JP2005169259A - Production method of fine particle and apparatus therefor - Google Patents

Production method of fine particle and apparatus therefor Download PDF

Info

Publication number
JP2005169259A
JP2005169259A JP2003412837A JP2003412837A JP2005169259A JP 2005169259 A JP2005169259 A JP 2005169259A JP 2003412837 A JP2003412837 A JP 2003412837A JP 2003412837 A JP2003412837 A JP 2003412837A JP 2005169259 A JP2005169259 A JP 2005169259A
Authority
JP
Japan
Prior art keywords
atomized
vibration
fine particles
producing fine
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003412837A
Other languages
Japanese (ja)
Other versions
JP4656834B2 (en
Inventor
Shigeki Toyama
茂樹 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Shigeki
Original Assignee
Toyama Shigeki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Shigeki filed Critical Toyama Shigeki
Priority to JP2003412837A priority Critical patent/JP4656834B2/en
Publication of JP2005169259A publication Critical patent/JP2005169259A/en
Application granted granted Critical
Publication of JP4656834B2 publication Critical patent/JP4656834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of fine particle which is capable of preventing the incorporation of foreign matters, reliably performing washing and sterilization, responding to CIP(cleaning in place)/SIP(sterilization in place), steadily performing a stable operation without danger of misoperation and performing high precision dispersion, crushing, emulsification and liposome formation, and to provide an apparatus therefor. <P>SOLUTION: Materials to be pulverized are introduced between at least two sheets of elastomers having a hardness higher than the hardness of the material to be pulverized, subsequently, at least one sheet of elastomers is vibrated and, thereby, the material to be pulverized is ground between the elastomers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は弾性体の振動を利用した微粒子の製造方法及び装置に関し、特に粒子径が数nm〜数百nmの微粒子を短時間で大量に製造するに適した、微粒子の製造方法及びその装置に関する。   The present invention relates to a method and apparatus for producing fine particles using vibration of an elastic body, and more particularly to a method and apparatus for producing fine particles suitable for producing a large amount of fine particles having a particle diameter of several nanometers to several hundred nanometers in a short time. .

医薬品の開発は、基礎調査に始まり、化学合成などにより得られた新規化合物の中から薬効スクリーニングを経て医薬品の候補物質が決まる。次に動態代謝研究や安全性試験などの前臨床試験によって効果と安全性が証明された薬物が、第I相、第II相、第III相と三段階の臨床試験にかけられ、最終的に有効性と安全性が確認されたものが製造承認や販売承認を受ける。   Drug development begins with basic research, and drug candidates are determined through drug screening from new compounds obtained by chemical synthesis. Next, drugs that have been proven to be effective and safe from preclinical studies such as kinetic metabolism studies and safety studies are put into three-stage clinical trials, phase I, phase II, and phase III, and finally effective. Products that are confirmed to be safe and safe are subject to manufacturing approval and marketing approval.

このように医薬品の開発においては何段階もの選別が行われ、一般に1つの新薬が生まれる背景には数千から数万の候補物質が存在すると言われている。また、その候補物質の多くは、水や、医薬品として使用可能な有機溶剤に対する溶解性が非常に低く難溶解性である。この低溶解度は生体利用性を低下させるため、経口投与や筋肉内投与、または静脈内投与による薬理試験が困難であった。このことが、より長期の研究期間や多額の費用を要し、多くの研究人員が費やされる原因となっており、大きな欠点となっている。このような欠点を改善する方法として、候補物質をnm範囲の微粒子とする方法がある。この方法の利点としては次の(1)〜(5)があげられる。   As described above, many stages of selection are performed in the development of pharmaceuticals, and it is generally said that there are thousands to tens of thousands of candidate substances behind a new drug. In addition, many of the candidate substances have very low solubility in water and organic solvents that can be used as pharmaceuticals and are hardly soluble. Since this low solubility reduces bioavailability, pharmacological tests by oral administration, intramuscular administration, or intravenous administration have been difficult. This is a major drawback because it requires a longer period of research and a large amount of money, which causes many researchers to be spent. As a method for improving such a defect, there is a method in which candidate substances are fine particles in the nm range. Advantages of this method include the following (1) to (5).

(1)ノイエス−ホワイトニーの法則により粒子の表面積が増加すると、その溶解速度は増大する。ナノメータ範囲の粒子径を有しその表面積が著しく増加した物質は、溶解速度が生体利用性の決定因子となる全ての場合に対して重要である。
(2)難溶解性物質の静脈内投与は、ナノ懸濁液とすることにより、毛細血管の閉塞をもたらすことなく可能となる。
(3)難溶解性物質を溶液として投与すると、比較的多量の製剤が必要となるが、該難要請物質を超微粒子とした製剤は、その投与量を低減させる事が出来る。
(4)超微粒子の物質を有する薬剤は、ターゲティング(薬剤標的輸送系など)やコントロールドリリース(薬剤の除放投与や放出制御)に容易に利用できる。
(5)薬剤設計時における無菌化(無菌濾過法)が容易になり、薬剤自体の、医薬品としての安全性が格段に上昇する。
(1) When the particle surface area increases according to Neues-Whiteney's law, the dissolution rate increases. Substances with particle sizes in the nanometer range and significantly increased surface area are important for all cases where dissolution rate is a determinant of bioavailability.
(2) Intravenous administration of a poorly soluble substance is possible without causing capillary blockage by using a nanosuspension.
(3) When a hardly soluble substance is administered as a solution, a relatively large amount of the preparation is required. However, a preparation containing the difficultly requested substance as ultrafine particles can reduce the dose.
(4) Drugs having ultrafine particles can be easily used for targeting (drug target transport system and the like) and controlled release (drug release control and release control).
(5) Sterilization at the time of drug design (aseptic filtration method) is facilitated, and the safety of the drug itself as a drug is significantly increased.

従来、難溶性物質の微粒子の製造方法としては、ビーズミルを用いる方法、超高圧ホモジナイザーを用いる方法及びロールミルを用いる方法などの機械的方法、超音波分散機によってエロージョンを発生させる物理的方法、及び化学的な膜乳化方法等が知られている。しかしながら、ビーズミルの場合には、(1)ビーズ自身の磨耗粉などによる不純物が混入する、(2)微小ビーズを用いることにより、得られる粒子の粒子径を小さくすることは可能であるが、この場合には高粘度となる場合に対応する事ができず、使用できる場合が限られる、(3)洗浄性が悪い、(4)ビーズを補充したりする必要があるのでランニングコストが高い等の欠点があった。   Conventionally, as a method of producing fine particles of a hardly soluble substance, a mechanical method such as a method using a bead mill, a method using an ultra-high pressure homogenizer, a method using a roll mill, a physical method for generating erosion by an ultrasonic disperser, and a chemical method A typical membrane emulsification method is known. However, in the case of a bead mill, (1) impurities due to the wear powder of the beads themselves are mixed. (2) By using micro beads, it is possible to reduce the particle diameter of the obtained particles. In some cases, it is not possible to cope with the case where the viscosity becomes high, and the cases where it can be used are limited, (3) poor cleaning properties, (4) high running costs because it is necessary to replenish beads, etc. There were drawbacks.

また、超高圧ホモジナイザーの場合には、(1)機械の安定稼動が困難である、(2)オリフィスの磨耗や、増圧ポンプシールの磨耗が多い、(3)洗浄性、滅菌性が悪い、(4)動力が大きく、装置のみならずランニングコストが高い、(5)高粘度となる場合に対応する事が出来ないなどの欠点があった。   In addition, in the case of an ultra-high pressure homogenizer, (1) it is difficult to stably operate the machine, (2) there is a lot of wear of the orifice and the pressure booster pump seal, (3) poor cleaning and sterilization, (4) There are drawbacks such as high power, high running cost as well as equipment, and (5) inability to cope with high viscosity.

更に、ロールミルの場合には、低粘性の場合に対応する事が出来ない、(2)密閉型とする事ができない、(3)作業危険性が高い、(4)数十回処理する必要も生じ効率が悪い等の欠点があり、超音波分散機の場合には微粉化能力が不十分、乳膜化の場合には高価な乳化専用機や大型ポンプが必要であるなどの欠点があった。   Furthermore, in the case of a roll mill, it is not possible to cope with the case of low viscosity, (2) it cannot be made a sealed type, (3) work risk is high, and (4) it is necessary to process several tens of times In the case of an ultrasonic disperser, there are drawbacks such as insufficient pulverization capability, and in the case of milky membrane, there is a disadvantage that an expensive dedicated emulsifier or a large pump is required. .

そこで、薬剤投与用ナノ懸濁液及びナノ乳化液並びにリポソームの調整が容易にかつ確実に行え、医薬品を製造する設備に求められる要件を全て満たす、分散乳化装置を用いた調製方法が求められてきた。   Accordingly, there is a need for a preparation method using a dispersion emulsification apparatus that can easily and reliably prepare nanosuspensions and nanoemulsions for drug administration and satisfy all requirements for equipment for producing pharmaceuticals. It was.

一方、本発明者等は、長年にわたり、超音波振動を用いたアクチュエータの研究を行ってきた(特許文献1,2及び非特許文献1,2)。
特開平8‐132382号公報 2001‐233154号公報 球面超音波モータの開発:精密工学会誌,vol66, No5,pp769-774,2000 超音波モータ入門,見城尚志,指田年生 総合電子出版社
On the other hand, the inventors have studied actuators using ultrasonic vibration for many years (Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).
JP-A-8-132382 No. 2001-233154 Development of spherical ultrasonic motor: Journal of Japan Society for Precision Engineering, vol66, No5, pp769-774,2000 Introduction to Ultrasonic Motor, Naoshi Mijo, Toshio Suda General Electronic Publishing Company

これは、裏面に圧電素子を貼り付けた弾性体の前記圧電素子に位相の異なる2相の交流電圧を印加することによって弾性体表面(圧電素子を貼りつけた側と反対側)に進行波を発生させ、これに非振動板を押圧する事によって駆動させるものである(図1参照)。
この場合、ステータの押付けを増すと、振巾が数十nm〜数百nmに圧縮される。このとき、ステータ表面では進行波の生成に伴って楕円運動をしている。そのため、一波分のロータがステータに衝突するように上下動をすると共に、横方向にせん断力も発生する。この状態でステータを固定すると、接触面が磨耗され、ステータが金属である場合でも、数μm〜数百μmの均一な磨耗粉が生じる。本発明者等は、この現象を薬剤等の微粒子化や分散化に応用する事が出来ることを見出し、本発明に到達した。
This is because a traveling wave is generated on the elastic body surface (opposite side to which the piezoelectric element is attached) by applying a two-phase alternating voltage having different phases to the piezoelectric element of the elastic body having the piezoelectric element attached to the back surface. It is generated and driven by pressing a non-vibrating plate (see FIG. 1).
In this case, when the pressing of the stator is increased, the amplitude is compressed to several tens nm to several hundreds nm. At this time, the stator surface is elliptically moving with the generation of traveling waves. Therefore, the rotor for one wave moves up and down so as to collide with the stator, and a shearing force is also generated in the lateral direction. When the stator is fixed in this state, the contact surface is worn, and even if the stator is made of metal, uniform wear powder of several μm to several hundred μm is generated. The present inventors have found that this phenomenon can be applied to fine particles and dispersion of drugs and the like, and have reached the present invention.

従って本発明の第1の目的は、かつ洗浄、滅菌を確実に行う事ができるだけでなく、CIP・SIPに対応できる上誤操作の危険もなく、定常的に安定稼動できると共に、高精度の分散、破砕、乳化、リポソーム化が可能な微粒子の製造方法を提供する事にある。
本発明の第2の目的は、粒子径が数nm〜数百nmの微粒子を短時間で大量に製造するための装置を提供する事にある。
Therefore, the first object of the present invention is not only to be able to perform cleaning and sterilization reliably, but also to be compatible with CIP / SIP, there is no risk of erroneous operation, it can be stably operated stably, and highly accurate dispersion, An object of the present invention is to provide a method for producing fine particles that can be crushed, emulsified, and made into liposomes.
A second object of the present invention is to provide an apparatus for producing a large amount of fine particles having a particle diameter of several nanometers to several hundred nanometers in a short time.

本発明の上記の諸目的は、被微粒化物質の硬度より高い硬度を有する、少なくとも2枚の弾性体の間に被微粒化物質を導入し、次いで前記弾性体の少なくとも一枚を振動させ、前記弾性体の間で前記被微粒化物質を粉砕することを特徴とする微粒子の製造方法、及び、その方法を実施するための装置によって達成された。   The above objects of the present invention are to introduce a material to be atomized between at least two elastic bodies having a hardness higher than that of the material to be atomized, and then vibrate at least one of the elastic bodies, The object is achieved by a method for producing fine particles characterized by pulverizing the material to be atomized between the elastic bodies, and an apparatus for carrying out the method.

本発明によれば、生態利用性に優れたナノ粒子の薬剤懸濁液を容易に調整することができるので、製薬開発期間の短縮に特に大きな効果を有する。   According to the present invention, since a drug suspension of nanoparticles excellent in bioavailability can be easily adjusted, it has a particularly great effect on shortening the pharmaceutical development period.

本発明の微粒子の製造方法は、振動する弾性体(振動クラッシャ)表面の微細な上下振動によって被微粒化物質を粉砕するものであるから、振動クラッシャを構成する弾性体の硬度は、被微粒化物質の硬度より高いことが必要である。
被微粒化物質は、2枚の振動クラッシャの間に圧縮充填されても良い。2枚の振動クラッシャの内の一方は、圧電素子を有しない弾性体であって独自に振動することのないベースであっても良い。更に、上記2枚の振動クラッシャの間には、自由に振動し得る、一定範囲で移動可能な遊動板を配しても良い。
In the method for producing fine particles of the present invention, since the material to be atomized is pulverized by fine vertical vibrations on the surface of the vibrating elastic body (vibrating crusher), the hardness of the elastic body constituting the vibrating crusher is set to be atomized. It must be higher than the hardness of the material.
The material to be atomized may be compressed and filled between two vibrating crushers. One of the two vibration crushers may be an elastic body having no piezoelectric element and a base that does not vibrate independently. Further, an idler plate that can freely vibrate and can move within a certain range may be disposed between the two vibration crushers.

ベース及び遊動板の硬度は、被微粒化物の硬度より高いことが必要であるが、振動クラッシャの硬度以上としないことが好ましい。また、要求される微粒子化の程度によっても異なるが、ブロック状の被微粒化物質を振動クラッシャに直接押付けて該ブロック表面を磨耗させることによって微粒化させることも出来る。   The hardness of the base and the idle plate needs to be higher than the hardness of the material to be atomized, but it is preferable not to be higher than the hardness of the vibration crusher. Further, although it depends on the required degree of atomization, it can be atomized by directly pressing a block-shaped material to be atomized against a vibration crusher to wear the block surface.

振動クラッシャを振動させる手段としては、電磁的手段、コンデンサを利用する手段、圧電素子を利用する手段等があるが、本発明においては、振動クラッシャを構成する弾性体裏面に圧電素子を貼着する事が好ましい。圧電素子に電圧を印加する事により、他の手段に比べ、振動クラッシャに容易に高振動数でかつ強力な超音波振動を発生させる事ができる(後記図2参照)。
振動クラッシャの弾性体裏面に貼着する圧電素子は、公知のものの中から適宜選択することが出来る。
As means for vibrating the vibration crusher, there are electromagnetic means, means using a capacitor, means using a piezoelectric element, etc. In the present invention, the piezoelectric element is attached to the back surface of the elastic body constituting the vibration crusher. Things are preferable. By applying a voltage to the piezoelectric element, it is possible to easily generate high-frequency and powerful ultrasonic vibrations in the vibration crusher as compared with other means (see FIG. 2 described later).
The piezoelectric element to be attached to the back surface of the elastic body of the vibration crusher can be appropriately selected from known ones.

次に、本発明の微粒子の製造装置を、実施例を参照しながら説明する。図1は、本発明の装置に応用する超音波モータの原理を説明する図である。図2は、本発明の装置の原理を説明する図である。図2において、符合1は振動クラッシャを構成する弾性体、2は圧電素子、3はベースである弾性体であり、10は振動クラッシャである。振動クラッシャ10の圧電素子2に電圧を印加すると、図のように振動クラッシャ10とベース3の間に微小な隙間が出来る。この隙間は超音波周期で発生と消滅を繰り返すので、この隙間に被微粒化物質を導入する事によりその物質を粉砕し微粒化することができる。即ち、本発明では上記のような微小空間の発生・消滅を利用する事が出来れば良いので、上記ベースの代わりに他の振動クラッシャを配しても良いし、上下の振動クラッシャの間に、それ自身では超音波振動を自生しない弾性体からなる遊動板を介在させてもよい。   Next, the apparatus for producing fine particles of the present invention will be described with reference to examples. FIG. 1 is a diagram for explaining the principle of an ultrasonic motor applied to the apparatus of the present invention. FIG. 2 is a diagram for explaining the principle of the apparatus of the present invention. In FIG. 2, reference numeral 1 is an elastic body constituting the vibration crusher, 2 is a piezoelectric element, 3 is an elastic body as a base, and 10 is a vibration crusher. When a voltage is applied to the piezoelectric element 2 of the vibration crusher 10, a minute gap is formed between the vibration crusher 10 and the base 3 as shown in the figure. Since this gap repeats generation and disappearance in an ultrasonic cycle, the substance can be pulverized and atomized by introducing the substance to be atomized into this gap. That is, in the present invention, it is only necessary to be able to use the generation / extinction of the minute space as described above. Therefore, another vibration crusher may be arranged instead of the base, A floating plate made of an elastic body that does not generate ultrasonic vibrations by itself may be interposed.

図3は、円形の振動クラッシャ10とベース3からなる、本発明の装置における微粒化部分の断面概念図である。図のように振動クラッシャ10に被微粒化物質導入口を設けておき、ベース3の中央部に斜面を有する突起部を設ける事によって、振動クラッシャ10とベース3の間に被微粒化物質を供給する事ができる。この場合には、微粒化物質の取り出し口を設ける事により、連続的に微粒化物質を製造する事が出来る。また、予め被微粒化物質をベース3の微粒化面上に投入し、その後振動クラッシャ10を配置する、バッチ形式を採用することも出来る。   FIG. 3 is a conceptual cross-sectional view of the atomized portion of the apparatus according to the present invention, which includes the circular vibration crusher 10 and the base 3. As shown in the figure, the atomizing substance introduction port is provided in the vibration crusher 10, and a protrusion having a slope is provided in the center of the base 3, whereby the atomizing substance is supplied between the vibration crusher 10 and the base 3. I can do it. In this case, the atomized substance can be continuously produced by providing an outlet for the atomized substance. Further, it is also possible to adopt a batch type in which the material to be atomized is previously put on the atomized surface of the base 3 and then the vibration crusher 10 is disposed.

図4は、図3におけるベース3の、振動クラッシャ10が挿入される部分における特に側壁部分(臼の側面部と表現する事ができる)3’を分離可能な別体とした装置である。このようにして上記側壁部分を取り外す事により、微粒化された物質を、装置を動かすことなく容易に取り出す事ができる。   FIG. 4 is an apparatus in which the side wall portion (which can be expressed as a side surface portion of the die) 3 ′ of the base 3 in FIG. 3 where the vibration crusher 10 is inserted is separated. Thus, by removing the said side wall part, the atomized substance can be taken out easily, without moving an apparatus.

図5は、振動クラッシャ10とベース3からなる微粒化部分が円筒4を介して受け皿5と一体化しているか、受け皿中に分離可能に配されてなる、微粒化装置である。その断面図は図6に示されている。図7に示された使用状態図から理解されるように、受け皿に落ちた微粒子は円筒4の下部に集まり、円筒下部に設けられた図示しない開口から円筒4内に入る。円筒内に入った粒子は図示しない吸引手段やネジ機構によって上部に移動させられ、再度微粒化部に入って更に微粒化される。これを適宜繰り返す事により、所望の粒度の微量化物が得られる。   FIG. 5 shows an atomization apparatus in which the atomization portion including the vibration crusher 10 and the base 3 is integrated with the tray 5 via the cylinder 4 or is separably arranged in the tray. Its cross-sectional view is shown in FIG. As can be understood from the use state diagram shown in FIG. 7, the fine particles falling on the tray gather at the lower part of the cylinder 4 and enter the cylinder 4 through an opening (not shown) provided at the lower part of the cylinder. The particles that have entered the cylinder are moved upward by a suction means or a screw mechanism (not shown), and then enter the atomizing portion again to be further atomized. By repeating this appropriately, a micro-product having a desired particle size can be obtained.

本発明によれば、粒子径が数nm〜数百nmの微粒子を短時間で大量に製造することができるので、特に製剤における研究期間の短縮や開発費用の低減に極めて有用である。   According to the present invention, fine particles having a particle size of several nm to several hundreds of nm can be produced in a large amount in a short time, and thus it is extremely useful for shortening the research period and reducing the development cost in the preparation.

図1は、本発明の装置に応用する超音波モータの原理を説明する図である。FIG. 1 is a diagram for explaining the principle of an ultrasonic motor applied to the apparatus of the present invention. 図2は、本発明の装置の原理を説明する図である。FIG. 2 is a diagram for explaining the principle of the apparatus of the present invention. 図3は、円形の振動クラッシャとベースからなる、本発明の装置における微粒化部分の断面概念図である。FIG. 3 is a conceptual cross-sectional view of the atomized portion in the apparatus of the present invention, which is composed of a circular vibration crusher and a base. 図4は、図3におけるベースの、振動クラッシャが挿入される部分における特に側壁部分を分離可能な別体とした装置である。FIG. 4 is an apparatus in which the base in FIG. 3 is separated from the portion where the vibration crusher is inserted, particularly the side wall portion. 図5は、振動クラッシャとベースからなる微粒化部分が円筒を介して受け皿と一体化しているか、受け皿中に分離可能に配されてなる、微粒化装置である。FIG. 5 shows an atomization device in which the atomization portion composed of the vibration crusher and the base is integrated with the tray via a cylinder or is separably arranged in the tray. 図6は、図5の微粒化装置の断面図である。6 is a cross-sectional view of the atomization apparatus of FIG. 図7は、図5の微粒化装置の使用状態を説明する図である。FIG. 7 is a diagram for explaining a use state of the atomization apparatus of FIG.

符号の説明Explanation of symbols

1 弾性体
2 圧電素子
3 ベース
3’ 臼の側面部
4 円筒
5 受け皿
10 振動クラッシャ

DESCRIPTION OF SYMBOLS 1 Elastic body 2 Piezoelectric element 3 Base 3 'Side surface part of mortar 4 Cylinder 5 Receptacle
10 Vibration crusher

Claims (9)

被微粒化物質の硬度より高い硬度を有する、少なくとも2枚の弾性体の間に被微粒化物質を導入し、次いで前記弾性体の少なくとも一枚を振動させ、前記弾性体の間で前記被微粒化物質を粉砕することを特徴とする、微粒子の製造方法。   Introducing a material to be atomized between at least two elastic bodies having a hardness higher than that of the material to be atomized, then vibrating at least one of the elastic bodies, and A method for producing fine particles, comprising crushing a chemical substance. 前記弾性体の振動が超音波振動である、請求項1に記載された微粒子の製造方法。   The method for producing fine particles according to claim 1, wherein the vibration of the elastic body is ultrasonic vibration. 前記振動する弾性体が、弾性体の裏面に振動発生手段を設けてなる振動クラッシャである、請求項1又は2に記載された微粒子の製造方法。   The method for producing fine particles according to claim 1 or 2, wherein the vibrating elastic body is a vibration crusher in which vibration generating means is provided on the back surface of the elastic body. 前記被微粒化物質を挟む二枚の弾性体の両方が、裏面に振動発生手段を設けてなる振動クラッシャである、請求項3に記載された微粒子の製造方法。   The method for producing fine particles according to claim 3, wherein both of the two elastic bodies sandwiching the material to be atomized are vibration crushers having vibration generating means on the back surface. 前記振動発生手段が圧電素子である、請求項3又は4に記載された微粒子の製造方法。 The method for producing fine particles according to claim 3 or 4, wherein the vibration generating means is a piezoelectric element. 少なくとも、被微粒化物質を供給しうる如く形成された筐体と、該筐体中に互いに隣接して収納された、振動し得る少なくとも二枚のそれぞれ独立した弾性体からなる装置であって、少なくとも最端部の弾性体が裏面に振動発生手段を有すると共に、前記導入された被微粒化物質を前記弾性体の間に順次導入するための手段が設けられていることを特徴とする微粒子の製造装置。   An apparatus comprising at least two casings formed so as to be able to supply the material to be atomized and at least two independent elastic bodies that are housed adjacent to each other in the casing and can vibrate; At least the outermost elastic body has vibration generating means on the back surface, and means for sequentially introducing the introduced substance to be atomized between the elastic bodies is provided. manufacturing device. 前記振動を発生させる手段が、弾性体裏面に貼着された圧電素子である、請求項6に記載された微粒子の製造装置。   The fine particle manufacturing apparatus according to claim 6, wherein the means for generating vibration is a piezoelectric element attached to the back surface of the elastic body. 被微粒化物質の供給口と、微粒化物質の取り出し口を有する、請求項6又は7に記載された微粒子の製造装置。   The apparatus for producing fine particles according to claim 6 or 7, comprising a supply port for a material to be atomized and a discharge port for a material to be atomized. 被微粒化物質を粉砕する面が水平面ではない、請求項6〜8の何れかに記載された微粒子の製造装置。
The apparatus for producing fine particles according to any one of claims 6 to 8, wherein a surface for pulverizing the material to be atomized is not a horizontal plane.
JP2003412837A 2003-12-11 2003-12-11 Method and apparatus for producing fine particles Expired - Fee Related JP4656834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412837A JP4656834B2 (en) 2003-12-11 2003-12-11 Method and apparatus for producing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412837A JP4656834B2 (en) 2003-12-11 2003-12-11 Method and apparatus for producing fine particles

Publications (2)

Publication Number Publication Date
JP2005169259A true JP2005169259A (en) 2005-06-30
JP4656834B2 JP4656834B2 (en) 2011-03-23

Family

ID=34733128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412837A Expired - Fee Related JP4656834B2 (en) 2003-12-11 2003-12-11 Method and apparatus for producing fine particles

Country Status (1)

Country Link
JP (1) JP4656834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034980A1 (en) * 2007-09-10 2009-03-19 M.Technique Co., Ltd. Process for producing biological ingesta and biological ingesta obtained thereby

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451063A (en) * 1977-09-15 1979-04-21 Energy & Minerals Res Co Ultrasonic crusher
JPH04132691A (en) * 1990-09-25 1992-05-06 Nec Corp Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal
JPH0654859A (en) * 1992-08-11 1994-03-01 Toshiba Corp Ultrasonic transmitter
JPH10192727A (en) * 1996-12-28 1998-07-28 Honda Electron Co Ltd Crude refuse treating device using ultrasonic cutter
JP2851062B2 (en) * 1989-07-11 1999-01-27 株式会社東芝 Stone crushing equipment
JPH11195371A (en) * 1997-04-09 1999-07-21 Matsushita Electric Ind Co Ltd Electron emitting element, and manufacture thereof
JP2000140677A (en) * 1998-11-05 2000-05-23 Nippon Solid Co Ltd Method of crushing/mixing solid particles by ultrasonic waves
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001334165A (en) * 2000-05-26 2001-12-04 Hitachi Cable Ltd Pulverizing method for powder
JP2003088773A (en) * 2001-09-20 2003-03-25 Kurimoto Ltd Jet mill

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451063A (en) * 1977-09-15 1979-04-21 Energy & Minerals Res Co Ultrasonic crusher
JP2851062B2 (en) * 1989-07-11 1999-01-27 株式会社東芝 Stone crushing equipment
JPH04132691A (en) * 1990-09-25 1992-05-06 Nec Corp Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal
JPH0654859A (en) * 1992-08-11 1994-03-01 Toshiba Corp Ultrasonic transmitter
JPH10192727A (en) * 1996-12-28 1998-07-28 Honda Electron Co Ltd Crude refuse treating device using ultrasonic cutter
JPH11195371A (en) * 1997-04-09 1999-07-21 Matsushita Electric Ind Co Ltd Electron emitting element, and manufacture thereof
JP2000140677A (en) * 1998-11-05 2000-05-23 Nippon Solid Co Ltd Method of crushing/mixing solid particles by ultrasonic waves
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001334165A (en) * 2000-05-26 2001-12-04 Hitachi Cable Ltd Pulverizing method for powder
JP2003088773A (en) * 2001-09-20 2003-03-25 Kurimoto Ltd Jet mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034980A1 (en) * 2007-09-10 2009-03-19 M.Technique Co., Ltd. Process for producing biological ingesta and biological ingesta obtained thereby
US8927020B2 (en) 2007-09-10 2015-01-06 M Technique Co., Ltd. Method for producing biologically ingestible material and biologically ingestible material obtained therefrom

Also Published As

Publication number Publication date
JP4656834B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US20170280741A1 (en) Extraction apparatus
Chattopadhyay et al. Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer
US7131604B2 (en) Processing apparatus and method for fluid, and deaerator therewith
KR100901429B1 (en) Apparatus for Milling and Dispersing without Clogging for Dispersion of Carbon Nano Tube
JP3368117B2 (en) Method and apparatus for crushing solid particles
CN103816970B (en) The preparation facilities of liquid nano solution and preparation method
Morales et al. Mechanical particle-size reduction techniques
JP4656834B2 (en) Method and apparatus for producing fine particles
Morales et al. Mechanical particle-size reduction techniques
US7671113B2 (en) Process for the preparation of nanoscale particles of elastic material
JP5277470B2 (en) Solid-liquid dispersion drying method
Gimeno et al. Use of 1, 1, 1, 2-tetrafluoroethane (R-134a)-expanded liquids as solvent media for ecoefficient particle design with the DELOS crystallization process
Fernandes et al. Scale-Up of Nanoparticle Manufacturing Process
KR102530041B1 (en) wet spreader
JP2006247615A (en) Method and apparatus for dispersing and micronizing fine particles
CN105413834B (en) The processing unit used in the processing method and this method of slurry
JP4236758B2 (en) Fine graining equipment
CN109395666B (en) Integrated convection type reactor
CA2916325C (en) Adjustable super fine crusher
Juhnke et al. Nanoparticles of soft materials by high-energy milling at low temperatures
Nayak et al. Nanosuspension: A novel drug delivery system
JP2004195384A (en) Grinding method of material to be ground in liquid
JP4370176B2 (en) Fine particle redispersion method and redispersion device
JPH10180065A (en) Atomizing method and device therefor
WO2010073388A1 (en) Laser ablation-in-liquid system and method of subdividing solid material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees