JP2005165140A - Projector, automatic focusing system for projector and automatic focusing method for projector - Google Patents

Projector, automatic focusing system for projector and automatic focusing method for projector Download PDF

Info

Publication number
JP2005165140A
JP2005165140A JP2003406354A JP2003406354A JP2005165140A JP 2005165140 A JP2005165140 A JP 2005165140A JP 2003406354 A JP2003406354 A JP 2003406354A JP 2003406354 A JP2003406354 A JP 2003406354A JP 2005165140 A JP2005165140 A JP 2005165140A
Authority
JP
Japan
Prior art keywords
projector
straight line
length
light
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003406354A
Other languages
Japanese (ja)
Other versions
JP4480387B2 (en
Inventor
Yoichi Tamura
陽一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Viewtechnology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Viewtechnology Ltd filed Critical NEC Viewtechnology Ltd
Priority to JP2003406354A priority Critical patent/JP4480387B2/en
Publication of JP2005165140A publication Critical patent/JP2005165140A/en
Application granted granted Critical
Publication of JP4480387B2 publication Critical patent/JP4480387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the automatic focusing of a projector by a new method different from the conventional one. <P>SOLUTION: In the projector 2 projecting image light to a screen 1 at a fixed divergent angle, detecting light and detecting sound outputted simultaneously from an electronic pen 3 pointing a projection point X projected to the screen 1 are received by a sensor part 25, and the length of a 1st line L1 linking the sensor part 25 and the projection point X in the shortest distance is obtained based on a time difference in a period from receiving the detecting light until receiving the detecting sound, and the length of a 2nd line L2 linking the sensor part 25 and the screen 1 in the shortest distance is obtained by multiplying the length of the 1st line L1 by a predetermined constant, whereby a projection optical system is focused based on the length of the 2nd line L2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はプロジェクタに関し、特に投射光学系の自動焦点調整機構に関するものである。   The present invention relates to a projector, and more particularly to an automatic focus adjustment mechanism of a projection optical system.

従来より、会議、学会、展示会など大勢の人が集まる場所でのプレゼンテーションにプロジェクタが用いられており、最近では一般家庭においてもプロジェクタが用いられるようになってきた。   Conventionally, projectors have been used for presentations in places where a large number of people gather, such as conferences, academic conferences, and exhibitions, and recently projectors have also been used in ordinary homes.

プロジェクタは、光源から出射された光束をライトバルブによって変調して画像光を生成しているが、このライトバルブの種類に応じて2つのタイプに大別することができる。一つは、透過型液晶パネルなどをライトバルブとして用いる透過型プロジェクタである。他の一つは、DLP(テキサス・インスツルメンツ社(TI社)の登録商標)や反射型液晶パネルなどをライトバルブとして用いる反射型プロジェクタである。もっとも、どちらのタイプのプロジェクタも、ライトバルブによって生成された画像光を投射光学系によって投射面(スクリーンの表面や壁面など)に拡大投射する点では共通しており、美しい画像を得るためには、投射面との間の距離に応じて投射光学系の焦点調整を行う必要であり、多くのプロジェクタは自動焦点調整機構を備えている。   The projector generates image light by modulating a light beam emitted from a light source by a light valve, and can be roughly divided into two types according to the type of the light valve. One is a transmissive projector using a transmissive liquid crystal panel or the like as a light valve. The other is a reflective projector that uses a DLP (registered trademark of Texas Instruments (TI)) or a reflective liquid crystal panel as a light valve. However, both types of projectors are common in that the image light generated by the light valve is enlarged and projected onto the projection surface (screen surface, wall surface, etc.) by the projection optical system. Therefore, it is necessary to adjust the focus of the projection optical system according to the distance to the projection surface, and many projectors are provided with an automatic focus adjustment mechanism.

例えば、特許文献1には、発光素子、レンズ、プリズム、発光窓を備えた発光系と、受光素子、レンズ、プリズム、受光窓を備えた受光系とからなり、スクリーンまでの距離を検出する側距機構と、側距機構によって検出されたスクリーンまでの距離に応じてフォーカス調整用のレンズの位置を調整するフォーカス調整機構とを有するプロジェクタが開示されている。そして、上記側距機構が備える発光系は、発光素子から発せられた赤外線をレンズで集光し、プリズムで画面の中心方向に光軸を変化させた後、赤外線透過特性を有する発光窓からスクリーン上へ投射する。一方、上記受光系は、発光系によってスクリーン上に投射された赤外線を受光窓及びレンズを通して受光素子で受光し、受光強度に基づいてスクリーンまでの距離を検出する。   For example, Patent Literature 1 includes a light emitting system including a light emitting element, a lens, a prism, and a light emitting window, and a light receiving system including a light receiving element, a lens, a prism, and a light receiving window, and a side for detecting the distance to the screen. A projector having a distance mechanism and a focus adjustment mechanism that adjusts the position of a lens for focus adjustment according to the distance to the screen detected by the side distance mechanism is disclosed. The light emitting system provided in the lateral distance mechanism condenses the infrared rays emitted from the light emitting elements with a lens, changes the optical axis in the center direction of the screen with a prism, and then changes the optical axis from the light emitting window having infrared transmission characteristics to the screen. Project to the top. On the other hand, the light receiving system receives the infrared light projected on the screen by the light emitting system by the light receiving element through the light receiving window and the lens, and detects the distance to the screen based on the light receiving intensity.

また、特許文献2には、焦点調整手段を有する投射レンズと、その投射レンズの焦点調整を行う焦点調整機構と、ダイクロイックミラーもしくはダイクロイックプリズムと上記投射レンズの間に設置された可動反射鏡手段と、スクリーンよりの反射光を上記可動反射鏡手段経由で受光し、受光出力信号に変換し且つ投射レンズと3つのLCDとの光軸距離と等価位置に配置された受光素子と、受光素子5よりの受光出力信号によりスクリーンまでの焦点位置を検出演算し、焦点調整機構の駆動制御を行う焦点調整制御部と、焦点調整機構の調整位置を検出する位置検出器とを備えた液晶プロジェクタが開示されている。
特開平11−264963号公報 特開平11−119185号公報
Patent Document 2 discloses a projection lens having a focus adjustment unit, a focus adjustment mechanism that adjusts the focus of the projection lens, a movable reflector unit installed between a dichroic mirror or a dichroic prism, and the projection lens. A light receiving element that receives reflected light from the screen via the movable reflecting mirror means, converts it into a light receiving output signal, and is disposed at a position equivalent to the optical axis distance between the projection lens and the three LCDs; Disclosed is a liquid crystal projector including a focus adjustment control unit that detects and calculates a focus position up to a screen based on a received light output signal and performs drive control of the focus adjustment mechanism, and a position detector that detects an adjustment position of the focus adjustment mechanism. ing.
JP-A-11-264963 Japanese Patent Laid-Open No. 11-119185

従来のプロジェクタが備える自動焦点調整機構には特に問題はない。本発明は、従来とは全く異なる新規な手法によって投射光学系の自動焦点調整を実現しようとするものである。   There is no particular problem with the automatic focus adjustment mechanism provided in the conventional projector. The present invention intends to realize automatic focus adjustment of a projection optical system by a novel method completely different from the conventional one.

本発明は、投射面上から同時に発せられた音と光がプロジェクタに到達するまでの時間差に基づいて、プロジェクタと投射面との間の距離を求め、求められた距離に基づいてプロジェクタの焦点調整を行うことを特徴とする。よって、プロジェクタと投射面との間の距離が変化しても、容易にプロジェクタの焦点を調整することができる。   The present invention obtains a distance between the projector and the projection surface based on a time difference until sound and light simultaneously emitted from the projection surface reach the projector, and adjusts the focus of the projector based on the obtained distance. It is characterized by performing. Therefore, even if the distance between the projector and the projection surface changes, the focus of the projector can be easily adjusted.

上記特徴を備えた本発明のプロジェクタは、投射面に対して一定の発散角で画像光を投射する投射光学系を有し、その投射光学系を介して投射面に投射された投射点近傍から検出光と検出音を同時に出力可能なポインティング手段を用いて焦点調整を行うプロジェクタであって、投射面上のポインティング手段から出力された検出光を受光する受光手段と、同ポインティング手段から出力された検出音を受信する受信手段と、受光手段によって検出光が受光されてから受信手段によって検出音が受信されるまでの間の時間差に基づいて、受光手段又は受信手段と投射点とを最短距離で結ぶ第1の直線の長さを求める第1演算手段と、第1の直線の長さに所定の定数を乗じて、受光手段又は受信手段と投射面とを最短距離で結ぶ第2の直線の長さを求める第2演算手段と、第2の直線の長さに基づいて投射光学系の焦点調整を行なう焦点調整手段とを有する。   The projector of the present invention having the above features has a projection optical system that projects image light at a constant divergence angle with respect to the projection surface, and from the vicinity of the projection point projected onto the projection surface via the projection optical system. A projector that performs focus adjustment using a pointing unit that can output detection light and detection sound simultaneously, and a light receiving unit that receives detection light output from the pointing unit on the projection surface, and a light output that is output from the pointing unit Based on the time difference between the receiving means that receives the detection sound and the detection light received by the light receiving means until the detection sound is received by the receiving means, the light receiving means or the receiving means and the projection point are at the shortest distance. A first calculating means for determining the length of the first straight line to be connected, and a second straight line for connecting the light receiving means or the receiving means and the projection surface at the shortest distance by multiplying the length of the first straight line by a predetermined constant. Long The finding has a second calculation unit, and a focus adjusting means based on the length of the second straight line performs focus adjustment of the projection optical system.

上記特徴を備えた本発明のプロジェクタの自動焦点調整システムは、投射面に対して一定の発散角で画像光を投射する投射光学系を有するプロジェクタと、そのプロジェクタによって投射面上に投射された投射点近傍から検出光と検出音を同時に出力可能なポインティング手段とを有し、ポインティング手段は、検出光を出力する検出光出力手段と、検出光出力手段と同期して検出音を出力する検出音出力手段とを備え、プロジェクタは、ポインティング手段から出力された検出光を受光する受光手段と、ポインティング手段から出力された検出音を受信する受信手段と、受光手段によって検出光が受光されてから受信手段によって検出音が受信されるまでの間の時間差に基づいて、受光手段又は前記受信手段と投射点とを最短距離で結ぶ第1の直線の長さを求める第1演算手段と、第1の直線の長さに所定の定数を乗じて、受光手段又は受信手段と投射面とを最短距離で結ぶ第2の直線の長さを求める第2演算手段と、第2の直線の長さに基づいて投射光学系の焦点調整を行なう焦点調整手段とを有する。   An automatic focus adjustment system for a projector according to the present invention having the above-described features includes a projector having a projection optical system that projects image light at a constant divergence angle with respect to a projection surface, and a projection projected on the projection surface by the projector. And pointing means capable of outputting detection light and detection sound simultaneously from the vicinity of the point, and the pointing means outputs detection sound in synchronization with the detection light output means and detection light output means for outputting the detection light. The projector includes a light receiving unit that receives the detection light output from the pointing unit, a receiving unit that receives the detection sound output from the pointing unit, and a receiver that receives the detection light after the light receiving unit receives the detection light. Based on the time difference until the detection sound is received by the means, the light receiving means or the receiving means and the projection point are connected at the shortest distance. A first calculating means for determining the length of the straight line, and a length of the second straight line connecting the light receiving means or the receiving means and the projection surface with the shortest distance by multiplying the length of the first straight line by a predetermined constant. Second calculating means to be obtained; and focus adjusting means for adjusting the focus of the projection optical system based on the length of the second straight line.

上記特徴を備えた本発明のプロジェクタの焦点自動調整方法は、投射面に対して一定の発散角で画像光を投射する投射光学系を有するプロジェクタが、投射面に投射点を投射する工程と、投射面上のポインティング手段が、投射点の近傍から検出光と検出音を同時に出力する工程と、プロジェクタが備える受光手段が、ポインティング手段から出力された検出光を受光する工程と、プロジェクタが備える受信手段が、ポインティング手段から出力された検出音を受信する工程と、プロジェクタが備える第1演算手段が、受光手段によって検出光が受光されてから受信手段によって検出音が受信されるまでの間の時間差に基づいて、受光手段又は受信手段と投射点とを最短距離で結ぶ第1の直線の長さを求める工程と、プロジェクタが備える第2演算手段が、第1の直線の長さに所定の定数を乗じて、受光手段又は受信手段と投射面とを最短距離で結ぶ第2の直線の長さを求める工程と、プロジェクタが備える焦点調整手段が、第2の直線の長さに基づいて投射光学系の焦点調整を行なう工程とを有する。   The method for automatically adjusting the focus of a projector according to the present invention having the above-described features includes a step in which a projector having a projection optical system that projects image light at a constant divergence angle with respect to a projection surface projects a projection point on the projection surface; The pointing means on the projection surface simultaneously outputs detection light and detection sound from the vicinity of the projection point, the light receiving means provided in the projector receives the detection light output from the pointing means, and the reception provided in the projector A time difference between the step in which the means receives the detection sound output from the pointing means and the first calculation means included in the projector from when the detection light is received by the light reception means until the detection sound is received by the reception means; A step of obtaining a length of the first straight line connecting the light receiving means or the receiving means and the projection point with the shortest distance based on A calculating means for multiplying a length of the first straight line by a predetermined constant to obtain a length of a second straight line connecting the light receiving means or the receiving means and the projection surface at the shortest distance; and focus adjustment provided in the projector And means for adjusting the focus of the projection optical system based on the length of the second straight line.

