JP2005070412A - Image projector and its focus adjustment method - Google Patents

Image projector and its focus adjustment method Download PDF

Info

Publication number
JP2005070412A
JP2005070412A JP2003299831A JP2003299831A JP2005070412A JP 2005070412 A JP2005070412 A JP 2005070412A JP 2003299831 A JP2003299831 A JP 2003299831A JP 2003299831 A JP2003299831 A JP 2003299831A JP 2005070412 A JP2005070412 A JP 2005070412A
Authority
JP
Japan
Prior art keywords
projection
light
light receiving
optical system
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003299831A
Other languages
Japanese (ja)
Inventor
Kayo Sugiyama
香葉 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003299831A priority Critical patent/JP2005070412A/en
Publication of JP2005070412A publication Critical patent/JP2005070412A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is difficult for the ranging light reflected by a screen to enter a photodetecting section in the diagonal projection when the projection optical axis to the screen is not perpendicular. <P>SOLUTION: The projector 1 has a light emitting element within a light emitting section 61 which emits the ranging light Lm, a movable reflection mirror 63 which causes plane scanning of the ranging light on the screen 100 by changing the optical axis of the ranging light Lm, and a photodetecting position sensor 71 which receives the reflected light generated by reflection of the ranging light Lm on the screen 100 at the time of plane scanning. The projector 1 measures the relative positional relation between a projection optical system 5 and the screen 100 from the information on the change of the exit optical axis of the movable reflection mirror 63 when the photodetecting position sensor 71 receives the reflected light and determines the amount of the focus adjustment of the projection optical system 5 so as to match the focus on the screen 100 on the basis of the measured reult. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、投射光学系と装置外部の投射面(たとえば、スクリーン)との相対位置を測定して、その測定の結果にもとづいて投影画像のピントを合わせることが可能なプロジェクターなどの画像投射装置と、その焦点調整方法に関する。   The present invention relates to an image projection apparatus such as a projector capable of measuring a relative position between a projection optical system and a projection surface (for example, a screen) outside the apparatus and focusing a projected image based on the measurement result. And the focus adjustment method.

プロジェクターなどの投射型の画像表示装置(以下、画像投射装置という)で、スクリーンに投影された画像のピントのボケを直す方法としては、投射光学系の焦点距離を手動で調整し、スクリーンを見ながらピントを調整する方法が一般的である。
また、あまり普及していない方法ではあるが、CCD撮像素子などを有した小型カメラによって、スクリーンに投射された画像を撮像し、その映像信号からスクリーンサイズや投射光学系とスクリーンとの距離を測定して合焦計算に用いる方法が知られている。さらに、赤外線LEDからの光をスクリーンに当て、反射した光(反射光)を受光して、その結果にもとづいて合焦計算をする方法が知られている。
In a projection-type image display device such as a projector (hereinafter referred to as an image projection device), the method of correcting the blur of the image projected on the screen is to manually adjust the focal length of the projection optical system and view the screen. However, it is common to adjust the focus.
Although it is a method that is not so popular, a small camera with a CCD image sensor is used to capture the image projected on the screen and measure the screen size and the distance between the projection optical system and the screen from the video signal. Therefore, a method used for focusing calculation is known. Furthermore, a method is known in which light from an infrared LED is applied to a screen, reflected light (reflected light) is received, and focus calculation is performed based on the result.

赤外線LED光を利用して合焦制御を行う画像投射装置として、プリズムによりLED光の光軸の角度を変える光軸調整機構を備えた液晶プロジェクターが知られている(たとえば、特許文献1)。
特許文献1に記載された液晶プロジェクターは、赤外線LEDの発光側と受光側にそれぞれプリズムを有し、それらは発光時と受光時の光軸を調整し、画面の中央部で距離を測定するためのものである。すなわち、この測定は液晶プロジェクターをスクリーンのほぼ正面に置いたときの配置を前提としている。
As an image projection apparatus that performs focusing control using infrared LED light, a liquid crystal projector including an optical axis adjustment mechanism that changes the angle of the optical axis of LED light using a prism is known (for example, Patent Document 1).
The liquid crystal projector described in Patent Document 1 has prisms on the light emitting side and the light receiving side of the infrared LED, respectively, which adjust the optical axis at the time of light emission and light reception and measure the distance at the center of the screen. belongs to. That is, this measurement is based on the arrangement when the liquid crystal projector is placed almost in front of the screen.

ところで、近年の液晶プロジェクターなどの画像投射装置は、たとえば台形歪み補正など、投射光学系の光軸がスクリーン面に垂直でない斜め投射の使用を前提とした機能が盛り込まれている。
このような斜め投射の場合、特許文献1に記載された液晶プロジェクターでは、反射光が受光部に入らないことが多い。とくに、スクリーン面に対する投射光学系の光軸の垂直方向の角度と水平方向の角度が正面投射の場合から変化した場合、反射光が受光部に入りにくい。このような場合、液晶プロジェクターの向きを変えたりして反射光が受光部に入る角度を探る必要がある。ところが、プロジェクターの向きを変えるとスクリーンとの距離が変わるため、実使用状態における正確な焦点距離の測定ができなくなる。
特開平11−264963号公報(第3頁など)
By the way, recent image projection apparatuses such as liquid crystal projectors include functions such as trapezoidal distortion correction, which are premised on the use of oblique projection in which the optical axis of the projection optical system is not perpendicular to the screen surface.
In the case of such oblique projection, in the liquid crystal projector described in Patent Document 1, reflected light often does not enter the light receiving unit. In particular, when the vertical angle and horizontal angle of the optical axis of the projection optical system with respect to the screen surface change from the case of front projection, the reflected light hardly enters the light receiving unit. In such a case, it is necessary to find the angle at which the reflected light enters the light receiving unit by changing the direction of the liquid crystal projector. However, if the orientation of the projector is changed, the distance from the screen changes, and it becomes impossible to accurately measure the focal length in the actual use state.
Japanese Patent Application Laid-Open No. 11-264963 (page 3, etc.)

解決しようとする問題点は、スクリーンなどの投射面に対して投射光軸が垂直でない斜め投射時に反射光が受光部に入るようにすることが難しく、そのため画像投射装置と投射面との距離などの情報が手際よく得られないことである。   The problem to be solved is that it is difficult for the reflected light to enter the light receiving part during oblique projection in which the projection optical axis is not perpendicular to the projection surface such as a screen, and therefore the distance between the image projection device and the projection surface, etc. The information of is not obtained cleverly.

