JP2005163097A - HIGH STRENGTH Al-Fe ALLOY FOIL - Google Patents

HIGH STRENGTH Al-Fe ALLOY FOIL Download PDF

Info

Publication number
JP2005163097A
JP2005163097A JP2003402922A JP2003402922A JP2005163097A JP 2005163097 A JP2005163097 A JP 2005163097A JP 2003402922 A JP2003402922 A JP 2003402922A JP 2003402922 A JP2003402922 A JP 2003402922A JP 2005163097 A JP2005163097 A JP 2005163097A
Authority
JP
Japan
Prior art keywords
rolling
pinholes
alloy foil
foil
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003402922A
Other languages
Japanese (ja)
Other versions
JP4364616B2 (en
Inventor
Tetsuya Motoi
徹也 本居
Atsushi Hibino
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2003402922A priority Critical patent/JP4364616B2/en
Publication of JP2005163097A publication Critical patent/JP2005163097A/en
Application granted granted Critical
Publication of JP4364616B2 publication Critical patent/JP4364616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Al-Fe alloy foil which has high strength and a reduced number of pinholes, and is suitable for wrapping and other applications. <P>SOLUTION: The high strength Al-Fe alloy foil has a composition comprising 0.8 to 2.0% Fe, ≤0.2% Si, ≤0.1% Mn, and the balance Al with impurities. Intermetallic compounds with a diameter of the equivalent circle of 0.2 to 1.0 μm are dispersed into the matrix by 4×10<SP>6</SP>to 8×10<SP>6</SP>pieces/cm<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高強度Al−Fe合金箔、詳しくは、強度に優れ、ピンホールや破断を生じることなしに薄肉化することができるAl−Fe合金箔に関する。   The present invention relates to a high-strength Al—Fe alloy foil, and more particularly to an Al—Fe alloy foil that has excellent strength and can be thinned without causing pinholes or breakage.

食料品や薬品の包装などの用途に使用されるアルミニウム箔は、5〜200μm程度の板厚を有するもので、アルミニウム箔が単独で使用されることは少なく、多くの場合、ポリエチレンなどと貼り合わせて使用される。   Aluminum foil used for food and medicine packaging has a plate thickness of about 5 to 200 μm, and aluminum foil is rarely used alone. Used.

このような用途のアルミニウム箔については、内容物を湿気や光から保護するために、ピンホールが少ないという特性をそなえることが重要であり、ピンホールは、箔厚が薄くなるに従い指数関数的に増加し、従来この種用途に使用されてきた純アルミニウム系の薄箔ではピンホールが多くなるため、薄箔用途には、ピンホールの少ないアルミニウム合金箔が要求され、その一つとしてピンホールの少ないAl−Fe合金箔が提案されている。   In order to protect the contents of aluminum foil from moisture and light, it is important to have the property that there are few pinholes, and pinholes exponentially as the foil thickness decreases. Since the number of pinholes in the pure aluminum-based thin foil that has been used for this type of application has increased, an aluminum alloy foil with few pinholes is required for thin foil applications. Fewer Al-Fe alloy foils have been proposed.

例えば、Fe:0.8〜2.8%、Si:0.04〜0.2%を含有し、残部Alと、不純物としてCu含有量を0.005%以下、Ti含有量を0.03%以下、その他の不可避的不純物の含有量を合計で0.05%以下に規制したAl−Fe合金箔(特許文献1参照)が提案されている。このAl−Fe合金箔においては、Feの大部分を金属間化合物としてアルミニウム母材中に分散させ、圧延中に導入される転位を均一に分散または回復させることにより、不均一な変形に起因するピンホール発生を低下させようとするものであるが、圧延中に導入される転位の分散または回復が容易であるため、圧延中の加工熱が不均一となった時には、局部的に先進率が変化して箔切れなどのトラブルが生じ易くなるという問題点がある。   For example, Fe: 0.8 to 2.8%, Si: 0.04 to 0.2% are contained, the balance is Al, and Cu content is 0.005% or less as impurities, and Ti content is 0.03. %, And an Al—Fe alloy foil in which the content of other inevitable impurities is regulated to 0.05% or less in total (see Patent Document 1) has been proposed. In this Al-Fe alloy foil, most of Fe is dispersed as an intermetallic compound in an aluminum base material, and dislocations introduced during rolling are uniformly dispersed or recovered, resulting in nonuniform deformation. Although it is intended to reduce the generation of pinholes, it is easy to disperse or recover the dislocations introduced during rolling, so when the processing heat during rolling becomes uneven, the advance rate is locally There is a problem in that troubles such as a foil breakage are likely to occur.

Feの一部を固溶させて転位の回復し易さを低減するアイデアもあり、過去において、Fe:0.8〜2.8%、Si:0.2%以下、、残部Alおよび不純物からなり、固溶Fe濃度を0.02%以下に規制したAl−Fe合金箔が提案されている(特許文献2参照)。このアイデアは高温均質化処理、高温中間焼鈍、長時間中間焼鈍などによりFeの一部を固溶させるもので、上記の提案のものにおいても、固溶Fe濃度の制御は鋳造から箔地焼鈍までの熱処理により行われ、例えば熱間圧延後300〜400℃で10時間以上の焼鈍が行われるが、高温均質化処理、高温中間焼鈍、長時間中間焼鈍により1μm未満の微細な金属間化合物を多く固溶する結果、最終焼鈍時のピニング効果が低減して強度が低下するとともに、圧延中に不均一な変形が生じ易くなるためピンホールが発生し易くなるという難点がある。   There is also an idea to reduce the ease of dislocation recovery by dissolving a part of Fe, and in the past, Fe: 0.8 to 2.8%, Si: 0.2% or less, the remainder from Al and impurities Therefore, an Al—Fe alloy foil whose solid solution Fe concentration is regulated to 0.02% or less has been proposed (see Patent Document 2). This idea is to dissolve a part of Fe by high-temperature homogenization treatment, high-temperature intermediate annealing, long-term intermediate annealing, etc. Even in the above proposal, the control of the solid-solution Fe concentration is from casting to foil annealing. For example, after hot rolling, annealing is performed at 300 to 400 ° C. for 10 hours or more. However, high-temperature homogenization treatment, high-temperature intermediate annealing, and long-term intermediate annealing increase the amount of fine intermetallic compounds less than 1 μm. As a result of the solid solution, the pinning effect at the time of final annealing is reduced, the strength is lowered, and non-uniform deformation is likely to occur during rolling, so that pinholes are easily generated.

Al−Fe合金箔を溶湯圧延により製造する方法も提案されている(特許文献3参照)このものにおいては、Feが連続鋳造圧延時にAl−Fe系金属間化合物として微細に晶出し、続く熱間圧延と冷間圧延により粉砕して0.2〜5μmの大きさの微細粒子として均一に分散され、その結果、この微細粒子の周囲に箔圧延中に転位が局部的に堆積して、これを駆動力として動的回復が起こるため圧延硬化の進行が抑制されピンホールが少なくなるというものであるが、この方法では、金属間化合物の分布が不均一となり易く、薄箔圧延の際、部分的な加工軟化が生じて圧延切れが生じたり、溶湯圧延時に混入し易い酸化物に起因してピンホールが発生するという問題点がある。
特開平5−295474号公報 特開昭63−26322号公報 特開平6−101003号公報
A method for producing an Al—Fe alloy foil by melt rolling has also been proposed (see Patent Document 3). In this method, Fe crystallizes finely as an Al—Fe intermetallic compound during continuous casting and rolling, and the subsequent hot It is pulverized by rolling and cold rolling and uniformly dispersed as fine particles having a size of 0.2 to 5 μm. As a result, dislocations locally accumulate around the fine particles during foil rolling, Since dynamic recovery occurs as a driving force, the progress of rolling hardening is suppressed and pinholes are reduced. However, this method tends to make the distribution of intermetallic compounds non-uniform, and partial thin foil rolling However, there is a problem in that the softening of the processing occurs to cause rolling breakage, and pinholes are generated due to oxides that are easily mixed during molten metal rolling.
JP-A-5-295474 JP 63-26322 A JP-A-6-101003

発明者らは、上記従来のAl−Fe合金箔における問題点を解消して、高強度でピンホールの少ないAl−Fe合金箔を得るために、これらの特性と金属間化合物の分布形態との関連性について試験、検討を行った結果、0.2μm以上1.0μm未満の大きさの金属間化合物の分布密度を特定範囲とした場合にピンホールが低減され、強度に優れたAl−Fe合金箔が得られることを見出した。   In order to solve the problems in the conventional Al-Fe alloy foil and to obtain an Al-Fe alloy foil with high strength and few pinholes, the inventors have determined the relationship between these characteristics and the distribution form of intermetallic compounds. As a result of examining and examining the relevance, when the distribution density of the intermetallic compound having a size of 0.2 μm or more and less than 1.0 μm is set within a specific range, pinholes are reduced and the Al—Fe alloy having excellent strength It was found that a foil was obtained.

本発明は、上記の知見に基づいてなされたものであり、その目的は、高強度でピンホールが少なく、包装用その他の用途に好適なAl−Fe合金箔を提供することにある。   The present invention has been made based on the above findings, and an object of the present invention is to provide an Al—Fe alloy foil that is high in strength and has few pinholes and is suitable for other uses for packaging.

上記の目的を達成するための本発明による高強度Al−Fe合金箔は、Fe:0.8〜2.0%、Siを0.2%以下、Mnを0.1%以下を含有し、残部Alおよび不純物からなり、マトリックス中に円相当直径0.2〜1.0μmの金属間化合物が4×106 〜8×106 個/cm2 分散していることを特徴とする。 The high-strength Al—Fe alloy foil according to the present invention for achieving the above object contains Fe: 0.8 to 2.0%, Si is 0.2% or less, and Mn is 0.1% or less. It consists of the balance Al and impurities, and is characterized in that 4 × 10 6 to 8 × 10 6 / cm 2 of intermetallic compounds having an equivalent circle diameter of 0.2 to 1.0 μm are dispersed in the matrix.

本発明によれば、高強度でピンホールが少なく、包装用その他の用途に好適なAl−Fe合金箔を提供される。   ADVANTAGE OF THE INVENTION According to this invention, Al-Fe alloy foil with high intensity | strength and few pinholes and suitable for the other use for packaging is provided.

本発明における含有成分の意義および限定理由について説明すると、Feは強度を向上させるよう機能し、Al−Fe系の金属間化合物を形成する。Feの好ましい含有範囲は0.8〜2.0%であり、0.8%未満では、形成される金属間化合物数が少ないため、その効果が十分でなく、2.0%を越えると、粗大な金属間化合物が生成して機械的性質が低下し、ピンホールが生じ易くなる。Feのさらに好ましい含有範囲は1.2〜1.6%である。   The significance and reasons for limitation of the components contained in the present invention will be described. Fe functions to improve strength and forms an Al—Fe-based intermetallic compound. The preferable content range of Fe is 0.8 to 2.0%, and if it is less than 0.8%, the number of intermetallic compounds formed is small, so that the effect is not sufficient, and if it exceeds 2.0%, Coarse intermetallic compounds are formed, the mechanical properties are lowered, and pinholes are easily generated. The more preferable content range of Fe is 1.2 to 1.6%.

Siは0.2%以下に規制することが好ましい。0.2%を越えて含有すると、鋳造時にAl−Fe−Si系の金属間化合物を生成し、この金属間化合物は球体であり、ピンホールを発生させ易くする。また、固溶Siは圧延中に不均一変形を引き起こし易くし、ピンホールを生じる。Siのさらに好ましい含有範囲は0.1%以下である。   Si is preferably regulated to 0.2% or less. If the content exceeds 0.2%, an Al—Fe—Si intermetallic compound is produced during casting, and the intermetallic compound is a sphere, which easily causes pinholes. Further, solute Si tends to cause non-uniform deformation during rolling, resulting in pinholes. A more preferable content range of Si is 0.1% or less.

Mnは0.1%以下に規制することが好ましい。Mnが0.1%以下の範囲で含有されると、Al−Fe系の金属間化合物の一部を置換して微細なAl−Fe−Mn系の金属間化合物を形成し、最終焼鈍箔の強度が向上する。0.1%を越えると、粗大なAl−Fe−Mn系の金属間化合物が形成し易くなってピンホールが増加するとともに、固溶したMnが最終焼鈍時に析出して、最終製品の結晶粒が粗大化し易くなる。Mnのさらに好ましい含有範囲は0.01〜0.05%である。   Mn is preferably regulated to 0.1% or less. When Mn is contained in a range of 0.1% or less, a part of the Al-Fe-based intermetallic compound is substituted to form a fine Al-Fe-Mn-based intermetallic compound, and the final annealed foil Strength is improved. If it exceeds 0.1%, a coarse Al—Fe—Mn intermetallic compound is easily formed to increase pinholes, and solid solution Mn precipitates during final annealing, resulting in crystal grains of the final product. Tends to be coarsened. The more preferable content range of Mn is 0.01 to 0.05%.

本発明のAl−Fe合金箔においては、その他の成分として、0.1%以下のTi、0.1%以下のBが含有されていても本発明の効果に影響することはなく、その他、Cu、Mg、Cr、Znなどの不純物は総量で0.25%以下の範囲で許容される。   In the Al-Fe alloy foil of the present invention, even if 0.1% or less of Ti and 0.1% or less of B are contained as other components, the effect of the present invention is not affected. Impurities such as Cu, Mg, Cr and Zn are allowed in a total amount of 0.25% or less.

本発明においては、円相当直径が0.2〜1.0μmの金属間化合物の分布数を特定範囲とすることにより、最終焼鈍時に結晶粒界移動が阻止され、結晶粒が微細化されて強度が向上する。上記金属間化合物の好ましい分布密度は4×106 〜8×106 個/cm2 の範囲であり、分布密度が4×106 個/cm2 未満では、転位が金属間化合物を乗り越えて移動するため強度向上の効果が小さく、分布密度が8×106 個/cm2 より大きいと、固溶成分が著しく低下するため、粗大な結晶粒が不均一に形成し、不均一結晶粒に起因する不均一変形によりピンホールが生じ易くなる。 In the present invention, by setting the number of distributions of intermetallic compounds having an equivalent circle diameter of 0.2 to 1.0 μm within a specific range, movement of crystal grain boundaries is prevented during final annealing, and crystal grains are refined and strength is increased. Will improve. The preferable distribution density of the intermetallic compound is in the range of 4 × 10 6 to 8 × 10 6 pieces / cm 2. When the distribution density is less than 4 × 10 6 pieces / cm 2 , the dislocation moves over the intermetallic compound. Therefore, if the distribution density is larger than 8 × 10 6 particles / cm 2 , the solid solution component is remarkably lowered, so that coarse crystal grains are formed unevenly, resulting in nonuniform crystal grains. Pinholes are likely to occur due to uneven deformation.

また、金属間化合物が0.2μmより小さいと、転位または結晶粒界の移動を阻止する効果が小さく、金属間化合物が1.0μmより大きいと、金属間化合物の周囲で回復が生じ易いため、加工軟化が促進され強度が低下する。   Also, if the intermetallic compound is smaller than 0.2 μm, the effect of preventing the movement of dislocations or crystal grain boundaries is small, and if the intermetallic compound is larger than 1.0 μm, recovery tends to occur around the intermetallic compound. Work softening is promoted and strength decreases.

金属間化合物の測定は、試料箔を電解研磨し、研磨後の表面を光学顕微鏡で400倍に拡大した写真を撮影し、金属間化合物の粒径分布を画像解析装置(株式会社ニレコ製ルーゼックス500)を用いて測定する。この場合、金属間化合物の直径は、円相当直径、すなわち、写真における金属間化合物の面積と同じ面積を有する円の直径として換算し、この結果から金属間化合物の粒径および数を測定する。   The intermetallic compound was measured by electrolytically polishing the sample foil, taking a photograph of the polished surface magnified 400 times with an optical microscope, and measuring the particle size distribution of the intermetallic compound with an image analyzer (Lusex 500 manufactured by Nireco Corporation). ) To measure. In this case, the diameter of the intermetallic compound is converted as the equivalent circle diameter, that is, the diameter of a circle having the same area as the area of the intermetallic compound in the photograph, and the particle diameter and number of the intermetallic compound are measured from the result.

本発明のAl−Fe合金箔は、前記の組成を有するアルミニウム合金を、例えばDC鋳造により造塊し、得られた鋳塊を均質化処理後、熱間圧延し、その後、2回の中間焼鈍を介しての冷間圧延を行うことにより製造され、最終焼鈍を施す。   The Al-Fe alloy foil of the present invention is an ingot of an aluminum alloy having the above composition, for example, by DC casting. The obtained ingot is homogenized and hot-rolled, and then subjected to two intermediate annealings. It is manufactured by carrying out cold rolling through a final annealing.

金属間化合物の分布密度の制御は、鋳造速度などの鋳造条件、均質化処理条件、熱間圧延条件、中間焼鈍条件、あるいはこれらの条件の組み合わせを調整することにより行われるが、上記の範囲の金属間化合物の分布密度を得るためには、鋳造速度を35〜50mm/分、均質化処理温度を460〜500℃とするのが好ましい。また、熱間圧延後、加工度40〜60%の冷間圧延を行って析出サイトとなる加工歪を導入したのち第1回目の中間焼鈍を行い、その後冷間圧延し第2回目の中間焼鈍を施して、さらに冷間圧延するのが望ましく、第1〜2回目の中間焼鈍条件は300〜400℃で1〜5時間とするのが好ましい。   The distribution density of the intermetallic compound is controlled by adjusting casting conditions such as casting speed, homogenization treatment conditions, hot rolling conditions, intermediate annealing conditions, or a combination of these conditions. In order to obtain the distribution density of the intermetallic compound, it is preferable that the casting speed is 35 to 50 mm / min and the homogenization temperature is 460 to 500 ° C. In addition, after hot rolling, cold rolling at a work degree of 40 to 60% is performed to introduce a working strain that becomes a precipitation site, and then the first intermediate annealing is performed, and then cold rolling is performed and the second intermediate annealing is performed. It is desirable to further cold-roll, and the first and second intermediate annealing conditions are preferably 300 to 400 ° C. and 1 to 5 hours.

熱間圧延後の熱延コイルは析出または組織が不均一で、そのまま冷間圧延を行うと、不均一な析出が生じ易く、また組織の均一化も得られ難いため、そのまま冷間圧延を継続すると不均一組織部でピンホールが生じ易くなる。本発明においては、熱間圧延後、加工度40〜60%の冷間圧延を行い、その後中間焼鈍を行う。熱間圧延後できるだけ早く冷間圧延し、中間焼鈍を行うのが好ましい。熱間圧延後60%を越える冷間圧延を施して中間焼鈍すると、形成された不均一な冷間圧延組織が均一化し難い。熱間圧延後、加工度40〜60%の冷間圧延を行い、その後第1回目の中間焼鈍を施して冷間圧延を行い、第2回目の中間焼鈍を施して、さらに冷間圧延することによって、析出量が多く、加工により転位が均一に導入されているため析出形態も微細且つ均一となる。熱間圧延後直ちに中間焼鈍を行っても加工組織が十分に導入されないため析出が促進されず、上記の効果が得難くなる。   The hot-rolled coil after hot rolling has a non-uniform precipitation or structure. If cold rolling is performed as it is, non-uniform precipitation is likely to occur and it is difficult to obtain a uniform structure. As a result, pinholes are likely to occur in the non-uniform tissue portion. In the present invention, after hot rolling, cold rolling with a work degree of 40 to 60% is performed, and then intermediate annealing is performed. It is preferable to cold-roll as soon as possible after hot rolling and to perform intermediate annealing. When cold rolling exceeding 60% is performed after hot rolling and intermediate annealing is performed, the formed non-uniform cold rolling structure is difficult to homogenize. After hot rolling, perform cold rolling with a workability of 40 to 60%, then perform the first intermediate annealing, perform cold rolling, perform the second intermediate annealing, and further cold rolling Therefore, the amount of precipitation is large, and dislocations are introduced uniformly by processing, so that the precipitation form is also fine and uniform. Even if the intermediate annealing is performed immediately after the hot rolling, the processed structure is not sufficiently introduced, so that the precipitation is not promoted and the above effect is difficult to obtain.

以下、本発明の実施例を比較例と対比して説明するとともに、それに基づいてその効果を実証する。なお、これらの実施例は本発明の好ましい一実施態様を示すものであり、本発明はこれに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples, and the effects will be demonstrated based on the examples. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.

Fe:1.25%、Si:0.05%、Mn:0.05%、不純物総量0.17%を含有し、残部AlからなるAl−Fe合金を表1に示す鋳造速度でDC鋳造により造塊し、得られた鋳塊を、表1に示す条件で均質化処理した。   An Al—Fe alloy containing Fe: 1.25%, Si: 0.05%, Mn: 0.05%, and a total amount of impurities of 0.17%, and the balance being Al is obtained by DC casting at a casting speed shown in Table 1. The ingot was obtained and homogenized with the conditions shown in Table 1.

ついで、熱間圧延により厚さ4mmの熱延板とした後、熱延板を中間焼鈍を行うことなく加工度50%の冷間圧延を行って、第1回目の中間焼鈍を行い、続いて冷間圧延(厚さ0.5mmまで)−第2回目の中間焼鈍−冷間圧延により厚さ6μmまで製箔(試験材No.1〜3及び5)し、300℃の温度で最終焼鈍してAl−Fe合金箔とした。中間焼鈍条件を表1に示す。試験材No.4は、熱延板(厚さ4mm)を厚さ0.5mmまで冷間圧延した後、表1に示す条件で中間焼鈍し、ついで冷間圧延により厚さ6mmまで製箔した。また試験材No.5は、熱延板(厚さ4mm)を325℃で12時間中間焼鈍し、その後、中間焼鈍を行うことなしに冷間圧延を続行し厚さ6mmまで製箔した。   Then, after hot rolling to obtain a hot rolled sheet having a thickness of 4 mm, the hot rolled sheet is subjected to cold rolling at a workability of 50% without performing intermediate annealing, and then the first intermediate annealing is performed. Cold rolling (up to 0.5 mm thickness)-Second intermediate annealing-Folding to 6 μm thickness by cold rolling (test materials No. 1 to 3 and 5) and final annealing at a temperature of 300 ° C Al-Fe alloy foil. Table 1 shows the intermediate annealing conditions. Test material No. In No. 4, a hot-rolled sheet (thickness 4 mm) was cold-rolled to a thickness of 0.5 mm, then subjected to intermediate annealing under the conditions shown in Table 1, and then cold-rolled to form a foil to a thickness of 6 mm. In addition, the test material No. In No. 5, hot-rolled sheets (thickness 4 mm) were subjected to intermediate annealing at 325 ° C. for 12 hours, and then cold rolling was continued without intermediate annealing to produce a foil having a thickness of 6 mm.

Figure 2005163097
Figure 2005163097

得られた最終焼鈍後のAl−Fe合金箔について、前記の測定方法に従って0.2〜1.0μmの金属間化合物の分布密度を測定し、最終焼鈍後の引張強さ、ピンホール数を測定した。結果を表2に示す。表2に示すように、本発明に従う試験材No.1〜3はいずれも、引張強さが100MPaを越える高強度を有し、ピンホール数もきわめて少ない。これに対して、金属間化合物の分布密度が本発明の条件を外れた試験材No.4〜6は、強度が低く、ピンホール数も多かった。   About the obtained Al-Fe alloy foil after the final annealing, the distribution density of the intermetallic compound of 0.2 to 1.0 μm is measured according to the above measurement method, and the tensile strength and the number of pinholes after the final annealing are measured. did. The results are shown in Table 2. As shown in Table 2, the test material No. 1-3 each have a high strength with a tensile strength exceeding 100 MPa, and the number of pinholes is extremely small. On the other hand, the test material No. in which the distribution density of the intermetallic compound deviates from the conditions of the present invention. 4 to 6 had low strength and a large number of pinholes.

Figure 2005163097
Figure 2005163097

Claims (1)

Fe:0.8〜2.0%(質量%、以下同じ)、Siを0.2%以下(0%を含む、以下同じ)、Mnを0.1%以下(0%を含む、以下同じ)を含有し、残部Alおよび不純物からなり、マトリックス中に円相当直径0.2〜1.0μmの金属間化合物が4×106 〜8×106 個/cm2 分散していることを特徴とする高強度Al−Fe合金箔。
Fe: 0.8 to 2.0% (mass%, the same applies hereinafter), Si 0.2% or lower (including 0%, same hereafter), Mn 0.1% or lower (including 0%, hereafter the same) ), The balance consisting of Al and impurities, and an intermetallic compound having a circle-equivalent diameter of 0.2 to 1.0 μm dispersed in the matrix at 4 × 10 6 to 8 × 10 6 / cm 2 High strength Al-Fe alloy foil.
JP2003402922A 2003-12-02 2003-12-02 High strength Al-Fe alloy foil and manufacturing method thereof Expired - Fee Related JP4364616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402922A JP4364616B2 (en) 2003-12-02 2003-12-02 High strength Al-Fe alloy foil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402922A JP4364616B2 (en) 2003-12-02 2003-12-02 High strength Al-Fe alloy foil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005163097A true JP2005163097A (en) 2005-06-23
JP4364616B2 JP4364616B2 (en) 2009-11-18

Family

ID=34726366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402922A Expired - Fee Related JP4364616B2 (en) 2003-12-02 2003-12-02 High strength Al-Fe alloy foil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4364616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092150A (en) * 2005-09-29 2007-04-12 Dowa Holdings Co Ltd Aluminum-ceramic joined substrate and method for producing the same
WO2014021170A1 (en) 2012-08-01 2014-02-06 古河スカイ株式会社 Aluminum alloy foil and method for producing same
JP2014101559A (en) * 2012-11-21 2014-06-05 Uacj Corp Aluminum alloy foil, molding package material, battery, medicine packaging container and method of manufacturing aluminum alloy foil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092150A (en) * 2005-09-29 2007-04-12 Dowa Holdings Co Ltd Aluminum-ceramic joined substrate and method for producing the same
WO2014021170A1 (en) 2012-08-01 2014-02-06 古河スカイ株式会社 Aluminum alloy foil and method for producing same
KR20150034290A (en) 2012-08-01 2015-04-02 가부시키가이샤 유에이씨제이 Aluminum alloy foil and method for producing same
US9732402B2 (en) 2012-08-01 2017-08-15 Uacj Corporation Aluminum alloy foil and method for manufacturing same
JP2014101559A (en) * 2012-11-21 2014-06-05 Uacj Corp Aluminum alloy foil, molding package material, battery, medicine packaging container and method of manufacturing aluminum alloy foil

Also Published As

Publication number Publication date
JP4364616B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
Bi et al. An additively manufactured Al-14.1 Mg-0.47 Si-0.31 Sc-0.17 Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance
JP2009242895A (en) High-strength copper alloy of excellent bending processability
WO2014163087A1 (en) Titanium cast piece for hot rolling use, and method for producing same
WO2016161565A1 (en) Formable magnesium based wrought alloys
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2008308703A (en) Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material
JP6169950B2 (en) Aluminum alloy substrate for magnetic disk
JPH0118979B2 (en)
JP4799903B2 (en) Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
EP3548643A1 (en) Ecae materials for high strength aluminum alloys
JP2019014940A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2008069421A (en) Magnesium alloy for wrought product, sheet material for press forming made of the alloy, and its production method
JP2019014939A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
WO2013180122A1 (en) Magnesium alloy, magnesium alloy member and method for manufacturing same, and method for using magnesium alloy
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JP2005097638A (en) High-strength copper alloy superior in bending workability
EP1360341A1 (en) Production of high strength aluminum alloy foils
JP4429877B2 (en) Method for producing magnesium alloy sheet having fine crystal grains
JPS61119658A (en) Manufacture of material for aluminum foil
JP2004231985A (en) High strength copper alloy with excellent bendability
WO2018088351A1 (en) Aluminum alloy extruded material
JP2009024219A (en) High strength and formable aluminum alloy cold-rolled sheet
JP4364616B2 (en) High strength Al-Fe alloy foil and manufacturing method thereof
JP3787695B2 (en) Aluminum alloy foil and method for producing the same
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4364616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees