JPH11119184A - Automatic focusing device for liquid crystal projector - Google Patents

Automatic focusing device for liquid crystal projector

Info

Publication number
JPH11119184A
JPH11119184A JP9286703A JP28670397A JPH11119184A JP H11119184 A JPH11119184 A JP H11119184A JP 9286703 A JP9286703 A JP 9286703A JP 28670397 A JP28670397 A JP 28670397A JP H11119184 A JPH11119184 A JP H11119184A
Authority
JP
Japan
Prior art keywords
light
automatic focusing
liquid crystal
focusing device
crystal projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9286703A
Other languages
Japanese (ja)
Inventor
Satoru Takeguchi
哲 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP9286703A priority Critical patent/JPH11119184A/en
Publication of JPH11119184A publication Critical patent/JPH11119184A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automatic focusing device for a liquid crystal projector which can automate a projection lens focusing means. SOLUTION: The automatic focusing device is constituted of a projection lens 1 having a focusing means, a focusing mechanism 2 for focusing the lens 1, a semitransparent reflection film means 3 arranged between a dichroic mirror or dichroic prism 4, a light emitting part 18 consisting of a light emitting element or the like arranged on a position equivalent to an optical axis distance between the lens 1 and an LCD 14 so as to emit focus position detecting projection light to a screen S, a light receiving part 5 consisting of a light receiving element or the like for receiving reflected light B from the screen S through the means 3 and converting the received light into a received light output signal, a focusing control part 6 for detecting and calculating a focus position up to the screen S by an output signal from the light receiving part 5 and controlling the drive of the mechanism 2, and a position detector 7 for detecting a position focused by the mechanism 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【本発明の技術分野】液晶プロジェクタ投射レンズ部の
自動焦点調整装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing device for a projection lens of a liquid crystal projector.

【0002】[0002]

【従来の技術】パソコンなどによるプレゼンテーション
システムでは、大型の表示装置として液晶プロジェクタ
が用いられている。特に携帯に便利な小型携帯液晶プロ
ジェクタは、利用の度に設置場所を替え、スクリーンサ
イズ、スクリーンまでの距離など設置条件が変わると共
に該装置の利用者も不特定多数に渡る。図6は従来技術
による液晶プロジェクタの光学系の概念図および投射レ
ンズの焦点調整の制御ブロック図である。メタルハライ
ドランプなどの光源Lより、白色光が出射され、集光リ
レーレンズ系10より平行光線として出射される。ダイ
クロイックミラー11はその表面にブルー(以下bと云
う)を反射し、レッド(以下rと云う)およびグリーン
(以下gと云う)を透過するフィルタが形成されてい
る。ダイクロイックミラー12はその表面にrを反射
し、bおよびgを透過するフィルタが形成されている。
13は一般的ミラーであり反射特性は光の波長に依存し
ない。これらr、g、bに分離された平行光線は、色毎
のLCD14r,14g,14bに入射する。色毎のL
CD14r,14g,14bは、与えられた映像駆動信
号に基づき光変調し、出射面よりr,g,bの変調光を
出射する。ダイクロイックミラーもしくはダイクロイッ
クプリズム4で前記色毎の変調光は同一光軸上に合成r
+g+bされ、投射レンズ1によりスクリーンS上に投
射出力される。投射レンズ1の焦点調整は、操作部8に
ある焦点調整入力部を手動操作入力する。制御部9は該
入力に基づいて焦点駆動制御部6に焦点駆動制御指令を
出す。焦点駆動制御部6は該焦点駆動制御指令に従い焦
点調整機構2に駆動出力する。このように携帯可搬用途
の液晶プロジェクタにおいては、設置の度にスクリーン
に対する光軸調整、焦点調整、画面サイズ調整などをで
行っており、特に不慣れな不特定の利用者にとって操作
が煩雑であり、此等操作の自動化の要求が高い。
2. Description of the Related Art In a presentation system using a personal computer or the like, a liquid crystal projector is used as a large display device. In particular, small portable liquid crystal projectors that are convenient to carry change the installation location each time they are used, the installation conditions such as the screen size and the distance to the screen change, and the number of users of the device is unspecified. FIG. 6 is a conceptual diagram of an optical system of a liquid crystal projector according to the related art and a control block diagram of focus adjustment of a projection lens. White light is emitted from a light source L such as a metal halide lamp, and emitted as parallel rays from the condenser relay lens system 10. The dichroic mirror 11 has a filter on its surface that reflects blue (hereinafter, referred to as b) and transmits red (hereinafter, referred to as r) and green (hereinafter, referred to as g). The dichroic mirror 12 has a filter on its surface that reflects r and transmits b and g.
Reference numeral 13 denotes a general mirror whose reflection characteristics do not depend on the wavelength of light. The parallel rays separated into r, g, and b enter the LCDs 14r, 14g, and 14b for each color. L for each color
The CDs 14r, 14g, and 14b modulate the light based on the supplied video drive signal, and emit the modulated light of r, g, and b from the emission surface. The modulated light for each color is combined on the same optical axis by a dichroic mirror or a dichroic prism 4.
+ G + b, and is projected and output on the screen S by the projection lens 1. The focus adjustment of the projection lens 1 is performed by manually inputting a focus adjustment input unit provided in the operation unit 8. The control unit 9 issues a focus drive control command to the focus drive control unit 6 based on the input. The focus drive control unit 6 drives and outputs to the focus adjustment mechanism 2 according to the focus drive control command. As described above, in the liquid crystal projector for portable use, the optical axis adjustment, the focus adjustment, the screen size adjustment, etc., of the screen are performed at each installation, and the operation is complicated particularly for unfamiliar unspecified users. There is a high demand for automation of these operations.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これらの要
求に鑑み、投射レンズの焦点調整手段の自動化を図かる
液晶プロジェクタ用自動焦点装置の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic focusing device for a liquid crystal projector which automates a focus adjusting means of a projection lens in view of these requirements.

【0004】[0004]

【課題を解決するための手段】焦点調整手段を有する投
射レンズと、投射レンズの焦点調整を行う焦点調整機構
と、ダイクロイックミラーもしくはダイクロイックプリ
ズムと投射レンズの間に設置された半透明反射膜手段
と、投射レンズとLCD間の光軸距離と等価位置に配置
された、スクリーンに焦点位置検出ようの検出投射光を
発光する発光素子などからなる発光部と該スクリーンよ
りの反射光を半透明反射膜手段経由で受光し受光出力信
号に変換する受光素子などからなる受光部と、該受光素
子よりの受光出力信号によりスクリーンまでの焦点位置
を検出演算し、焦点調整機構の駆動制御を行う焦点調整
制御部と、焦点調整機構の調整位置を検出する位置検出
器とで構成する。さらに、半透明反射膜手段と発光部お
よび受光部との間に、等価的に凸レンズもしくは凹レン
ズのリレーレンズを追加設置する。
A projection lens having focus adjustment means, a focus adjustment mechanism for adjusting the focus of the projection lens, and a dichroic mirror or a translucent reflection film means provided between the dichroic prism and the projection lens. A light-emitting portion, which is disposed at a position equivalent to the optical axis distance between the projection lens and the LCD, and emits detection light for detecting a focus position on the screen, and a translucent reflection film for reflecting light from the screen; A light-receiving unit including a light-receiving element that receives light via a means and converts it into a light-receiving output signal, and a focus adjustment control that detects and calculates a focal position to a screen based on the light-receiving output signal from the light-receiving element and controls driving of a focus adjustment mechanism And a position detector for detecting an adjustment position of the focus adjustment mechanism. Further, between the translucent reflective film means and the light emitting unit and the light receiving unit, a relay lens of a convex lens or a concave lens is additionally provided equivalently.

【0005】さらに、前記半透明反射膜手段を、平面ガ
ラス基板上に金属薄膜などを蒸着した半透明ミラーとす
る、もしくは、プリズムの傾斜面上に金属薄膜などを蒸
着した半透明プリズムとする。
Further, the semi-transparent reflective film means is a semi-transparent mirror in which a metal thin film or the like is deposited on a flat glass substrate, or a semi-transparent prism in which a metal thin film or the like is deposited on an inclined surface of the prism.

【0006】さらに、半透明反射膜を、全光束の一部を
反射する金属薄膜の半透明反射膜で形成する、赤外線光
のみをを反射するフィルタで形成する、または、赤外線
光のみをを反射するフィルタで形成する赤外線光のみを
反射するフィルタで形成する。
Further, the semi-transparent reflective film is formed by a semi-transparent reflective film of a metal thin film that reflects a part of the total light flux, formed by a filter that reflects only infrared light, or reflects only infrared light. The filter is formed by a filter that reflects only infrared light formed by the filter.

【0007】さらに、発光部を、検出投射光を発光する
発光素子と、発光素子を高周波駆動する変調器で構成す
る。
Further, the light emitting section is constituted by a light emitting element which emits the detected projection light and a modulator which drives the light emitting element at a high frequency.

【0008】さらに、発光部を構成する発光素子を、可
視光を発光するLEDとする、赤外線光を発光する赤外
線発光レーザーダイオードもしくは赤外線透過フィルタ
付LEDとする、または、紫外線光を発光する紫外線光
光レーザーダイオードもしくは紫外線光透過フィルタ付
LEDとする。
Further, the light emitting element constituting the light emitting portion may be an LED that emits visible light, an infrared emitting laser diode or an LED with an infrared transmitting filter that emits infrared light, or an ultraviolet light that emits ultraviolet light. An optical laser diode or an LED with an ultraviolet light transmission filter is used.

【0009】さらに、受光部を、検出投射光を受光し受
光出力信号に変換する受光素子と、変調周波数の受光出
力信号成分のみを通過させるフィルタと、該フィルタよ
りの出力信号を検波する検波器とで構成する。
Further, the light receiving section receives the detected projection light and converts it into a received light output signal, a filter for passing only the received light output signal component of the modulation frequency, and a detector for detecting the output signal from the filter. And

【0010】さらに、受光部を構成する受光素子を、ホ
トトランジスタ、ホトダイオードなどの光電変換する半
導体素子とする、光起電力を発生するソーラーセルとす
る、CdS、PINなどの光電形セルとする、PbS、
InSbなどの複数の光電形セルを三次元に配置した三
次元センサとする、または、BBD、CCD、ソーラー
セルなどの複数の光起電力形セルを三次元に配置した三
次元センサとする。
Further, the light receiving element constituting the light receiving section is a semiconductor element for photoelectric conversion such as a phototransistor or a photodiode, a solar cell for generating photovoltaic power, or a photoelectric type cell for CdS or PIN. PbS,
A three-dimensional sensor in which a plurality of photoelectric cells such as InSb is three-dimensionally arranged, or a three-dimensional sensor in which a plurality of photovoltaic cells such as a BBD, a CCD, and a solar cell are three-dimensionally arranged.

【0011】さらに三次元センサの構造を、平面基板上
に複数の光電形セルもしくは光起電力形セルなどの受光
素子を配置し、該複数の受光素子を結ぶ中心軸を反射光
の光軸に対して任意角度で交差する様に配置する、ガラ
スなどの透明基材の任意距離離れた平行面に、複数の光
電形セル、光起電力形セルなどの受光素子を配備し、該
平行面を反射光の光軸に対して垂直に交差する様に配置
する、または、光軸方向に任意距離離れた反射面を設
け、該反射面に対応した位置に複数の光電形セル、光起
電力形セルなどの受光素子を配備する。
Further, the structure of the three-dimensional sensor is configured such that a plurality of light receiving elements such as photoelectric cells or photovoltaic cells are arranged on a flat substrate, and a central axis connecting the plurality of light receiving elements is defined as an optical axis of the reflected light. A plurality of photoelectric cells, a light-receiving element such as a photovoltaic cell, and the like are disposed on a parallel surface at an arbitrary distance of a transparent base material such as glass, which is disposed so as to intersect at an arbitrary angle with respect to the transparent surface. A plurality of photoelectric cells and a photovoltaic cell are disposed at positions corresponding to the reflective surface, which are arranged so as to intersect perpendicularly with the optical axis of the reflected light, or provided with a reflective surface at an arbitrary distance in the optical axis direction. A light receiving element such as a cell is provided.

【0012】さらに、焦点調整制御部を、受光素子の出
力信号をディジタルデータに変換するA/Dと、ディジ
タル信号を一時的に記憶するデータメモリと、該データ
メモリより読み出したディジタルデータとA/Dの出力
データとを比較演算して差分データを演算出力する比較
演算器と、差分データの微分値が零になるよう、焦点調
整機構の制御信号を生成制御する焦点制御部と、該制御
信号により焦点調整機構のDCモータなどの駆動源に駆
動出力する駆動部とで構成する、または、三次元センサ
型の受光素子の出力信号をディジタルデータに変換する
複数のA/Dと、複数のディジタルデータの差分データ
を演算出力する差分演算器と、該差分データを一次記憶
するデータメモリと、データメモリより読み出した差分
データと差分演算器の出力データとを比較演算して比較
データを演算出力する比較演算器と、比較データの絶対
値が最小となるよう、焦点調整機構の制御信号を生成制
御する焦点制御部と、該制御信号により焦点調整機構の
DCモータなどの駆動源に駆動出力する駆動部とで構成
する。
Further, the focus adjustment control section includes an A / D for converting the output signal of the light receiving element into digital data, a data memory for temporarily storing the digital signal, and a digital data read out of the data memory and A / D. A comparison operation unit for performing a comparison operation with the output data of D to calculate and output difference data; a focus control unit for generating and controlling a control signal of a focus adjustment mechanism so that a differential value of the difference data becomes zero; A plurality of A / Ds for converting an output signal of a three-dimensional sensor type light receiving element into digital data, and a plurality of digitals. A difference calculator for calculating and outputting difference data of data, a data memory for temporarily storing the difference data, and a difference calculation between the difference data read from the data memory and the difference memory A comparison operation unit that performs a comparison operation to output the comparison data by calculating the comparison data, a focus control unit that generates and controls a control signal of the focus adjustment mechanism so that the absolute value of the comparison data is minimized, And a drive unit that outputs a drive to a drive source such as a DC motor of the focus adjustment mechanism.

【0013】さらに、最適焦点位置を、前記差分データ
の絶対値が等しい二点間の中央位置となるよう焦点制御
する。
Further, focus control is performed such that the optimum focus position is a center position between two points where the absolute values of the difference data are equal.

【0014】さらに、焦点調整機構の駆動源を1パルス
駆動毎に一定角度もしくは一定摺動量ステップ送りする
ステッピングモータとし、焦点調整機構の制御信号とし
て所定のパルス数の信号を生成出力する。
Further, the drive source of the focus adjustment mechanism is a stepping motor that feeds a fixed angle or a fixed sliding amount step by step for each pulse drive, and generates and outputs a signal of a predetermined number of pulses as a control signal of the focus adjustment mechanism.

【0015】さらに、投射レンズ焦点調整機構の調整位
置を検出する検出器を、回転駆動軸の回転角もしくは回
転体の回転パルス数等を検出する回転検出手段とする、
または、駆動軸の摺動量もしくは摺動部の摺動パルス数
等を検出する直線検出手段、または、リミットスイッチ
などの可動限界位置検出手段とする。
[0015] Further, the detector for detecting the adjustment position of the projection lens focus adjustment mechanism is rotation detection means for detecting the rotation angle of the rotary drive shaft or the number of rotation pulses of the rotary body.
Alternatively, it may be a straight line detecting means for detecting the sliding amount of the drive shaft or the number of sliding pulses of the sliding portion, or a movable limit position detecting means such as a limit switch.

【0016】さらに、操作部に自動焦点調整入力部と手
動焦点調整入力部と、表示信号生成部に焦点調整用の調
整信号の発生部とを設け、焦点調整時には所定の焦点調
整用の調整信号を発生すると共に発光部より前記検出投
射光し、スクリーン上に該検出投射光を結像表示し、該
結像した検出投射光の反射光を焦点位置検出の受光信号
とする。
Further, the operation unit is provided with an automatic focus adjustment input unit and a manual focus adjustment input unit, and the display signal generation unit is provided with a focus adjustment adjustment signal generation unit. Is generated, and the detected and projected light is emitted from the light emitting unit, the detected and projected light is imaged and displayed on a screen, and the reflected light of the imaged detected and projected light is used as a light reception signal for focus position detection.

【0017】[0017]

【発明の実施の形態】図1は本発明による液晶プロジェ
クタ用自動焦点装置の一実施例の光学系および要部のブ
ロック図である。図2は本発明による半透明反射膜手段
の複数の実施例を示す。図1において、r、gおよびb
の各色の変調光は、従来技術と同様、ダイクロイックプ
リズム4で合成され出射面より合成光r+g+bとして
出射される。投射レンズ1と該ダイックロックプリズム
との間には半透明反射膜3が形成された半透明ミラー3
aもしくは半透明プリズム3bが配置されている。この
半透明反射膜3は、全光色の数%を反射する金属薄膜、
または、赤外線領域の光のみを反射し他の領域の光は透
過するフィルタ膜が形成されるか、もしくは、紫外線領
域の光のみを反射し他の領域の光は透過するフィルタ膜
が形成されている。このためダイクロイックプリズム4
から出射された合成光r+g+bは略全量投射レンズ1
によりスクリーンSに投射出力される。投射レンズ1の
焦点調整は焦点調整機構2により該レンズ焦点調整部を
駆動することにより成される。
FIG. 1 is a block diagram of an optical system and main parts of an embodiment of an automatic focusing device for a liquid crystal projector according to the present invention. FIG. 2 shows several embodiments of the translucent reflective film means according to the present invention. In FIG. 1, r, g and b
The modulated light of each color is synthesized by the dichroic prism 4 and emitted from the emission surface as synthesized light r + g + b, as in the prior art. A translucent mirror 3 having a translucent reflection film 3 formed between the projection lens 1 and the dichroic prism
a or the translucent prism 3b. This translucent reflective film 3 is a metal thin film that reflects a few% of all light colors,
Alternatively, a filter film that reflects only light in the infrared region and transmits light in other regions is formed, or a filter film that reflects only light in the ultraviolet region and transmits light in other regions is formed. I have. For this reason, dichroic prism 4
Of the combined light r + g + b emitted from the projection lens 1
Is projected and output on the screen S. The focus adjustment of the projection lens 1 is performed by driving the lens focus adjustment unit by the focus adjustment mechanism 2.

【0018】自動焦点調整に際しては、操作部8より自
動焦点調整モードを入力する。制御部9は該入力を受付
け、表示信号生成部16に焦点調整用の信号(例えば、
画面中心部のみ黒丸または黒四角)の生成を指令すると
共に自動焦点調整モード指令を焦点調整制御部6に出
す。表示信号生成部16は焦点調整用の信号を生成し、
LCD駆動部17を経由して各色毎のLCDを駆動す
る。同時に、発光部5に検出投射光aを発光出力するよ
う制御指令を出す。該検出投射光は、スクリーンS中央
部の黒画像部(前述の黒丸または黒四角画像)に結像す
る。スクリーンSからの反射光bは、投射レンズにより
集光され、さらに半透明反射膜手段3により屈折反射さ
れ、光軸上で投射レンズ1からLCD14r、14g、
14bまでの距離と等価距離に配置された受光部5上に
結像する。この等価距離は、凹レンズもしくは凸レンズ
と等価のリレーレンズ15を半透明反射膜手段3と発光
部18および受光部5の間に挿入することにより、物理
的距離を換えることが出来き、受光素子の設計上の配置
の自由度が確保される。
At the time of automatic focus adjustment, an automatic focus adjustment mode is input from the operation unit 8. The control unit 9 receives the input and sends a signal for focus adjustment (for example,
A command to generate a black circle or a black square only at the center of the screen is issued, and an automatic focus adjustment mode command is issued to the focus adjustment controller 6. The display signal generator 16 generates a signal for focus adjustment,
The LCD for each color is driven via the LCD drive unit 17. At the same time, a control command is issued to the light emitting unit 5 to output the detected projection light a. The detected projection light forms an image on a black image portion (the above-described black circle or black square image) at the center of the screen S. The reflected light b from the screen S is condensed by the projection lens, further refracted and reflected by the translucent reflection film means 3, and is projected on the optical axis from the projection lens 1 to the LCDs 14r, 14g,
An image is formed on the light receiving unit 5 arranged at an equivalent distance to the distance to 14b. This equivalent distance can be changed by inserting a relay lens 15 equivalent to a concave lens or a convex lens between the translucent reflective film means 3 and the light emitting section 18 and the light receiving section 5 so that the physical distance can be changed. The degree of freedom of arrangement in design is secured.

【0019】図3は本発明による発光部18と受光部5
の実施例の概念図である。(イ)は発光部を発光素子を
プリント基板などの基材に固定したもので、直流源に駆
動され連続した検出投射光を発光するものである。
(ロ)は受光時に検出投射光を選択的に受信するため、
発光素子18aは変調器18bにより47KHzの高周
波信号により変調駆動されている。(ハ)は連続した検
出投射光の受光に対応した受光部5で、受光素子5aが
プリント基板などの基材に固定されており、変換出力信
号は直流信号となる。(ニ)は高周波変調された検出投
射光の受光に対応した受光部5で、受光素子50よりの
変換出力信号は、47KHz帯域フィルタ51で選択出
力され、検波器52で直線検波され、反射光の受光レベ
ルを出力する。変調された投射光を用い、且つ該投射光
の受信に際して選択入力することにより、目的の焦点位
置検出精度を高めることが出来る。
FIG. 3 shows a light emitting section 18 and a light receiving section 5 according to the present invention.
It is a key map of an Example of. (A) shows a light-emitting element in which a light-emitting element is fixed to a base material such as a printed circuit board, and is driven by a DC source to emit continuous detection projection light.
(B) is to selectively receive the detected projection light when receiving light,
The light emitting element 18a is modulated and driven by a modulator 18b with a 47 KHz high frequency signal. (C) is a light receiving section 5 corresponding to the continuous detection and projection light reception, in which the light receiving element 5a is fixed to a base material such as a printed circuit board, and the converted output signal is a DC signal. (D) is a light receiving section 5 corresponding to the reception of the high-frequency modulated detection projection light. The converted output signal from the light receiving element 50 is selectively output by a 47 KHz band-pass filter 51, linearly detected by a detector 52, and reflected light. Is output. By using the modulated projection light and selecting and inputting the light when receiving the projection light, it is possible to improve the accuracy of detecting the target focal position.

【0020】図4は光学レンズの光軸と光束断面積およ
び光強度との関係の説明図、並びに本発明による受光素
子の各種実施例の概念図である。(1)において、投射
レンズ1よりスクリーンSの中央部に投射出力された、
焦点調整用の検出投射光の光束1aは投射レンズ1によ
り、投射レンズ1からの距離がLCD14r、14g、
14bと等価距離に配備された受光部5上に結像する。
合焦点位置1dでは、光束断面積は最小で且つ光束中央
部の光強度は最大となる。合焦点位置前後の光束断面
は、合焦点位置からの距離の略二乗に比例して増すと共
に、光束中心部の光強度は該断面積に反比例して減少す
る。別の見方をすると、同焦点位置1dでは光束断面積
および光強度の変化分(微分値)は略零となる。又光束
断面積および光強度の等しい2つの光軸上の位置1c、
1e間の中央位置は合焦点位置1dと一致する。此等の
性質を利用して、本願は焦点位置検出手段を形成してい
る。
FIG. 4 is a diagram for explaining the relationship between the optical axis of the optical lens, the light beam cross-sectional area and the light intensity, and conceptual diagrams of various embodiments of the light receiving element according to the present invention. In (1), the image is projected and output from the projection lens 1 to the center of the screen S.
The light flux 1a of the detection projection light for focus adjustment is projected by the projection lens 1 so that the distance from the projection lens 1 to the LCDs 14r, 14g,
An image is formed on the light receiving unit 5 disposed at an equivalent distance from 14b.
At the in-focus position 1d, the light beam cross-sectional area is the smallest and the light intensity at the center of the light beam is the largest. The cross section of the light beam before and after the focus position increases in proportion to the square of the distance from the focus position, and the light intensity at the center of the light beam decreases in inverse proportion to the cross-sectional area. From another viewpoint, the change (differential value) in the light beam cross-sectional area and the light intensity at the parfocal point 1d is substantially zero. A position 1c on two optical axes having the same light flux cross-sectional area and light intensity;
The center position between 1e coincides with the in-focus position 1d. Utilizing these properties, the present application forms a focal position detecting unit.

【0021】(2)は光束の光強度を検出する目的で、
受光素子を、ホトトランジスタ、ホトダイオードなどの
光電変換する半導体素子、光起電力を発生するソーラー
セル、もしくは、PdS、PINなどの光電形セルとし
た。
(2) is for detecting the light intensity of the light beam.
The light receiving element was a semiconductor element for photoelectric conversion such as a phototransistor or a photodiode, a solar cell for generating photovoltaic power, or a photoelectric cell such as PdS or PIN.

【0022】(3)は光軸上の少なくても2点の光強度
を同時に検出する目的で、受光素子を、、PbS、In
Sbなどの複数の光電形セル、もしくはBBD、CC
D、ソーラーセルなどの複数の受光素子を三次元に配置
した三次元センサとした。
(3) In order to simultaneously detect the light intensity of at least two points on the optical axis, the light receiving element is made of PbS, Inb.
Multiple photoelectric cells such as Sb, or BBD, CC
D, a three-dimensional sensor in which a plurality of light receiving elements such as a solar cell were three-dimensionally arranged.

【0023】(イ)は三次元センサ構造の第1の実施例
を示し、平板プリント基板5e上の光軸方向に異なった
位置に半導体素子、ソーラーセル、もしくは、光電形セ
ルなどの受光素子を配置した。該平板プリント基板は光
軸に対して45度の角度θで配設することにより、三次
元センサの機能を持たせた。
(A) shows a first embodiment of a three-dimensional sensor structure, in which a light receiving element such as a semiconductor element, a solar cell, or a photoelectric cell is placed at different positions in the optical axis direction on a flat printed circuit board 5e. Placed. The flat printed circuit board had a function of a three-dimensional sensor by being disposed at an angle θ of 45 degrees with respect to the optical axis.

【0024】(ロ)は三次元センサ構造の第2の実施例
を示し、平行な上面と下面を有するガラスなどの透明基
材5fの上面5f1と下面5f2に半導体素子、ソーラ
ーセル、もしくは、光電形セルなどの受光素子を配置
し、反射光が上面に垂直に入射するように配設すること
により、三次元センサの機能を持たせた。
(B) shows a second embodiment of the three-dimensional sensor structure, in which a semiconductor element, a solar cell, or a photoelectric element is provided on the upper surface 5f1 and the lower surface 5f2 of a transparent substrate 5f such as glass having parallel upper and lower surfaces. A three-dimensional sensor function is provided by arranging a light receiving element such as a shaped cell and arranging the reflected light so as to be vertically incident on the upper surface.

【0025】(ハ)は三次元センサ構造の第3の実施例
を示し、光軸上の2箇所に光軸に対して45度(任意角
度で良い)傾斜した反射面5g10、5g20を設け、
この反射光軸に対応し且つ該反射面よりの距離が等しい
位置に、半導体素子、ソーラーセル、もしくは、光電形
セルなどの受光素子を配置することにより、三次元セン
サの機能を持たせた。
(C) shows a third embodiment of the three-dimensional sensor structure, in which reflection surfaces 5g10 and 5g20 inclined at 45 degrees (arbitrary angles) with respect to the optical axis are provided at two positions on the optical axis.
A light-receiving element such as a semiconductor element, a solar cell, or a photoelectric cell is arranged at a position corresponding to the reflection optical axis and at the same distance from the reflection surface to provide a function of a three-dimensional sensor.

【0026】図5は本発明による焦点調整制御部の各種
実施例の要部ブロック図である。(イ)は光軸中心部の
光強度を検出して焦点位置を検出するシステム例であ
る。受光部5よりの光強度検出信号は、A/D61でデ
ジタル光強度データに変換され、一定間隔でアドレスデ
ータと共にデータメモリ62に一時記憶される。比較演
算器63は、A/D61からのデータとデータメモリ6
2より読み出したデータを比較演算して微分値を演算出
力するか、もしくは、A/D61からのデータと等しい
データメモリ62内のアドレスデータを演算出力する。
FIG. 5 is a block diagram of a main part of various embodiments of the focus adjustment control unit according to the present invention. (A) is an example of a system that detects the light intensity at the center of the optical axis to detect the focus position. The light intensity detection signal from the light receiving section 5 is converted into digital light intensity data by the A / D 61 and is temporarily stored in the data memory 62 at regular intervals together with the address data. The comparison calculator 63 stores the data from the A / D 61 and the data memory 6.
The data read from 2 is compared and the differential value is calculated and output, or the address data in the data memory 62 equal to the data from the A / D 61 is calculated and output.

【0027】投射レンズ焦点調整機構の調整位置を検出
するため、位置検出器7が設けられいる。この位置検出
器7は、回転駆動軸の回転角もしくは回転体の回転パル
ス数等を検出する回転検出手段、駆動軸の摺動量もしく
は摺動部の摺動パルス数等を検出する直線検出手段、ま
たは、リミットスイッチなどの可動限界位置検出手段な
どが選択設置される。
A position detector 7 is provided for detecting the adjustment position of the projection lens focus adjustment mechanism. The position detector 7 includes a rotation detection unit that detects the rotation angle of the rotary drive shaft or the number of rotation pulses of the rotating body, a linear detection unit that detects the amount of slide of the drive shaft or the number of slide pulses of the slide unit, Alternatively, a movable limit position detecting means such as a limit switch is selectively installed.

【0028】次いで、焦点制御部64を含め自動焦点調
整動作を説明する。焦点制御部64は、制御部9より自
動焦点調整指令を受けると、駆動部65に焦点調整機構
2が投射レンズの初期焦点調整位置に向かうよう初期位
置移動制御信号を出力する。駆動部65は焦点調整機構
2のDCモータを駆動して投射レンズ1の焦点位置を初
期値になるよう駆動出力する。位置検出器(リミットス
イッチ)7は最も近焦点である初期位置を検出し、焦点
制御部64に初期位置検出信号を送る。駆動部65は初
期位置検出信号を受けると、初期位置移動制御を停止
し、続いて、遠焦点方向に向かう遠焦点位置移動制御信
号を出力すると共に比較演算部63よりのデータを受取
り、同焦点位置が検出されると焦点位置移動制御信号を
停止し、焦点調整は完了する。
Next, the automatic focus adjustment operation including the focus control section 64 will be described. Upon receiving the automatic focus adjustment command from the control unit 9, the focus control unit 64 outputs an initial position movement control signal to the drive unit 65 so that the focus adjustment mechanism 2 moves to the initial focus adjustment position of the projection lens. The drive unit 65 drives the DC motor of the focus adjustment mechanism 2 to drive and output the focal position of the projection lens 1 to an initial value. The position detector (limit switch) 7 detects the initial position that is the closest focus, and sends an initial position detection signal to the focus control unit 64. Upon receiving the initial position detection signal, the drive unit 65 stops the initial position movement control, subsequently outputs a far focus position movement control signal toward the far focus direction, receives data from the comparison operation unit 63, and When the position is detected, the focus position movement control signal is stopped, and the focus adjustment is completed.

【0029】前記調整過程を、図4(1)図でたどる
と、初期位置は1fよりスタートして、1e、1d、1
c、1bの順に光軸断面積および光強度が変化する。
(イ)の焦点制御部64は、光強度データが1d位置で
微分値は略0となること、もしくは、1eと1cの光強
度データが一致することから1eと1cのアドレスデー
タの1/2のアドスデータ位置が同焦点位置となること
を利用している。実際的制御は、微分値が略0となる位
置で遠焦点位置移動制御信号を停止する方法、1c位置
まで移動した後、逆に近焦点位置移動制御信を出し、微
分値が略0となる位置で停止させる方法、もしくは、位
置検出器7を連続回転検出手段または連続直線検出手段
として、所定のアドレス位置で停止させる方法が選択さ
れる。さらに、焦点調整機構2の駆動源にステッピング
モータを採用すると所定の逆送パルスを出力することに
より合焦点位置に調整可能である。
4 (1), the initial position starts from 1f, and 1e, 1d, 1
The optical axis sectional area and the light intensity change in the order of c and 1b.
The focus control unit 64 of (a) determines that the differential value is approximately 0 at the position of the light intensity data 1d, or that the light intensity data of 1e and 1c match, so that the half of the address data of 1e and 1c The fact that the position of the address data is the confocal position is used. Practical control is a method of stopping the far focus position movement control signal at a position where the differential value becomes approximately 0. After moving to the position 1c, a near focus position movement control signal is issued in reverse, and the differential value becomes approximately 0. A method of stopping at a position or a method of stopping the position detector 7 at a predetermined address position as a continuous rotation detecting means or a continuous straight line detecting means is selected. Furthermore, if a stepping motor is used as the drive source of the focus adjustment mechanism 2, it can be adjusted to the in-focus position by outputting a predetermined reverse pulse.

【0030】(ロ)は三次元センサを用いて光軸上の光
強度の分布を検出し、焦点位置を検出するシステム例で
ある。三次元に配置された受光素子(1)51と受光素
子(2)52からの検出信号は、各々A/D61でデジ
タル光強度データに変換される。両光強度データは差分
演算器68に入力しされ差分演算され差分データが出力
される。この差分データはアドレスデータ共にデータメ
モリ62に一時記憶される。比較演算器63は、差分演
算器68からの差分データとデータメモリ62より読み
出した差分データを比較演算して差分データ最小値を演
算出力する。焦点制御部64は該アドレスデータに相当
する焦点位置になるよう焦点移動信号を出力する。以降
の制御形態は(イ)で説明した内容と重複するので省略
する。
(B) is an example of a system for detecting a focus position by detecting the distribution of light intensity on the optical axis using a three-dimensional sensor. The detection signals from the three-dimensionally arranged light receiving element (1) 51 and light receiving element (2) 52 are converted into digital light intensity data by the A / D 61, respectively. The two light intensity data are input to the difference calculator 68, where the difference calculation is performed, and the difference data is output. This difference data is temporarily stored in the data memory 62 together with the address data. The comparison calculator 63 compares the difference data from the difference calculator 68 with the difference data read from the data memory 62 to calculate and output the minimum difference data. The focus control unit 64 outputs a focus shift signal so as to be at a focus position corresponding to the address data. Subsequent control forms are the same as those described in (A), and thus will not be described.

【0031】[0031]

【発明の効果】本発明は以上に説明した形態で実施され
以下に述べる効果を奏する。液晶プロジェクタにおい
て、発光部18により検出投射光を発光し、スクリーン
に投射結像した該検出投射光画像の反射光を、投射レン
ズ1とダイクロイックミラーもしくはダイクロイックプ
リズムの間に設置した半透明反射手段により、屈折反射
して受光部5に結像させる焦点位置検出手段と、投射レ
ンズ1の焦点位置調整制御部6とにより、該投射レンズ
の自動焦点調整を可能成らしめた。さらに、各種検出手
段および自動焦点制御手段を有する液晶プロジェクタ用
自動焦点装置が提供された。
The present invention is embodied in the form described above and has the following effects. In the liquid crystal projector, the detection projection light is emitted by the light emitting unit 18 and the reflection light of the detection projection light image projected and formed on the screen is reflected by the translucent reflection means provided between the projection lens 1 and the dichroic mirror or the dichroic prism. The focus position detecting means for refracting and reflecting the light to form an image on the light receiving unit 5 and the focus position adjustment control unit 6 of the projection lens 1 enable automatic focus adjustment of the projection lens. Furthermore, an automatic focusing device for a liquid crystal projector having various detecting means and automatic focusing control means has been provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による液晶プロジェクタ用自動焦点装置
の一実施例の光学系および要部ブロック図である。
FIG. 1 is a block diagram showing an optical system and a main part of an embodiment of an automatic focusing device for a liquid crystal projector according to the present invention.

【図2】本発明による半透明反射膜手段の複数の実施例
である。
FIG. 2 is a plurality of embodiments of the translucent reflective film means according to the present invention.

【図3】本発明による発光部18と受光部5の実施例の
概念図である。
FIG. 3 is a conceptual diagram of an embodiment of a light emitting unit 18 and a light receiving unit 5 according to the present invention.

【図4】光学レンズの光軸と光束断面積および光強度と
の関係の説明図、並びに本発明による受光素子の各種実
施例の概念図である。
FIG. 4 is an explanatory diagram of a relationship between an optical axis of an optical lens, a light beam cross-sectional area, and light intensity, and conceptual diagrams of various embodiments of a light receiving element according to the present invention.

【図5】本発明による焦点調整制御部の各種実施例の要
部ブロック図である。
FIG. 5 is a main block diagram of various embodiments of a focus adjustment control unit according to the present invention.

【図6】従来技術による液晶プロジェクタの光学系の概
念図および投射レンズの焦点調整の制御ブロック図であ
る。
FIG. 6 is a conceptual diagram of an optical system of a liquid crystal projector according to the related art and a control block diagram of focus adjustment of a projection lens.

【符号の説明】[Explanation of symbols]

S スクリーン L 光源 A 検出投射光 B 反射光 1 投射レンズ 2 焦点調整機構 3 半透明反射膜手段 3a 半透明ミラー 3b 半透明プリズム 4 ダイクロイックプリズム 5 受光部 5a 半導体素子 5e 平面プリント基板 5f 透明基材 5g10、5g20 反射面 5b、50、51、52、5e1、5e2、5f1、5
f2、5g1、5g2受光素子 6 焦点調整制御部 7 位置検出器 8 操作部 9 制御部 14r、14g、14b LCD 15 リレーレンズ 18 発光部 18a 発光素子 18b 変調器 52 フィルタ 54 検波器 61 A/D 62 データメモリ 63 比較演算器 64 焦点制御部 65 駆動部 68 差分演算部
S screen L light source A detection projection light B reflected light 1 projection lens 2 focus adjustment mechanism 3 translucent reflective film means 3a translucent mirror 3b translucent prism 4 dichroic prism 5 light receiving unit 5a semiconductor element 5e flat printed board 5f transparent base material 5g10 , 5g20 reflective surface 5b, 50, 51, 52, 5e1, 5e2, 5f1, 5
f2, 5g1, 5g2 light receiving element 6 focus adjustment control unit 7 position detector 8 operation unit 9 control unit 14r, 14g, 14b LCD 15 relay lens 18 light emitting unit 18a light emitting element 18b modulator 52 filter 54 detector 61 A / D 62 Data memory 63 Comparison operation unit 64 Focus control unit 65 Drive unit 68 Difference operation unit

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】光源から出射された白色光をダイクロイッ
クミラー等で3原色に分解し、各色毎に設けられた液晶
パネル(以下LCDと言う)で、表示信号生成部で生成
した信号をLCD駆動部により駆動された映像信号に基
づき光変調し、前記色毎のLCDより出射した光を、ダ
イクロイックミラーもしくはダイクロイックプリズムで
合成し、該合成した光を投射レンズでスクリーンに投射
し、且つ前記投射レンズの焦点調整操作入力等を行う操
作部と装置の制御を行う制御部とを有する液晶プロジェ
クタにおいて、 焦点調整手段を有する前記投射レンズと、前記投射レン
ズの焦点調整を行う焦点調整機構と、前記ダイクロイッ
クミラーもしくはダイクロイックプリズムと前記投射レ
ンズの間に設置された半透明反射膜手段と、前記投射レ
ンズと前記LCD間の光軸距離と等価位置に配置され
た、前記スクリーンに焦点位置検出用の検出投射光を発
光する発光素子などからなる発光部と該スクリーンより
の反射光を前記半透明反射膜手段経由で受光し受光出力
信号に変換する受光素子などからなる受光部と、前記受
光素子よりの受光出力信号により前記スクリーンまでの
焦点位置を検出演算し、前記焦点調整機構の駆動制御を
行う焦点調整制御部と、前記焦点調整機構の調整位置を
検出する位置検出器とで構成し、 前記スクリーンに結像した前記検出投射光像の反射光を
前記半透明反射膜手段経由で受光し、該反射光を受光出
力信号に変換し、該受光出力信号を用いて焦点位置を検
出すると共に前記焦点調整機構を最適焦点位置に調整制
御することを特徴とする液晶プロジェクタ用自動焦点装
置。
A white light emitted from a light source is separated into three primary colors by a dichroic mirror or the like, and signals generated by a display signal generation unit are driven by a liquid crystal panel (hereinafter referred to as LCD) provided for each color. The light emitted from the LCD for each color is combined by a dichroic mirror or a dichroic prism, the combined light is projected on a screen by a projection lens, and the projection lens A projection lens having focus adjustment means, a focus adjustment mechanism for adjusting the focus of the projection lens, and the dichroic A translucent reflective film means installed between a mirror or dichroic prism and the projection lens; A light-emitting unit, which is disposed at a position equivalent to the optical axis distance between the screen and the LCD, and includes a light-emitting element that emits detection projection light for detecting a focus position on the screen, and reflects the reflected light from the screen through the translucent reflection. A light receiving unit including a light receiving element that receives light via a film means and converts the light into a light receiving output signal, and a focus position to the screen is detected and calculated based on a light receiving output signal from the light receiving element, and drive control of the focus adjusting mechanism is performed. A focus adjustment control unit, comprising a position detector for detecting an adjustment position of the focus adjustment mechanism, receiving reflected light of the detected projection light image formed on the screen via the translucent reflection film means, Converting the reflected light into a received light output signal, detecting a focal position using the received light output signal, and controlling the focus adjustment mechanism to an optimum focus position. Autofocus device.
【請求項2】前記半透明反射膜手段と前記発光部および
受光部との間に、等価的に凸レンズもしくは凹レンズの
リレーレンズを追加設置し、前記投射レンズと前記受光
素子との光軸距離を任意に設定可能としたことを特徴と
する請求項1記載の液晶プロジェクタ用自動焦点装置。
2. A relay lens, which is equivalent to a convex lens or a concave lens, is additionally provided between the translucent reflective film means and the light emitting unit and the light receiving unit, and an optical axis distance between the projection lens and the light receiving element is reduced. 2. The automatic focusing device for a liquid crystal projector according to claim 1, wherein the automatic focusing device can be arbitrarily set.
【請求項3】前記半透明反射膜手段を、平面ガラス基板
上に金属薄膜などを蒸着した半透明ミラーとすることを
特徴とする請求項1もしくは2記載の液晶プロジェクタ
用自動焦点装置。
3. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said semi-transparent reflection film means is a semi-transparent mirror obtained by depositing a metal thin film on a flat glass substrate.
【請求項4】前記半透明反射膜手段を、プリズムの傾斜
面上に金属薄膜などを蒸着した半透明プリズムとするこ
とを特徴とする請求項1もしくは2記載の液晶プロジェ
クタ用自動焦点装置。
4. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said semi-transparent reflecting film means is a semi-transparent prism in which a metal thin film or the like is deposited on an inclined surface of the prism.
【請求項5】前記半透明反射膜を、全光束の一部を反射
する金属薄膜の半透明反射膜で形成することを特徴とす
る請求項1もしくは2記載の液晶プロジェクタ用自動焦
点装置。
5. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said translucent reflection film is formed of a metal thin film translucent reflection film which reflects a part of the total light flux.
【請求項6】前記半透明反射膜を、赤外線光のみを反射
するフィルタで形成することを特徴とする請求項1もし
くは2記載の液晶プロジェクタ用自動焦点装置。
6. The automatic focusing device for a liquid crystal projector according to claim 1, wherein said translucent reflection film is formed by a filter which reflects only infrared light.
【請求項7】前記半透明反射膜を、紫外線光のみを反射
するフィルタで形成することを特徴とする請求項1もし
くは2記載の液晶プロジェクタ用自動焦点装置。
7. The automatic focusing device for a liquid crystal projector according to claim 1, wherein said translucent reflection film is formed by a filter which reflects only ultraviolet light.
【請求項8】前記発光部を、前記検出投射光を発光する
発光素子と、前記発光素子を高周波駆動する変調器で構
成し、前記検出投射光を高周波変調した光出力とするこ
とを特徴とする請求項1もしくは2記載の液晶プロジェ
クタ用自動焦点装置。
8. A light-emitting device comprising: a light-emitting element that emits the detection projection light; and a modulator that drives the light-emitting element at a high frequency, and has a light output obtained by high-frequency modulation of the detection projection light. 3. The automatic focusing device for a liquid crystal projector according to claim 1 or 2.
【請求項9】前記発光素子を、可視光を発光するLED
(Light Emitting Diode)とすることを特徴とする請求
項1、2もしくは8記載の液晶プロジェクタ用自動焦点
装置。
9. An LED which emits visible light, wherein said light emitting element is an LED which emits visible light.
9. The automatic focusing device for a liquid crystal projector according to claim 1, wherein the device is a (Light Emitting Diode).
【請求項10】前記発光素子を、赤外線光を発光する赤
外線発光レーザーダイオードもしくは赤外線透過フィル
タ付LEDとすることを特徴とする請求項1、2もしく
は8記載の液晶プロジェクタ用自動焦点装置。
10. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said light emitting element is an infrared light emitting laser diode for emitting infrared light or an LED with an infrared transmitting filter.
【請求項11】前記発光素子を、紫外線光を発光する紫
外線光光レーザーダイオードもしくは紫外線光透過フィ
ルタ付LEDとすることを特徴とする請求項1、2もし
くは8記載の液晶プロジェクタ用自動焦点装置。
11. The automatic focusing device for a liquid crystal projector according to claim 1, wherein said light emitting element is an ultraviolet light laser diode or an LED with an ultraviolet light transmitting filter which emits ultraviolet light.
【請求項12】前記受光部を、前記検出投射光を受光し
受光出力信号に変換する受光素子と、前記変調周波数の
受光出力信号成分のみを通過させるフィルタと、前記フ
ィルタよりの出力信号を検波する検波器とで構成するこ
とを特徴とする請求項1もしくは2記載の液晶プロジェ
クタ用自動焦点装置。
12. A light-receiving element for receiving the detected projection light and converting it into a light-receiving output signal, a filter for passing only a light-receiving output signal component of the modulation frequency, and detecting an output signal from the filter. 3. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said automatic focusing device is constituted by a detector that performs the operation.
【請求項13】前記受光素子を、ホトトランジスタ、ホ
トダイオードなどの光電変換する半導体素子とすること
を特徴とする請求項1もしくは2記載の液晶プロジェク
タ用自動焦点装置。
13. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said light receiving element is a semiconductor element for performing photoelectric conversion such as a phototransistor or a photodiode.
【請求項14】前記受光素子を、光起電力を発生するソ
ーラーセルとすることを特徴とする請求項1もしくは2
記載の液晶プロジェクタ用自動焦点装置。
14. The photodetector according to claim 1, wherein the photodetector is a solar cell that generates photovoltaic power.
An automatic focusing device for a liquid crystal projector according to the above.
【請求項15】前記受光素子を、CdS、PINなどの
光電形セルとすることを特徴とする請求項1もしくは2
記載の液晶プロジェクタ用自動焦点装置。
15. The light receiving element according to claim 1, wherein the light receiving element is a photoelectric cell such as CdS or PIN.
An automatic focusing device for a liquid crystal projector according to the above.
【請求項16】前記受光素子を、PbS、InSbなど
の複数の光電形セルを三次元に配置した三次元センサと
することを特徴とする請求項1もしくは2記載の液晶プ
ロジェクタ用自動焦点装置。
16. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said light receiving element is a three-dimensional sensor in which a plurality of photoelectric cells such as PbS and InSb are arranged three-dimensionally.
【請求項17】前記受光素子を、BBD、CCD、ソー
ラーセルなどの複数の光起電力形セルを三次元に配置し
た三次元センサとすることを特徴とする請求項1記載の
液晶プロジェクタ用自動焦点装置。
17. The automatic liquid crystal projector according to claim 1, wherein the light receiving element is a three-dimensional sensor in which a plurality of photovoltaic cells such as a BBD, a CCD, and a solar cell are three-dimensionally arranged. Focusing device.
【請求項18】前記三次元センサの構造を、平面基板上
に複数の光電形セルもしくは光起電力形セルなどの受光
素子を配置し、該複数の受光素子を結ぶ中心軸を反射光
の光軸に対して任意角度で交差する様に配置して、三次
元センサとすることを特徴とする請求項16もしくは1
7記載の液晶プロジェクタ用自動焦点装置。
18. A structure of the three-dimensional sensor, wherein a plurality of light receiving elements such as photoelectric cells or photovoltaic cells are arranged on a flat substrate, and a central axis connecting the plurality of light receiving elements is reflected light. 17. A three-dimensional sensor which is disposed so as to intersect at an arbitrary angle with respect to an axis to form a three-dimensional sensor.
8. The automatic focusing device for a liquid crystal projector according to 7.
【請求項19】前記三次元センサの構造を、ガラスなど
の透明基材の任意距離離れた平行面に、複数の光電形セ
ル、光起電力形セルなどの受光素子を配備し、該平行面
を反射光の光軸に対して垂直に交差する様に配置して、
三次元センサとすることを特徴とする請求項16もしく
は17記載の液晶プロジェクタ用自動焦点装置。
19. The structure of the three-dimensional sensor, wherein a plurality of light-receiving elements such as photoelectric cells and photovoltaic cells are provided on a parallel surface of a transparent substrate such as glass at an arbitrary distance, and the parallel surface is provided. Is arranged so as to intersect perpendicularly with the optical axis of the reflected light,
18. The automatic focusing device for a liquid crystal projector according to claim 16, wherein the automatic focusing device is a three-dimensional sensor.
【請求項20】前記三次元センサの構造を、前記光軸方
向に任意距離離れた反射面を設け、該反射面に対応した
位置に複数の光電形セル、光起電力形セルなどの受光素
子を配備して三次元センサとすることを特徴とする請求
項16もしくは17記載の液晶プロジェクタ用自動焦点
装置。
20. The structure of the three-dimensional sensor, wherein a reflection surface is provided at an arbitrary distance in the optical axis direction, and a plurality of light receiving elements such as photoelectric cells and photovoltaic cells are provided at positions corresponding to the reflection surface. 18. The automatic focusing device for a liquid crystal projector according to claim 16 or 17, wherein the automatic focusing device is provided as a three-dimensional sensor.
【請求項21】前記焦点調整制御部を、前記受光素子の
出力信号をディジタルデータに変換するA/D(アナロ
グ/ディジタル変換器)と、前記ディジタル信号を一時
的に記憶するデータメモリと、前記データメモリより読
み出したディジタルデータと前記A/Dの出力データと
を比較演算して差分データを演算出力する比較演算器
と、前記差分データの微分値が零になるよう、前記焦点
調整機構の制御信号を生成制御する焦点制御部と、前記
制御信号により前記焦点調整機構のDCモータなどの駆
動源に駆動出力する駆動部とで構成し、自動焦点調整時
には、初期設定焦点位置より焦点機構を一定の方向に移
動制御し、前記差分データの微分値が略零になる位置を
最適焦点位置と設定制御することを特徴とする請求項1
もしくは2記載の液晶プロジェクタ用自動焦点装置。
21. An image processing apparatus comprising: an A / D (analog / digital converter) for converting an output signal of the light receiving element into digital data; a data memory for temporarily storing the digital signal; A comparator for comparing the digital data read from the data memory with the A / D output data to calculate and output difference data; and controlling the focus adjustment mechanism so that the differential value of the difference data becomes zero. A focus control unit for generating and controlling a signal; and a drive unit for driving and outputting to a drive source such as a DC motor of the focus adjustment mechanism according to the control signal. A position where the differential value of the differential data becomes substantially zero is set and controlled as an optimum focus position.
Or the automatic focusing device for a liquid crystal projector according to 2.
【請求項22】前記最適焦点位置を、前記差分データの
絶対値が等しい二点間の中央位置となるよう焦点制御す
ることを特徴とする請求項21記載の液晶プロジェクタ
用自動焦点装置。
22. The automatic focusing device for a liquid crystal projector according to claim 21, wherein the focus control is performed such that the optimum focus position is a center position between two points where the absolute values of the difference data are equal.
【請求項23】前記焦点調整制御部を、前記三次元セン
サ型の受光素子の出力信号をディジタルデータに変換す
る複数のA/Dと、前記複数のディジタルデータの差分
データを演算出力する差分演算器と、前記差分データを
一次記憶するデータメモリと、前記データメモリより読
み出した差分データと前記差分演算器の出力データとを
比較演算して比較データを演算出力する比較演算器と、
前記比較データの絶対値が最小となるよう、前記焦点調
整機構の制御信号を生成制御する焦点制御部と、前記制
御信号により前記焦点調整機構のDCモータなどの駆動
源に駆動出力する駆動部とで構成し、自動焦点調整時に
は、前記比較データの絶対値が最小となる位置を最適焦
点位置と設定制御することを特徴とする請求項1もしく
は2記載の液晶プロジェクタ用自動焦点装置。
23. A plurality of A / Ds for converting an output signal of the three-dimensional sensor type light receiving element into digital data, and a difference calculation for calculating and outputting difference data of the plurality of digital data. Device, a data memory for temporarily storing the difference data, a comparison calculator for comparing the difference data read from the data memory and the output data of the difference calculator to calculate and output comparison data,
A focus control unit that generates and controls a control signal of the focus adjustment mechanism, and a drive unit that drives and outputs a drive source such as a DC motor of the focus adjustment mechanism by the control signal so that the absolute value of the comparison data is minimized. 3. The automatic focusing device for a liquid crystal projector according to claim 1, wherein at the time of automatic focusing adjustment, a position where the absolute value of the comparison data is minimum is set and controlled as an optimal focusing position.
【請求項24】前記焦点調整機構の駆動源を1パルス駆
動毎に一定角度もしくは一定摺動量ステップ送りするス
テッピングモータとし、前記焦点調整機構の制御信号と
して所定のパルス数の信号を生成出力することを特徴と
する請求項21、22もしくは23記載の液晶プロジェ
クタ用自動焦点装置。
24. A stepping motor for feeding a drive source of the focus adjustment mechanism by a fixed angle or a fixed sliding amount step by step for each pulse drive, and generating and outputting a signal of a predetermined number of pulses as a control signal of the focus adjustment mechanism. 24. The automatic focusing device for a liquid crystal projector according to claim 21, 22 or 23.
【請求項25】前記投射レンズ焦点調整機構の調整位置
を検出する検出器を、回転駆動軸の回転角もしくは回転
体の回転パルス数等を検出する回転検出手段とすること
を特徴とする請求項1もしくは2記載の液晶プロジェク
タ用自動焦点装置。
25. A detector for detecting an adjustment position of the projection lens focus adjustment mechanism as rotation detection means for detecting a rotation angle of a rotation drive shaft or a number of rotation pulses of a rotating body. 3. The automatic focusing device for a liquid crystal projector according to 1 or 2.
【請求項26】前記投射レンズ焦点調整機構の調整位置
を検出する検出器を、駆動軸の摺動量もしくは摺動部の
摺動パルス数等を検出する直線検出手段、または、リミ
ットスイッチなどの可動限界位置検出手段とすることを
特徴とする請求項1もしくは2記載の液晶プロジェクタ
用自動焦点装置。
26. A detector for detecting an adjustment position of the projection lens focus adjustment mechanism, a linear detection means for detecting a sliding amount of a drive shaft or a number of sliding pulses of a sliding portion, or a movable device such as a limit switch. 3. An automatic focusing device for a liquid crystal projector according to claim 1, wherein said automatic focusing device is a limit position detecting means.
【請求項27】前記操作部に自動焦点調整入力部と手動
焦点調整入力部と、前記表示信号生成部に焦点調整用の
調整信号の発生部とを設け、焦点調整時には所定の焦点
調整用の調整信号を発生すると共に前記発光部より前記
検出投射光し、前記スクリーン上に該検出投射光を結像
表示し、該結像した検出投射光の反射光を焦点位置検出
の受光信号とすることを特徴とする請求項1もしくは2
記載の液晶プロジェクタ用自動焦点装置。
27. An automatic focus adjustment input section and a manual focus adjustment input section in the operation section, and a focus signal adjustment signal generation section in the display signal generation section. An adjustment signal is generated and the detection projection light is emitted from the light emitting unit, the detection projection light is imaged and displayed on the screen, and reflected light of the imaged detection projection light is used as a light reception signal for focus position detection. 3. The method according to claim 1, wherein
An automatic focusing device for a liquid crystal projector according to the above.
JP9286703A 1997-10-20 1997-10-20 Automatic focusing device for liquid crystal projector Pending JPH11119184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286703A JPH11119184A (en) 1997-10-20 1997-10-20 Automatic focusing device for liquid crystal projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9286703A JPH11119184A (en) 1997-10-20 1997-10-20 Automatic focusing device for liquid crystal projector

Publications (1)

Publication Number Publication Date
JPH11119184A true JPH11119184A (en) 1999-04-30

Family

ID=17707906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286703A Pending JPH11119184A (en) 1997-10-20 1997-10-20 Automatic focusing device for liquid crystal projector

Country Status (1)

Country Link
JP (1) JPH11119184A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020026403A (en) * 2000-10-02 2002-04-10 구자홍 Method And Device Of Measuring Focus Of Liquid Crystal Display And Cathode-Ray Tube
JP2005017350A (en) * 2003-06-23 2005-01-20 Nec Viewtechnology Ltd Projector
WO2009049272A2 (en) * 2007-10-10 2009-04-16 Gerard Dirk Smits Image projector with reflected light tracking
WO2012108486A1 (en) 2011-02-10 2012-08-16 シャープ株式会社 Projection display device
US8573783B2 (en) 2010-03-01 2013-11-05 Gerard Dirk Smits Safety device for scanned projector and illumination systems
US8711370B1 (en) 2012-10-04 2014-04-29 Gerard Dirk Smits Scanning optical positioning system with spatially triangulating receivers
US8971568B1 (en) 2012-10-08 2015-03-03 Gerard Dirk Smits Method, apparatus, and manufacture for document writing and annotation with virtual ink
EP2793080A4 (en) * 2012-11-30 2015-05-27 Evieo Technology Shenzhen Ltd Automatic-focus projection system
US9377533B2 (en) 2014-08-11 2016-06-28 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
US9753126B2 (en) 2015-12-18 2017-09-05 Gerard Dirk Smits Real time position sensing of objects
US9813673B2 (en) 2016-01-20 2017-11-07 Gerard Dirk Smits Holographic video capture and telepresence system
US9810913B2 (en) 2014-03-28 2017-11-07 Gerard Dirk Smits Smart head-mounted projection system
US9946076B2 (en) 2010-10-04 2018-04-17 Gerard Dirk Smits System and method for 3-D projection and enhancements for interactivity
US10043282B2 (en) 2015-04-13 2018-08-07 Gerard Dirk Smits Machine vision for ego-motion, segmenting, and classifying objects
US10067230B2 (en) 2016-10-31 2018-09-04 Gerard Dirk Smits Fast scanning LIDAR with dynamic voxel probing
US10261183B2 (en) 2016-12-27 2019-04-16 Gerard Dirk Smits Systems and methods for machine perception
US10379220B1 (en) 2018-01-29 2019-08-13 Gerard Dirk Smits Hyper-resolved, high bandwidth scanned LIDAR systems
US10473921B2 (en) 2017-05-10 2019-11-12 Gerard Dirk Smits Scan mirror systems and methods
US10591605B2 (en) 2017-10-19 2020-03-17 Gerard Dirk Smits Methods and systems for navigating a vehicle including a novel fiducial marker system
US11829059B2 (en) 2020-02-27 2023-11-28 Gerard Dirk Smits High resolution scanning of remote objects with fast sweeping laser beams and signal recovery by twitchy pixel array

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020026403A (en) * 2000-10-02 2002-04-10 구자홍 Method And Device Of Measuring Focus Of Liquid Crystal Display And Cathode-Ray Tube
JP4689948B2 (en) * 2003-06-23 2011-06-01 Necディスプレイソリューションズ株式会社 projector
JP2005017350A (en) * 2003-06-23 2005-01-20 Nec Viewtechnology Ltd Projector
WO2009049272A3 (en) * 2007-10-10 2009-06-18 Gerard Dirk Smits Image projector with reflected light tracking
US10962867B2 (en) 2007-10-10 2021-03-30 Gerard Dirk Smits Method, apparatus, and manufacture for a tracking camera or detector with fast asynchronous triggering
US8282222B2 (en) 2007-10-10 2012-10-09 Gerard Dirk Smits Image projector with reflected light tracking
WO2009049272A2 (en) * 2007-10-10 2009-04-16 Gerard Dirk Smits Image projector with reflected light tracking
US8696141B2 (en) 2007-10-10 2014-04-15 Gerard Dirk Smits Method, apparatus, and manufacture for a tracking camera or detector with fast asynchronous triggering
US8430512B2 (en) 2007-10-10 2013-04-30 Gerard Dirk Smits Photonjet scanner projector
US9581883B2 (en) 2007-10-10 2017-02-28 Gerard Dirk Smits Method, apparatus, and manufacture for a tracking camera or detector with fast asynchronous triggering
US8573783B2 (en) 2010-03-01 2013-11-05 Gerard Dirk Smits Safety device for scanned projector and illumination systems
US9946076B2 (en) 2010-10-04 2018-04-17 Gerard Dirk Smits System and method for 3-D projection and enhancements for interactivity
WO2012108486A1 (en) 2011-02-10 2012-08-16 シャープ株式会社 Projection display device
US8711370B1 (en) 2012-10-04 2014-04-29 Gerard Dirk Smits Scanning optical positioning system with spatially triangulating receivers
US8971568B1 (en) 2012-10-08 2015-03-03 Gerard Dirk Smits Method, apparatus, and manufacture for document writing and annotation with virtual ink
US9501176B1 (en) 2012-10-08 2016-11-22 Gerard Dirk Smits Method, apparatus, and manufacture for document writing and annotation with virtual ink
EP2793080A4 (en) * 2012-11-30 2015-05-27 Evieo Technology Shenzhen Ltd Automatic-focus projection system
US9810913B2 (en) 2014-03-28 2017-11-07 Gerard Dirk Smits Smart head-mounted projection system
US10061137B2 (en) 2014-03-28 2018-08-28 Gerard Dirk Smits Smart head-mounted projection system
US11137497B2 (en) 2014-08-11 2021-10-05 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
US9377533B2 (en) 2014-08-11 2016-06-28 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
US10324187B2 (en) 2014-08-11 2019-06-18 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
US10043282B2 (en) 2015-04-13 2018-08-07 Gerard Dirk Smits Machine vision for ego-motion, segmenting, and classifying objects
US10325376B2 (en) 2015-04-13 2019-06-18 Gerard Dirk Smits Machine vision for ego-motion, segmenting, and classifying objects
US10157469B2 (en) 2015-04-13 2018-12-18 Gerard Dirk Smits Machine vision for ego-motion, segmenting, and classifying objects
US10502815B2 (en) 2015-12-18 2019-12-10 Gerard Dirk Smits Real time position sensing of objects
US11714170B2 (en) 2015-12-18 2023-08-01 Samsung Semiconuctor, Inc. Real time position sensing of objects
US9753126B2 (en) 2015-12-18 2017-09-05 Gerard Dirk Smits Real time position sensing of objects
US10274588B2 (en) 2015-12-18 2019-04-30 Gerard Dirk Smits Real time position sensing of objects
US10477149B2 (en) 2016-01-20 2019-11-12 Gerard Dirk Smits Holographic video capture and telepresence system
US10084990B2 (en) 2016-01-20 2018-09-25 Gerard Dirk Smits Holographic video capture and telepresence system
US9813673B2 (en) 2016-01-20 2017-11-07 Gerard Dirk Smits Holographic video capture and telepresence system
US10935659B2 (en) 2016-10-31 2021-03-02 Gerard Dirk Smits Fast scanning lidar with dynamic voxel probing
US10067230B2 (en) 2016-10-31 2018-09-04 Gerard Dirk Smits Fast scanning LIDAR with dynamic voxel probing
US10451737B2 (en) 2016-10-31 2019-10-22 Gerard Dirk Smits Fast scanning with dynamic voxel probing
US10564284B2 (en) 2016-12-27 2020-02-18 Gerard Dirk Smits Systems and methods for machine perception
US11709236B2 (en) 2016-12-27 2023-07-25 Samsung Semiconductor, Inc. Systems and methods for machine perception
US10261183B2 (en) 2016-12-27 2019-04-16 Gerard Dirk Smits Systems and methods for machine perception
US10473921B2 (en) 2017-05-10 2019-11-12 Gerard Dirk Smits Scan mirror systems and methods
US11067794B2 (en) 2017-05-10 2021-07-20 Gerard Dirk Smits Scan mirror systems and methods
US10591605B2 (en) 2017-10-19 2020-03-17 Gerard Dirk Smits Methods and systems for navigating a vehicle including a novel fiducial marker system
US10935989B2 (en) 2017-10-19 2021-03-02 Gerard Dirk Smits Methods and systems for navigating a vehicle including a novel fiducial marker system
US10725177B2 (en) 2018-01-29 2020-07-28 Gerard Dirk Smits Hyper-resolved, high bandwidth scanned LIDAR systems
US10379220B1 (en) 2018-01-29 2019-08-13 Gerard Dirk Smits Hyper-resolved, high bandwidth scanned LIDAR systems
US11829059B2 (en) 2020-02-27 2023-11-28 Gerard Dirk Smits High resolution scanning of remote objects with fast sweeping laser beams and signal recovery by twitchy pixel array

Similar Documents

Publication Publication Date Title
JPH11119184A (en) Automatic focusing device for liquid crystal projector
US5895128A (en) Electronic flash and a camera provided with the same
JP4004253B2 (en) Total reflection prism system for digital micromirror device and projector using the same
JP5281923B2 (en) Projection display
EP1398659B1 (en) Illumination apparatus and image projection apparatus using the illumination apparatus
TW200832040A (en) Projection apparatus having improved projection properties
JP2006162731A (en) Light source device and image display device
US6485147B2 (en) Projection system and method of automatic focus
JP2935805B2 (en) Auto focus projector
TW201020674A (en) Light source module for use with projecting apparatus
US8529071B2 (en) Illuminating spatial light modulators using an anamorphic prism assembly
CN102854722B (en) Projection apparatus and light source regulating method thereof
JP2006323035A (en) Display device and method
WO2023124683A1 (en) Stage lamp optical focusing method and stage lamp optical system
JP4480387B2 (en) Projector, projector focus automatic adjustment system, projector focus automatic adjustment method
JPH11119183A (en) Automatic focusing device for liquid crystal projector
WO2022002162A1 (en) Electronic device and depth image photographing method
US5673986A (en) Light width controller and image projector employing the same
JPH1169264A (en) Liquid crystal projector
JP2007206143A (en) Projection-type display device
JPH11119185A (en) Automatic focusing device for liquid crystal projector
JPH03151787A (en) Liquid crystal video projection device
CN109946835A (en) Projection arrangement
US11703747B2 (en) Solid state illumination for optical projector using static phosphors
CN109946834A (en) Projection arrangement