光する光学ヘッドの制御装置であって、1画素分のデータを受信しストアするストア手段と、前記複数の発光素子にそれぞれ対応する複数のレジスタを有するシフトレジスタであって、前記ストア手段にストアされたデータを受信し、各レジスタのデータを順次シフトするシフトレジスタと、前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、を備えている。
シフトレジスタの各レジスタのデータに基づき発光させている間に、次の画素のデータを受信しストアすることができるので、ストアに要する時間をロスすることなく、多重露光方式の光学ヘッドを高速に駆動することができる。
本発明の他の制御装置は、副走査方向に配列した発光素子群を主走査方向に更に複数配列してなる発光素子マトリクスの各発光素子を前記副走査方向に順次発光させ、前記主走査方向に配置される複数の画素をそれぞれ多重露光する光学ヘッドの制御装置であって、画素データを1画素分ずつ受信して前記主走査方向に配置される前記複数の画素に対応するデータをストアするストア手段と、前記主走査方向に配置される前記複数の画素にそれぞれ対応する複数のシフトレジスタからなるシフトレジスタ群であって、各シフトレジスタは前記副走査方向に配列した前記発光素子群にそれぞれ対応する複数のレジスタを有し、前記ストア手段にストアされた各画素のデータを各シフトレジスタが受信し、各シフトレジスタ内で各レジスタのデータを順次シフトするシフトレジスタ群と、前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、を備えている。
主走査方向に複数の画素を備えているので、ストア手段にストアするための時間が長時間必要となるが、シフトレジスタの各レジスタのデータに基づき発光させている間に、次の画素のデータを受信しストアすることができるので、ストアに要する時間をロスすることなく、多重露光方式の光学ヘッドを高速に駆動することができる。
上記駆動装置において、前記発光素子は、発光開始信号の受信から発光終了信号の受信まで発光状態を継続させる素子駆動回路により駆動され、各発光素子の素子駆動回路に対する発光開始信号及び発光終了信号は、それぞれ時分割信号により伝達されることが望ましい。
これにより、所定方向あるいは副走査方向に配列した複数の発光素子を同一時点において発光状態とすることができ、しかも上記のようにストアに要する時間をロスすることがないので、多重露光方式の光学ヘッドを高速に駆動することができる。
上記駆動装置において、前記素子駆動回路は、複数の第1信号線及びこれと交差する第2信号線を備え、第1信号線をアクティブにしたときの第2信号線のON/OFFにより、両信号線の交点に位置する発光素子の発光開始/終了を為すように構成されてなり、前記第2信号線のON又はOFFと、前記第1信号線へのアクティブ信号出力とを同期させ、かつ第2信号線を共通にする他の素子駆動回路への第1信号線へのアクティブ信号出力時期をずらして、各発光素子の発光開始/終了を制御することが望ましい。
これにより、時分割制御によるアクティブ・マトリクス駆動を実現し、多重露光方式の光学ヘッドを高速に駆動することができる。
上記駆動装置において、前記シフトレジスタ内の各レジスタのデータと、各レジスタと同一ビット数のカウンタの出力とを比較して結果を前記第2信号線に出力するコンパレータを更に備え、前記カウンタは、第2信号線を共通にする他の素子駆動回路との間で共通とし、前記カウンタの周期を、前記複数の第1信号線へのアクティブ信号の出力時期のずれより長くすることが望ましい。
これにより、カウンタを多く設ける必要がなく、回路構成を単純化するとともに、時分割駆動を実現して多重露光方式の光学ヘッドを高速に駆動することができる。
上記駆動装置において、前記コンパレータは、第2信号線を共通にする他の素子駆動回路との間で共通とし、前記各レジスタのデータ取得及びカウンタとの比較を、前記第1信号線へのアクティブ信号出力とを同期させることが望ましい。
これにより、コンパレータを多く設ける必要がなく、回路構成を単純化するとともに、時分割駆動を実現して多重露光方式の光学ヘッドを高速に駆動することができる。
本発明の光学ヘッドは、所定方向に配列した複数の発光素子と、1画素分のデータを受信しストアするストア手段と、前記複数の発光素子にそれぞれ対応する複数のレジスタを有するシフトレジスタであって、前記ストア手段にストアされたデータを受信し、各レジスタのデータを順次シフトするシフトレジスタと、前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、を備え、前記所定方向に配列した複数の発光素子を順次発光させ、1画素を多重露光する。
シフトレジスタの各レジスタのデータに基づき発光させている間に、次の画素のデータを受信しストアすることができるので、ストアに要する時間をロスすることなく、多重露光方式の光学ヘッドを高速に駆動することができる。
本発明の他の光学ヘッドは、副走査方向に配列した発光素子群を主走査方向に更に複数配列してなる発光素子マトリクスと、画素データを1画素分ずつ受信して前記主走査方向に配置される前記複数の画素に対応するデータをストアするストア手段と、前記主走査方向に配置される前記複数の画素にそれぞれ対応する複数のシフトレジスタからなるシフトレジスタ群であって、各シフトレジスタは前記副走査方向に配列した前記発光素子群にそれぞれ対応する複数のレジスタを有し、前記ストア手段にストアされた各画素のデータを各シフトレジスタが受信し、各シフトレジスタ内で各レジスタのデータを順次シフトするシフトレジスタ群と、前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、を備え、前記副走査方向に配列した各発光素子を前記副走査方向に順次発光させ、前記主走査方向に配置される複数の画素をそれぞれ多重露光する。
主走査方向に複数の画素を備えているので、ストア手段にストアするための時間が長時間必要となるが、シフトレジスタの各レジスタのデータに基づき発光させている間に、次の画素のデータを受信しストアすることができるので、ストアに要する時間をロスすることなく、多重露光方式の光学ヘッドを高速に駆動することができる。
以下、図面を参照しつつ発明の実施の形態について説明する。なお、以下においては、まず本発明に係る有機ELアレイ露光ヘッド、及び有機ELアレイ露光ヘッドチップの構造を説明し、その後に、本発明に係る有機ELアレイ露光ヘッドを用いて露光時間制御と多重露光制御を行う場合の動作について説明する。
<1.有機ELアレイ露光ヘッドの全体構成>
図1は本発明に係る有機ELアレイ露光ヘッドを上から見た平面図であり、図中、記号1は有機ELアレイ露光ヘッドチップ(以下、単にヘッドチップと記す)、記号2は有機ELアレイ露光ヘッド(以下、単に露光ヘッドと記す)、記号3はプリンタコントローラ(図示せず)からのデータを受信するためのコネクタ、記号34はコネクタ3及びヘッドチップ1を実装する基板であり、例えば、ガラス布基材エポキシ樹脂積層板を用いることができる。
図1は本発明に係る有機ELアレイ露光ヘッドを上から見た平面図であり、図中、記号1は有機ELアレイ露光ヘッドチップ(以下、単にヘッドチップと記す)、記号2は有機ELアレイ露光ヘッド(以下、単に露光ヘッドと記す)、記号3はプリンタコントローラ(図示せず)からのデータを受信するためのコネクタ、記号34はコネクタ3及びヘッドチップ1を実装する基板であり、例えば、ガラス布基材エポキシ樹脂積層板を用いることができる。
基板34は主走査方向を長軸とする矩形の形状をしており、その主走査方向の一方の端部にはプリンタコントローラからのデータを受信するためのコネクタ3が実装され、その他の部分には、複数個のヘッドチップ1が主走査方向に実装されている。なお、図1には示していないが、各ヘッドチップ1はコネクタ3と電気的に接続されている。
図1では、複数個のヘッドチップ1は2列千鳥状に配置されている。即ち、ヘッドチップ1は副走査方向に2列に配置され、第1の列には、複数個のヘッドチップ1が、ヘッドチップ1の主走査方向長さより若干狭い間隔をおいて配置され、第2の列では、複数個のヘッドチップ1が、第1の列のヘッドチップ1が配置されていない個所に、第1の列と同じ間隔で配置されている。なお、この間隔については後述する。また、以下、列方向とは副走査方向を意味するものとする。
基板34の上に何個のヘッドチップ1を実装するかは、ヘッドチップ1に形成される主走査方向の有機EL発光部(以下、単に発光部と記す)の個数、主走査方向の最大画像形成長さ等に基づいて決定すればよい。例えば、1個のヘッドチップ1には主走査方向に192個の発光部を形成するものとすると、A4サイズの用紙に600dpiの解像度での画像形成を可能とする場合、40個のヘッドチップ1を、基板34に2列千鳥状に配置すればよい。
図2は、基板34に実装された状態におけるヘッドチップ1の一つを示す図であり、図2(a)はその平面図であり、図2(b)はその長軸方向での断面図であり、図2において、5はヘッドチップ1側のボンディングパッド、6は基板34側のボンディングパッド、7はボンディングワイヤ、8はヘッドチップ1側の位置決め用パッド、9は基板34側の位置決め用パッド、19は集光レンズアセンブリ28の光導穴、26は有機ELアレイアセンブリ(以下、単にアレイアセンブリと記す)27に形成されている発光部の発光を制御するためのドライバIC、27はアレイアセンブリ、28は集光レンズアセンブリ、30は集光レンズアセンブリ28側の位置決め用パッド、32はダイスボンド材、33は紫外線(UV)硬化樹脂接着剤、35は異方導電性接着剤を示し、図1と同じものについては同一の符号を付している。なお、図2(a)、(b)では中央部については詳細を省略している。
ヘッドチップ1は、一番下にドライバIC26があり、その直上にアレイアセンブリ27が設けられ、更にその直上に集光レンズアセンブリ28が設けられた構成であり、このヘッドチップ1は基板34にダイスボンド材32で固定されている。このようなヘッドチップ1を基板34に固定する際のヘッドチップ1と基板34の位置決めは、ヘッドチップ1側の位置決め用パッド8と、基板34側の位置決め用パッド9により行う。即ち、図2(a)に示すように、基板34のヘッドチップ1を固定する位置には、2つの位置決め用パッド9が略ヘッドチップ1の主走査方向長さの間隔で形成されており、また、ヘッドチップ1、具体的にはドライバIC26の主走査方向の両端には、基板34側の位置決め用パッド9に対向するように位置決め用パッド8が形成されており、基板34側の位置決め用パッド9に、ヘッドチップ1側の位置決め用パッド8を対向させるようにして固定するのである。
ヘッドチップ1は、ドライバIC26の直上にアレイアセンブリ27が異方導電性接着剤35により接着され、更にアレイアセンブリ27の直上に集光レンズアセンブリ28がUV硬化樹脂接着剤33により接着された構造となっている。図2(b)に示すように、アレイアセンブリ27の主走査方向長さ及び副走査方向幅と、集光レンズアセンブリ28の主走査方向長さ及び副走査方向幅はそれぞれ略同じであり、ドライバIC26の主走査方向長さはアレイアセンブリ27及び集光レンズアセンブリ28の主走査方向長さより長くなっている。ドライバIC26の副走査方向幅はアレイアセンブリ27及び集光レンズアセンブリ28の副走査方向幅と略同じである。
ドライバIC26、アレイアセンブリ27、そして集光レンズアセンブリ28の接着の順序は後述する通り、先ずドライバIC26に対してアレイアセンブリ27の取付位置決めを行って接着し、次に、そのアレイアセンブリ27の上に、集光レンズアセンブリ28をドライバIC26に対して取付位置決めを行って接着する。
ドライバIC26の両端であって、アレイアセンブリ27が接着される部分以外の部分には、所定個数のワイヤボンディングパッド5が形成され、また、基板34にはワイヤボンディングパッド5と同数のワイヤボンディングパッド6が形成されており、ドライバIC26のワイヤボンディングパッド5は、それぞれ、対応する基板34側のワイヤボンディングパッド6とボンディングワイヤ7により電気的に接続される。
この基板34側のワイヤボンディングパッド6は、図1に示すコネクタ3からドライバIC26に対する種々の信号の供給、あるいは電源回路(図示せず)からドライバIC26への電源電圧や接地電位の供給等をおこなうために設けられているものである。ワイヤボンディングパッド6と、コネクタ3や電源回路との接続は、例えば、予め基板34にそのための配線パターン(図示せず)を形成しておけばよい。
なお、図2では、ワイヤボンディングパッド5、6は20対設けられているが、何対のワイヤボンディングパッドを設けるかは、ドライバIC26に供給する信号の数等に基づいて適宜決定すればよい。
さて、集光レンズアセンブリ28には、光導穴19が複数列に形成されている。即ち、光導穴19は主走査方向に所定個数形成され、それが副走査方向に複数列形成されている。ここで、光導穴19は、アレイアセンブリ27に形成される発光部と一対一に対応して形成されている。即ち、図2(a)では、各光導穴19の直下に発光部が形成されているものとする。
光導穴19を主走査方向に何個形成するか、即ちアレイアセンブリ27に主走査方向に何個の発光部を形成するかは要求される解像度によって定めればよい。本例では、上述の通り主走査方向に192個の光導穴及び発光部が形成されている。この192個のうち奇数番目の光導穴及び発光部は副走査方向の1列目に配置され、192個のうち偶数番目の光導穴及び発光部は副走査方向の2列目に配置されており、以下同様に192×4個の光導穴及び発光部が、計8列千鳥状に1個のヘッドチップ1に形成されている。なお、光導穴及び発光部を副走査方向に何列配置するかは発光部の発光光量等に基づいて定めれば良く、また、千鳥状ではなく、整列格子状に配置しても良い。
更に、図2(a)に示すように発光部及び光導穴19を千鳥状に形成した場合、要求される解像度によっては、形成する画像の1ラインの露光を1列の光導穴19の列だけで行うようにすることもできる。しかし、解像度の観点からは、1列目と2列目の発光部及び光導穴19によって画像の一つのラインの露光を行い、3列目と4列目の発光部及び光導穴19によって隣のラインの露光を行うというように、2列千鳥状に配置された発光部及び光導穴19によって、画像の1ラインの露光を行うようにするのが望ましいものである。図2(a)に示す場合、前者によれば画像の8ラインの露光を行うことができ、後者によれば画像の4ラインの露光を行うことができる。
ところで、図1に示すようにヘッドチップ1を2列千鳥状に配置する場合における各列毎のヘッドチップ1の間隔について、図3を参照して説明すると次のようである。図3において、4aは図1の第1の列の一つのヘッドチップ1の1列目の発光部を示し、4bは当該ヘッドチップ1の最右端の発光部を示し、当該ヘッドチップ1と千鳥的に配置される第2の列のヘッドチップ1の1列目の発光部を示すものとすると、発光部4bと発光部4cとは、主走査方向に、各列における発光部の間隔と同じ間隔だけ離して配置する。このような配置により、ヘッドチップ1を千鳥的に配置した個所においても、主走査方向の画素の間隔は一定なものとなる。
また、図3に示すように、発光部4aと発光部4cとは、副走査方向には、発光部の列の16列分だけ離して配置する。この16列分のズレは、例えば、印刷画像データをプリンタコントローラで生成し、当該露光ヘッド2に出力する適当な過程において、画像データの出力順序の処理を行うことにより解決することができる。
ヘッドチップ1は、以上のような配置となるように、2列千鳥状に基板34に固定していくのである。
以上が露光ヘッド2の全体的な構造の説明であるが、以下、各部について説明する。まず、基板34については、上述した通り、絶縁性の材料、例えばガラス布基材エポキシ樹脂積層板で構成することができ、所定の箇所に、ヘッドチップ1を固定する際の位置決めを行うための位置決め用パッド9、ワイヤボンディングパッド6が形成されており、その端部にはコネクタ3が設けられている。
図4(a)は、集光レンズアレイアセンブリ4における有機EL素子の配列に関し、図2の一部を拡大した平面図である。記号19は、光導穴であり、記号13は、集光レンズである。集光レンズの直下には、有機ELの発光部がある。
この有機ELプリントヘッドの主軸方向の解像度を600dpiであるとすると、発光部のピッチAは1/600(inch)であり、主軸方向の同じライン上の発光部ピッチは2Aとなり、1/300(inch)である。また、副軸方向の発光部発光シフト速度が紙送り速度と一致する場合、発光部ピッチBはB=Aとなる。有機ELアレイはこのような構成で副軸方向に千鳥状に複数列配置される。
図4(b)は、図4(a)の構成の有機ELプリントヘッドで感光体に照射したときの結果を示す平面図であり、主軸および副軸方向に600dpiのピッチ(A=B)で露光した状態を示す。
図5は、図4(a)に対する変形例に係る有機EL素子の配列を示す平面図である。この例は、印刷結果としては主軸方向、副軸方向共に600dpiとなるが、有機ELヘッドの発光部ピッチとしては、主軸方向と副軸方向でピッチが異なる一例(A≠C)を示す。つまり、紙送り速度が、副軸方向の発光部発光シフト速度よりも早い場合の有機EL素子の配列を示すものであるが、感光体に照射したときの露光結果は、図4(b)と同様に主軸および副軸方向に600dpiのピッチ(A=B)で露光される場合の有機ELプリントヘッドの発光部の位置関係を示す。
<2.露光制御回路>
図6は、タンデムプリンタ内部における画像データの経路を中心とした、タンデム方式プリンタの露光制御回路の構成例を示す。本図において、画像データの流れを追いながら各部の機能を説明する。
図6は、タンデムプリンタ内部における画像データの経路を中心とした、タンデム方式プリンタの露光制御回路の構成例を示す。本図において、画像データの流れを追いながら各部の機能を説明する。
まず、プリンタコントローラ64で画像処理されたCMYKそれぞれの画像データは、画像データ送信部65でパラレル→シリアル変換され、CMYKのLVDS SERDES信号66としてプリンタエンジン側のヘッド制御部68にあるCMYKそれぞれの有機ELプリントヘッド2へ送られる。露光ヘッド2には、所定個数のドライバIC26がデイジーチェーン状に接続されていて、主走査方向の1ライン分の画像データを各ドライバICが分割受信し、シリアル→パラレル変換され、ドライバIC内部のシフトレジスタに順次保持される。その後は、プリンタメカの印刷動作に同期して、有機EL素子を画像データの階調値に合わせてON/OFF制御する。
記号2aは、シアン(C)用のプリントヘッドであり、同様に、記号2bはマゼンタ(M)、記号2cはイエロー(Y)、記号2dはブラック(K)用のプリントヘッドである。
図7は、有機ELアレイ露光ヘッド2の制御回路構成を示す。有機ELアレイ露光ヘッド2には、図7に示すように主走査方向に所定個数のドライバIC26が基板上に実装していて、個々のドライバIC26が、主走査方向、および副走査方向の画素のある1ブロックを制御/駆動する構成となっている。
データ制御用ライン57は、主走査方向に所定個数のドライバIC26を同じ信号ラインで結び、プリンタコントローラから送られてくる1ライン毎の印刷データを割り付けられたドライバICに送り込むための信号ラインである。
電源用ライン58は、主走査方向に所定個数配置されたドライバIC26に電力を供給する電力供給ラインである。
データ制御用ライン57と電源用ライン58は、図7に示すように、いずれもドライバICに並列接続される。
図8は、有機ELアレイドライバIC(ドライバIC26)の回路構成を示す。露光ヘッド1には主走査方向の印刷幅をカバーする所定個数のドライバICが実装される。本図では、ドライバIC1個で192個の有機EL素子を制御し、ドライバICの数は40個の構成としているが、これは任意である。記号27は、有機ELアレイであり、ドライバICが受け持つ有機ELアレイの構成をわかり易くするために記したものである。本図の場合、副走査方向に4個並んだ有機EL素子を制御するドライバICの回路構成となっているがこの数も必要に応じて任意である。以下、信号の流れに沿って各部の構成と機能を説明する。なお、動作タイミングに関しては、図13から図16で説明する。
記号47は、データ入力ラインであり、図6に示すように5組の差動信号配線66により、プリンタコントローラ側の画像データ送信部65に繋がっている。また、ドライバIC内部では、有機ELアレイ露光ヘッドチップ1に接続されている。
記号48は、電源ライン用パッドであり、複数の端子のうち半分がVDDであり、半分がGNDである。
アドレス設定用パッド63は、個々のドライバICのアドレスを設定するもので、図6、図7に示すところでは、40個のドライバICを搭載した場合であるので、40個の組み合わせを作ることになる。この組み合わせは、配線基板上でこのアドレス設定用パッド63をデジタル的に1または0に設定することにより決めることができる。タイミングコントローラは制御ラインのSP(P/N)信パルス号の数をカウントして、この設定されたアドレスと比較し、合致したときにデータを取り込む。
記号69は、タイミングコントローラを示す。データ入力ライン47から入力した発光時間データ(階調データ)は、タイミングコントローラ入力部にあるデシリアライザ(図示しない)でシリアルデータから6ビットのパラレルデータに変換して、図8では、192個のレジスタが図示右方向に延びるところのシフトレジスタ70(o,e)にクロック同期で順次送られる。このシフトレジスタ70(o,e)が本発明のストア手段に相当する。本例におけるシフトレジスタ70(o,e)の192個のレジスタには、1画素あたり6ビットの発光時間データが192画素分(主走査方向の1ライン分)ストアされる。
シフトレジスタ71(o,e)は、ストア手段であるシフトレジスタ70(o,e)の192個のレジスタに対応して、計192個設けられている。各々のシフトレジスタ71(o,e)は、副走査方向に連なる有機ELアレイ8に対応した4個のレジスタを持っている。
シフトレジスタ70(o,e)の192個のレジスタからは、シフトレジスタ71(o,e)に対し、それぞれ6ビットの発光時間データが出力される。また、タイミングコントローラ69は、シフトレジスタ71(o,e)のシフト・タイミングを制御するSHIFT CLK信号とSRn(o,e)信号の提供と、有機EL素子駆動回路74(o,e)のタイミングを制御するOELn(o,e)信号を提供し、カウンタ72に対しては、発光時間を制御するカウント用のクロックCCLK信号を提供する。
シフトレジスタ71は、シフトレジスタ70から送られてくる発光時間データを順次シフトして行く。また、タイミングコントローラ69からのSRn(o,e)信号により、コンパレータ73(o,e)に対し、選択されたレジスタに保持された発光時間データを出力する。
カウンタ72は、発光時間を制御するカウンタであり、カウンタのビット数(ここでは6ビット)は、シフトレジスタ71に入る発光時間データのビット長と同じである。また、このカウンタの入力周波数は、副走査方向の画素ピッチを時間換算して、その周期をカウント数で除算した結果の逆数(周波数)である。カウンタ72は、コンパレータ73(o,e)に対し、ここでは6ビットのカウント値を出力する。
コンパレータ73(o,e)には、シフトレジスタ71(o,e)へのタイミング入力信号SRn(o,e)に同期してシフトレジスタ71(o,e)から送られた6ビットの発光時間データと、カウンタ72からの6ビットのカウント値とを比較する。比較の結果、カウント値が発光時間データより小さい場合は、容量線52に対してON信号を出力する。カウント値が上昇し発光時間データと同一又は発光時間データより大きくなった場合は、容量線52に対してOFF信号を出力する。容量線52は有機EL素子駆動回路74(o,e)へ繋がっているので、発光時間データにより指定された期間内であれば有機EL素子駆動回路74(o,e)にON信号が出力され、発光時間が経過すればOFF信号が出力されることになる。発光時間データは上述の通り6ビットなので、各画素に対する発光時間の長短によって26=64階調が表現されることになる。なお、タイミングコントローラ69からシフトレジスタ71(o,e)へのタイミング入力信号SRn(o,e)は、カウンタ72のクロック周期を、主走査方向のライン数で除算した時間間隔で行われる。 有機EL素子駆動回路74(o,e)は、コンパレータ73(o,e)からの出力信号(容量線)とタイミングコントローラ69からのタイミング信号OEL1/O〜4/E(走査線)により、有機EL素子アノード接続端子75と有機EL素子カソード接続端子76で選択された有機EL素子79をアクティブ・マトリクス駆動する。なお、この回路の詳細説明は図9で行う。
電力調整回路77は、電力供給線を通して有機EL素子駆動回路群74(o,e)への供給電力を調整する機能を持つ。この回路の電力調整は、例えば図8のごとく、ドライバIC1に設けられたVref端子に適当な値の外部抵抗等を付け、この外部抵抗をレーザ等でトリミングすることにより行われる。
図9は、有機ELアレイ露光ヘッド駆動部の回路を示す。この回路は、4列の有機EL素子79に対応して4つの有機EL素子駆動回路78が接続されてなり、有機EL素子駆動回路群74(o,e)を構成している。有機EL素子駆動回路群74(o,e)は、図8で示すように、ドライバIC1内部に奇数ライン、偶数ラインに分かれて存在する。
有機EL素子駆動回路群74(o,e)の入力は、容量線52、走査線53、電力供給線51である。容量線52は本発明の第2信号線に相当し、図8のようにコンパレータ73(o,e)の出力に接続されていて、4つの有機EL素子駆動回路78に共通の信号線であり、有機EL素子79のON/OFFを制御する。走査線53は本発明の第1信号線に相当し、タイミングコントローラ69の走査線出力であるタイミング信号OEL1/O〜4/Eにより、各ラインの有機EL素子駆動回路78を選択駆動する。電力供給線51は、電力調整回路77の出力に接続されていて、有機EL素子79のドライブ電力供給ラインである。
一方、有機EL素子駆動回路群74(o,e)の出力は、4つの有機EL素子79を駆動する。カソード接続端子75は、有機EL素子79のカソードにそれぞれ接続され、アノード接続端子76は、有機EL素子79のアノード側に接続されコモン側(電力供給線)に接続されている。
図10は、発光部とこれをアクティブ・マトリクス駆動させるための個々の有機EL素子駆動回路78を示す回路図である。図10において、発光部として有機EL(OEL)素子79を使用しており、Kはそのカソード端子、Aはそのアノード端子である。アノード端子Aは電力供給線51に接続されている。53は走査線であり、スイッチング用トランジスタ(Tr1)のゲートGaに接続される。また、52は容量線であり、スイッチング用トランジスタTr1のソースSaに接続される。51は電力供給線、Caはストレージキャパシタである。
有機ELのドライビング用トランジスタ(Tr2)のソースSbはGND54され、ドレインDbは有機ELのカソード端子Kに接続される。さらに、ドライビング用トランジスタTr2のゲートGbは、スイッチング用のトランジスタTr1のドレインDaに接続されている。
次に、図10の回路図の動作について説明する。スイッチング用トランジスタTr1のソースに対してコンパレータ73(o,e)から容量線52に出力されたON信号が印加されている状態で、タイミングコントローラ69からのタイミング信号OEL1/O〜4/Eが走査線53に通電すると、スイッチング用トランジスタTr1がオンになる。このためドライビング用トランジスタTr2のゲート電圧が上がり、ドレインDbとソースSb間が導通状態になり、この結果、有機EL素子が動作して所定の光量で発光する。また、ストレージキャパシタCaは容量線52の電圧で充電される。
スイッチング用トランジスタTr1をオフにした場合にも、ストレージキャパシタCaに充電された電荷に基づいてドライビング用トランジスタTr2は依然として導通状態となっているので、有機EL素子79は発光状態を維持する。したがって、アクティブ・マトリクスをアレイアセンブリ27に形成される各発光部の駆動回路に適用した場合には、スイッチング用トランジスタTr1をオフにしたときでも、有機EL素子の動作が継続して発光を維持し、高輝度で画素の露光を行うことができる。また、このようなスイッチング用トランジスタTr1をオフにした場合のストレージキャパシタCaの電荷による発光維持は、スイッチング用トランジスタTr1がオフである限り容量線52の信号の如何に関わらず継続される。このため、4つの有機EL素子駆動回路78で共通の容量線52を用いて、後述のように有機EL素子の発光開始及び終了を時分割制御することができる。
コンパレータ73(o,e)から容量線52に出力される信号がOFFとなり、かつ、タイミングコントローラ69から走査線53に出力されるタイミング信号OEL1/O〜4/Eによりスイッチング用トランジスタTr1がオンになった場合には、ストレージキャパシタCaに充電されていた電荷はスイッチング用トランジスタTr1を通じて容量線52に吸収される。従って、ドライビング用トランジスタTr2のゲート電圧が下がり、有機EL素子79の発光が終了する。
図11及び図12に、図9及び図10に対する変形例に係る有機EL素子駆動回路78を示す。上記図9及び図10の有機EL素子駆動回路78では、発光部のアノード端子Aを共通化し電力供給線51に接続したが、本図11及び図12では、カソード端子Kを共通化してGNDに接続している。この場合、アノード端子Aを個々の有機EL素子駆動回路78のドライビング用トランジスタTr2のドレインDbに接続し、ドライビング用トランジスタTr2のソースSbにはそれぞれ電力供給線51を接続する。このような構成によっても、容量線52より供給されるON/OFF信号に従い、有機EL素子を駆動することができる。
なお、以上のようなドライバIC1は周知の半導体製造技術を用いて構成できるので、製造方法の詳細な説明は省略する。
<3.制御タイミング>
図13(a)は、図8のタイミングコントローラ69の入力信号タイミングを示すもので、ドライバICの入力信号のタイミングを示す。ドライバICの制御ラインは、5組の差動ラインからなり、図13(a)では、そのうち、発光時間データの取り込みに関するタイミングについて説明する。
図13(a)は、図8のタイミングコントローラ69の入力信号タイミングを示すもので、ドライバICの入力信号のタイミングを示す。ドライバICの制御ラインは、5組の差動ラインからなり、図13(a)では、そのうち、発光時間データの取り込みに関するタイミングについて説明する。
SP(P/N)は、スタート信号で、発光時間データ受信前にパルスが発生し、以降、192画素×6ビット=1152個の発光時間データ受信前毎に発生する。タイミングコントローラ69は、このSP(P/N)パルスの数をカウントして、このドライバICに設定されたアドレス値と比較し、合致したときにそれ以降の192×6個のデータを取り込む。
SDCLK(P/N)は、シリアルデータ同期クロックでそのクロックの立ち上がりと立ち下がりの両方でシリアルデータをリードする。SDCLK周期は、各素子の最大発光時間を主軸方向の発光素子数で除して、さらに発光時間データ幅で除し、その値にSDCLK周期におけるリード回数を乗じた値となる。本図では、A4,600dpi,50ppmのタンデム・カラープリンタとした場合、以下のようになる。
最大発光時間=170(μsec)
主軸方向の発光素子数=7680(個)
発光時間データ幅=6(ビット)
SDCLK周期におけるリード回数=2(回)
SDCLK周期=170(μsec)÷7680÷6×2≒7.4(nsec)
従って、SDCLKの周波数は、約135.5MHzとなる。
最大発光時間=170(μsec)
主軸方向の発光素子数=7680(個)
発光時間データ幅=6(ビット)
SDCLK周期におけるリード回数=2(回)
SDCLK周期=170(μsec)÷7680÷6×2≒7.4(nsec)
従って、SDCLKの周波数は、約135.5MHzとなる。
SD(P/N)は、6ビット1組のシリアルデータ(発光時間データ)で、図13(a)のごとく、SDCLKに同期して読み込まれる。
図13(b)は、図8のタイミングコントローラ69の入力信号タイミングを示すもので、ドライバICの5組の差動入力信号のうち、図13(a)で示す入力信号以外の2組の入力信号のタイミングを示す。
RCLR(P/N)は、シフトレジスタ70(o,e)のデータクリア信号で、このパルスにより、シフトレジスタ71(o,e)へ出力される発光時間データがクリアされる。
TCCLK(P/N)は、図8のタイミングコントローラ69が制御する有機EL素子の発光時間制御に関わる基準クロックであり、これをもとに、SHIFT CLK、CCLK、OELn(o,e)、SRn(o,e)のタイミングが決められている。
図14は、タイミングコントローラ69からシフトレジスタ(o,e)70へ送るパラレル画像データ(発光時間データ)の転送タイミングを示すものである。DTSP(P/N)は、画像データの転送スタート信号であり、DCLK(P/N)は、データ転送時の同期クロックである。PADnはパラレルの画像データであり、本説明は6ビットデータの場合を表す。PADnは、DCLKの立ち上がりと立ち下がりに同期してシフトレジスタ70(o,e)に順次書き込まれる。
図15は、図8のタイミングコントローラ69のセレクタ部出力信号タイミングの詳細を示す。
TCCLKは、有機EL素子の発光時間を制御するための基準クロックであり、各素子の最大発光時間を、発光時間制御分割数で除して、さらに副走査方向のライン数で除した周期とする。本図では、A4,600dpi,50ppmのタンデム・カラープリンタとした場合、以下のようになる。
最大発光時間=170(μsec)
発光時間制御分割数=26=64(分割)
副走査方向のライン数=8(ライン)
TCCLK周期=170(μsec)÷64÷8≒332(nsec)
従って、TCCLKの周波数は、約3MHzとなる。
最大発光時間=170(μsec)
発光時間制御分割数=26=64(分割)
副走査方向のライン数=8(ライン)
TCCLK周期=170(μsec)÷64÷8≒332(nsec)
従って、TCCLKの周波数は、約3MHzとなる。
SHIFT CLKは、シフトレジスタ71(o,e)のレジスタ保持値を順次シフトして行くためのクロックであり、各素子の最大発光時間を、発光時間制御分割数で除したものである。
CCLKは、図8のカウンタ72のカウント入力信号であり、SHIFT CLKと同じ周波数である。
走査線信号OEL1/Oとレジスタ選択信号SR1/Oは、同じタイミングで、SHIFT CLKの立ち下がりから1番目のTCCLKの立ち上がりに同期して、TCCLKクロック1周期分のパルスを発生する。
OEL ON/OFFは、図8の有機EL素子79のON時間(発光時間)を示すものであり、本例の場合、発光時間幅は、0μsecから最大発光時間170μsecである。
これらの信号に即して発光動作を説明する。レジスタ選択信号SR1/Oによりシフトレジスタ71oの1段目のレジスタから出力された発光時間データは、カウンタ値と比較されて容量線52にON又はOFFの信号が出力される。一方これと同タイミングで、走査線信号OEL1/Oが、1段目の有機EL素子駆動回路78に一定時間ごとに出力される。
上述の通り、走査線信号OEL1/OがONとなったときに容量線52がONであれば、OEL ONとなり、有機EL素子79が点灯する。そして、走査線信号OEL1/OがOFFとなっても、有機EL素子79の点灯が維持される。更に走査線信号OEL1/OがONとなったときに容量線52がOFFであれば、OEL OFFとなり、有機EL素子79が消灯する。
図16は、図8のタイミングコントローラ69のセレクタ部と発光素子駆動回路の信号タイミングを示す。図15では、基本的な動作の説明として、OEL1/OとSR1/Oについて述べたが、図16では、副走査方向の偶数ラインと奇数ライン合わせて8ラインの有機EL素子の発光制御タイミングについて説明する。
走査線信号OELn/Oとレジスタ選択信号SRn/Oは、同じタイミングで、SHIFT CLKの立ち下がりからn番目のTCCLKの立ち上がりに同期して、TCCLKクロック1周期分のパルスを発生する。レジスタ選択信号SRn/Oは、シフトレジスタ71のnライン目のレジスタ(図8参照)を選択するので、当該レジスタから出力された発光時間データがコンパレータ73にてカウンタ値と比較され、容量線52にON又はOFFの信号が出力される。一方これと同タイミングで、走査線信号OELn/Oは、nライン目の有機EL素子走査線(図8参照)を選択する。上述のように有機EL素子駆動回路78は、走査線が選択されている時だけ、そのときの容量線52の状態によって有機EL素子をON/OFFできる。従って容量線52を共通にする他の有機EL素子駆動回路に接続された走査線の選択タイミングをずらすことにより、複数の有機EL素子駆動回路78を時分割駆動することができる。
シフトレジスタ71の各レジスタの発光時間データに基づく発光がすべて終了したら、SHIFT CLKの64パルスごとにシフトレジスタ71の各レジスタの発光時間データを次のレジスタにシフトさせ、同様に発光させる。このとき、感光体と有機ELアレイとの副走査方向の相対位置を移動させることにより、感光体上の同一画素に、同一の発光時間データに基づく露光を重ねて行うことができる。
本実施形態では、複数列の有機EL素子のON/OFFを時分割で制御するので、同一時点においてすべてを発光状態とすることができる。その反面、シフトレジスタ71のデータ書き換え時間が長い場合には、有機EL素子の点灯に支障をきたすおそれがあるが、本実施形態では、ストア手段であるシフトレジスタ70に1ライン分のデータを一旦ストアしてから、一気にシフトレジスタ71にシフトさせるので、データ書き換えが短時間で済み、有機EL素子の点灯に支障をきたすことはない。
また本実施形態では、複数の有機EL素子駆動回路78に共通のコンパレータ73が、容量線52を介して接続されている。本実施形態では、レジスタ選択信号SRn/Oと走査線信号OELn/Oとを同期させ、かつコンパレータ73を共通にする他の有機EL素子駆動回路78に接続された走査線の選択タイミングをずらしているので、コンパレータ73を共通にしても複数の有機EL素子駆動回路78を異なる発光時間で駆動することができる。
また本実施形態では、複数のコンパレータ73o、73eに共通のカウンタ72が接続されている。図15及び図16に示すように、カウンタクロックCCLK1周期のうちに、レジスタ選択信号SRnによってすべての発光時間データとカウンタ出力とが比較されるので、カウンタ72を共通にしても個々の発光時間データに基づく階調制御が可能である。
1…有機ELアレイ露光ヘッドチップ
2…有機ELアレイ露光ヘッド
3…コネクタ
4a、4b、4c…発光部
5…ワイヤボンディングパッド
6…ワイヤボンディングパッド
7…ボンディングワイヤ
8…位置決め用パッド
9…位置決め用パッド
13…集光レンズ
19…光導穴
25…発光部
26…ドライバIC
27…有機ELアレイアセンブリ
28…集光レンズアセンブリ
30…位置決め用パッド
32…ダイスボンド材
33…紫外線(UV)硬化樹脂接着剤
34…基板
35…異方導電性接着剤
47…データ入力ライン
48…電源ライン
51…電力供給線
52…容量線(第2信号線)
53…走査線(第1信号線)
54…GND
57…データ制御ライン
58…電源ライン
64…プリンタコントローラ
65…画像データ送信部(プリンタコントローラ側)
66…差動信号配線
68…プリンタエンジン側ヘッド制御部
69…タイミングコントローラ
70…シフトレジスタ(o,e)(ストア手段)
71…シフトレジスタ(o,e)
72…カウンタ
73…コンパレータ(o,e)
74…有機EL素子駆動回路(o,e)
75…有機EL素子アノード接続端子
76…有機EL素子カソード接続端子
77…電力調整回路
78…有機EL素子駆動回路詳細
79…有機EL素子(発光素子)
2…有機ELアレイ露光ヘッド
3…コネクタ
4a、4b、4c…発光部
5…ワイヤボンディングパッド
6…ワイヤボンディングパッド
7…ボンディングワイヤ
8…位置決め用パッド
9…位置決め用パッド
13…集光レンズ
19…光導穴
25…発光部
26…ドライバIC
27…有機ELアレイアセンブリ
28…集光レンズアセンブリ
30…位置決め用パッド
32…ダイスボンド材
33…紫外線(UV)硬化樹脂接着剤
34…基板
35…異方導電性接着剤
47…データ入力ライン
48…電源ライン
51…電力供給線
52…容量線(第2信号線)
53…走査線(第1信号線)
54…GND
57…データ制御ライン
58…電源ライン
64…プリンタコントローラ
65…画像データ送信部(プリンタコントローラ側)
66…差動信号配線
68…プリンタエンジン側ヘッド制御部
69…タイミングコントローラ
70…シフトレジスタ(o,e)(ストア手段)
71…シフトレジスタ(o,e)
72…カウンタ
73…コンパレータ(o,e)
74…有機EL素子駆動回路(o,e)
75…有機EL素子アノード接続端子
76…有機EL素子カソード接続端子
77…電力調整回路
78…有機EL素子駆動回路詳細
79…有機EL素子(発光素子)
Claims (8)
- 所定方向に配列した複数の発光素子を順次発光させ、1画素を多重露光する光学ヘッドの制御装置であって、
1画素分のデータを受信しストアするストア手段と、
前記複数の発光素子にそれぞれ対応する複数のレジスタを有するシフトレジスタであって、前記ストア手段にストアされたデータを受信し、各レジスタのデータを順次シフトするシフトレジスタと、
前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、
を備えた、光学ヘッドの制御装置。 - 副走査方向に配列した発光素子群を主走査方向に更に複数配列してなる発光素子マトリクスの各発光素子を前記副走査方向に順次発光させ、前記主走査方向に配置される複数の画素をそれぞれ多重露光する光学ヘッドの制御装置であって、
画素データを1画素分ずつ受信して前記主走査方向に配置される前記複数の画素に対応するデータをストアするストア手段と、
前記主走査方向に配置される前記複数の画素にそれぞれ対応する複数のシフトレジスタからなるシフトレジスタ群であって、各シフトレジスタは前記副走査方向に配列した前記発光素子群にそれぞれ対応する複数のレジスタを有し、前記ストア手段にストアされた各画素のデータを各シフトレジスタが受信し、各シフトレジスタ内で各レジスタのデータを順次シフトするシフトレジスタ群と、
前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、
を備えた、光学ヘッドの制御装置。 - 請求項1又は請求項2において、
前記発光素子は、発光開始信号の受信から発光終了信号の受信まで発光状態を継続させる素子駆動回路により駆動され、各発光素子の素子駆動回路に対する発光開始信号及び発光終了信号は、それぞれ時分割信号により伝達される、光学ヘッドの制御装置。 - 請求項3において、
前記素子駆動回路は、複数の第1信号線及びこれと交差する第2信号線を備え、第1信号線をアクティブにしたときの第2信号線のON/OFFにより、両信号線の交点に位置する発光素子の発光開始/終了を為すように構成されてなり、
前記第2信号線のON又はOFFと、前記第1信号線へのアクティブ信号出力とを同期させ、かつ第2信号線を共通にする他の素子駆動回路への第1信号線へのアクティブ信号出力時期をずらして、各発光素子の発光開始/終了を制御する、光学ヘッドの制御装置。 - 請求項4において、
前記シフトレジスタ内の各レジスタのデータと、各レジスタと同一ビット数のカウンタの出力とを比較して結果を前記第2信号線に出力するコンパレータを更に備え、
前記カウンタは、第2信号線を共通にする他の素子駆動回路との間で共通とし、前記カウンタの周期を、前記複数の第1信号線へのアクティブ信号の出力時期のずれより長くした、光学ヘッドの制御装置。 - 請求項5において、
前記コンパレータは、第2信号線を共通にする他の素子駆動回路との間で共通とし、前記各レジスタのデータ取得及びカウンタとの比較を、前記第1信号線へのアクティブ信号出力とを同期させた、光学ヘッドの制御装置。 - 所定方向に配列した複数の発光素子と、
1画素分のデータを受信しストアするストア手段と、
前記複数の発光素子にそれぞれ対応する複数のレジスタを有するシフトレジスタであって、前記ストア手段にストアされたデータを受信し、各レジスタのデータを順次シフトするシフトレジスタと、
前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、
を備え、前記所定方向に配列した複数の発光素子を順次発光させ、1画素を多重露光する光学ヘッド。 - 副走査方向に配列した発光素子群を主走査方向に更に複数配列してなる発光素子マトリクスと、
画素データを1画素分ずつ受信して前記主走査方向に配置される前記複数の画素に対応するデータをストアするストア手段と、
前記主走査方向に配置される前記複数の画素にそれぞれ対応する複数のシフトレジスタからなるシフトレジスタ群であって、各シフトレジスタは前記副走査方向に配列した前記発光素子群にそれぞれ対応する複数のレジスタを有し、前記ストア手段にストアされた各画素のデータを各シフトレジスタが受信し、各シフトレジスタ内で各レジスタのデータを順次シフトするシフトレジスタ群と、
前記シフトレジスタの各レジスタのデータに基づき、それぞれ対応する発光素子を発光させる素子駆動回路と、
を備え、前記副走査方向に配列した各発光素子を前記副走査方向に順次発光させ、前記主走査方向に配置される複数の画素をそれぞれ多重露光する光学ヘッド。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003410112A JP2005169703A (ja) | 2003-12-09 | 2003-12-09 | 光学ヘッド及びその制御装置 |
US11/006,498 US7242416B2 (en) | 2003-12-09 | 2004-12-07 | Optical head |
EP04029106A EP1542157A2 (en) | 2003-12-09 | 2004-12-08 | Optical head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003410112A JP2005169703A (ja) | 2003-12-09 | 2003-12-09 | 光学ヘッド及びその制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005169703A true JP2005169703A (ja) | 2005-06-30 |
Family
ID=34731276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003410112A Withdrawn JP2005169703A (ja) | 2003-12-09 | 2003-12-09 | 光学ヘッド及びその制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005169703A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021030564A (ja) * | 2019-08-23 | 2021-03-01 | キヤノン株式会社 | 露光ヘッド及び画像形成装置 |
-
2003
- 2003-12-09 JP JP2003410112A patent/JP2005169703A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021030564A (ja) * | 2019-08-23 | 2021-03-01 | キヤノン株式会社 | 露光ヘッド及び画像形成装置 |
JP7558650B2 (ja) | 2019-08-23 | 2024-10-01 | キヤノン株式会社 | 画像形成装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7397486B2 (en) | Exposure head controller, exposure head and image formation device | |
JP4656227B2 (ja) | 発光素子ヘッドおよび画像形成装置 | |
US8692859B2 (en) | Light-emitting device, light-emitting array unit, print head, image forming apparatus and light-emission control method | |
JP4803238B2 (ja) | 発光素子ヘッドおよび画像形成装置 | |
JP5245897B2 (ja) | 自己走査型発光素子アレイチップ、光書込みヘッドおよび光プリンタ | |
US6642950B2 (en) | Optical printer head and driving method thereof | |
JP2005205773A (ja) | 光学ヘッド及び印刷装置 | |
US6608642B1 (en) | Driver IC and optical print head | |
KR20020000806A (ko) | 광 기록 헤드 및 광점열 어긋남 보정 방법 | |
JP2005169703A (ja) | 光学ヘッド及びその制御装置 | |
US7242416B2 (en) | Optical head | |
JP4450194B2 (ja) | 光学ヘッドの制御装置および画像形成装置 | |
JP2010201894A (ja) | 発光装置、露光装置および画像形成装置 | |
JP2005212291A (ja) | 光学ヘッド | |
JP3520816B2 (ja) | 光プリンタヘッド | |
JP2005205774A (ja) | 光学ヘッド及びその制御装置 | |
EP1560153A2 (en) | Optical head | |
JP2005212290A (ja) | 光学ヘッド | |
JP2004224052A (ja) | 複数の印刷素子アレイを備えたプリントヘッド、電子写真印刷エンジン | |
JP4333248B2 (ja) | 自己走査型発光素子アレイチップおよび光書込みヘッド | |
JP2001063139A (ja) | 画像形成装置 | |
JP2008126589A (ja) | 露光装置およびそれを備える画像形成装置 | |
JP2001010110A (ja) | 記録ヘッド | |
JP2006181980A (ja) | 露光ヘッド及び画像形成装置 | |
JP3595208B2 (ja) | Ledプリントヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060214 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20060320 |