本発明にかかわる画像投射装置は、焦点位置の調整を行うことが可能な投射光学系を有し、当該投射光学系から発せられる投射光によって画像を装置外部の投射面に投影する画像投射装置であって、測距光を発光する発光素子と、前記測距光の光軸の角度を変化させて、当該測距光を前記投射面上で面走査させる走査機構と、前記面走査時に前記投射面上で前記測距光が反射することにより生じた反射光を受光する受光部と、前記受光部が反射光を受光したときの前記走査機構から出射される測距光の光軸の角度の変化情報から、前記投射光学系と前記投射面との相対位置関係を測定し、当該測定の結果にもとづいて、前記投射面上で焦点が合うように前記投射光学系の焦点位置の調整量を算出する調整量演算部とを有する。   An image projection apparatus according to the present invention is an image projection apparatus that has a projection optical system capable of adjusting a focal position and projects an image on a projection surface outside the apparatus by projection light emitted from the projection optical system. A light emitting element that emits distance measuring light, a scanning mechanism that changes an angle of an optical axis of the distance measuring light and performs surface scanning of the distance measuring light on the projection surface, and the projection during the surface scanning. A light receiving unit that receives reflected light generated by reflection of the distance measuring light on a surface, and an angle of an optical axis of the distance measuring light emitted from the scanning mechanism when the light receiving unit receives the reflected light. Based on the change information, the relative positional relationship between the projection optical system and the projection surface is measured, and the adjustment amount of the focal position of the projection optical system is adjusted based on the result of the measurement so that the focal point is focused on the projection surface. An adjustment amount calculation unit to calculate.

好適に、前記受光部は、受光レンズ機構と、前記受光レンズ機構の光軸が通る受光面内で受光点の位置を測定する受光位置センサとを含む。
また、好適に、前記調整量演算部は、前記走査機構の基準位置をあらかじめ設定する基準設定手段と、前記投射光の光軸が前記投射面と任意の角度をなす投射時に生じる前記受光位置センサ内での前記反射光の受光点位置を前記受光位置センサから入力し、当該受光点位置が得られたときに前記走査機構の制御によって前記基準位置から変化した制御量の大きさおよび向きを算出し、当該算出した制御量変化の大きさおよび向き、ならびに、前記入力した受光点位置にもとづいて、前記投射光学系の焦点位置の調整量を求める演算部とを有する。
また、好適に、前記受光レンズ機構は、前記受光面に対応した前記投射面の範囲を変化させるレンズ交換機能あるいは倍率調整機能を有する。
Preferably, the light receiving unit includes a light receiving lens mechanism and a light receiving position sensor that measures a position of a light receiving point within a light receiving surface through which an optical axis of the light receiving lens mechanism passes.
Preferably, the adjustment amount calculation unit includes a reference setting unit that sets a reference position of the scanning mechanism in advance, and the light receiving position sensor that is generated at the time of projection in which the optical axis of the projection light forms an arbitrary angle with the projection surface. The light receiving point position of the reflected light is input from the light receiving position sensor, and when the light receiving point position is obtained, the magnitude and direction of the control amount changed from the reference position by the control of the scanning mechanism are calculated. And a calculation unit for obtaining an adjustment amount of the focal position of the projection optical system based on the calculated magnitude and direction of the control amount change and the input light receiving point position.
Preferably, the light receiving lens mechanism has a lens exchange function or a magnification adjustment function for changing a range of the projection surface corresponding to the light receiving surface.

本発明にかかわる画像投射装置の焦点調整方法は、焦点位置の調整を行うことが可能な投射光学系を有し、投射光学系から発せられる投射光によって画像を装置外部の投射面に投影する画像投射装置の焦点調整方法であって、測距光の光軸の角度を走査機構により変化させて、当該測距光を前記投射面上で面走査させる走査ステップと、前記面走査時に前記投射面上で前記測距光が反射することにより生じた反射光を受光する受光ステップと、前記反射光を受光したときの前記走査機構から出射される測距光の光軸の角度の変化情報から、前記投射光学系と前記投射面との相対位置関係を測定する相対関係測定ステップと、前記距離の測定結果にもとづいて、前記投射面上で焦点が合う前記投射光学系の焦点位置の調整量を求める調整量算出ステップとを含む。   An image projection apparatus focus adjustment method according to the present invention includes a projection optical system capable of adjusting a focus position, and projects an image onto a projection surface outside the apparatus by projection light emitted from the projection optical system. A focus adjustment method for a projection apparatus, wherein a scanning step of changing the angle of an optical axis of distance measuring light by a scanning mechanism and surface-scanning the distance measuring light on the projection surface, and the projection surface during the surface scanning From the light receiving step of receiving the reflected light generated by reflecting the distance measuring light above, and the change information of the angle of the optical axis of the distance measuring light emitted from the scanning mechanism when the reflected light is received, A relative relationship measuring step for measuring a relative positional relationship between the projection optical system and the projection surface, and an adjustment amount of the focal position of the projection optical system that is focused on the projection surface based on the measurement result of the distance. Calculation of adjustment amount required And a step.

好適に、前記調整量算出ステップが、さらに、前記走査機構の基準位置をあらかじめ設定する基準設定ステップと、前記投射光の光軸が前記投射面と任意の角度をなす投射時に生じる前記反射光の受光点位置を入力し、当該受光点位置が得られたときに前記走査機構の制御によって前記基準位置から変化した制御量の大きさおよび向きを算出し、当該算出した制御量変化の大きさおよび向き、ならびに、前記入力した受光点位置にもとづいて、前記投射光学系の焦点位置の調整量を演算により求める演算ステップとを含む。   Preferably, the adjustment amount calculating step further includes a reference setting step of setting a reference position of the scanning mechanism in advance, and the reflected light generated at the time of projection in which the optical axis of the projection light forms an arbitrary angle with the projection surface. When the light receiving point position is input, the magnitude and direction of the control amount changed from the reference position by the control of the scanning mechanism when the light receiving point position is obtained are calculated, the magnitude of the calculated control amount change and A calculation step of calculating an adjustment amount of the focal position of the projection optical system based on the direction and the input light receiving point position.

以下、画像投射装置の場合を例として作用を述べる。
本発明の画像投射装置は、調整量演算部に基準設定手段を有する。この基準設定手段は、投射光学系の光軸と投射面に至る測距光の光軸とが平行であるときの走査機構の走査制御ポイントを、測距光の光軸の角度変化測定の基準位置(原点)に設定する。以後、測距光の光軸の角度が変化した場合、この基準位置からの変化量を求めることが可能となる。
いま、装置外部の投射面に対し画像投射装置を任意の位置に配置し、投射面に向けて発光素子から測距光を投射したとする。このとき、測距光は投射面上で反射し、そのときの反射光が画像投射装置側に戻ってくる。ところが、測距光の光軸が投射面に対し垂直から大きくずれていると、受光部に反射光が入らない場合がある。この場合、走査機構を走査して測距光の光軸の角度を変化させ、測距光を投射面上で面走査させる。ここで「面走査」は、たとえば、測距光を一方向に走査し、つぎに他方に測距光をずらして測距光を再度一方向に走査させ、この往復運動を繰り返すような走査方法である。この他方にずらす量は、受光部で検出できない投射面の領域が生じなければよい。たとえばこのようにして、検出対象の面(この場合、投射面)のすべての領域が受光部の受光面で検出できるような面状の走査を「面走査」という。
面走査によって反射光が受光部で検出されると、その受光点位置の情報が受光位置センサから出力され、演算部に送られる。演算部によって、この受光点位置の情報が得られときの走査機構の制御で基準位置から変化した制御量の大きさと向きが算出され、さらに、この制御量変化の大きさと向き、ならびに、入力した前記受光点位置の情報にもとづいて投射光学系の焦点調整量が算出される。
Hereinafter, the operation will be described taking the case of the image projection apparatus as an example.
The image projection apparatus of the present invention has reference setting means in the adjustment amount calculation unit. This reference setting means uses the scanning control point of the scanning mechanism when the optical axis of the projection optical system is parallel to the optical axis of the distance measuring light reaching the projection surface as a reference for measuring the angle change of the optical axis of the distance measuring light. Set to position (origin). Thereafter, when the angle of the optical axis of the distance measuring light changes, the amount of change from this reference position can be obtained.
Now, it is assumed that the image projection device is arranged at an arbitrary position with respect to the projection surface outside the device, and ranging light is projected from the light emitting element toward the projection surface. At this time, the distance measuring light is reflected on the projection surface, and the reflected light at that time returns to the image projection apparatus side. However, when the optical axis of the distance measuring light is largely deviated from the vertical with respect to the projection surface, the reflected light may not enter the light receiving unit. In this case, the scanning mechanism is scanned to change the angle of the optical axis of the distance measuring light, and the distance measuring light is scanned on the projection surface. Here, the “surface scanning” is a scanning method in which, for example, the distance measuring light is scanned in one direction, then the distance measuring light is shifted to the other, the distance measuring light is scanned again in one direction, and this reciprocating motion is repeated. It is. The amount to be shifted to the other side is not required if there is no projection surface area that cannot be detected by the light receiving unit. For example, a surface scan in which all areas of the detection target surface (in this case, the projection surface) can be detected by the light receiving surface of the light receiving unit in this way is referred to as “surface scanning”.
When reflected light is detected by the light receiving unit by surface scanning, information on the light receiving point position is output from the light receiving position sensor and sent to the calculation unit. The calculation unit calculates the magnitude and direction of the controlled variable that has changed from the reference position in the control of the scanning mechanism when the light receiving point position information is obtained. Furthermore, the magnitude and direction of the controlled variable change and the input are input. A focus adjustment amount of the projection optical system is calculated based on the information on the light receiving point position.

本発明にかかわる画像投射装置、およびその焦点調整方法によれば、カメラなどコスト高となるような撮像装置を用いずに、焦点調整ができる。また、当該画像投射装置が装置外部の投射面に対し任意の位置に配置され、投射光の光軸が装置外部の投射面に対し垂直でない斜め投射の場合でも、容易にかつ確実に測距光の反射光を検出できる。このため、手際よくかつ容易に投射面上の画像のピントを合わすことが可能である。
以上より、自動合焦装置を付加した小型で低価格な投射型の画像表示装置(画像投射装置)を提供することが可能となる。
According to the image projection apparatus and the focus adjustment method thereof according to the present invention, the focus adjustment can be performed without using an image pickup apparatus such as a camera that is expensive. In addition, even when the image projection apparatus is arranged at an arbitrary position with respect to the projection surface outside the apparatus, and the oblique projection in which the optical axis of the projection light is not perpendicular to the projection surface outside the apparatus, the distance measurement light can be easily and reliably The reflected light can be detected. For this reason, it is possible to focus the image on the projection surface smartly and easily.
As described above, it is possible to provide a small and low-priced projection type image display device (image projection device) to which an automatic focusing device is added.

本発明は、LCD(liquid crystal display)、DMD(digital micro-mirror device)またはCRT(cathode ray tube)などの画像表示デバイスを備え、当該デバイスに表示された画像を投射して、装置外部の投射面、たとえばスクリーンに投影させて表示する投射型の画像表示装置(以下、プロジェクターという)に広く適用できる。   The present invention includes an image display device such as an LCD (liquid crystal display), DMD (digital micro-mirror device), or CRT (cathode ray tube), and projects an image displayed on the device to project outside the apparatus. The present invention can be widely applied to a projection-type image display device (hereinafter referred to as a projector) that projects and displays on a screen, for example, a screen.

[第1の実施の形態]
図1は、本実施の形態にかかわるプロジェクターとスクリーンとが斜めに配置されたとき、両者を上方から見た図である。また、図2に、プロジェクターの正面図を示す。
図1において、プロジェクター1の後方寄りの位置からスクリーン100を真正面に見る不図示の人を観察者とすると、観察者から見て、プロジェクター1は、スクリーンの左斜め下方側に位置している。言い換えると、プロジェクター1の投射レンズの光軸(以下、投射光軸またはLp軸という)5Aが右斜め上方のスクリーン100に向うように、両者が配置されている。
本実施の形態では、プロジェクター1とスクリーン100とが任意の位置関係で配置されることを前提としている。本実施の形態のプロジェクター1が、鉛直と水平の両方向とも斜めになる投射(以下、単に斜め投射という)の場合でも容易に焦点調整が可能なことから、ここでは光が右斜め上方のスクリーンに向かう斜め投射を一例としてあげているが、この両者の相対位置は図示の場合に限定されない。
[First Embodiment]
FIG. 1 is a view of a projector and a screen according to the present embodiment as viewed from above when they are arranged obliquely. FIG. 2 shows a front view of the projector.
In FIG. 1, when an unillustrated person who views the screen 100 from the rear side of the projector 1 is an observer, the projector 1 is positioned on the lower left side of the screen as viewed from the observer. In other words, both are arranged so that the optical axis (hereinafter referred to as the projection optical axis or Lp axis) 5A of the projection lens of the projector 1 faces the screen 100 obliquely upward to the right.
In the present embodiment, it is assumed that the projector 1 and the screen 100 are arranged in an arbitrary positional relationship. Since the projector 1 of the present embodiment can easily adjust the focus even in the case of a projection that is oblique in both the vertical and horizontal directions (hereinafter simply referred to as oblique projection), here the light is directed to the screen diagonally upward to the right. Although the oblique projection which goes to is given as an example, the relative position of both is not limited to the case of illustration.

図2に示すプロジェクターの正面は、画像を投射する側の面、すなわちスクリーン側の面をいう。図2に示すように、プロジェクター1の正面に、投射光学系の窓2を有し、そのほぼ上方位置に、焦点調整時に測距光を出射する発光素子の窓3と、その横方向に、測距光がスクリーンで反射して戻ってきた反射光を受光する受光窓4とを備える。図1に示すように、プロジェクター1内部に、LCDパネル等の画像表示デバイス、光源、および、投射レンズなどの光学部品(以下、投射レンズ機構という)を含む投射光学系5が配置されている。とくに図示しないが、投射光学系5は、たとえば、ピント合わせ用の操作リングなどにより、その焦点距離が変化可能に構成されている。投射光学系5の上方で発光素子の窓3(図2)に対応したプロジュクター内位置に、測距光投射部6が配置されている。また、測距光投射部6から横に離れた受光窓4(図2)に対応したプロジェクター内部位置に、受光部7が配置されている。   The front surface of the projector shown in FIG. 2 refers to a surface on the image projection side, that is, a screen side surface. As shown in FIG. 2, the projector 1 has a projection optical system window 2 in front of the projector 1, a light emitting element window 3 that emits ranging light at the time of focus adjustment at a substantially upper position thereof, and a lateral direction thereof. And a light receiving window 4 for receiving the reflected light returned by the distance measuring light reflected by the screen. As shown in FIG. 1, a projection optical system 5 including an image display device such as an LCD panel, a light source, and an optical component such as a projection lens (hereinafter referred to as a projection lens mechanism) is disposed inside the projector 1. Although not particularly illustrated, the projection optical system 5 is configured such that its focal length can be changed by, for example, an operation ring for focusing. A ranging light projection unit 6 is disposed above the projection optical system 5 at a position in the projector corresponding to the window 3 (FIG. 2) of the light emitting element. In addition, a light receiving unit 7 is disposed at a projector internal position corresponding to the light receiving window 4 (FIG. 2) that is laterally separated from the distance measuring light projecting unit 6.

測距光投射部6に、図1に示すように、赤外線LEDなどの発光素子を内蔵した発光部61、レンズ62、可動反射ミラー63が配置されている。
本例の測距光投射部6の各部の配置例では、1つの可動反射ミラー63に設けられた2つの独立した回転軸中心に当該ミラー63が傾き、測距光がスクリーン上のすべての領域にあたるのに十分な範囲内で、ミラー63で反射した後の測距光の光軸の角度(以下、「出射光軸向き」ともいう)が自由に変化するようになっている。
As shown in FIG. 1, a light emitting unit 61 incorporating a light emitting element such as an infrared LED, a lens 62, and a movable reflecting mirror 63 are arranged in the distance measuring light projection unit 6.
In the arrangement example of each part of the distance measuring light projection unit 6 of this example, the mirror 63 is tilted to the center of two independent rotation axes provided on one movable reflecting mirror 63, and the distance measuring light is all areas on the screen. The angle of the optical axis of the distance measuring light after being reflected by the mirror 63 (hereinafter also referred to as “the direction of the outgoing optical axis”) can be freely changed within a range sufficient to hit this.

受光部7は、たとえばPSD(position sensitive detector)などの受光面の位置が出力信号によって判別できる受光位置センサ71と、その受光位置センサ71の受光面に光を導く受光レンズ機構72とを備える。受光レンズ機構72は、そのレンズが交換できるか、または、レンズズーム機構を備える。これにより、最初は高倍率を確保し、受光点が受光位置センサ71の受光面に存在しやすいようにしておき、受光点を捉えたら低倍率として受光点の受光面内での動きを大きくして受光点の位置検出を高感度にすることができる。   The light receiving unit 7 includes a light receiving position sensor 71 that can determine the position of a light receiving surface such as a PSD (position sensitive detector) based on an output signal, and a light receiving lens mechanism 72 that guides light to the light receiving surface of the light receiving position sensor 71. The light receiving lens mechanism 72 includes a lens zoom mechanism that can replace the lens. As a result, initially, a high magnification is ensured so that the light receiving point is likely to be present on the light receiving surface of the light receiving position sensor 71, and when the light receiving point is captured, the movement of the light receiving point within the light receiving surface is increased as a low magnification. Thus, the position detection of the light receiving point can be made highly sensitive.

測距光投射部6の詳細を、図3に模式的に示す。また、測距光投射部と受光部の接続関係を、図4のブロック図に示す。
可動反射ミラー63は、図3に示すように、水平走査時の回転軸AXhおよび鉛直走査時の回転軸AXvを有している。これらの回転軸AXhとAXvに、それぞれを回転駆動する駆動手段64hと64vが接続され、これらの駆動手段64hと64vを制御する制御回路(図中、「Cont.」と表記)65が設けられている。
発光部61内の発光素子61Aから出射された測距光(たとえば、赤外光)Lmは、レンズ62により適宜絞られた後、可動反射ミラー63で反射され、スクリーン側に出射される。このとき、制御回路65の制御により駆動手段64hと64vが働いて、測距光Lmの出射光軸向きが変化する。
The details of the ranging light projection unit 6 are schematically shown in FIG. Further, the connection relationship between the ranging light projection unit and the light receiving unit is shown in the block diagram of FIG.
As shown in FIG. 3, the movable reflection mirror 63 has a rotation axis AXh during horizontal scanning and a rotation axis AXv during vertical scanning. These rotary shafts AXh and AXv are connected to drive means 64h and 64v for rotationally driving them, respectively, and a control circuit (indicated as “Cont.” In the drawing) 65 for controlling these drive means 64h and 64v is provided. ing.
Ranging light (for example, infrared light) Lm emitted from the light emitting element 61A in the light emitting unit 61 is appropriately focused by the lens 62, then reflected by the movable reflecting mirror 63, and emitted to the screen side. At this time, the driving means 64h and 64v are operated under the control of the control circuit 65, and the direction of the outgoing optical axis of the distance measuring light Lm changes.

この測距光の出射光軸向きの制御によって、スクリーン100に対する面走査が可能となっている。ここで「面走査」は、たとえば、測距光を水平方向に走査し、つぎに鉛直の一方の向きに測距光をずらして測距光を再度水平方向に走査させ、この往復運動を繰り返すような走査方法である。この鉛直の向きにずらす量は、受光位置センサ71で検出できないスクリーン面の領域が生じなければよい。たとえばこのようにして、スクリーン面のすべての領域が受光位置センサ71の受光面で検出できるような面状の走査を「面走査」という。   The surface scanning with respect to the screen 100 is possible by controlling the direction of the outgoing optical axis of the distance measuring light. Here, the “surface scanning”, for example, scans the distance measuring light in the horizontal direction, then shifts the distance measuring light in one vertical direction, scans the distance measuring light in the horizontal direction again, and repeats this reciprocating motion. Such a scanning method. The amount of shifting in the vertical direction may be such that an area of the screen surface that cannot be detected by the light receiving position sensor 71 does not occur. For example, a surface scan in which all areas of the screen surface can be detected by the light receiving surface of the light receiving position sensor 71 in this way is referred to as “surface scanning”.

本例では、図4に示すように、制御回路65に基準設定手段65Aと演算部65Bとを備える。本例の基準設定手段65Aは、図1に示すように、たとえば、可動反射ミラー63で反射した後の測距光Lmの光軸(Lm軸)6Aと画像の投射光軸(Lp軸)5Aとが平行となる走査機構の制御量、すなわち駆動手段の制御量を基準位置として設定する。この走査機構がリセットされたときに、基準位置に戻るようになっている場合は、このリセットのための手段が基準設定手段65Aに該当する。あるいは、基準位置を記憶するメモリを有する場合は、このメモリと、その制御のための手段が基準設定手段65Aに該当する。いずれにしても、この基準位置は演算部65Bに入力可能になっている。なお、図4に示す場合、基準設定手段65Aを内蔵した制御回路65が、本発明の「調整量演算部」の一実施態様に該当する。また、基準設定手段65Aが制御回路65の外部にある場合、基準設定手段65Aおよび制御回路65が、本発明の「調整量演算部」の一実施態様に該当する。   In this example, as shown in FIG. 4, the control circuit 65 includes a reference setting unit 65A and a calculation unit 65B. As shown in FIG. 1, the reference setting means 65A of the present example includes, for example, an optical axis (Lm axis) 6A of the distance measuring light Lm after being reflected by the movable reflecting mirror 63, and an optical projection axis (Lp axis) 5A of the image. The control amount of the scanning mechanism that is parallel to each other, that is, the control amount of the driving means is set as the reference position. If the scanning mechanism is reset to return to the reference position, the resetting means corresponds to the reference setting means 65A. Alternatively, in the case of having a memory for storing the reference position, this memory and a means for controlling the memory correspond to the reference setting means 65A. In any case, this reference position can be input to the calculation unit 65B. In the case shown in FIG. 4, the control circuit 65 incorporating the reference setting means 65A corresponds to one embodiment of the “adjustment amount calculation unit” of the present invention. When the reference setting means 65A is outside the control circuit 65, the reference setting means 65A and the control circuit 65 correspond to one embodiment of the “adjustment amount calculation unit” of the present invention.

図4は、面走査により、受光位置センサ71の受光面に受光点が捉えられたときを示している。このときの受光点位置を物理量、たとえば電流量に換算した信号が演算部65Bに入力される。演算部65Bは、基準位置のときのセンサ出力をベースにして、面走査後のセンサ出力をもとに、当該プロジェクターとスクリーンとの相対位置関係、たとえば両者の距離と傾きを演算により求める。   FIG. 4 shows a case where a light receiving point is captured on the light receiving surface of the light receiving position sensor 71 by surface scanning. A signal obtained by converting the light receiving point position at this time into a physical quantity, for example, a current quantity, is input to the arithmetic unit 65B. Based on the sensor output at the reference position, the computing unit 65B obtains the relative positional relationship between the projector and the screen, for example, the distance and inclination between the projector and the screen, based on the sensor output after the surface scanning.

図5に、面走査により受光面に受光点が捉えられたときの、プロジェクターとスクリーンとの相対位置関係を示している。
このとき、測距光Lmがスクリーン100で反射することにより生じた反射光をLmb、スクリーン100の垂線に対する測距光Lmの角度をθ1、スクリーン100の垂線に対する反射光Lmbの角度をθ2とする。これらの角度は垂直の角度と水平の角度の合成角となっている。受光位置センサ71の受光面で、基準位置に対応した点が中心点に制御されているとすると、その中心点に受光点が重なる場合、2つの角度θ1とθ2は同じ値をとる。通常は、受光点が中心点からずれていることが多く、その場合、角度θ1とθ2はわずかにずれている。このズレ量を表す受光位置センサ71の出力、ならびに、そのときの駆動手段64hおよび64vから得られる制御量の向きと大きさにより、演算部65Bがスクリーンとプロジェクターの角度を算出することができる。また、角度θ1とθ2の絶対値は、スクリーンとプロジェクターの距離によって変化する、すなわち両者が離れると角度の絶対値は小さくなり、逆に近づくと大きくなる。演算部65Bは、受光位置センサ71の出力から得られる、この角度の絶対値と、駆動手段64hと64vから得られる制御量の向きと大きさにより、両者の距離を測定することができる。なお、演算部65Bは、必要に応じて、角度と距離のテーブル(不図示)を参照して距離を割り出すことができる。
FIG. 5 shows the relative positional relationship between the projector and the screen when a light receiving point is captured on the light receiving surface by surface scanning.
At this time, the reflected light generated when the distance measuring light Lm is reflected by the screen 100 is Lmb, the angle of the distance measuring light Lm with respect to the normal of the screen 100 is θ1, and the angle of the reflected light Lmb with respect to the vertical of the screen 100 is θ2. . These angles are a composite angle of a vertical angle and a horizontal angle. Assuming that the point corresponding to the reference position on the light receiving surface of the light receiving position sensor 71 is controlled as the center point, when the light receiving point overlaps the center point, the two angles θ1 and θ2 have the same value. Usually, the light receiving point is often shifted from the center point, and in this case, the angles θ1 and θ2 are slightly shifted. The calculation unit 65B can calculate the angle between the screen and the projector based on the output of the light receiving position sensor 71 representing the amount of deviation and the direction and magnitude of the control amount obtained from the driving means 64h and 64v at that time. In addition, the absolute values of the angles θ1 and θ2 vary depending on the distance between the screen and the projector, that is, the absolute value of the angle decreases when they are separated from each other, and increases when they are reversed. The calculation unit 65B can measure the distance between the absolute value of the angle obtained from the output of the light receiving position sensor 71 and the direction and magnitude of the control amount obtained from the driving units 64h and 64v. Note that the calculation unit 65B can determine the distance with reference to a table of angles and distances (not shown) as necessary.

演算部65Bにより計算された、この相対位置関係の情報にもとづいて、さらに演算部65Bで焦点調整の制御量が算出され、これが投射光学系の投射レンズ機構に送られ、自動的に焦点合わせが行われる。なお、焦点調整の制御量の算出は、他の手段で実行してもよい。その場合、この他の手段も含めて本発明の「調整量演算部」が構成される。   Based on the information on the relative positional relationship calculated by the calculation unit 65B, the calculation amount of the focus adjustment is further calculated by the calculation unit 65B, and this is sent to the projection lens mechanism of the projection optical system to automatically focus. Done. The calculation of the control amount for focus adjustment may be executed by other means. In this case, the “adjustment amount calculation unit” of the present invention is configured including other means.

つぎに、この自動焦点合わせの手順を、図6のフローチャートを用いて説明する。
基準位置を設定し(ステップST1)、その後、前述した方法で面走査を実行する(ステップST2)。
この面走査の過程で受光位置センサ71の受光面が反射光Lmbを捉えたら(受光:ステップST3)、つぎのステップST4で、演算部65Bが、前述した方法により相対位置(傾きおよび距離)を算出する。これにより得た相対位置と、そのときの倍率(通常1〜1.2倍程度にあらかじめ決められている)から、最適なスクリーンサイズの理想値を割り出す。なお、ユーザは、このスクリーンサイズでは不満な場合は、プロジェクターをスクリーンから離したり、近づけたりして再設置を行った後、ステップST1からやり直す必要がある。
Next, the automatic focusing procedure will be described with reference to the flowchart of FIG.
A reference position is set (step ST1), and then surface scanning is executed by the method described above (step ST2).
When the light receiving surface of the light receiving position sensor 71 captures the reflected light Lmb during the surface scanning process (light reception: step ST3), in the next step ST4, the calculation unit 65B calculates the relative position (tilt and distance) by the method described above. calculate. The ideal value of the optimum screen size is determined from the relative position obtained in this way and the magnification at that time (usually predetermined in the order of 1 to 1.2 times). If the user is not satisfied with the screen size, the user needs to start again from step ST1 after performing re-installation by moving the projector away from or closer to the screen.

スクリーンサイズが確定すると、そのスクリーンサイズ、スクリーンの相対位置情報およびレンズ情報を加味して、適正なズーム倍率を微調整し(ステップST6)、適正な焦点距離を計算により求める(ステップST7)。最後に、求めた焦点距離に投射光学系を合わせることによって画像のピントを自動的に合わせる(自動合焦:ステップST8)。   When the screen size is determined, the appropriate zoom magnification is finely adjusted taking into account the screen size, the relative position information of the screen, and the lens information (step ST6), and an appropriate focal length is obtained by calculation (step ST7). Finally, the projection optical system is adjusted to the obtained focal length to automatically adjust the focus of the image (automatic focusing: step ST8).

なお、上記例では、2軸回転可能な1枚の反射ミラーを用いたが、1軸の可動反射ミラーを2枚以上用いることでも同じ機能を実現できる。また、これらの反射ミラーは、いわゆるガルバノミラーを1枚、2枚、さらにはそれ以上組み合わせて実現できる。さらには、いわゆるポリゴンミラーを用いてもよい。ポリゴンミラーは、1軸の周りを軸回転する複数の多角形配置のミラー群からなるが、それにさらに可動軸を追加したい場合は、ポリゴンミラーを1軸あるいは2軸可動のチルト台に載せることで実現できる。いずれにしてもスクリーン全面にLED光が走査するようにすれば相対位置の測定は可能である。
なお、スクリーン面に対し投射光軸Lpが垂直な場合や、スクリーン中央に投射光軸Lpがくる場合でも本発明によって合焦の計算ができることはいうまでもない。また、投射光軸Lpと測距光軸Lmのずれ量d(図1および図2)はゼロでもよい。
また、図4に示す基準位置設定部65A、演算部65B、さらに、これらを含めた制御回路65全体の機能を、CPUやマイクロコンピュータで実行可能なプログラムの記述としてソフトウエハ上で実現することもできる。
In the above example, one reflection mirror that can rotate biaxially is used, but the same function can be realized by using two or more uniaxial movable reflection mirrors. These reflection mirrors can be realized by combining one, two, or more so-called galvanometer mirrors. Furthermore, a so-called polygon mirror may be used. The polygon mirror is composed of a plurality of polygon-arranged mirrors that rotate around one axis. If you want to add a movable axis to the polygon mirror, you can place the polygon mirror on a tilting table that is movable in one or two axes. realizable. In any case, if the LED light is scanned over the entire screen, the relative position can be measured.
Needless to say, the present invention can calculate in-focus even when the projection optical axis Lp is perpendicular to the screen surface or when the projection optical axis Lp is at the center of the screen. Further, the deviation d (FIGS. 1 and 2) between the projection optical axis Lp and the distance measuring optical axis Lm may be zero.
In addition, the reference position setting unit 65A and the calculation unit 65B shown in FIG. 4 and the functions of the entire control circuit 65 including these may be realized on a soft wafer as a description of a program that can be executed by a CPU or microcomputer. it can.

[第2の実施の形態]
第1の実施の形態では、発光部61からの測距光Lmを、反射ミラーなどを含む走査機構で光軸の進路を変える制御を行ったが、本実施の形態のように、発光部61そのものに走査機構を持たせることができる。
[Second Embodiment]
In the first embodiment, the distance measuring light Lm from the light emitting unit 61 is controlled to change the path of the optical axis by a scanning mechanism including a reflection mirror. However, as in the present embodiment, the light emitting unit 61 is controlled. It can have a scanning mechanism.

図7は、この発光部の走査機構の動作を極座標で表す図である。また、図8は、面走査によって反射光の受光点が受光位置センサに捉えられたときを示す図である。
この例では、赤外線LED61Aを、ある仮想的な球の球心に位置すると仮定し、その球面と赤外線(測距光Lm)が交わる点を極座標(r,θ,Φ)で表している。ここで、rは仮想的な球の半径、θは測距光Lmの光軸とz軸とのなす角度、Φは測距光Lmの光軸とy軸とのなす角度を示している。これらの角度θおよびΦが変化して光がスクリーン側に面する半球上を走査するように赤外線LED61Aとレンズ62Aを一体化させて可動させる。
これにともない図1に示す可動反射ミラー63および固定のレンズ62は不要となる。他の構成は、第1の実施の形態と同じであるため、ここでの説明は省略する。
相対位置情報の測定および焦点調整の方法も、基本的に第1の実施の形態と同じである。
FIG. 7 is a diagram showing the operation of the scanning mechanism of the light emitting unit in polar coordinates. FIG. 8 is a diagram illustrating a case where the light receiving point of the reflected light is captured by the light receiving position sensor by the surface scanning.
In this example, it is assumed that the infrared LED 61A is positioned at the center of a virtual sphere, and the point where the spherical surface and the infrared ray (ranging light Lm) intersect is represented by polar coordinates (r, θ, Φ). Here, r is a radius of a virtual sphere, θ is an angle formed by the optical axis of the distance measuring light Lm and the z axis, and Φ is an angle formed by the optical axis of the distance measuring light Lm and the y axis. The infrared LEDs 61A and the lens 62A are integrated and moved so that the angles θ and Φ change and the light scans on the hemisphere facing the screen side.
Accordingly, the movable reflecting mirror 63 and the fixed lens 62 shown in FIG. 1 are not necessary. Since other configurations are the same as those of the first embodiment, description thereof is omitted here.
The relative position information measurement and focus adjustment methods are basically the same as those in the first embodiment.

なお、図8では、前面投射型のプロジェクターを描いているが、この走査機構は、とくに全天周の投射型のプロジェクターに応用できる。   In FIG. 8, a front projection type projector is depicted, but this scanning mechanism can be applied particularly to a projection type projector of the whole sky.

本発明は、いわゆるフロントプロジェクターあるいは全天周投射型のプロジェクターなどの画像投射装置の用途に適用できる。   The present invention can be applied to the use of an image projection apparatus such as a so-called front projector or an all-around projection type projector.

本発明の第1の実施の形態にかかわるプロジェクターとスクリーンが斜めに配置されたとき、両者を上方から見た図The figure which looked at both from the upper direction, when the projector and screen which concern on the 1st Embodiment of this invention are arrange | positioned diagonally プロジェクターの正面図Front view of projector 測距光投射部の詳細を模式的に示す図The figure which shows the details of the ranging light projection part typically 測距光投射部と受光部の接続関係を示すブロック図Block diagram showing the connection between the ranging light projection unit and the light receiving unit 面走査により受光面に受光点が捉えられたときの、プロジェクターとスクリーンとの相対位置関係を示す上面図Top view showing the relative positional relationship between the projector and the screen when a light receiving point is captured on the light receiving surface by surface scanning 自動焦点合わせの手順を示すフローチャートFlow chart showing the autofocus procedure 本発明の第2の実施の形態における、発光部の走査機構の動作を極座標で表す図The figure showing operation | movement of the scanning mechanism of the light emission part in the polar coordinate in the 2nd Embodiment of this invention. 第2の実施の形態において、面走査により受光面に受光点が捉えられたときの、プロジェクターとスクリーンとの相対位置関係を示す上面図The top view which shows the relative positional relationship of a projector and a screen when a light-receiving point is caught by the light-receiving surface by surface scanning in 2nd Embodiment

符号の説明Explanation of symbols

1…プロジェクター(画像投射装置)、2…投射光学系の窓、3…発行素子の窓、4…受光窓、5…投射光学系、5A…投射光軸(Lp軸)、6…測距光投射部、6A…測距光の光軸(Lm軸)、61…発光部、61A…発光素子、62,62A…レンズ、63…可動反射ミラー、64h,64v…駆動手段、65…制御回路(調整量演算部)、65A…調整量演算部内の基準設定手段、65B…演算部、7…受光部、71…受光位置センサ、AXh,AXv,AXθ,AXΦ…回転軸
DESCRIPTION OF SYMBOLS 1 ... Projector (image projection apparatus), 2 ... Projection optical system window, 3 ... Issuing element window, 4 ... Light receiving window, 5 ... Projection optical system, 5A ... Projection optical axis (Lp axis), 6 ... Ranging light Projection unit, 6A ... optical axis of distance measuring light (Lm axis), 61 ... light emitting unit, 61A ... light emitting element, 62, 62A ... lens, 63 ... movable reflecting mirror, 64h, 64v ... driving means, 65 ... control circuit ( Adjustment amount calculation unit), 65A: reference setting means in the adjustment amount calculation unit, 65B ... calculation unit, 7 ... light receiving unit, 71 ... light receiving position sensor, AXh, AXv, AXθ, AXΦ ... rotation axis

Claims (7)

焦点位置の調整を行うことが可能な投射光学系を有し、当該投射光学系から発せられる投射光によって画像を装置外部の投射面に投影する画像投射装置であって、
測距光を発光する発光素子と、
前記測距光の光軸の角度を変化させて、当該測距光を前記投射面上で面走査させる走査機構と、
前記面走査時に前記投射面上で前記測距光が反射することにより生じた反射光を受光する受光部と、
前記受光部が反射光を受光したときの前記走査機構から出射される測距光の光軸の角度の変化情報から、前記投射光学系と前記投射面との相対位置関係を測定し、当該測定の結果にもとづいて、前記投射面上で焦点が合うように前記投射光学系の焦点位置の調整量を算出する調整量演算部と、
を有する画像投射装置。
An image projection apparatus having a projection optical system capable of adjusting a focal position and projecting an image on a projection surface outside the apparatus by projection light emitted from the projection optical system,
A light emitting element that emits distance measuring light;
A scanning mechanism that changes the angle of the optical axis of the distance measuring light and scans the distance measuring light on the projection surface;
A light receiving unit that receives reflected light generated by reflecting the distance measuring light on the projection surface during the surface scanning;
The relative positional relationship between the projection optical system and the projection surface is measured from the change information of the angle of the optical axis of the ranging light emitted from the scanning mechanism when the light receiving unit receives the reflected light, and the measurement is performed. An adjustment amount calculation unit that calculates an adjustment amount of the focal position of the projection optical system so that the focal point is in focus on the projection surface,
An image projection apparatus.
前記走査機構は単数または複数の反射ミラーを有し、
当該反射ミラーの前記測距光を反射させる反射面の傾きを独立に変化させる軸を走査機構全体で複数備えている
請求項1に記載の画像投射装置。
The scanning mechanism has one or more reflecting mirrors,
The image projection apparatus according to claim 1, wherein the entire scanning mechanism includes a plurality of axes that independently change the inclination of a reflection surface that reflects the distance measuring light of the reflection mirror.
前記受光部は、
受光レンズ機構と、
前記受光レンズ機構の光軸が通る受光面内で受光点の位置を測定する受光位置センサと、
を含む請求項1に記載の画像投射装置。
The light receiving unit is
A light receiving lens mechanism;
A light receiving position sensor for measuring the position of the light receiving point within the light receiving surface through which the optical axis of the light receiving lens mechanism passes,
The image projection device according to claim 1, comprising:
前記調整量演算部は、
前記走査機構の基準位置をあらかじめ設定する基準設定手段と、
前記投射光の光軸が前記投射面と任意の角度をなす投射時に生じる前記受光位置センサ内での前記反射光の受光点位置を前記受光位置センサから入力し、当該受光点位置が得られたときに前記走査機構の制御によって前記基準位置から変化した制御量の大きさおよび向きを算出し、当該算出した制御量変化の大きさおよび向き、ならびに、前記入力した受光点位置にもとづいて、前記投射光学系の焦点位置の調整量を求める演算部と、
を有する請求項3に記載の画像投射装置。
The adjustment amount calculator is
Reference setting means for setting a reference position of the scanning mechanism in advance;
The light receiving point position of the reflected light in the light receiving position sensor generated during the projection in which the optical axis of the projection light forms an arbitrary angle with the projection surface is input from the light receiving position sensor, and the light receiving point position is obtained. Sometimes the magnitude and direction of the control amount changed from the reference position by the control of the scanning mechanism is calculated, and based on the magnitude and direction of the calculated control amount change and the input light receiving point position, A calculation unit for obtaining an adjustment amount of the focal position of the projection optical system;
The image projection apparatus according to claim 3, comprising:
前記受光レンズ機構は、前記受光面に対応した前記投射面の範囲を変化させるレンズ交換機能あるいは倍率調整機能を有する
請求項3に記載の画像投射装置。
The image projection apparatus according to claim 3, wherein the light receiving lens mechanism has a lens replacement function or a magnification adjustment function for changing a range of the projection surface corresponding to the light receiving surface.
焦点位置の調整を行うことが可能な投射光学系を有し、投射光学系から発せられる投射光によって画像を装置外部の投射面に投影する画像投射装置の焦点調整方法であって、
測距光の光軸の角度を走査機構により変化させて、当該測距光を前記投射面上で面走査させる走査ステップと、
前記面走査時に前記投射面上で前記測距光が反射することにより生じた反射光を受光する受光ステップと、
前記反射光を受光したときの前記走査機構から出射される測距光の光軸の角度の変化情報から、前記投射光学系と前記投射面との相対位置関係を測定する相対関係測定ステップと、
前記距離の測定結果にもとづいて、前記投射面上で焦点が合う前記投射光学系の焦点位置の調整量を求める調整量算出ステップと、
を含む画像投射装置の焦点調整方法。
A projection optical system capable of adjusting a focal position, and a focus adjustment method for an image projection apparatus that projects an image on a projection surface outside the apparatus by projection light emitted from the projection optical system,
A scanning step in which the angle of the optical axis of the distance measuring light is changed by a scanning mechanism to scan the surface of the distance measuring light on the projection surface;
A light receiving step for receiving reflected light generated by reflecting the distance measuring light on the projection surface during the surface scanning;
A relative relationship measuring step for measuring a relative positional relationship between the projection optical system and the projection surface, based on change information of the angle of the optical axis of the ranging light emitted from the scanning mechanism when the reflected light is received;
An adjustment amount calculating step for obtaining an adjustment amount of the focal position of the projection optical system that is focused on the projection surface based on the measurement result of the distance;
Adjustment method for an image projection apparatus including
前記調整量算出ステップが、さらに、
前記走査機構の基準位置をあらかじめ設定する基準設定ステップと、
前記投射光の光軸が前記投射面と任意の角度をなす投射時に生じる前記反射光の受光点位置を入力し、当該受光点位置が得られたときに前記走査機構の制御によって前記基準位置から変化した制御量の大きさおよび向きを算出し、当該算出した制御量変化の大きさおよび向き、ならびに、前記入力した受光点位置にもとづいて、前記投射光学系の焦点位置の調整量を演算により求める演算ステップと、
を含む請求項6に記載の焦点調整方法。
The adjustment amount calculating step further includes:
A reference setting step for setting a reference position of the scanning mechanism in advance;
The light receiving point position of the reflected light generated at the time of projection in which the optical axis of the projection light forms an arbitrary angle with the projection surface is input, and when the light receiving point position is obtained, it is controlled from the reference position by controlling the scanning mechanism. The magnitude and direction of the changed control amount are calculated, and the adjustment amount of the focal position of the projection optical system is calculated by calculation based on the calculated magnitude and direction of the control amount change and the input light receiving point position. A calculation step to be obtained;
The focus adjustment method according to claim 6 including:
JP2003299831A 2003-08-25 2003-08-25 Image projector and its focus adjustment method Pending JP2005070412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299831A JP2005070412A (en) 2003-08-25 2003-08-25 Image projector and its focus adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299831A JP2005070412A (en) 2003-08-25 2003-08-25 Image projector and its focus adjustment method

Publications (1)

Publication Number Publication Date
JP2005070412A true JP2005070412A (en) 2005-03-17

Family

ID=34404946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299831A Pending JP2005070412A (en) 2003-08-25 2003-08-25 Image projector and its focus adjustment method

Country Status (1)

Country Link
JP (1) JP2005070412A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310059A (en) * 2006-05-17 2007-11-29 Necディスプレイソリューションズ株式会社 Projector and focus adjustment method
JP2008241352A (en) * 2007-03-26 2008-10-09 Maspro Denkoh Corp Millimeter-wave imaging device and picked-up image display device
WO2010014345A3 (en) * 2008-07-30 2010-04-01 Microvision, Inc. Scanned beam overlay projection
KR20150090775A (en) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 Camera module
US9244247B2 (en) 2012-11-13 2016-01-26 Ricoh Company, Limited Auto-focus device, projection lens device, and image projection apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310059A (en) * 2006-05-17 2007-11-29 Necディスプレイソリューションズ株式会社 Projector and focus adjustment method
JP2008241352A (en) * 2007-03-26 2008-10-09 Maspro Denkoh Corp Millimeter-wave imaging device and picked-up image display device
WO2010014345A3 (en) * 2008-07-30 2010-04-01 Microvision, Inc. Scanned beam overlay projection
US7954953B2 (en) 2008-07-30 2011-06-07 Microvision, Inc. Scanned beam overlay projection
US9244247B2 (en) 2012-11-13 2016-01-26 Ricoh Company, Limited Auto-focus device, projection lens device, and image projection apparatus
KR20150090775A (en) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 Camera module
KR102219739B1 (en) * 2014-01-29 2021-02-24 엘지이노텍 주식회사 Camera module

Similar Documents

Publication Publication Date Title
US7237907B2 (en) Projection system that adjusts for keystoning
JP4730136B2 (en) Video display device
JP2006313116A (en) Distance tilt angle detection device, and projector with detection device
JP3996610B2 (en) Projector apparatus and image distortion correction method thereof
JP2002328428A (en) Projector and image projection system
JPH10333088A (en) Display method of projected picture and projective picture display device
US20060139582A1 (en) Projection display apparatus and focus adjustment method for the same
JP5192669B2 (en) Projector, position adjusting device, and position adjusting method
JP3792679B2 (en) Projector having a projection surface distance measuring device
US7461939B2 (en) Automatic zoom for screen fitting
JP3926311B2 (en) Projector having tilt angle measuring device
JP2005189733A (en) Projector
JP2005331585A (en) Projector having device for measuring distance and tilt angle
CN112799275B (en) Focusing method and focusing system of ultra-short-focus projection lens and projector
JP2005070412A (en) Image projector and its focus adjustment method
WO2000057245A1 (en) Projection system and projector
CN110596996B (en) Projector and automatic geometric correction method
JP4689948B2 (en) projector
JP2006214922A (en) Image processing system, projector, program, information storage medium, and image processing method
JP4141874B2 (en) Focal length and / or angle of view calculation method and focal length calculation light projection apparatus
JP3730982B2 (en) projector
JP2005159426A (en) Projector with automatic trapezoidal distortion correcting means
JP2005354232A (en) Image projection apparatus
JP4339087B2 (en) Projector with automatic trapezoidal distortion correction means
JP2007219497A (en) Projector equipped with focusing device for entire inclined screen surface