本発明によれば、プロジェクタと投射面との間の距離が変化してもプロジェクタの焦点が自動的に調整されるので、常に美しい画像を視聴することができる。かかる効果は、携帯式のプロジェクタなどのように、設置の度にスクリーンとの間の距離が変化するプロジェクタにおいて特に有効である。また、本発明によれば、上記効果を極めて簡潔な構成によって得ることができるので、自動焦点調整機能を備えたプロジェクタを低コストで実現したり、小型化したりするのにも好都合である。   According to the present invention, since the focus of the projector is automatically adjusted even if the distance between the projector and the projection surface changes, it is possible to always view a beautiful image. Such an effect is particularly effective in a projector in which the distance from the screen changes every time it is installed, such as a portable projector. In addition, according to the present invention, the above-described effect can be obtained with a very simple configuration, which is advantageous for realizing a projector having an automatic focus adjustment function at a low cost or downsizing.

以下、本発明のプロジェクタの自動焦点調整システム(以下「システム」と略す場合もある)の一例を図面に基づいて詳細に説明する。図1は、本例のシステムの構成概略を示す模式図である。図2は、本例のシステムを構成する電子ペンの構造概略を示す模式図である。図3は、本例のシステムを構成するプロジェクタの構造概略を示す模式図である。図4は、図3に示すプロジェクタの自動焦点調整機構に関する機能ブロック図である。   Hereinafter, an example of an automatic focus adjustment system (hereinafter sometimes abbreviated as “system”) for a projector according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a schematic configuration of the system of this example. FIG. 2 is a schematic diagram showing a schematic structure of the electronic pen constituting the system of this example. FIG. 3 is a schematic diagram showing an outline of the structure of the projector constituting the system of this example. FIG. 4 is a functional block diagram relating to the automatic focus adjustment mechanism of the projector shown in FIG.

図1に示すように、本例のシステムは、投射面(本例ではスクリーン1)に向けて一定の発散角で画像光を投射するプロジェクタ2と、ポインティング手段としての電子ペン3とから構成されている。   As shown in FIG. 1, the system of this example is composed of a projector 2 that projects image light at a constant divergence angle toward a projection surface (screen 1 in this example), and an electronic pen 3 as pointing means. ing.

図2示すように、電子ペン3は、ペン型の本体10を有し、その本体10には、発振器駆動回路11と、発光素子駆動回路12と、電源回路13とが少なくとも形成された回路基板14が内蔵されている。また、本体10の先端には、発振器駆動回路11によって駆動される磁気回路と、磁気回路によって励振される超音波スピーカとを含む超音波発振器15と、発光素子駆動回路12によって駆動される赤外線発光素子(半導体発光素子)16とが設けられている。そして、本体10の後端近傍に設けられている押しボタン17が押されると、不図示の電源から供給される電圧が電源回路13を介して発振器駆動回路11及び発光素子駆動回路12に印加され、超音波発振器15から検出音としての超音波が出力されると共に、赤外線発光素子16が発光して検出光としての赤外線が出力される。ここで、発振器駆動回路11と発光素子駆動回路12は、不図示のタイミング回路から出力されるタイミング信号に基づいて超音波発振器15又は赤外線発光素子16を同時に駆動するように設定されている。従って、押しボタン17が押されている間、超音波及び赤外線が電子ペン3から同期して出力され続ける。尚、発振器駆動回路11及び超音波発振器15はモジュール化されていてもよい。また、発光素子駆動回路12と赤外線発光素子16もモジュール化されていてもよい。さらに、押しボタン17に相当するスイッチを本体10の先端に設け、本体10の先端をスクリーン1の表面に押し当てると、上記スイッチが押されてONになり、本体10の先端のスクリーン1への押圧を解除すると、スイッチが自動的にOFFとなる構成とすることもできる。この場合も、スイッチがON状態の間(本体10の先端がスクリーン1に押圧されている間)は、超音波及び赤外線が同期して電子ペン3から出力され続けるようにすることが望ましい。   As shown in FIG. 2, the electronic pen 3 has a pen-type main body 10, and the main body 10 is a circuit board on which at least an oscillator driving circuit 11, a light emitting element driving circuit 12, and a power supply circuit 13 are formed. 14 is built-in. In addition, an ultrasonic oscillator 15 including a magnetic circuit driven by an oscillator driving circuit 11, an ultrasonic speaker excited by the magnetic circuit, and infrared light emission driven by a light emitting element driving circuit 12 are provided at the tip of the main body 10. An element (semiconductor light emitting element) 16 is provided. When a push button 17 provided near the rear end of the main body 10 is pressed, a voltage supplied from a power source (not shown) is applied to the oscillator driving circuit 11 and the light emitting element driving circuit 12 via the power circuit 13. The ultrasonic oscillator 15 outputs an ultrasonic wave as a detection sound, and the infrared light emitting element 16 emits light to output an infrared ray as a detection light. Here, the oscillator driving circuit 11 and the light emitting element driving circuit 12 are set so as to simultaneously drive the ultrasonic oscillator 15 or the infrared light emitting element 16 based on a timing signal output from a timing circuit (not shown). Therefore, while the push button 17 is being pressed, ultrasonic waves and infrared rays are continuously output from the electronic pen 3 in synchronization. The oscillator drive circuit 11 and the ultrasonic oscillator 15 may be modularized. Further, the light emitting element driving circuit 12 and the infrared light emitting element 16 may be modularized. Further, a switch corresponding to the push button 17 is provided at the front end of the main body 10, and when the front end of the main body 10 is pressed against the surface of the screen 1, the switch is pressed and turned on, and the front end of the main body 10 is connected to the screen 1. When the pressing is released, the switch can be automatically turned off. Also in this case, it is desirable that the ultrasonic wave and the infrared light are continuously output from the electronic pen 3 while the switch is in the ON state (while the tip of the main body 10 is pressed against the screen 1).

図3に示すように、プロジェクタ2は、略直方体状の筐体20を有し、その筐体20には、光源装置21と、照明光学系22と、ライトバルブ23と、投射光学系24と、電子ペン3から出力された赤外線を受光する赤外線センサと、電子ペンから出力された超音波を受信する超音波センサとを含むセンサ部25が設けられている。   As shown in FIG. 3, the projector 2 has a substantially rectangular parallelepiped casing 20, and the casing 20 includes a light source device 21, an illumination optical system 22, a light valve 23, and a projection optical system 24. A sensor unit 25 including an infrared sensor that receives infrared rays output from the electronic pen 3 and an ultrasonic sensor that receives ultrasonic waves output from the electronic pen is provided.

光源装置21は、ハロゲンランプ、メタルハライドランプ、キセノンランプなどの光源30と、光源30から放射された光を所定方向に導くリフレクタ31とから構成されている。   The light source device 21 includes a light source 30 such as a halogen lamp, a metal halide lamp, or a xenon lamp, and a reflector 31 that guides light emitted from the light source 30 in a predetermined direction.

照明光学系22は、光源装置21から出射された光を時分割でR(赤)・G(緑)・B(青)の3色の色光に分離するカラーホイールと、カラーホイールを透過した光の輝度分布をその光の光軸に垂直な平面内において均一化させるためのインテグレータ光学系とから構成されているが、従来のプロジェクタが備えているそれらと同一であるため、図示及び詳細な説明は省略する。   The illumination optical system 22 is a color wheel that separates light emitted from the light source device 21 into three color lights of R (red), G (green), and B (blue) in a time division manner, and light that has passed through the color wheel. Are integrated with an integrator optical system for making the luminance distribution uniform in a plane perpendicular to the optical axis of the light, and are the same as those provided in a conventional projector. Is omitted.

ライトバルブ23は、傾斜角度を個別に制御可能な多数のマイクロミラーを有する所謂DLPである。各マイクロミラーはスクリーン上に表示される画像の各画素に対応しており、各マイクロミラーの傾斜角度を画像データに基づいて制御することによって、所望の画像光を生成することができる。具体的には、あるマイクロミラーについては、その反射光が投射光学系24に入射しないように角度制御を行い、またあるマイクロミラーについては、その反射光が投射光学系24に入射するように角度制御を行なうことによって、所望の画像光を生成することができる。各マイクロミラーの角度制御は、不図示のインターフェイスを介して外部から入力され、不図示のプロセッサによって所定の処理(R・G・Bデータへの変換、インタレース処理されたフィールドを修復する処理など)が施された画像データに基づいて選択的に行なわれる。   The light valve 23 is a so-called DLP having a large number of micromirrors whose inclination angles can be individually controlled. Each micromirror corresponds to each pixel of the image displayed on the screen, and desired image light can be generated by controlling the tilt angle of each micromirror based on the image data. Specifically, an angle is controlled so that the reflected light does not enter the projection optical system 24 for a certain micromirror, and the angle is set so that the reflected light enters the projection optical system 24 for a certain micromirror. By performing the control, desired image light can be generated. Angle control of each micromirror is input from the outside via an interface (not shown), and a predetermined process (conversion to R / G / B data, processing to repair an interlaced field, etc.) by a processor (not shown) ) Is selectively performed on the basis of the image data subjected to.

投射光学系24は、ライトバルブ23によって生成された画像光(ライトバルブ23によって変調された光)が入射する第1反射ミラー40と、第1反射ミラー40によって反射された画像光が入射する第2反射ミラー41と、第2反射ミラー41によって反射された画像光が入射する第3反射ミラー42、第3反射ミラー42によって反射された画像光が入射する第4反射ミラー43とからなる。これら第1〜第4の反射ミラー41〜43は全て非球面の反射面を備えている。また、第1反射ミラー40及び第2反射ミラー41は、筐体20の内部に上記のような入反射が実現される位置関係で配置されている。また、第3反射ミラー42及び第4反射ミラー43は、筐体20の上面にそれぞれ所定の傾斜角を持って向かい合うように起立している。ここで、第2反射ミラー41は、図中の矢印方向に往復移動することによって投射光学系24の焦点調整を行うフォーカス用の光学素子としても機能する。また、第4反射ミラー42は、画像光を最終的にスクリーン1に向けて投射する投射ミラーとして機能し、その発散角は常に一定である。   The projection optical system 24 includes a first reflection mirror 40 on which image light generated by the light valve 23 (light modulated by the light valve 23) is incident, and a first reflection mirror on which image light reflected by the first reflection mirror 40 is incident. The second reflection mirror 41, the third reflection mirror 42 on which the image light reflected by the second reflection mirror 41 is incident, and the fourth reflection mirror 43 on which the image light reflected by the third reflection mirror 42 is incident. These first to fourth reflecting mirrors 41 to 43 all have an aspheric reflecting surface. Further, the first reflection mirror 40 and the second reflection mirror 41 are arranged in a positional relationship in which the above-described incident reflection is realized inside the housing 20. Further, the third reflection mirror 42 and the fourth reflection mirror 43 are erected so as to face each other with a predetermined inclination angle on the upper surface of the housing 20. Here, the second reflecting mirror 41 also functions as a focusing optical element that adjusts the focus of the projection optical system 24 by reciprocating in the direction of the arrow in the drawing. The fourth reflection mirror 42 functions as a projection mirror that finally projects the image light toward the screen 1, and the divergence angle is always constant.

センサ部25は、第4反射ミラー43の側部に設けられている。センサ部25を構成する赤外線センサは、図1に示す電子ペン3から出力された赤外線を検知すると、電気信号(赤外線検知信号)を出力し、超音波センサは、電子ペン3から出力された超音波を検知すると電気信号(超音波検知信号)を出力する。   The sensor unit 25 is provided on the side portion of the fourth reflection mirror 43. When the infrared sensor that constitutes the sensor unit 25 detects infrared rays output from the electronic pen 3 shown in FIG. 1, the infrared sensor outputs an electrical signal (infrared detection signal), and the ultrasonic sensor outputs an ultrasonic signal output from the electronic pen 3. When a sound wave is detected, an electrical signal (ultrasonic detection signal) is output.

次に、図1及び図4を参照しながら本例のシステムの動作について説明し、併せて図4に示す各手段の動作についても説明する。本例のシステムにおいてプロジェクタ2の自動焦点調整が行なわれる際には、まず、プロジェクタ2によってスクリーン1に投射点Xが投射される。具体的には、操作者によって、プロジェクタ2の操作パネルに設けられているオートフォーカスボタン(不図示)が押されると、プロジェクタ2は通常の画像をスクリーン1に表示する場合と同様の原理によってスクリーン1に投射点Xを表示する。尚、図1では投射点Xがスクリーン1の中央に投射されているが、投射点Xの投射位置は特に限定されるものではなく、形状、大きさ、色彩などに関しても特に制限はない。   Next, the operation of the system of this example will be described with reference to FIGS. 1 and 4, and the operation of each unit shown in FIG. 4 will also be described. When automatic focus adjustment of the projector 2 is performed in the system of this example, first, the projection point X is projected onto the screen 1 by the projector 2. Specifically, when an autofocus button (not shown) provided on the operation panel of the projector 2 is pressed by the operator, the projector 2 uses the same principle as that for displaying a normal image on the screen 1. 1 shows the projection point X. In FIG. 1, the projection point X is projected onto the center of the screen 1, but the projection position of the projection point X is not particularly limited, and the shape, size, color, and the like are not particularly limited.

次に、操作者がスクリーン1に表示された投射点Xを電子ペン3の先で指し示しながら押しボタン17(図2参照)を押して該電子ペン3から赤外線及び超音波を出力させると、出力された赤外線及び超音波が上記のようにしてプロジェクタ2のセンサ部25によって検知される。具体的には、赤外線が図4に示す赤外線センサ25aによって検知され、超音波が同図に示す超音波センサ25bによって検知され、赤外線センサ25a及び超音波センサ25bから赤外線検知信号及び超音波検知信号がそれぞれ出力される。そして、出力された赤外線検知信号及び超音波検知信号は、第1演算手段50に入力される。ここで、光と音の空中伝播速度には差があるので、図1に示す電子ペン3から同時に出力された赤外線及び超音波のうち、赤外線が先に赤外線センサ25aに到達し、その後超音波が超音波センサ25bに到達する。従って、第1演算手段50への赤外線検知信号の入力と、超音波検知信号の入力との間には、光と音の空中伝播速度差に相当する時間差が発生する。そこで、第1演算手段50は、赤外線検知信号の入力をトリガとしてタイマ手段51を動作させて計時を開始し、超音波検知信号が入力されるまでの経過時間、すなわち、赤外線検知信号の入力と超音波信号の入力との間の時間差を求める。さらに第1演算手段50は、上記のようにして求められた時間差(Δbt[sec])に、超音波の空中伝播速度(本例では340[m/sec]とする)を乗じる演算を行なう。この演算によって、図1に示すプロジェクタ2のセンサ部25とスクリーン1上の投射点Xとを最短距離で結ぶ直線L1の長さL1(m)が求められる。 Next, when the operator presses the push button 17 (see FIG. 2) while pointing the projection point X displayed on the screen 1 with the tip of the electronic pen 3 and outputs infrared rays and ultrasonic waves from the electronic pen 3, it is output. Infrared and ultrasonic waves are detected by the sensor unit 25 of the projector 2 as described above. Specifically, infrared rays are detected by the infrared sensor 25a shown in FIG. 4, ultrasonic waves are detected by the ultrasonic sensor 25b shown in FIG. 4, and infrared detection signals and ultrasonic detection signals are received from the infrared sensors 25a and 25b. Are output respectively. Then, the output infrared detection signal and ultrasonic detection signal are input to the first calculation means 50. Here, since there is a difference in the propagation speed of light and sound, among infrared rays and ultrasonic waves simultaneously output from the electronic pen 3 shown in FIG. 1, the infrared rays first reach the infrared sensor 25a, and then the ultrasonic waves Reaches the ultrasonic sensor 25b. Therefore, a time difference corresponding to the difference in the propagation speed of light and sound between the input of the infrared detection signal and the input of the ultrasonic detection signal to the first calculation means 50 occurs. Therefore, the first calculation means 50 starts the time measurement by operating the timer means 51 using the input of the infrared detection signal as a trigger, and the elapsed time until the ultrasonic detection signal is input, that is, the input of the infrared detection signal. The time difference from the input of the ultrasonic signal is obtained. Further, the first calculation means 50 performs a calculation of multiplying the time difference (Δbt [sec]) obtained as described above by the ultrasonic wave propagation velocity (in this example, 340 [m / sec]). By this calculation, the length L 1 (m) of the straight line L1 connecting the sensor unit 25 of the projector 2 shown in FIG. 1 and the projection point X on the screen 1 with the shortest distance is obtained.

次に、図4に示す第2演算手段52は、第1演算手段50の演算によって得られた直線L1の長さL1に所定の定数COSθを乗じる演算を行う。ここで、角度θとは、図1に示す通り、センサ部25及び投射点Xを通る直線L1と、センサ部25とスクリーン1を含む平面とを最短距離で結ぶ直線(すなわち、センサ部25を通りスクリーンを含む平面に直交する直線)L2との挟角である。図5に示すように、プロジェクタ2は、スクリーン1に向けて一定の発散角で画像光を投射するので、投射点Xを投射するために使用されるライトバルブ上の素子(ライトバルブがDLPの場合はマイクロミラー、液晶パネルの場合は液晶セル)が不変であれば、プロジェクタ2とスクリーン1との間の距離が変化しても上記角度θは常に一定となる。そこで、本例では、プロジェクタ2とスクリーン1とを任意の距離だけ離して配置した状態で上記角度θを実測し、COSθの値をデータとしてプロジェクタ2のメモリ53(図4参照)に予め記憶させてある。従って、図4に示す第2演算手段52はメモリ53からCOSθの値を読み出して上記演算を行う。これによって、図1に示すセンサ部25と投射点Xが投射されているスクリーン1とを最短距離で結ぶ直線L2の長さL2が求められる。第2演算手段52は、以上の演算結果を焦点調整手段54に出力する。 Next, the second calculation means 52 shown in FIG. 4 performs a calculation by multiplying the length L 1 of the straight line L1 obtained by the calculation of the first calculation means 50 by a predetermined constant COSθ. Here, as shown in FIG. 1, the angle θ is a straight line that connects the straight line L1 passing through the sensor unit 25 and the projection point X and the sensor unit 25 and the plane including the screen 1 with the shortest distance (that is, the sensor unit 25 A straight angle perpendicular to the plane including the screen) L2 is an included angle. As shown in FIG. 5, since the projector 2 projects image light toward the screen 1 with a constant divergence angle, an element on the light valve used to project the projection point X (the light valve is DLP). If the micromirror in this case and the liquid crystal cell in the case of a liquid crystal panel) are not changed, the angle θ is always constant even if the distance between the projector 2 and the screen 1 changes. Therefore, in this example, the angle θ is measured in a state where the projector 2 and the screen 1 are arranged at an arbitrary distance, and the value of COSθ is stored in advance in the memory 53 (see FIG. 4) of the projector 2 as data. It is. Therefore, the second calculation means 52 shown in FIG. 4 reads the value of COSθ from the memory 53 and performs the above calculation. Thus, the length L 2 of the straight line L2 that connects the sensor unit 25 shown in FIG. 1 and the screen 1 on which the projection point X is projected with the shortest distance is obtained. The second calculation means 52 outputs the above calculation result to the focus adjustment means 54.

次に、焦点調整手段54は、入力された長さL2を焦点距離としてミラー駆動手段55を駆動して、図3に示す第2反射ミラー41を図中の矢印方向に移動させる。具体的には、長さL2と第2反射ミラー41の位置との対応関係は予めデータとしてメモリ53に記憶されている一方、プロジェクタ2は、第2反射ミラー41の現在位置を検出する不図示の位置検出手段を備えている。そこで、焦点調整手段54は、上記位置検出手段によって検出された第2反射ミラー41の現在位置と、第2演算手段52によって求められた長さL2に対応するデータ上の第2反射ミラー41の位置とのズレを検出し、そのズレが解消されるだけ第2反射ミラー41を移動させる命令をミラー駆動手段55に出力する。ミラー駆動手段55は、駆動源としてのモータと、モータの回転駆動力によって第2反射ミラー41を光軸方向に進退させるための移動機構とを備えており、入力された命令に従ってモータを駆動して、第2反射ミラー41を必要な量だけ進退させる。本例のシステムでは、以上のようにしてプロジェクタ2の自動焦点調整が行われる。尚、図4に示す複数の手段の1つ又は2つ以上は、メモリ53に記憶されているプログラムを不図示のプロセッサが実行することによって該プロセッサによって実現される。 Then, the focus adjusting unit 54 drives the mirror driving means 55 a length L 2 that is input as the focal length, moving the second reflecting mirror 41 shown in FIG. 3 in the direction of the arrow in FIG. Specifically, the correspondence relationship between the length L 2 and the position of the second reflecting mirror 41 is stored in advance in the memory 53 as data, while the projector 2 is not able to detect the current position of the second reflecting mirror 41. The illustrated position detection means is provided. Therefore, the focus adjusting unit 54 includes the second reflecting mirror 41 on the data corresponding to the current position of the second reflecting mirror 41 detected by the position detecting unit and the length L 2 obtained by the second calculating unit 52. And a command to move the second reflecting mirror 41 as long as the deviation is eliminated is output to the mirror driving means 55. The mirror driving means 55 includes a motor as a driving source and a moving mechanism for moving the second reflecting mirror 41 forward and backward in the optical axis direction by the rotational driving force of the motor, and drives the motor in accordance with an input command. Then, the second reflecting mirror 41 is advanced and retracted by a necessary amount. In the system of this example, automatic focus adjustment of the projector 2 is performed as described above. Note that one or more of the plurality of means shown in FIG. 4 is realized by a processor (not shown) executing a program stored in the memory 53.

本例では、図3に示す第2反射ミラー41を光軸方向に移動可能とすることによって、フォーカス用の光学素子として機能させたが、他の反射ミラーをフォーカス用の光学素子として機能させることもできる。また、図示されている光学素子以外の光学素子が追加される場合は、その光学素子をフォーカス用の光学素子として機能させることもできる。さらに、本例では、ライトバルブがDLPであるプロジェクタを例にとって本発明のシステムを説明したが、プロジェクタのライトバルブは反射型液晶パネルや透過型液晶パネルなどの他のライトバルブであってもよい。また、本例では、投射光学系がミラーによって構成されている所謂ミラープロジェクタを例にとって本発明のシステムを説明したが、本発明のシステムを構成するプロジェクタの投射光学系は複数のレンズから構成されてもよい。その場合、フォーカス用のレンズの必要移動量を上記と同様の方法によって求め、その量だけフォーカス用のレンズを光軸方向に進退させることによって焦点調整を実現することができる。   In this example, the second reflecting mirror 41 shown in FIG. 3 can be moved in the optical axis direction to function as a focusing optical element. However, other reflecting mirrors can function as a focusing optical element. You can also. Further, when an optical element other than the optical element shown in the figure is added, the optical element can also function as an optical element for focusing. Furthermore, in this example, the system of the present invention has been described by taking a projector whose light valve is a DLP as an example, but the light valve of the projector may be another light valve such as a reflective liquid crystal panel or a transmissive liquid crystal panel. . Further, in this example, the system of the present invention has been described by taking as an example a so-called mirror projector in which the projection optical system is configured by a mirror. May be. In this case, the focus adjustment can be realized by obtaining the necessary moving amount of the focusing lens by the same method as described above and moving the focusing lens forward and backward in the optical axis direction by that amount.

本例では、ポインティング手段が電子ペンである場合を例にとって本発明のシステムを説明したが、ポインティング手段は、プロジェクタが備える受光手段と受信手段によって検知可能な光と音を同時に出力可能な構成を備えていればよく、それ以外の限定は特に存在しない。もっとも、より正確な焦点合わせを実現するためには、プロジェクタによって投射面に投射された投射点になるべく近い位置から上記光と音を出力できることが望ましい。また、センサ部がプロジェクタの投射光学系の光軸になるべく近い位置に設けられていることが正確な焦点合わせての観点からは望ましい。もっとも、何らかの理由によって、センサ部を投射光学系の光軸から離れた位置に設けざるを得ない場合には、図4に示す第1演算手段や第2演算手段の演算結果を所定の補正値に従って補正することによって正確な焦点合わせを実現することもできる。   In this example, the system of the present invention has been described by taking the case where the pointing means is an electronic pen as an example. However, the pointing means has a configuration capable of simultaneously outputting light and sound that can be detected by the light receiving means and the receiving means provided in the projector. As long as it is provided, there are no other limitations. However, in order to realize more accurate focusing, it is desirable that the light and sound can be output from a position as close as possible to the projection point projected on the projection surface by the projector. Further, it is desirable from the viewpoint of accurate focusing that the sensor unit is provided as close as possible to the optical axis of the projection optical system of the projector. However, if for some reason the sensor unit must be provided at a position away from the optical axis of the projection optical system, the calculation results of the first calculation means and the second calculation means shown in FIG. It is also possible to achieve accurate focusing by correcting according to.

本発明のプロジェクタの自動焦点調整システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the automatic focus adjustment system of the projector of this invention. 図1に示すシステムを構成する電子ペンの構造を示す模式図である。It is a schematic diagram which shows the structure of the electronic pen which comprises the system shown in FIG. 図1に示すシステムを構成するプロジェクタの構造を示す模式図である。It is a schematic diagram which shows the structure of the projector which comprises the system shown in FIG. 図3に示すプロジェクタの機能ブロックである。It is a functional block of the projector shown in FIG.

符号の説明Explanation of symbols

1 スクリーン
2 プロジェクタ
3 電子ペン
10 本体
11 発振器駆動回路
12 発光素子駆動回路
13 電源回路
14 回路基板
15 超音波発振器
16 赤外線発光素子
17 押しボタン
20 筐体
21 光源装置
22 照明光学系
23 ライトバルブ
24 投射光学系
25 センサ部
25a 赤外線センサ
25b 超音波センサ
30 光源
31 リフレクタ
40 第1反射ミラー
41 第2反射ミラー
42 第3反射ミラー
43 第4反射ミラー
50 第1演算手段
51 タイマ手段
52 第2演算手段
53 メモリ
54 焦点調整手段
55 ミラー駆動手段

DESCRIPTION OF SYMBOLS 1 Screen 2 Projector 3 Electronic pen 10 Main body 11 Oscillator drive circuit 12 Light emitting element drive circuit 13 Power supply circuit 14 Circuit board 15 Ultrasonic oscillator 16 Infrared light emitting element 17 Push button 20 Housing 21 Light source device 22 Illumination optical system 23 Light valve 24 Projection Optical system 25 Sensor unit 25a Infrared sensor 25b Ultrasonic sensor 30 Light source 31 Reflector 40 First reflection mirror 41 Second reflection mirror 42 Third reflection mirror 43 Fourth reflection mirror 50 First calculation means 51 Timer means 52 Second calculation means 53 Memory 54 Focus adjustment means 55 Mirror drive means

Claims (6)

投射面に対して一定の発散角で画像光を投射する投射光学系を有し、前記投射光学系を介して前記投射面に投射された投射点近傍から検出光と検出音を同時に出力可能なポインティング手段を用いて焦点調整を行うプロジェクタであって、
前記投射面上のポインティング手段から出力された検出光を受光する受光手段と、
前記ポインティング手段から出力された検出音を受信する受信手段と、
前記受光手段によって前記検出光が受光されてから前記受信手段によって前記検出音が受信されるまでの間の時間差に基づいて、前記受光手段又は前記受信手段と前記投射点とを最短距離で結ぶ第1の直線の長さを求める第1演算手段と、
前記第1の直線の長さに所定の定数を乗じて、前記受光手段又は前記受信手段と前記投射面とを最短距離で結ぶ第2の直線の長さを求める第2演算手段と、
前記第2の直線の長さに基づいて前記投射光学系の焦点調整を行なう焦点調整手段とを有するプロジェクタ。
It has a projection optical system that projects image light at a fixed divergence angle with respect to the projection surface, and can simultaneously output detection light and detection sound from the vicinity of the projection point projected onto the projection surface via the projection optical system A projector that performs focus adjustment using pointing means,
A light receiving means for receiving the detection light output from the pointing means on the projection surface;
Receiving means for receiving the detection sound output from the pointing means;
Based on the time difference from when the detection light is received by the light receiving means to when the detection sound is received by the receiving means, the light receiving means or the receiving means and the projection point are connected at the shortest distance. First calculating means for determining the length of one straight line;
A second computing means for multiplying a length of the first straight line by a predetermined constant to obtain a length of a second straight line connecting the light receiving means or the receiving means and the projection surface with a shortest distance;
A projector having a focus adjustment unit configured to adjust a focus of the projection optical system based on a length of the second straight line;
前記第1の直線の長さをL1、前記第2の直線の長さをL2、前記第1の直線と前記第2の直線との挟角をθとしたとき、前記第2演算手段は、L1・COSθの演算を行って前記L2を求める請求項1記載のプロジェクタ。 When the length of the first straight line is L 1 , the length of the second straight line is L 2 , and the included angle between the first straight line and the second straight line is θ, the second computing means the projector according to claim 1, wherein performing the calculation of L 1 · COS .theta determine said L 2. 投射面に対して一定の発散角で画像光を投射する投射光学系を有するプロジェクタと、前記プロジェクタによって前記投射面上に投射された投射点近傍から検出光と検出音を同時に出力可能なポインティング手段とを有し、
前記ポインティング手段は、検出光を出力する検出光出力手段と、前記検出光出力手段と同期して検出音を出力する検出音出力手段とを備え、
前記プロジェクタは、前記ポインティング手段から出力された前記検出光を受光する受光手段と、前記ポインティング手段から出力された前記検出音を受信する受信手段と、前記受光手段によって前記検出光が受光されてから前記受信手段によって前記検出音が受信されるまでの間の時間差に基づいて、前記受光手段又は前記受信手段と前記投射点とを最短距離で結ぶ第1の直線の長さを求める第1演算手段と、前記第1の直線の長さに所定の定数を乗じて、前記受光手段又は前記受信手段と前記投射面とを最短距離で結ぶ第2の直線の長さを求める第2演算手段と、前記第2の直線の長さに基づいて前記投射光学系の焦点調整を行なう焦点調整手段とを有する、
プロジェクタの焦点自動調整システム。
A projector having a projection optical system for projecting image light at a fixed divergence angle with respect to the projection surface, and pointing means capable of simultaneously outputting detection light and detection sound from the vicinity of the projection point projected on the projection surface by the projector And
The pointing means comprises detection light output means for outputting detection light, and detection sound output means for outputting detection sound in synchronization with the detection light output means,
The projector includes a light receiving unit that receives the detection light output from the pointing unit, a receiving unit that receives the detection sound output from the pointing unit, and the detection light received by the light receiving unit. Based on a time difference until the detection sound is received by the receiving means, a first calculating means for obtaining a length of a first straight line connecting the light receiving means or the receiving means and the projection point with the shortest distance. And a second calculating means for multiplying the length of the first straight line by a predetermined constant to obtain the length of the second straight line connecting the light receiving means or the receiving means and the projection surface with the shortest distance; Focus adjusting means for adjusting the focus of the projection optical system based on the length of the second straight line;
Projector focus adjustment system.
前記第1の直線の長さをL1、前記第2の直線の長さをL2、前記第1の直線と前記第2の直線との挟角をθとしたとき、前記第2演算手段は、L1・COSθの演算を行って前記L2を求める請求項3記載のプロジェクタの焦点自動調整システム When the length of the first straight line is L 1 , the length of the second straight line is L 2 , and the included angle between the first straight line and the second straight line is θ, the second computing means It is the focal automatic adjustment system of a projector according to claim 3, wherein performing the calculation of the L 1 · COS .theta determine said L 2 投射面に対して一定の発散角で画像光を投射する投射光学系を有するプロジェクタが、前記投射面に投射点を投射する工程と、
前記投射面上のポインティング手段が、前記投射点の近傍から検出光と検出音を同時に出力する工程と、
前記プロジェクタが備える受光手段が、前記ポインティング手段から出力された検出光を受光する工程と、
前記プロジェクタが備える受信手段が、前記ポインティング手段から出力された検出音を受信する工程と、
前記プロジェクタが備える第1演算手段が、前記受光手段によって前記検出光が受光されてから前記受信手段によって前記検出音が受信されるまでの間の時間差に基づいて、前記受光手段又は前記受信手段と前記投射点とを最短距離で結ぶ第1の直線の長さを求める工程と、
前記プロジェクタが備える第2演算手段が、前記第1の直線の長さに所定の定数を乗じて、前記受光手段又は前記受信手段と前記投射面とを最短距離で結ぶ第2の直線の長さを求める工程と、
前記プロジェクタが備える焦点調整手段が、前記第2の直線の長さに基づいて前記投射光学系の焦点調整を行なう工程と、
を有するプロジェクタの焦点自動調整方法。
A projector having a projection optical system for projecting image light at a constant divergence angle with respect to the projection surface, and projecting a projection point on the projection surface;
A step in which pointing means on the projection surface simultaneously outputs detection light and detection sound from the vicinity of the projection point;
A light receiving means provided in the projector receives the detection light output from the pointing means;
Receiving means provided in the projector, receiving the detection sound output from the pointing means;
Based on a time difference from when the detection light is received by the light receiving unit to when the detection sound is received by the receiving unit, the first calculation unit included in the projector is based on the light receiving unit or the receiving unit. Obtaining a length of a first straight line connecting the projection points with the shortest distance;
The second calculation means included in the projector multiplies the length of the first straight line by a predetermined constant, and the length of the second straight line connecting the light receiving means or the receiving means and the projection surface with the shortest distance. The process of seeking
A step of adjusting a focus of the projection optical system based on a length of the second straight line by a focus adjustment unit included in the projector;
A method for automatically adjusting the focus of a projector.
前記第1の直線の長さをL1、前記第2の直線の長さをL2、前記第1の直線と前記第2の直線とがなす角度をθとしたとき、前記第2演算手段は、L1・COSθの演算を行って前記L2を求める請求項5記載のプロジェクタの焦点自動調整方法。

When the length of the first straight line is L 1 , the length of the second straight line is L 2 , and the angle formed by the first straight line and the second straight line is θ, the second calculation means is the focal automatic adjustments to the projector of claim 5, wherein performing the calculation of the L 1 · COS .theta determine said L 2.

JP2003406354A 2003-12-04 2003-12-04 Projector, projector focus automatic adjustment system, projector focus automatic adjustment method Expired - Fee Related JP4480387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406354A JP4480387B2 (en) 2003-12-04 2003-12-04 Projector, projector focus automatic adjustment system, projector focus automatic adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406354A JP4480387B2 (en) 2003-12-04 2003-12-04 Projector, projector focus automatic adjustment system, projector focus automatic adjustment method

Publications (2)

Publication Number Publication Date
JP2005165140A true JP2005165140A (en) 2005-06-23
JP4480387B2 JP4480387B2 (en) 2010-06-16

Family

ID=34728750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406354A Expired - Fee Related JP4480387B2 (en) 2003-12-04 2003-12-04 Projector, projector focus automatic adjustment system, projector focus automatic adjustment method

Country Status (1)

Country Link
JP (1) JP4480387B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233056A (en) * 2006-03-01 2007-09-13 Necディスプレイソリューションズ株式会社 Projection display apparatus
JP2011002650A (en) * 2009-06-18 2011-01-06 Seiko Epson Corp Projector
CN101539714B (en) * 2009-04-17 2011-03-16 清华大学深圳研究生院 Interactive projector equipment
EP2637419A1 (en) * 2010-11-01 2013-09-11 NEC CASIO Mobile Communications, Ltd. Electronic device
JP2014149539A (en) * 2014-03-27 2014-08-21 Seiko Epson Corp Projector
CN114390261A (en) * 2020-10-20 2022-04-22 深圳海翼智新科技有限公司 Projection system, trapezoidal correction method thereof and device with storage function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589625B (en) * 2017-09-30 2020-05-29 歌尔科技有限公司 Automatic zooming method of projector and projector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233056A (en) * 2006-03-01 2007-09-13 Necディスプレイソリューションズ株式会社 Projection display apparatus
JP4584160B2 (en) * 2006-03-01 2010-11-17 Necディスプレイソリューションズ株式会社 Projection display
CN101539714B (en) * 2009-04-17 2011-03-16 清华大学深圳研究生院 Interactive projector equipment
JP2011002650A (en) * 2009-06-18 2011-01-06 Seiko Epson Corp Projector
EP2637419A1 (en) * 2010-11-01 2013-09-11 NEC CASIO Mobile Communications, Ltd. Electronic device
EP2637419A4 (en) * 2010-11-01 2014-07-02 Nec Casio Mobile Comm Ltd Electronic device
JP2014149539A (en) * 2014-03-27 2014-08-21 Seiko Epson Corp Projector
CN114390261A (en) * 2020-10-20 2022-04-22 深圳海翼智新科技有限公司 Projection system, trapezoidal correction method thereof and device with storage function
CN114390261B (en) * 2020-10-20 2023-10-24 深圳海翼智新科技有限公司 Projection system, trapezoidal correction method thereof and device with storage function

Also Published As

Publication number Publication date
JP4480387B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4609734B2 (en) Distance measuring device and projector provided with the distance measuring device
US7070283B2 (en) Projection apparatus, projection method and recording medium recording the projection method
US7889324B2 (en) Distance measuring system and projector
US6460999B1 (en) Projector and the protector thereof
JP6429300B2 (en) Projection type display system, projection type display device, and timing adjustment method
JP5504781B2 (en) projector
US7980703B2 (en) Projector
JP2006313116A (en) Distance tilt angle detection device, and projector with detection device
JPH11119184A (en) Automatic focusing device for liquid crystal projector
JP5246467B2 (en) Distance measuring device and projector
US20230102878A1 (en) Projector and projection method
JP4480387B2 (en) Projector, projector focus automatic adjustment system, projector focus automatic adjustment method
JP2004239933A (en) Illumination optical system and projector using the same
JP2006078761A (en) Projection apparatus, projection control method and program
JP7416031B2 (en) Projection device, projection control device and program
JP5125561B2 (en) Projection apparatus and projection control method
JP4797425B2 (en) Light source unit and projection device
JP2008070223A (en) Measurement surface inclination measuring device, projector, and measurement surface inclination measuring method
JP2006285029A (en) Color wheel device and projection device
KR101873748B1 (en) A projector and a method of processing an image thereof
JP2005070412A (en) Image projector and its focus adjustment method
JP2007256831A (en) Projection display apparatus
JP2007264334A (en) Projection apparatus, projection method and program
JP2011221029A (en) Distance measurement apparatus and projector
JP2008216632A (en) Projection type display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees