JP2005166545A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2005166545A
JP2005166545A JP2003406090A JP2003406090A JP2005166545A JP 2005166545 A JP2005166545 A JP 2005166545A JP 2003406090 A JP2003406090 A JP 2003406090A JP 2003406090 A JP2003406090 A JP 2003406090A JP 2005166545 A JP2005166545 A JP 2005166545A
Authority
JP
Japan
Prior art keywords
fuel cell
drainage
gas flow
porous body
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003406090A
Other languages
English (en)
Inventor
Keigo Ikezoe
圭吾 池添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003406090A priority Critical patent/JP2005166545A/ja
Publication of JP2005166545A publication Critical patent/JP2005166545A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】緻密質プレートにインターディジデント形状のガス流路を形成して発電効率を向上するとともに、ガス流路内のフラッディングを抑制できる燃料電池を提供する。
【解決手段】上流端16uがカソード入口マニホールド6に連通し、下流端16dが行き止まりより成る供給ガス流路16と、下流端17dがカソード出口マニホールド7に連通し、上流端17uが行き止まりよりなる排出ガス流路17と、を交互に配置することにより形成したカソードガス流路12を設けた緻密質のカソード側セパレータ3を備える。また、カソードガス流路12から供給されたカソードガスを用いて発電を行うガス拡散電極層5と、供給ガス流路16の下流端16d近傍と、燃料電池1外部とを連通する排水経路と、排水経路の経路断面を閉塞するように配置した多孔質体10と、を備える。
【選択図】 図1

Description

本発明は、燃料電池に関する。特に、セパレータにインターディジデント形状の反応ガス流路を備える燃料電池に関する。
従来の燃料電池として、集電体セパレータにガス供給用流路とガス排出用流路を分離して形成し、ガス供給用流路の全てのガスが電極層や触媒層をくぐり抜けてガス排出用ガス流路へ排出されるように構成したものが知られている。このように、反応ガスをガス拡散電極に強制的に通過させることで、ガス拡散電極内に溜まった水を排出することができ、フラッディングを防止している。また、この流路を用いることで、ガス流量を通常より小さくすることができ、ブロアの小型化を図ることができる(例えば、特許文献1、参照。)。
特開平11−16591号公報
しかしながら、上記背景技術に示した従来の燃料電池においては、ガス流路の行き止まりとなっている部分に凝縮した水が溜まってしまい、その量が増えると、その部分に反応ガスが拡散しなくなり発電効率が低下する、いわゆるフラッディングが生じるという問題がある。そこで、燃料電池のセパレータを多孔質体で構成し、水の排出を行うという技術が提案されているが、その場合には、燃料電池の全てのセパレータを多孔質で作らなければならず、緻密質プレートを用いた場合に比べてコストがかかるという問題がある。これは、プレートの値段だけでなく、通常多孔質プレートは緻密質プレートに比べて脆弱であるため、スタッキングにおけるシール構造、スタッキング部品などにおいてもより複雑で高価な物になってしまう。
また、多孔質内部には常に水が存在することになり、燃料電池を0℃以下の環境に置く場合は水が凍ってしまい、多孔質内部の水を溶かすためのエネルギをロスして、起動するのに時間がかかってしまうという問題があった。
そこで本発明は、上記の問題を鑑みて、緻密質プレートにインターディジデント形状のガス流路を形成して発電効率を向上するとともに、ガス流路内のフラッディングを抑制することができる燃料電池を提供することを目的とする。
上流端が供給マニホールドに連通し、下流端が行き止まりより成る供給ガス流路と、下流端が排出マニホールドに連通し、上流端が行き止まりよりなる排出ガス流路と、を交互に配置することにより形成した反応ガス流路を設けた緻密質セパレータを備える。また、前記反応ガス流路から供給された反応ガスを用いて発電反応を生じるガス拡散電極と、前記供給ガス流路の下流端近傍と外部とを連通する排水経路と、前記排水経路の少なくとも一部の経路断面を閉塞する多孔質体と、を備える。
供給ガス流路の下流端近傍と外部とを連通する排水経路と、排水経路の少なくとも一部の経路断面を閉塞する多孔質体を備える。これにより、供給ガス流路下流端近傍の液水を除去できるとともに、多孔質体に水分が含まれることにより供給ガス流路内の反応ガスをシールすることができる。その結果、緻密質プレートにインターディジデント形状のガス流路を形成して発電効率を向上するとともに、ガス流路内のフラッディングを抑制することができる。
第1の実施形態に用いる燃料電池1の概略構成を図1に示す。図1(a)に、反応面に沿った平面図、特に後述するカソード側セパレータ3の平面図を、(b)に後述する供給ガス流路16に沿った積層方向の断面図を示す。
図1(b)に示すように、燃料電池1を、複数の単位セル2を積層することにより構成する。単位セル2を、電解質および触媒を有するガス拡散電極層5を、カソード側セパレータ3とアノード側セパレータ4で狭持することにより構成する。カソード側セパレータ3、アノード側セパレータ4はそれぞれ緻密材により、ガス拡散電極層5は多孔質材により構成する。
アノード側セパレータ4のガス拡散電極層5に接触する面4aに、アノードガス流路13を構成する溝を設ける。ここではアノードガス流路13の形状は詳しく説明しないが、例えば、後述するようなカソードガス流路12と同様、インターディジデント形状とする。または、ストレート形状や蛇行形状の流路としてもよい。また、図1(a)に示すように、燃料電池1を積層方向に貫通するアノード入口マニホールド14、アノード出口マニホールド15を備える。燃料電池1の外部からアノード入口マニホールド14に供給されたアノードガスを、各単位セル2のアノードガス流路13に分配して発電反応を生じる。発電後のアノードガスは、アノード出口マニホールド15に回収され、燃料電池1の外部に排出される。
また、アノード側セパレータ4のガス拡散電極層5に接触する面4aと反対側の面4bには、単位セル2の温度を調整するための冷媒が流通するクーラント流路11を構成する溝を設ける。クーラント流路11は、このアノード側セパレータ4の面4bに形成した溝と、隣接する単位セル2のカソード側セパレータ3の面3bとから形成される。
一方、カソード側セパレータ3のガス拡散電極層5に接触する面3aには、図1(a)に示すようなカソードガス流路12を構成する溝を設ける。カソードガス流路12を、供給ガス流路16と、排出ガス流路17とから構成する。供給ガス流路16を、上流端16uが燃料電池1を積層方向に貫通して構成されるカソード入口マニホールド6に連通し、下流端16dが行き止まりとなるように構成する。一方、排出ガス流路17を、上流端17uが行き止まりとなり、下流端17dが燃料電池1を積層方向に貫通して構成されるカソード出口マニホールド7に連通するように構成する。供給ガス流路16と排出ガス流路17とは連通させず、互いに平行に、かつ、交互に配置することによりカソードガス流路12に構成する。
さらに、カソードガス流路12から液水を除去するための排水経路を構成する。ここでは、排水経路を、図1(b)に示すような貫通孔18、排水流路9、排水マニホールド8から構成する。
貫通孔18を、供給ガス流路16の下流端16dに形成した行き止まり近傍に連通し、カソード側セパレータ3を厚さ方向に貫通するように構成する。ここでは、貫通孔18を、カソード側セパレータ3の反応面に対して垂直に構成する。例えば、通常運転時に、燃料電池1を反応面が水平となるように設置することにより、貫通孔18は垂直方向に伸びる孔となる。このとき、重力により下流端16d近傍の液水が貫通孔18に移動し易くなるので、後述するように、貫通孔18を介して供給ガス流路16から水を排出する際に、その排水機能を向上することができる。
また、排水マニホールド8を、燃料電池1を積層方向に貫通するように構成する。さらに、排水流路9を、貫通孔18と排水マニホールド8を連通するように構成することで、貫通孔18を介して供給ガス流路16から除去した液水を排水マニホールド8を介して燃料電池1の外部に排出可能とする。ここでは、排水流路9を、アノード側セパレータ4のカソード側セパレータ3に接触する面4bに設けた溝により構成する。または、カソード側セパレータ3のアノード側セパレータ4に接触する面3bに設けた溝により構成してもよい。
さらに、貫通孔18、排水流路9、排水マニホールド8により構成した排水経路の、少なくと一部の経路断面を閉塞する多孔質体10を備える。ここでは、貫通孔18の一部を閉塞するように多孔質体10を配置する。図1(b)に示すように、カソード側セパレータ3のアノード側セパレータ4の接触する面3b側に、貫通孔18に重なるように多孔質体10を埋め込むことにより、貫通孔18の一部を閉塞する。なお、多孔質体10の配置はこの限りではない。例えば、供給ガス流路16内の貫通孔18に重なる位置に配置してもよい。なお、多孔質体10は、カソードガス流路12側に向かう面10aからその反対側の面10bにかけて連通して形成される空隙を有する多孔質材により構成する。
通常運転時には、カソードガスが燃料電池1の外部からカソード入口マニホールド6に供給され、さらに各単位セル2に分配される。各単位セル2では、カソードガスがまず供給ガス流路16に供給される。供給ガス流路16の下流端16dは行き止まりとなっているので、供給ガス流路16に供給されたカソードガスは、強制的に隣接するガス拡散電極層5内に拡散される。ガス拡散電極層5内では、触媒にカソードガスが接触することにより発電反応(2H++2e-+1/2O2→H2O・・・(1))が生じる。発電後のカソードガスは、排出ガス流路17側に排出され、さらに燃料電池1を積層方向に貫通するカソード出口マニホールド7に回収されて、燃料電池1の外部に排出される。
ここで、カソード側では、(1)式に示すように発電に伴って水が生成される。このとき、カソードガス流路12の行き止まり部分ではカソードガスの流れが少なく、生成水が滞留してフラッディングが生じる可能性がある。特に、供給ガス流路16の下流端16dの行き止まりでは、生成水が滞留してフラッディングが生じ易い。
そこで、上述したように、供給ガス流路16から水を排出する排水経路を形成し、その途中の少なくとも一部を多孔質体10で閉塞する。ここでは、排水経路を、貫通孔18、排水流路9、排水マニホールド8により形成し、貫通孔18の一部を多孔質体10により閉塞する。
通常運転時に、カソード側で生じた生成水が多孔質体10の空隙に入り込むと、図2(a)に示すように、水と多孔質体10が接触するBの部分に表面張力が働く。そのため、多孔質体10の面10aと面10bの差圧が、いわゆるバブルプレッシャーになるまではガスを封止することができ、供給ガス流路16内のカソードガスが排水経路を介して外部に漏洩するのを防ぐことができる。バブルプレッシャーPは、多孔質体10の細孔径をd、水の表面張力をσ、多孔質内部の接触角をθとすると、次の式で表される。
Figure 2005166545
一方、供給ガス流路16内で多くの凝縮水が生じ、多孔質体10の表面10a側に水が溜まった状態となった場合には、図2(b)に示すように細孔内部に働く表面張力がなくなる。そのため、多孔質体10の面10a、10bの間の差圧ΔPが、細孔内の水の粘性抵抗による圧力損失を上回っていれば、水は多孔質体10を透過することができる。
そこで、多孔質体10を構成する材料の物性を調整し、(2)式に示すバブルプレッシャーPが、細孔内の粘性抵抗による圧力損失より大きくなるようにする。通常運転時には、多孔質体10の面10aと面10b側の圧力差ΔPが、細孔内の粘性抵抗による圧力損失より大きく、またバブルプレッシャーより小さくなるように制御する。その結果、多孔質体10は、面10aから面10bに向かってカソードガスが透過するのを封止し、水のみを排出する機能を実現することができる。
次に、本実施形態の効果を説明する。
上流端16uがカソード入口マニホールド6に連通し、下流端16dが行き止まりより成る供給ガス流路16と、下流端17dがカソード出口マニホールド7に連通し、上流端17uが行き止まりよりなる排出ガス流路17と、を交互に配置することにより形成したカソードガス流路12を設けた緻密質のカソード側セパレータ3を備える。また、カソードガス流路12から供給されたカソードガスを用いて発電を行うガス拡散電極層5と、供給ガス流路16の下流端16d近傍と外部とを連通する排水経路と、排水経路の少なくとも一部の経路断面を閉塞する多孔質体10と、を備える。これにより、多孔質体10の表面10aに到達した水は裏面10b側に透過するので、フラッディングを防止することができる。かつ、多孔質体10の細孔に水が含浸されている場合には、その表面張力によってバブルプレッシャーまでガスを封止することができるので、ガスを封止し、カソードガスの減少による発電性能の低下も防止することができる。
排水経路として、少なくとも、供給ガス流路16に連通し、緻密質なカソード側セパレータ3を厚み方向に貫通する貫通孔18を備える。これにより、液水を貫通孔18を介して供給ガス流路16内から除去することができる。ここでは、排水経路を、カソード側セパレータ3を厚み方向に貫通する貫通孔18と、燃料電池1を貫通する排水マニホールド8と、貫通孔18と排水マニホールド8を連通する排水流路9とから構成する。このように構成することで、供給ガス流路16内の液水を貫通孔18に除去し、さらに排水マニホールド8を通って燃料電池1の外部に排出することができる。
多孔質体10を、貫通孔18の少なくとも一部を閉塞するように配置する。排水経路内でカソードガスが存在する可能性がある領域は、多孔質体10の上流側の領域となる。多孔質体10を貫通孔18に配置することにより、この領域を小さく設定することができる。その結果、反応に用いられないカソードガスを少なくすることができ、特に運転と停止が頻繁に繰り返される移動体用の燃料電池として用いる場合の発電効率が低下するのを抑制することができる。
次に、第2の実施形態について説明する。燃料電池1の構成を図3に示す。以下、第1の実施形態と異なる部分を中心に説明する。
多孔質体10を、供給ガス流路16の下流端16d近傍に連通する排水経路の少なくとも一部の経路断面を閉塞するように配置する。ここでは、排水経路を構成する排水流路9の一部の流路断面を閉塞するように多孔質体10を配置する。排水流路9は、アノード側セパレータ4の表面4bに設けた溝により構成されているため、組み立ての際に多孔質体10を容易に設置することができる。また、排水流路9内に配置することで、カソードガスの圧力により流路軸方向に多孔質体10が多少ずれても、水のみを排出してカソードガスをシールする機能を維持することができる。
次に、本実施形態の効果について説明する。以下、第1の実施形態とは異なる効果のみを説明する。
排水経路の一部として、カソード側セパレータ3のカソードガス流路12を形成した面3aの裏面3b、または、それに隣接するプレートに排水流路9を構成する。多孔質体10を、排水流路9の少なくとも一部を閉塞するように配置する。これにより、組み立て時、または通常運転時の、多孔質体10の排水流路9内での設置位置に幅を持たせることができる。その結果、多孔質体10の設置を容易に行うことができるとともに、多孔質体10が排水流路9内で流路軸方向にずれた場合にも、排水機能とガスのシール機能を維持することができる。
次に、第3の実施形態について説明する。燃料電池1の構成を図4に示す。以下、第1の実施形態と異なる部分を中心に説明する。
多孔質体10を、供給ガス流路16の下流端16d近傍に連通する排水経路の少なくとも一部の経路断面を閉塞するように配置する。ここでは、排水経路の一部を構成する排水マニホールド8内に、排水経路の流路断面を閉塞するように多孔質10を配置する。図4(b)に示すように、排水マニホールド8内の、排水流路9の出口部9oに重なる部分が多孔質体10によって閉塞されるように多孔質体10を配置する。
排水マニホールド8のC−C断面を図4(c)に示す。
排水マニホールド8を略円筒形状に構成し、排水マニホールド8の内壁面の一部に沿って多孔質体10を配置する。このとき、貫通孔18を介して各供給ガス流路16に連通する排水流路9の一端が、排水マニホールド8の多孔質体10を配置した部分に接続されるように構成する。これにより、排水流路9内のカソードガスと水の混合流体のうち水のみを、多孔質体10を介して排水マニホールド8側に排出することができる。その結果、カソードガスをシールして発電効率を維持するとともに、供給ガス流路16の下流端16dで生じ易いフラッディングを抑制することができる。
次に、本実施形態の効果について説明する。以下、第1の実施形態とは異なる効果のみを説明する。
多孔質体10を、排水マニホールド8内の一部に配置する。ここでは、排水流路9の出口部9oを塞ぐように、多孔質体10を排水マニホールド8内に配置する。連続する一つの多孔質体10により、複数の単位セル2に構成した排水流路9の出口部9oを閉塞することができる。これにより、各単位セル2毎に多孔質体10を設置する必要がないので、燃料電池1の組み立てる際の工程を簡単にすることができる。
次に、第4の実施形態について説明する。燃料電池1の構成を図5に示す。以下、第1の実施形態と異なる部分を中心に説明する。
多孔質体10を、供給ガス流路16の下流端16d近傍に連通する排水経路の少なくとも一部の経路断面を閉塞するように配置する。ここでは、排水経路を構成する排水マニホールド8の出口部8oを閉塞するように多孔質体10を配置する。つまり、多孔質体10を、複数の積層した単位セル2のうち、排水マニホールド8の出口部8o側の端部に位置する単位セル2hに配置する。これにより、燃料電池1から水を排出することができるとともに、カソードガスを燃料電池1内部にシールすることができる。
または、図6に示すように、積層した単位セル2の端部にエンドプレート19を備える場合には、エンドプレート19内部に形成された排水マニホールド8の一部、例えば出口部8oを閉塞するように、多孔質体10を配置してもよい。このように配置した際にも、燃料電池1から水を排出することができるとともに、カソードガスを燃料電池1内部にシールすることができる。
次に、本実施形態の効果について説明する。以下、第1の実施形態とは異なる部分を中心に説明する。
カソード側セパレータ3とガス拡散電極層5とを積層することにより構成した単位セル2を複数積層することにより燃料電池1を構成する。排水経路として、単位セル2の積層方向について燃料電池1を貫通し、各単位セル2に形成した供給ガス流路16から、少なくとも貫通孔18を介して除去した液水を外部に排出する排水マニホールド8を備える。多孔質体10を、排水マニホールド8の一部を閉塞するように配置する。これにより、単位セル2毎に多孔質体10を設置する必要がないので、燃料電池1の組み立て工程を簡単にすることができる。特に、排水マニホールド8の出口8oを閉塞するように多孔質体10を配置することで、一つの多孔質体10によって燃料電池1全体のカソードガスをシールすることができるとともに、フラッディングを抑制することができる。このとき、多孔質体10は、排水マニホールド8を閉塞するのに十分な大きさであればよいので、第3の実施形態に比較して少ない多孔質材料により多孔質体10を形成することができる。
次に、第5の実施形態について説明する。燃料電池1の構成を図7に示す。以下、第1の実施形態と異なる部分を中心に説明する。
ガス拡散電極層5を排水マニホールド8の内部まで延長して構成することにより、排水ガスマニホールド8の断面を閉塞する。ガス拡散電極層5は多孔質材により構成しているので、ガス拡散電極層5に水が含まれることにより、カソードガスを封止し、水のみを排出することができる。つまり、排水マニホールド8内に存在するガス拡散電極層5の一部(以下、多孔質部20)が、多孔質体10の機能を果たしている。
また、ガス拡散電極層5内の細孔径dを、反応領域に比較して多孔質部20で小さくなるように構成する。これにより、(2)式のバブルプレッシャーPが大きくなるので、ガス封止機能をより高めることができる。さらに、通常、反応領域ではガス拡散電極層5は撥水性を有しているが、多孔質部20を形成する延長部分については、親水性を有するように形成する。これにより、多孔質内の接触角θが小さくなるので、バブルプレッシャーが大きくなり、ガス封止能力をより高めることができる。
次に、本実施形態の効果について説明する。以下、第1の実施形態と異なる効果のみを説明する。
ガス拡散電極層5の一部が排水マニホールド8の流路断面を閉塞するように構成する。これにより、従来用いていた構成部品の一つにより多孔質部20を構成することができるので、燃料電池1の組み立て工程を複雑にすることなく、排水経路の一部の経路断面を多孔質材により閉塞することができる。また、ガス拡散電極層5は、カソード側セパレータ3とアノード側セパレータ4によって狭持され、固定されているので、ガス拡散電極層5の一部で構成される多孔質部20も排水マニホールド8内に固定される。そのため、多孔質部20がずれる等によるカソードガスの漏れを確実に防ぐことができる。また、ガス拡散電極層5内で生じた液水についても、反応領域から排水マニホールド8側に移動させることができ、燃料電池1の外部に排出することができる。
また、ガス拡散電極層5の一部である、排水マニホールド8内に配された多孔質部20の空隙が、ガス拡散電極層5の発電領域の空隙より小さくなるように構成する。ここでは、ガス拡散電極層5内で、多孔質部20の細孔径dが反応領域の細孔径dに比較して小さくなるように構成する。これにより、多孔質部20のバブルプレッシャーPを大きくすることができるので、ガスの封止能力を向上することができる。
また、ガス拡散電極層5の一部である、排水マニホールド8内に配された多孔質部20が、親水性を有するように構成する。これにより、新たな構成を付け加えることなく、バブルプレッシャーPを大きくすることができるので、ガスの封止能力を向上することができる。
次に、第6の実施形態について説明する。燃料電池1の構成を図8に示す。図8(a)にはカソード側セパレータ3の反応面に沿った構成を、図8(b)には、図8(a)のD−D断面を示す。以下、第1の実施形態と異なる部分を中心に説明する。
図8(b)に、燃料電池1の排出ガス流路17の流路軸に沿った断面構成を示す。カソード出口マニホールド7の下流側に、圧力調整機構21を備えることにより、カソードガス流路12内の圧力を調整可能に構成する。ここでは、圧力調整機構21として圧力調整バルブ21aを用いる。カソードガス流路12内の圧力を調整することにより、図1(b)に示すような多孔質体10の面10a側と面10b側の圧力差ΔPを調整することができる。圧力差ΔPを、バブルプレッシャーを超えないで、多孔質体10を水のみが通過するように制御する。
例えば、面10a、10bの間の圧力差ΔPを、10kPa以上、バブルプレッシャー未満となるように調整する。これにより、容易に手に入れることができる多孔質材を用いて多孔質体10を形成した際に、多孔質体10を介した排水機能を維持するとともに、カソードガスのシール機能を維持することができる。なお、圧力調整バルブ21aの調整は、図示しない圧力センサを用いて圧力差ΔPが所定値となるように制御する。または、運転負荷、カソードガス流量に応じて、圧力差ΔPが所定圧力となるように圧力調整バルブ21aの開度を設定しておいてもよい。
なお、ここでは、第1の実施形態に用いた燃料電池1のカソード出口マニホールド7の下流側に圧力調整機構21を設けたがこの限りではなく、第1〜第5の実施形態における何れの燃料電池1にも適用することができる。
次に、本実施形態の効果について説明する。以下、第1の実施形態と異なる効果のみを説明する。
カソードガス流路12内の圧力を調整する圧力調整機構21を備える。ここでは、圧力調整機構21として圧力調整バルブ21aを用いる。圧力調整バルブ21aにより多孔質体10の両面10a、10b間の圧力差ΔPを調整する。これにより、多孔質体10のバブルプレッシャーを超えることなく、圧力差を確保することができる。
このとき、圧力調整バルブ21aにより、多孔質体10の両面10a、10b間の圧力差ΔPが10kPa以上になるように調整する。これにより、容易に手に入れることができる多孔質材を用いて多孔質体10を形成した際に、水の排水に十分な圧力差を確保することができる。
なお、上記実施形態においては、カソードガス流路12についてインターディジデント形状とし、排水経路を設けたが、アノードガス流路13についても同様の構成とすることで、アノードガス流路13におけるフラッディングを抑制することができる。
また、各流路を溝により形成したが、この限りではなく、例えばセパレータを平板により形成し、各流路を平板の成形により形成してもよい。
このように、本発明は上記発明を実施するための最良の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で様々な変更が為し得ることは言うまでもない。
本発明は、緻密質セパレータにインターディジデント形状のガス流路を有する燃料電池に適用することができる。
第1の実施形態に用いる燃料電池の概略構成図である。 第1の実施形態における多孔質体のシール機能の説明図である。 第2の実施形態に用いる燃料電池の概略構成図である。 第3の実施形態に用いる燃料電池の概略構成図である。 第4の実施形態に用いる燃料電池の概略構成図である。 第4の実施形態に用いる別の例の燃料電池の概略図である。 第5の実施形態に用いる燃料電池の概略構成図である。 第6の実施形態に用いる燃料電池の概略構成図である。
符号の説明
1 燃料電池
2 単位セル
3 カソード側セパレータ(セパレータ)
5 ガス拡散電極層(ガス拡散電極)
6 カソード入口マニホールド(供給マニホールド)
7 カソード出口マニホールド(排出マニホールド)
8 排水マニホールド
9 排水流路
10 多孔質体
12 カソードガス流路(ガス流路)
16 供給ガス流路
17 排出ガス流路
18 貫通孔
20 多孔質部(多孔質体)
21 圧力調整機構(圧力調整手段)

Claims (8)

  1. 上流端が供給マニホールドに連通し、下流端が行き止まりよりなる供給ガス流路と、
    下流端が排出マニホールドに連通し、上流端が行き止まりよりなる排出ガス流路と、を交互に配置することにより形成した反応ガス流路を設けた緻密質セパレータと、
    前記反応ガス流路から供給された反応ガスを用いて発電反応を生じるガス拡散電極と、
    前記供給ガス流路の下流端近傍と外部とを連通する排水経路と、
    前記排水経路の少なくとも一部の経路断面を閉塞する多孔質体と、を備えることを特徴とする燃料電池。
  2. 前記排水経路として、少なくとも、前記供給ガス流路に連通し、前記緻密質セパレータを厚み方向に貫通する貫通孔を備える請求項1に記載の燃料電池。
  3. 前記緻密質セパレータと前記ガス拡散電極とを積層することにより構成した単位セルを複数積層することにより燃料電池を構成し、
    前記排水経路として、前記単位セルの積層方向について前記燃料電池を貫通し、各単位セルに形成した前記供給ガス流路から、少なくとも前記貫通孔を介して除去した液水を外部に排出する排水マニホールドを備え、
    前記多孔質体を、前記排水マニホールドの一部を閉塞するように配置する請求項2に記載の燃料電池。
  4. 前記多孔質体として、前記ガス拡散電極の一部が前記排水マニホールドの流路断面を閉塞するように構成する請求項3に記載の燃料電池。
  5. 前記ガス拡散電極の前記排水マニホールド内に配された領域の空隙が、前記ガス拡散電極の発電領域の空隙より小さくなるように構成する請求項4に記載の燃料電池。
  6. 前記ガス拡散電極の前記排水マニホールド内に配された領域が、親水性を有するように構成する請求項4または5に記載の燃料電池。
  7. 前記ガス流路内の圧力を調整する圧力調整手段を備え、
    前記圧力調整手段により前記多孔質体の両面間の圧力差を調整する請求項1から6のいずれか一つに記載の燃料電池。
  8. 前記圧力調整手段により、前記多孔質体の両面間の圧力差が10kPa以上になるように調整する請求項7に記載の燃料電池。
JP2003406090A 2003-12-04 2003-12-04 燃料電池 Pending JP2005166545A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406090A JP2005166545A (ja) 2003-12-04 2003-12-04 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406090A JP2005166545A (ja) 2003-12-04 2003-12-04 燃料電池

Publications (1)

Publication Number Publication Date
JP2005166545A true JP2005166545A (ja) 2005-06-23

Family

ID=34728572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406090A Pending JP2005166545A (ja) 2003-12-04 2003-12-04 燃料電池

Country Status (1)

Country Link
JP (1) JP2005166545A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236612A (ja) * 2005-02-22 2006-09-07 Honda Motor Co Ltd 燃料電池
JP2008153212A (ja) * 2006-11-22 2008-07-03 Gm Global Technology Operations Inc 燃料電池スタックのマニホルドにおける多孔性材料の使用
JP2016531201A (ja) * 2013-07-31 2016-10-06 アクアハイドレックス プロプライエタリー リミテッドAquahydrex Pty Ltd 電気化学的反応を管理するための方法及び電気化学セル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236612A (ja) * 2005-02-22 2006-09-07 Honda Motor Co Ltd 燃料電池
JP2008153212A (ja) * 2006-11-22 2008-07-03 Gm Global Technology Operations Inc 燃料電池スタックのマニホルドにおける多孔性材料の使用
JP2016531201A (ja) * 2013-07-31 2016-10-06 アクアハイドレックス プロプライエタリー リミテッドAquahydrex Pty Ltd 電気化学的反応を管理するための方法及び電気化学セル

Similar Documents

Publication Publication Date Title
JP5500254B2 (ja) 燃料電池
US6794077B2 (en) Passive water management fuel cell
US7842426B2 (en) Use of a porous material in the manifolds of a fuel cell stack
JP6458286B2 (ja) 燃料電池用ガス流路形成板及び燃料電池スタック
WO2015049863A1 (ja) セパレータおよび燃料電池
JP2006236612A (ja) 燃料電池
JP4826144B2 (ja) 燃料電池スタック
JP4872252B2 (ja) 燃料電池
JP5128909B2 (ja) 固体高分子型燃料電池
JP6406170B2 (ja) 燃料電池用ガス流路形成板及び燃料電池スタック
JP2009048775A (ja) 燃料電池
JP2005166545A (ja) 燃料電池
JP2005141979A (ja) 燃料電池
JP4453426B2 (ja) 燃料電池
JP2008004420A (ja) 燃料電池
JP2010108708A (ja) 燃料電池
JP4321264B2 (ja) 燃料電池と燃料電池用セパレータ
JP5423699B2 (ja) ガス流路形成体および燃料電池セル
JP2007165173A (ja) 燃料電池
JP2009277385A (ja) 燃料電池
JP2005183066A (ja) 燃料電池と燃料電池用ガスセパレータ
JP2009080943A (ja) 燃料電池用セパレータ及び燃料電池
JP2006147309A (ja) 燃料電池
JP5315929B2 (ja) 燃料電池
JP2005190774A (ja) 燃料電池