JP2005166971A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2005166971A
JP2005166971A JP2003404037A JP2003404037A JP2005166971A JP 2005166971 A JP2005166971 A JP 2005166971A JP 2003404037 A JP2003404037 A JP 2003404037A JP 2003404037 A JP2003404037 A JP 2003404037A JP 2005166971 A JP2005166971 A JP 2005166971A
Authority
JP
Japan
Prior art keywords
film
forming
srtio
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003404037A
Other languages
Japanese (ja)
Inventor
Keisuke Kojima
圭介 小島
Akiyoshi Tamura
彰良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003404037A priority Critical patent/JP2005166971A/en
Publication of JP2005166971A publication Critical patent/JP2005166971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a capacitor of high performance in which the deterioration of a leaked current characteristic is reduced even in the case of a dielectric film of which the high dielectric constant is obtained by high-temperature annealing in a capacitor element using perovskite type oxide film high dielectric thin film. <P>SOLUTION: The manufacturing method is provided with a process for forming a plasma SiO<SB>2</SB>film 102 on the surface of a GaAs epitaxial substrate 101, and then forming a Ti film 103 and a Pt film 104 which become lower electrodes of the capacity on the surface of the plasma SiO<SB>2</SB>film; a process for forming a SrTiO<SB>3</SB>film 105 on the Pt film 104 and annealing the SrTiO<SB>3</SB>film 105; a process for forming a Pt film 106 which becomes an upper electrode on the surface of the SrTiO<SB>3</SB>film 105; a process for forming a capacitor element by etching the SrTiO<SB>3</SB>film 105 and the Pt film 106 to be the upper electrode, while leaving a prescribed area; and a process for treating the sidewall surface of the capacitor element with ozone. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高誘電体薄膜を用いた容量素子を有する半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device having a capacitive element using a high dielectric thin film.

SrTiO等のペロブスカイト型酸化膜高誘電体薄膜を用いた容量は、準マイクロ波帯で損失が少なく、60GHzまで周波数分散を示さないことから高周波GaAsMMIC用容量として使用されている(例えば特許文献1参照)。 Capacitance using a perovskite oxide high dielectric thin film such as SrTiO 3 is used as a high frequency GaAs MMIC capacitor because it has little loss in the quasi-microwave band and does not exhibit frequency dispersion up to 60 GHz (for example, Patent Document 1). reference).

これら容量はリーク電流を低減するため誘電体膜と電極の端面を離した形状にして端面リークを回避したり、酸素雰囲気でのアニールにより誘電体膜の酸素欠損を補填してリーク電流を抑えることで使用されている。
特開平8−45925号公報
In order to reduce the leakage current, these capacitors have a shape in which the end face of the dielectric film is separated from the end face of the electrode, and end face leakage is avoided, or oxygen leakage in the dielectric film is compensated by annealing in an oxygen atmosphere to suppress the leakage current. Used in.
JP-A-8-45925

しかしながら、更なる高容量化(高誘電率化)を図るためには、誘電体薄膜形成後に高温アニールによる結晶性の向上が必要となる。しかしこの高温アニール処理により生じる酸素欠損によりドナー準位が形成され、リーク電流レベルが劣化するといった課題があった。   However, in order to further increase the capacity (high dielectric constant), it is necessary to improve the crystallinity by high-temperature annealing after forming the dielectric thin film. However, there is a problem that a donor level is formed due to oxygen vacancies generated by this high-temperature annealing treatment, and the leakage current level is deteriorated.

本発明は、上記課題を解決するためになされたもので、誘電体薄膜を更に高誘電率化するための高温アニール処理により容量リーク特性の劣化が少ない高性能な容量素子の製造を実現した半導体装置の製造方法を提供するものである。   The present invention has been made to solve the above-described problems, and a semiconductor that realizes the manufacture of a high-performance capacitive element with little deterioration of capacitance leakage characteristics by high-temperature annealing treatment for further increasing the dielectric constant of a dielectric thin film. An apparatus manufacturing method is provided.

上記目的を達成するため本発明の半導体装置の製造方法では、高誘電体薄膜形成後、600℃〜700℃の温度で、2秒から60秒の高温短時間アニールを行い、次に容量端面を形成後、オゾン雰囲気で200℃〜300℃のアニール処理を施すことにより、充分に誘電体膜の結晶性を向上させ誘電率の向上をはかることができ、誘電体膜端面の酸素欠損を補填し、リーク電流の主要素である酸素欠損に起因した容量端リークを低減する。   In order to achieve the above object, in the method of manufacturing a semiconductor device according to the present invention, after forming a high dielectric thin film, annealing is performed at a temperature of 600 ° C. to 700 ° C. for 2 seconds to 60 seconds, and then the capacitor end face is formed. After the formation, annealing treatment at 200 ° C. to 300 ° C. in an ozone atmosphere can sufficiently improve the crystallinity of the dielectric film and improve the dielectric constant, and compensates for oxygen vacancies at the end face of the dielectric film. , Capacity end leakage due to oxygen deficiency, which is the main element of leakage current, is reduced.

このため、容量電極と容量端面を一致させても、リーク電流が低減されるので、更なる容量の小型化を実現することができる。   For this reason, even if the capacitor electrode and the capacitor end face are made to coincide with each other, the leakage current is reduced, so that further capacity reduction can be realized.

また、容量素子が形成される半導体基板にGaAs、GaAlAsまたはInAlAsのエピタキシャル層にTe又はSeドープの電子供給層を用いているため、容量素子の誘電率向上のために高温アニールをしても、従来の両極性のSiドープ電子供給層に比して、GaAsMMICの能動素子のエピタキシャル層の電気特性劣化が少ない。   In addition, since a TeAs or Se-doped electron supply layer is used for the epitaxial layer of GaAs, GaAlAs, or InAlAs on the semiconductor substrate on which the capacitive element is formed, high-temperature annealing is performed to improve the dielectric constant of the capacitive element. Compared with the conventional bipolar Si-doped electron supply layer, the deterioration of the electrical characteristics of the epitaxial layer of the active element of GaAs MMIC is small.

本発明によれば、ペロブスカイト型酸化膜高誘電体薄膜を用いた容量形成において、高容量化のための高温アニールにより生じた酸素欠損を、オゾン雰囲気の熱処理を行うことで強制的に補填し、リーク電流の主要素である容量端面部での電流リークを抑え、高容量かつリーク電流の低い高性能な容量素子を実現することが可能である。   According to the present invention, in capacity formation using a perovskite oxide high dielectric thin film, oxygen vacancies caused by high temperature annealing for high capacity are forcibly compensated by performing heat treatment in an ozone atmosphere, It is possible to suppress a current leakage at the capacitor end face which is a main element of the leakage current, and to realize a high-performance capacitive element having a high capacity and a low leakage current.

以下、図面を参照しながら、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

図1は本発明の実施形態によって製造される半導体装置の構造を示す断面図であり、101はGaAsエピタキシャル基板、102はプラズマSiO膜、103はTi膜、104はPt膜、105は高誘電体薄膜であるSrTiO3膜、106はPt膜、108はプラズマSiO膜、109,110は配線である。 FIG. 1 is a cross-sectional view showing the structure of a semiconductor device manufactured according to an embodiment of the present invention. 101 is a GaAs epitaxial substrate, 102 is a plasma SiO 2 film, 103 is a Ti film, 104 is a Pt film, and 105 is a high dielectric constant. SrTiO 3 film, which is a body thin film, 106 is a Pt film, 108 is a plasma SiO 2 film, and 109 and 110 are wirings.

図2は高誘電体容量素子の製造工程を示す断面図である。図2(a)に示すように、GaAsエピタキシャル基板101上に基板前面にプラズマCVD法を用いてプラズマSiO膜(厚さ300nm)102を形成する。この上に下部電極であるTi膜(厚さ20nm)103、Pt膜(厚さ250nm)104をEB蒸着法を用い形成する。 FIG. 2 is a cross-sectional view showing a manufacturing process of the high dielectric capacitance element. As shown in FIG. 2A, a plasma SiO 2 film (thickness 300 nm) 102 is formed on the GaAs epitaxial substrate 101 on the front surface of the substrate by plasma CVD. A Ti film (thickness 20 nm) 103 and a Pt film (thickness 250 nm) 104, which are lower electrodes, are formed thereon by EB vapor deposition.

次に、図2(b)に示すようにPt膜104上にO2を含むArプラズマ中でRFスパッタ法により基板温度300℃でSrTiO膜(厚さ300nm)105を形成する。 Next, as shown in FIG. 2B, an SrTiO 3 film (thickness 300 nm) 105 is formed on the Pt film 104 by RF sputtering in Ar plasma containing O 2 at a substrate temperature of 300 ° C.

次に、図2(c)に示すように、ランプアニール法を用いて、N雰囲気中、650℃、30秒間のアニールを行い、SrTiO膜105の結晶化を促進させる。アニール温度としては、600〜700℃、時間としては2秒〜60秒が適当である。なお、O2雰囲気を用いれば更なる結晶化の向上が図れる。 Next, as shown in FIG. 2C, annealing is performed at 650 ° C. for 30 seconds in a N 2 atmosphere using a lamp annealing method to promote crystallization of the SrTiO 3 film 105. A suitable annealing temperature is 600 to 700 ° C. and a time is 2 to 60 seconds. If an O 2 atmosphere is used, the crystallization can be further improved.

次に、図2(d)に示すように、SrTiO膜105上に上部電極となるPt膜(厚さ300nm)106をEB蒸着法を用い形成する。 Next, as shown in FIG. 2D, a Pt film (thickness 300 nm) 106 to be an upper electrode is formed on the SrTiO 3 film 105 by using the EB vapor deposition method.

次に、図2(e)に示すように、フォトレジストマスク107を用いて、上部電極となりうる所定の領域を、Arイオンミリング法を用いて上部電極となるPt膜106と誘電膜であるSrTiO膜105のエッチングを同時に行い上部電極を形成する。 Next, as shown in FIG. 2E, by using a photoresist mask 107, a predetermined region that can become the upper electrode is divided into a Pt film 106 that becomes the upper electrode and an SrTiO that is a dielectric film using the Ar ion milling method. The three films 105 are etched simultaneously to form the upper electrode.

次に、フォトレジスト107(図2(e)参照)を除去した後、図2(f)に示すように、オゾン雰囲気で300℃、30秒のアニールを行う。イオンミリング後SrTiO膜105の端面にできた酸素欠損がリーク電流を引き起こすおそれがあるため、オゾンアニールによりこの酸素欠損を強制的に補填する。 Next, after removing the photoresist 107 (see FIG. 2E), as shown in FIG. 2F, annealing is performed in an ozone atmosphere at 300 ° C. for 30 seconds. Since oxygen vacancies formed on the end face of the SrTiO 3 film 105 after ion milling may cause a leakage current, the oxygen vacancies are forcibly compensated by ozone annealing.

次に、図2(g)に示すように、絶縁膜をプラズマCVD法を用いてプラズマSiO膜(厚さ500nm)108を形成する。これは容量端の保護と次工程で形成するAu配線と容量との絶縁性を担う。 Next, as shown in FIG. 2G, a plasma SiO 2 film (thickness: 500 nm) 108 is formed as the insulating film by plasma CVD. This bears protection of the capacitor end and insulation between the Au wiring formed in the next process and the capacitor.

次に、図2(h)に示すように、Auメッキ法を用いて上部電極となるPt膜106および下部電極となるPt膜104からの配線(厚さ3μm)109,110を形成し、容量構造を形成する。   Next, as shown in FIG. 2 (h), wiring (thickness 3 μm) 109, 110 from the Pt film 106 serving as the upper electrode and the Pt film 104 serving as the lower electrode is formed using the Au plating method. Form a structure.

図3は、100μm×100μmサイズの容量の電気特性を図1で示した本実施形態のオゾンアニール処理した容量とアニール処理のない従来の容量とで比較したものであり、図3(a)は本実施形態における容量、図3(b)は従来の容量を示す。同図より本実施形態の容量の方が、容量値が大きく(約1.5倍)、また容量リークの少ない良好な特性が実現できていることが分かる。   FIG. 3 is a comparison of the electrical characteristics of a 100 μm × 100 μm size capacitor between the ozone annealed capacity of the present embodiment shown in FIG. 1 and the conventional capacity without the anneal process. FIG. The capacity in this embodiment, FIG. 3B, shows the conventional capacity. From the figure, it can be seen that the capacitance of the present embodiment has a larger capacitance value (about 1.5 times) and a good characteristic with less capacitance leakage.

以上の説明では、高誘電体薄膜としてSrTiOを採用した場合について説明したが、BaSrTiO等の他のペロブスカイト型酸化膜誘電体薄膜についても、同様の効果があることは言うまでもない。 In the above description, the case where SrTiO 3 is employed as the high dielectric thin film has been described, but it goes without saying that other perovskite oxide dielectric thin films such as BaSrTiO 3 have the same effect.

また、基板としてGaAsエピタキシャル基板を採用した場合について説明したが、他のInPエピタキシャル基板についても同様である。更に、Te又はSeドープの電子供給層を用いることにより、GaAsMMICにおける能動素子部分において、高温アニール時におけるエピタキシャル基板の電気特性劣化を抑制することが可能である。   Moreover, although the case where a GaAs epitaxial substrate is employed as the substrate has been described, the same applies to other InP epitaxial substrates. Furthermore, by using a Te or Se-doped electron supply layer, it is possible to suppress deterioration of the electrical characteristics of the epitaxial substrate during high-temperature annealing in the active element portion of the GaAsMMIC.

これによりエピタキシャル基板の電気特性を維持したまま、SrTiO誘電率をアップできる。これにより、容量素子の端面リーク防止のために誘電体膜サイズを電極より小さくする必要が無くなり、容量素子の小型化実現できる。 As a result, the dielectric constant of SrTiO 3 can be increased while maintaining the electrical characteristics of the epitaxial substrate. Thereby, it is not necessary to make the dielectric film size smaller than the electrode in order to prevent end face leakage of the capacitive element, and the capacitive element can be downsized.

ところで、SrTiOの成膜温度を高くして、低温での熱処理での製造方法、例えば400℃でSrTiOを成膜し、400〜500℃でアニール処理するものでは、SrTiO膜の誘電率はバルクの50%程度しか得られていない。アニール温度とSrTiO誘電率の正相関を確認しており、600〜700℃の高温アニールにすることにより誘電率40%アップできると見込める。 By the way, in the manufacturing method by heat treatment at a low temperature by increasing the film formation temperature of SrTiO 3 , for example, forming SrTiO 3 at 400 ° C. and annealing at 400 to 500 ° C., the dielectric constant of the SrTiO 3 film Is only about 50% of the bulk. A positive correlation between the annealing temperature and the SrTiO 3 dielectric constant has been confirmed, and it can be expected that the dielectric constant can be increased by 40% by high-temperature annealing at 600 to 700 ° C.

しかしながら、高温アニール時間が長いとSrTiOから酸素が抜け、電流リークが増大し、化合物半導体基板のエピタキシャル層上に容量形成するため、400℃以上でのエピタキシャル層の電気特性劣化が考えられる。 However, if the high temperature annealing time is long, oxygen is released from SrTiO 3 , current leakage increases, and capacitance is formed on the epitaxial layer of the compound semiconductor substrate. Therefore, the electrical characteristics of the epitaxial layer may be deteriorated at 400 ° C. or higher.

そこで本実施形態によれば、耐熱性の高いTe,Seドープ基板を用い、RTP(Rapid Thermal Process:急速加熱処理)で高温度(600〜700℃)の短時間アニール処理(2秒)することで、基板の熱劣化を抑えつつ、低温(400℃以下、ここでは200〜300℃)オゾンアニールで電流リークを低減することが可能になる。またアニール処理は成膜直後でなく、容量端面を曝した直後に行うことにより、電流リークの支配的成分である端面リークを抑えることができる。   Therefore, according to the present embodiment, a short heat treatment (2 seconds) at a high temperature (600 to 700 ° C.) is performed by RTP (Rapid Thermal Process) using a Te, Se doped substrate having high heat resistance. Thus, current leakage can be reduced by ozone annealing at a low temperature (400 ° C. or lower, here, 200 to 300 ° C.) while suppressing thermal deterioration of the substrate. Further, by performing the annealing treatment not immediately after the film formation but immediately after the capacitor end face is exposed, the end face leak, which is a dominant component of the current leak, can be suppressed.

本発明によれば、リーク電流の主要素である容量端面部での電流リークを抑え、高容量かつリーク電流の低い高性能な容量素子を実現することが可能であることにより、例えば、携帯電話用の高誘電体容量素子を製造する分野において利用可能である。   According to the present invention, it is possible to realize a high-capacity element having a high capacity and a low leakage current by suppressing current leakage at the capacitor end face, which is a main element of leakage current, for example, a mobile phone. The present invention can be used in the field of manufacturing high-dielectric capacitor elements.

本発明の実施形態によって製造される半導体装置の構造を示す断面図Sectional drawing which shows the structure of the semiconductor device manufactured by embodiment of this invention 高誘電体容量素子の製造工程を示す断面図Sectional drawing which shows the manufacturing process of a high dielectric capacitance element 本実施形態における高誘電体容量と従来の高誘電体容量との特性を比較した図The figure which compared the characteristic of the high dielectric capacitance in this embodiment and the conventional high dielectric capacitance

符号の説明Explanation of symbols

101 GaAsエピタキシャル基板
102 プラズマSiO
103 Ti膜
104 Pt膜
105 SrTiO3
106 Pt膜
107 フォトレジスト
108 プラズマSiO
109,110 配線
101 GaAs epitaxial substrate 102 plasma SiO 2 film 103 Ti film 104 Pt film 105 SrTiO 3 film 106 Pt film 107 photoresist 108 plasma SiO 2 film 109, 110 wiring

Claims (6)

半導体基板の一主面上に、容量の下部電極となる第1の金属を形成する工程と、前記第1の金属上に高誘電体薄膜を形成した後、アニールする工程と、前記高誘電体薄膜上に容量の上部電極となる第2の金属を形成する工程と、前記高誘電体薄膜および第2の金属の所定の領域のみを残すようにエッチングして、前記第1の金属,高誘電体薄膜および第2の金属からなる容量素子を形成する工程と、前記容量素子の側壁面をオゾン処理する工程とを具備したことを特徴とする半導体装置の製造方法。   Forming a first metal serving as a lower electrode of a capacitor on one main surface of a semiconductor substrate; forming a high dielectric thin film on the first metal; and annealing the high metal; and Forming a second metal serving as an upper electrode of a capacitor on the thin film, and etching so as to leave only a predetermined region of the high-dielectric thin film and the second metal, and the first metal, the high dielectric A method for manufacturing a semiconductor device, comprising: a step of forming a capacitor element made of a thin body film and a second metal; and a step of ozone treatment of a side wall surface of the capacitor element. 前記半導体基板が化合物半導体基板であることを特徴とする請求項1記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is a compound semiconductor substrate. 前記半導体基板がTeまたはSeドープ層を有するGaAs、GaAlAsまたはInAlAsのエピタキシャル層を具備していることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate comprises an epitaxial layer of GaAs, GaAlAs or InAlAs having a Te or Se doped layer. 前記高誘電体薄膜が、スパッタ法で形成されたSrTiOまたはBaSrTiOのいずれかであることを特徴とする請求項1記載の半導体装置の製造方法。 The high dielectric thin film, a method of manufacturing a semiconductor device according to claim 1, wherein a is either SrTiO 3 or BaSrTiO 3 formed by the sputtering method. 前記高誘電体薄膜のアニール温度が600〜700℃、アニール時間が2秒から60秒であることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the high dielectric thin film has an annealing temperature of 600 to 700 [deg.] C. and an annealing time of 2 to 60 seconds. 前記オゾン処理の温度が200〜300℃であることを特徴とする請求項1記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein a temperature of the ozone treatment is 200 to 300 ° C.
JP2003404037A 2003-12-03 2003-12-03 Method for manufacturing semiconductor device Pending JP2005166971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404037A JP2005166971A (en) 2003-12-03 2003-12-03 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404037A JP2005166971A (en) 2003-12-03 2003-12-03 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2005166971A true JP2005166971A (en) 2005-06-23

Family

ID=34727122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404037A Pending JP2005166971A (en) 2003-12-03 2003-12-03 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2005166971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138620A (en) * 2015-05-26 2016-12-06 성균관대학교산학협력단 Method for manufacturing atomically flat polycrystalline sto substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138620A (en) * 2015-05-26 2016-12-06 성균관대학교산학협력단 Method for manufacturing atomically flat polycrystalline sto substrate
KR101725633B1 (en) 2015-05-26 2017-04-11 성균관대학교산학협력단 Method for manufacturing atomically flat polycrystalline sto substrate

Similar Documents

Publication Publication Date Title
KR100623584B1 (en) Dual-gate structure and method of fabricating integrated circuits having dual-gate structures
KR100604845B1 (en) Metal-Insulator-Metal capacitor having insulating layer with nitrogen and method for manufacturing the same
US9224675B1 (en) Automatic capacitance tuning for robust middle of the line contact and silicide applications
US6686237B1 (en) High precision integrated circuit capacitors
KR100332517B1 (en) Etching method and etching mask
US11424318B2 (en) Capacitor devices and fabrication methods thereof
JP2007134726A (en) Integrated circuit device including metal-insulator-metal capacitor, and method of fabricating same
KR20050022475A (en) Method for manufacturing a semiconductor device having capacitor
JP2005166971A (en) Method for manufacturing semiconductor device
US7465627B2 (en) Methods of forming capacitors
US6627504B1 (en) Stacked double sidewall spacer oxide over nitride
US20070254425A1 (en) Methods of fabricating a semiconductor device
JPH08264648A (en) Semiconductor device
KR100827521B1 (en) Capacitor of semiconductor device and method for manufacturing the same
US20230043874A1 (en) Semiconductor structure and manufacturing method thereof
KR100788369B1 (en) Pip type capacitor and method for manufacturing the same
US6207521B1 (en) Thin-film resistor employed in a semiconductor wafer and its method formation
KR100520140B1 (en) Method for forming capacitor of semiconductor device
KR20020002081A (en) Method of manufacturing a capacitor in a semiconductor device
KR0172843B1 (en) Method of manufacturing semiconductor device
JP2006100603A (en) Thin-film capacitor
KR100206719B1 (en) Process for fabricating semiconductor memory device
KR101061169B1 (en) Capacitor Formation Method of Semiconductor Device
KR100519375B1 (en) Capacitor in semiconductor device and method for making the same
CN116364704A (en) Capacitor structure and forming method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020