JP2005163095A - METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME - Google Patents

METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME Download PDF

Info

Publication number
JP2005163095A
JP2005163095A JP2003402654A JP2003402654A JP2005163095A JP 2005163095 A JP2005163095 A JP 2005163095A JP 2003402654 A JP2003402654 A JP 2003402654A JP 2003402654 A JP2003402654 A JP 2003402654A JP 2005163095 A JP2005163095 A JP 2005163095A
Authority
JP
Japan
Prior art keywords
gasb
based alloy
sintered
raw material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402654A
Other languages
Japanese (ja)
Inventor
Shohei Mizunuma
昌平 水沼
Hiroyuki Ito
弘幸 伊藤
Juichi Shimizu
寿一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003402654A priority Critical patent/JP2005163095A/en
Publication of JP2005163095A publication Critical patent/JP2005163095A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a sintered compact by which the occurrence of defects such as chipping in the edge parts of a sintered compact can be prevented, and to provide a sputtering target which attains the sintered density of ≥85% in a Ga-Sb based sintered compact and is suitable for the formation of a phase transition optical disk recording film adaptible to a high speed operation. <P>SOLUTION: The sintered compact is obtained by a stage where raw material powder is filled into a rubber mold with a prescribed shape, and is thereafter subjected to hot hydrostatic press under the pressure of ≥0.5 ton to obtain a green compact, and a stage where the green compact is sintered by a hot press. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は焼結体の製造方法に関する。また、本発明は、特に相変化光ディスクの記録膜の形成に用いられるGaSb系合金スパッタリングターゲットおよびその製造方法に関する。   The present invention relates to a method for producing a sintered body. The present invention also relates to a GaSb-based alloy sputtering target used for forming a recording film of a phase change optical disk and a method for manufacturing the same.

現在、表示素子、半導体素子および記録媒体といった種々の分野で、スパッタリング法によって作製された機能性薄膜が広く用いられている。スパッタリング法は、スパッタリングターゲット(以下、単に「ターゲット」と呼ぶ。)を用いて、希薄ガス中で発生させたプラズマによってターゲットから所定の物質を放出させ、それを基板上に堆積させることにより薄膜を形成するものである。   Currently, functional thin films produced by sputtering are widely used in various fields such as display elements, semiconductor elements, and recording media. A sputtering method uses a sputtering target (hereinafter simply referred to as a “target”) to release a predetermined substance from the target by plasma generated in a rare gas and deposit it on a substrate to form a thin film. To form.

薄膜として多種多様の材料が使用されるため、多種多様の材質のターゲットが求められ、それに対応してターゲットの製造方法にも種々の方法が採用されている。脆性材料あるいは原料が粉末である物質の場合に、粉末冶金法はターゲットの製造に最も広く用いられている。粉末冶金法には、静水圧プレス+常圧焼結法、熱間静水圧法(HIP法)、ホットプレス法等があり、ホットプレス法はターゲットの製造に有力な方法である。   Since a wide variety of materials are used as the thin film, a target of a wide variety of materials is required, and various methods are employed in the target manufacturing method accordingly. In the case of a brittle material or a material whose raw material is a powder, the powder metallurgy method is most widely used for target production. The powder metallurgy includes an isostatic pressing + atmospheric pressure sintering method, a hot isostatic pressing method (HIP method), a hot pressing method, and the like, and the hot pressing method is an effective method for target production.

ホットプレス法は、円筒状または断面矩形の筒状の型の中に原料粉末を充填し、型を加熱すると同時に上下から圧力を加えることによって、原料粉末を焼結する方法である。熱と圧力を同時に付加することから、比較的低い温度で高い相対密度の焼結体を得られるという特徴を有する。   The hot press method is a method in which raw material powder is filled into a cylindrical or cylindrical mold having a rectangular cross section, and the raw material powder is sintered by heating the mold and simultaneously applying pressure from above and below. Since heat and pressure are simultaneously applied, a sintered body having a high relative density can be obtained at a relatively low temperature.

また、ホットプレス法は、同様に熱と圧力を同時に付加する焼結法である熱間静水圧プレス法(HIP法)に比べて、製品形状に近い焼結体を得られるため、原料投入量に対する歩留りを比較的高くできるという特徴を有する。そのため、ターゲットのような、比較的高価な原料を用いて、少量多品種な製品を製造する場合には好適である。   In addition, compared to the hot isostatic press method (HIP method), which is a sintering method in which heat and pressure are applied simultaneously, the hot press method can obtain a sintered body close to the product shape. The yield is relatively high. Therefore, it is suitable for manufacturing a small variety of products using a relatively expensive raw material such as a target.

しかしながら、ホットプレス法については、得られる焼結体の端部で欠けが発生しやすく、そのため製品の部留りを十分に向上させることが困難となっている。また、材質によっては相対密度を十分に上げられないという問題があった。   However, in the hot press method, chipping is likely to occur at the end of the obtained sintered body, and therefore it is difficult to sufficiently improve the product yield. In addition, there is a problem that the relative density cannot be sufficiently increased depending on the material.

一方、コンピュータ情報、映像情報あるいは音楽情報を記録する媒体としてCD−RW、DVD−RW、DVD−RAM、DVD+RWといった各種の相変化光ディスクが用いられている。これらの光ディスクは、プラスチック基板上に保護膜、記録膜、保護膜、反射膜等をスパッタリング法により順次形成することによって製造される。このうちの記録膜は、レーザー加熱を制御することにより結晶構造とアモルファス構造の2つの状態をとり、それぞれの状態での反射率が異なることを利用してデジタル情報を記録するもので、従来はAgInSbTe系合金やGeSbTe系合金が材料として用いられてきた。   On the other hand, various phase change optical disks such as CD-RW, DVD-RW, DVD-RAM, and DVD + RW are used as media for recording computer information, video information, or music information. These optical disks are manufactured by sequentially forming a protective film, a recording film, a protective film, a reflective film, and the like on a plastic substrate by a sputtering method. Of these, the recording film takes two states, a crystal structure and an amorphous structure, by controlling the laser heating, and records digital information using the fact that the reflectance in each state is different. AgInSbTe-based alloys and GeSbTe-based alloys have been used as materials.

情報処理量の増大により、光ディスクには高容量化と高速度化が強く要求されているが、高速化についてはディスク構造の改善に加えて記録膜用材料の選定が重要である。従来、AgInSbTe系合金やGeSbTe系合金の組成を最適化することにより、高速化に対応してきたが、それも限界に近づきつつある。よって、より高速化に適した新しい合金系が望まれている。   Due to an increase in the amount of information processing, there is a strong demand for higher capacity and higher speed for optical discs. In order to increase the speed, it is important to select a recording film material in addition to improving the disc structure. Conventionally, it has been possible to increase the speed by optimizing the composition of the AgInSbTe-based alloy or GeSbTe-based alloy, but it is also approaching the limit. Therefore, a new alloy system suitable for higher speed is desired.

12原子%Ga−88原子%Sb共晶合金は、アモルファス構造から結晶構造へ変わる速度、いわゆる結晶化速度が速く、AgInSbTe系合金やGeSbTe系合金に代わる高速化対応の記録膜用材料として期待されている(たとえば、H. Tashiro, et al.,"Characterization of GaSb Phase-Change Material for High-Speed Rewritable Media", pp11-15, Proceedings of The 14th Symposium on Phase Change Optical Information Storage(2002)、参照)。   The 12 atomic% Ga-88 atomic% Sb eutectic alloy has a high rate of change from an amorphous structure to a crystalline structure, that is, a so-called crystallization speed, and is expected as a high-speed recording film material that can replace AgInSbTe alloys and GeSbTe alloys. (For example, see H. Tashiro, et al., “Characterization of GaSb Phase-Change Material for High-Speed Rewritable Media”, pp11-15, Proceedings of The 14th Symposium on Phase Change Optical Information Storage (2002)) .

記録膜用スパッタリングターゲットは、一般的には溶解鋳造を経て得た材料合金粉末を、前記したホットプレス等の手段によって焼結することにより製造される。しかしながら、12原子%Ga−88原子%Sb共晶合金を基とするGaSb系合金については、従来の方法で製造しても、焼結密度(合金の真密度に対する焼結体の相対密度として表す)が80%程度までしか上がらず、スパッタリング時に異常放電等の不都合が生じたり、相変化光ディスクの生産効率が上がらないといった問題が発生していた。
H. Tashiro, et al.,"Characterization of GaSb Phase-Change Material for High-Speed Rewritable Media", pp11-15, Proceedings of The 14th Symposium on Phase Change Optical Information Storage(2002)
The sputtering target for recording film is generally manufactured by sintering material alloy powder obtained through melting and casting by means such as the above hot press. However, a GaSb-based alloy based on a 12 atomic% Ga-88 atomic% Sb eutectic alloy is expressed as a sintered density (relative density of the sintered body with respect to the true density of the alloy) even if manufactured by a conventional method. ) Has increased only to about 80%, causing problems such as abnormal discharge during sputtering, and the production efficiency of phase change optical disks not increasing.
H. Tashiro, et al., "Characterization of GaSb Phase-Change Material for High-Speed Rewritable Media", pp11-15, Proceedings of The 14th Symposium on Phase Change Optical Information Storage (2002)

本発明は、焼結体の製造方法において、得られる焼結体の端部における欠けなどの不良が発生しないようにすることを目的とする。また、GaSb系合金焼結体において、85%以上の焼結密度を達成し、高速化に対応した相変化光ディスク記録膜の形成に好適なスパッタリングターゲットを提供する。   It is an object of the present invention to prevent defects such as chipping at the end of the obtained sintered body from occurring in the method for producing a sintered body. Further, the present invention provides a sputtering target suitable for forming a phase change optical disk recording film that achieves a sintering density of 85% or more in a GaSb-based alloy sintered body and supports high speed.

本発明に係る焼結体の製造方法は、原料粉末を所定形状のゴム型に充填した後、該原料粉末に0.5トン以上の圧力で静水圧プレスを施すことにより圧粉体を得る工程、および、該圧粉体をホットプレスにより焼結する工程からなることを特徴とする。これにより、焼結体の端部における欠けなどの不良を防止できる。   The method for producing a sintered body according to the present invention includes a step of obtaining a green compact by filling a raw material powder into a rubber mold having a predetermined shape and then subjecting the raw material powder to a hydrostatic press at a pressure of 0.5 tons or more. And a step of sintering the green compact by hot pressing. Thereby, defects, such as a chip | tip in the edge part of a sintered compact, can be prevented.

本発明に係る焼結体の製造方法は、焼結体の焼結密度の向上にも効果を有しており、特に当該製造方法をGaSb系合金粉末のスパッタリングターゲットの製造に適用すると有用である。すなわち、これにより、GaSb系合金ターゲットの相対密度を85%以上とすることができる。   The method for producing a sintered body according to the present invention is also effective in improving the sintered density of the sintered body, and is particularly useful when the production method is applied to the production of a sputtering target of GaSb-based alloy powder. . That is, as a result, the relative density of the GaSb-based alloy target can be 85% or more.

なお、GaSb系合金が、1原子%以上かつ50原子%未満のGaを含み、残部がSbおよび不可避不純物からなる場合に、本発明の製造方法の適用が最適である。   In addition, when the GaSb-based alloy contains 1 atomic% or more and less than 50 atomic% of Ga, and the balance is composed of Sb and inevitable impurities, the application of the manufacturing method of the present invention is optimal.

また、GaSb系合金が、1原子%以上かつ50原子%未満のGaを含むGaSb合金を基とし、添加元素を加えた合金であって、かつ、固相線温度が589℃以下である場合に、本発明の製造方法の適用が最適である。   In addition, when the GaSb-based alloy is an alloy based on a GaSb alloy containing Ga of 1 atomic% or more and less than 50 atomic% to which an additive element is added, and the solidus temperature is 589 ° C. or lower. The application of the production method of the present invention is optimal.

本発明により、ホットプレス法において、しばしば発生する焼結体端部の欠けが発生することを防止でき、特にスパッタリングターゲット用として好適な焼結体を効率よく製造しうる。   According to the present invention, it is possible to prevent the occurrence of chipping at the end of a sintered body that frequently occurs in the hot press method, and it is possible to efficiently produce a sintered body particularly suitable for a sputtering target.

また、本発明を記録膜用のGaSb系合金ターゲットの製造に用いることにより、高い焼結密度のGaSb系合金ターゲットを提供でき、もって相変化光ディスクのさらなる高速化を実現しうる。   In addition, by using the present invention for the production of a GaSb alloy target for a recording film, a GaSb alloy target having a high sintered density can be provided, thereby further increasing the speed of the phase change optical disk.

本発明者らは、ホットプレス法で得た焼結体の端部がしばしば欠ける問題について、種々の検討を行った結果、焼結体の端部に欠けが発生する原因が、ホットプレスの型への原料粉末の充填にあるとの知見を得た。そして、ホットプレスによる焼結工程の前処理としてゴム型を用いた静水圧プレス成形を導入することにより、この問題を解決しうることを見出した。    As a result of various studies on the problem that the end portion of the sintered body obtained by the hot press method is often chipped, the inventors have found that the cause of the chipping at the end portion of the sintered body is the mold of the hot press. The knowledge that it was in the filling of the raw material powder to the was obtained. And it discovered that this problem could be solved by introducing isostatic pressing using a rubber mold as a pretreatment of the sintering process by hot pressing.

通常のホットプレス法では、直接、型中に原料粉末を投入する。この場合、どうしても型中の原料粉末の充填密度が均一になりにくく、特に、型の端部の密度が不足する傾向がある。そのため、焼結後の冷却時あるいは焼結体を型から取り出す時に、焼結体の端部に欠けが発生しやすくなると考えられる。   In a normal hot press method, raw material powder is directly put into a mold. In this case, the packing density of the raw material powder in the mold is inevitably difficult to be uniform, and in particular, the density at the end of the mold tends to be insufficient. For this reason, it is considered that chipping is likely to occur at the end of the sintered body during cooling after sintering or when the sintered body is taken out of the mold.

ホットプレスによる焼結工程の前処理として、図1に示すようなゴム型を用いた静水圧プレス成形を導入する。これにより、焼結体端部の欠けの発生が防止できるのは、静水圧プレス成形により等方的な力が加わるために、原料粉末の充填密度の不均一性が解消されるためと考えられる。   As a pretreatment for the sintering process by hot pressing, isostatic pressing using a rubber mold as shown in FIG. 1 is introduced. This is considered to be because the generation of chipping at the end of the sintered body can be prevented because isotropic force is applied by isostatic pressing, thereby eliminating the nonuniformity of the packing density of the raw material powder. .

ゴム型は、図1に示すように、下ゴム板(1)と上ゴム板(2)からなり、下ゴム板(1)には筒状ゴム(3)が設けられ、筒状ゴム(3)により形成される空間に原料粉末(4)を充填する。上ゴム板(2)には筒状ゴム(3)の形状に対応する切り溝が設けられている。作製に際しては、筒状ゴム内に原料粉末を充填した後に、図1において矢印で示すように、切り溝に筒状ゴム(3)を嵌合させるようにして、上ゴム板(2)が蓋となるように、上ゴム板(2)と下ゴム板(1)とを合わせる。これにより、原料粉末は板状に成形される。   As shown in FIG. 1, the rubber mold includes a lower rubber plate (1) and an upper rubber plate (2). The lower rubber plate (1) is provided with a cylindrical rubber (3), and the cylindrical rubber (3 ) Is filled with the raw material powder (4). The upper rubber plate (2) is provided with a kerf corresponding to the shape of the cylindrical rubber (3). At the time of production, after the raw material powder is filled in the cylindrical rubber, the upper rubber plate (2) is covered with the cylindrical rubber (3) fitted into the kerf as shown by the arrow in FIG. The upper rubber plate (2) and the lower rubber plate (1) are aligned. Thereby, raw material powder is shape | molded by plate shape.

なお、ゴム型の形状は、所望の焼結体の形状により任意であり、図1に示す直方体形状のほか、円筒形状のものも採用できる。   The shape of the rubber mold is arbitrary depending on the shape of the desired sintered body, and a cylindrical shape can be adopted in addition to the rectangular parallelepiped shape shown in FIG.

静水圧プレスの圧力を0.5トン以上とするのが好ましい。これは、0.5トン未満の加圧では原料粉末の充填のされ方が不十分となるからである。静水圧プレスの圧力には上限はないが、一般的に可能な静水圧プレスの圧力範囲内であって、圧力が0.5トン以上あれば、本発明の効果は得られる。   The pressure of the hydrostatic press is preferably 0.5 tons or more. This is because the raw material powder is not sufficiently filled when the pressure is less than 0.5 tons. Although there is no upper limit to the pressure of the hydrostatic press, the effect of the present invention can be obtained as long as it is within the generally possible hydrostatic press pressure range and the pressure is 0.5 ton or more.

なお、通常の静水圧プレス成形の場合には、原料粉末をまず金型で予備成形した後に、ゴム型に挿入するが、本発明の場合には金型による予備成形の必要はない。   In the case of normal isostatic pressing, the raw material powder is first preformed with a mold and then inserted into a rubber mold. In the present invention, there is no need for preforming with a mold.

本発明を用いると、焼結体端部の欠け発生を防止する効果に加えて、ホットプレス法による焼結体製造時の生産性を向上する効果も得られる。すなわち、直接、原料粉末を投入する場合に比べて充填密度が上がるために一度に焼結しうる焼結体の枚数が増えること、取扱いが容易な圧粉体を用いて原料投入するため、多段焼結時の原料の投入作業が短時間で行えるようになることにより、従来のホットプレス法を用いた場合よりも生産性を向上させることが可能になる。   When the present invention is used, in addition to the effect of preventing chipping at the end of the sintered body, the effect of improving the productivity at the time of manufacturing the sintered body by the hot press method is also obtained. That is, since the packing density is increased compared to the case of directly feeding raw material powder, the number of sintered bodies that can be sintered at one time is increased, and the raw material is fed using a compact that is easy to handle. Since the raw material can be charged in a short time during the sintering process, productivity can be improved as compared with the conventional hot press method.

本発明方法において、用いる原料粉末に特に制約はないが、端部の欠けが発生しやすい脆性材料(たとえば、TbFe系の金属間化合物やSbやGe等の半金属材料など)を製造する場合に効果が大きい。   In the method of the present invention, the raw material powder to be used is not particularly limited. However, when manufacturing a brittle material (for example, a TbFe-based intermetallic compound or a semi-metallic material such as Sb or Ge) that easily causes chipping at the end. Great effect.

ゴム型で成形した圧粉体は、必要に応じて外形加工を加えた後に、ホットプレス装置に設置されている型に挿入される。ホットプレス条件は一般に用いられる条件で差し支えない。また、ホットプレスにより得られた焼結体は、一般的に用いられる方法をそのまま適用して、ターゲットの製造に用いることが可能である。   The green compact molded with a rubber mold is inserted into a mold installed in a hot press apparatus after external processing is applied as necessary. Hot press conditions may be those generally used. In addition, a sintered body obtained by hot pressing can be used for production of a target by applying a generally used method as it is.

一方、GaSb系合金による記録膜の形成において、そのスパッタリング時に異常放電等の不都合が生じたり、相変化光ディスクの生産効率が上がらないなどの点について、本発明者らが種々の検討を行った。その結果、ターゲットの焼結密度を85%以上とすることにより、GaSb系合金の記録膜の形成に上記の問題の発生を防止できることを見出した。また、ホットプレスによる焼結工程の前処理として、ゴム型を用いた静水圧プレス成形を導入することにより、欠けの発生なしに、85%以上の焼結密度を有するGaSb系合金ターゲットの製造が可能となることを見出した。   On the other hand, the inventors of the present invention have made various studies on the formation of a recording film using a GaSb-based alloy, such as inconveniences such as abnormal discharge during sputtering, and the production efficiency of a phase change optical disk not increasing. As a result, it has been found that the above problem can be prevented in the formation of a GaSb-based alloy recording film by setting the sintering density of the target to 85% or more. In addition, by introducing isostatic pressing using a rubber mold as a pretreatment for the sintering process by hot pressing, it is possible to produce a GaSb-based alloy target having a sintered density of 85% or more without occurrence of chipping. I found it possible.

本発明において、焼結密度(ここでは、GaSb合金の真密度に対する焼結体の相対密度をいう)を85%以上としたのは、85%未満では、低密度に起因して異常放電の多発や低生産性といった問題が発生するからである。   In the present invention, the sintered density (in this case, the relative density of the sintered body with respect to the true density of the GaSb alloy) is set to 85% or more. If the sintered density is less than 85%, frequent abnormal discharges occur due to low density. This is because problems such as low productivity occur.

本発明は、12原子%Ga−88原子%Sb共晶合金を基とする各種GaSb系合金において有効である。具体的には、1原子%以上かつ50原子%未満のGaを含み残部がSbおよび不可避不純物からなる2元合金、および上記GaSb合金に各種の添加元素を加えた多元合金のうちで固相線温度が589℃より低くなる合金の場合に特に有効である。これは、固相線温度が下がると、ホットプレス温度をさらに低温化する必要が生じるためである。なお、589℃は、GaSb2元系合金の共晶温度である。   The present invention is effective in various GaSb-based alloys based on a 12 atom% Ga-88 atom% Sb eutectic alloy. Specifically, among the binary alloys containing Ga of 1 atomic% or more and less than 50 atomic% with the balance being Sb and inevitable impurities, and the multi-element alloys in which various additive elements are added to the GaSb alloy, the solidus line This is particularly effective when the alloy has a temperature lower than 589 ° C. This is because if the solidus temperature is lowered, it is necessary to further lower the hot press temperature. Note that 589 ° C. is the eutectic temperature of the GaSb binary alloy.

ホットプレスによる焼結工程の前処理として、ゴム型を用いた静水圧プレス成形を導入することにより、高密度な焼結体が得られるのは、静水圧プレス成形により原料粉末の充填密度が上がるためと考えられる。   By introducing isostatic pressing using a rubber mold as a pretreatment for the sintering process by hot pressing, a high-density sintered body can be obtained because the packing density of the raw material powder is increased by isostatic pressing. This is probably because of this.

この場合も、静水圧プレスの圧力を0.5トン以上とするのは、0.5トン未満の加圧では密度の上昇が不十分となるからである。焼結密度を向上させることを目的とする場合、本発明に用いる原料粉末に特に制約はないが、平均粒径が100μm以下の粉砕粉を用いるのが好ましい。ゴム型で成形したプレス体は、必要に応じて外形加工を加えた後に、ホットプレス装置内の型に挿入される。   Also in this case, the pressure of the hydrostatic press is set to 0.5 ton or more because the increase in density becomes insufficient when the pressure is less than 0.5 ton. When the purpose is to improve the sintered density, the raw material powder used in the present invention is not particularly limited, but it is preferable to use a pulverized powder having an average particle size of 100 μm or less. The press body molded with a rubber mold is inserted into a mold in a hot press apparatus after external processing is applied as necessary.

ホットプレス条件は一般に用いられる条件で差し支えないが、ホットプレス温度は合金の「固相線温度−50℃」以上で「固相線温度」未満とし、ホットプレス圧力は250kg/cm2 以上とするのが好ましい。ホットプレスにより得られた焼結体は、外形加工とバッキングプレートへのボンディングを経て、ターゲットとして用いられる。外形加工とボンディングについては、一般的に用いられる方法をそのまま適用できる。 The hot press conditions may be those generally used, but the hot press temperature is higher than the “solidus temperature −50 ° C.” of the alloy and lower than the “solidus temperature”, and the hot press pressure is 250 kg / cm 2 or higher. Is preferred. The sintered body obtained by hot pressing is used as a target after external processing and bonding to a backing plate. For outline processing and bonding, generally used methods can be applied as they are.

(実施例1)
還元拡散法により得たFe−23.5原子%−7.0原子%Co−3.0原子%Cr合金粉末を原料粉末として用意した。原料粉末を円筒状ゴム型に詰めた後、ビニール袋で密閉した状態で静水圧プレス装置に挿入し、0.5トンあるいは2トンまで静水圧をかけて圧粉体を作製した。得られた圧粉体は、外周部を削って大きさを調整した後に、ホットプレス装置内に設置された黒鉛型に挿入した。
(Example 1)
Fe-23.5 atomic% -7.0 atomic% Co-3.0 atomic% Cr alloy powder obtained by the reduction diffusion method was prepared as a raw material powder. After the raw material powder was packed into a cylindrical rubber mold, it was inserted into a hydrostatic press while being sealed with a plastic bag, and a green compact was produced by applying hydrostatic pressure to 0.5 tons or 2 tons. The obtained green compact was adjusted in size by shaving the outer periphery, and then inserted into a graphite mold installed in a hot press apparatus.

真空雰囲気において、温度1000℃と圧力300kg/cm2 を2時間負荷し、ホットプレスを行った。得られた焼結体は直径129mm×厚さ13mmであり、焼結体の密度はそれぞれ8.1g/cm3 と8.3g/cm3 であった。 In a vacuum atmosphere, a temperature of 1000 ° C. and a pressure of 300 kg / cm 2 were loaded for 2 hours, and hot pressing was performed. The obtained sintered body was 129 mm in diameter and 13 mm in thickness, and the density of the sintered body was 8.1 g / cm 3 and 8.3 g / cm 3 , respectively.

同一の条件でそれぞれ5枚づつ合計10枚のホットプレスを実施したが、すべてにおいて、割れや欠けのない焼結体が得られた。   Under the same conditions, a total of 10 hot presses of 5 sheets were carried out, but in all cases, sintered bodies free from cracks and chips were obtained.

(比較例1)
実施例1と同一の原料粉末を黒鉛型に直接充填し、同一条件でホットプレスを行った。同様の形状の焼結体が得られたが、燒結密度は7.9g/cm3 であった。同一条件で合計10枚ホットプレスを実施したが、そのうち2枚の端部に欠けが発生しており、ターゲットとして使用できなかった。
(Comparative Example 1)
The same raw material powder as in Example 1 was directly filled into a graphite mold and hot pressed under the same conditions. A sintered body having the same shape was obtained, but the sintered density was 7.9 g / cm 3 . A total of 10 hot presses were carried out under the same conditions, but chipping occurred at the edge of two of them, and they could not be used as targets.

(実施例2)
99.99%純度のITO粉末(In2 3 −10質量%SnO2 粉末)を原料粉末として用意した。原料粉末を板状ゴム型に詰めた後、ビニール袋で密閉した状態で静水圧プレス装置に挿入し、2トンまで静水圧をかけて圧粉体を作製した。同様の手順で作製した5枚の圧粉体を、ホットプレス装置内に設置された黒鉛型に挿入した。
(Example 2)
99.99% pure ITO powder (In 2 O 3 -10 mass% SnO 2 powder) was prepared as a raw material powder. After the raw material powder was packed in a plate-shaped rubber mold, it was inserted into a hydrostatic press while being sealed with a plastic bag, and a hydrostatic pressure was applied up to 2 tons to produce a green compact. Five green compacts produced in the same procedure were inserted into a graphite mold installed in a hot press apparatus.

真空雰囲気において、温度1000℃と圧力250kg/cm2 を2時間負荷し、ホットプレスを行った。同一条件で合計15枚のホットプレスを実施したが、15枚すべてにおいて、割れや欠けのない128mm×255mm×9mmの焼結体が得られた。密度は7.1g/cm3 であった。 In a vacuum atmosphere, a temperature of 1000 ° C. and a pressure of 250 kg / cm 2 were loaded for 2 hours, and hot pressing was performed. A total of 15 hot presses were carried out under the same conditions, but in all 15 sheets, a 128 mm × 255 mm × 9 mm sintered body free from cracks and chips was obtained. The density was 7.1 g / cm 3 .

(比較例2)
実施例2と同一の原料粉末を黒鉛型に直接充填した。実施例2と同一条件でホットプレスを行った。同様の形状の焼結体が得られたが、1回のホットプレスで3枚分の焼結体しか得られなかった。このようにして、合計15枚のホットプレスを行ったが、そのうち2枚の端部に欠けが発生しており、ターゲットとして使用できなかった。焼結体の密度は6.9g/cm3 であった。
(Comparative Example 2)
The same raw material powder as in Example 2 was directly filled into a graphite mold. Hot pressing was performed under the same conditions as in Example 2. A sintered body having the same shape was obtained, but only three sintered bodies were obtained by one hot press. In this way, a total of 15 hot presses were performed, but chipping occurred at the end of two of them, and could not be used as a target. The density of the sintered body was 6.9 g / cm 3 .

(実施例3〜8、比較例3〜6)
実施例3〜8として、99.99%純度の各種金属原料を用いてアルゴン雰囲気溶解により鋳塊を製造し、得られた鋳塊をスタンプミルにて粉砕することにより、原料粉末を得た。得られた原料粉末の組成、平均粒径、固相線温度を表1に示す。
(Examples 3-8, Comparative Examples 3-6)
As Examples 3 to 8, a raw material powder was obtained by producing an ingot by melting in an argon atmosphere using various metal raw materials having a purity of 99.99% and pulverizing the obtained ingot with a stamp mill. Table 1 shows the composition, average particle diameter, and solidus temperature of the obtained raw material powder.

原料粉末は、円筒状のゴム型に詰めた後、ビニール袋で密閉した状態で静水圧プレス装置に挿入し、表1に示す圧力まで静水圧をかけて成形体を作製した。得られた成形体は、外周部を削って大きさを調整した後に、ホットプレス装置内に設置された黒鉛型に挿入した。ホットプレス加工は、アルゴン雰囲気において、表1に示す温度と圧力で2時間行った。   The raw material powder was packed in a cylindrical rubber mold, inserted into a hydrostatic pressure press in a sealed state with a plastic bag, and subjected to hydrostatic pressure up to the pressure shown in Table 1 to produce a compact. The obtained formed body was inserted into a graphite mold installed in a hot press apparatus after the outer peripheral portion was shaved to adjust the size. Hot pressing was performed in an argon atmosphere at the temperature and pressure shown in Table 1 for 2 hours.

得られた焼結体は直径150mm×厚さ8mmであった。焼結体の密度は外形形状と重量より計算で求めた。なお、合金の真密度が不明であるため、ここでは6.56g/cm3 を真密度として、焼結密度をこの真密度に対する焼結体密度の比(相対密度)として計算した。表1に、計算より求めた焼結密度として示す。 The obtained sintered body was 150 mm in diameter and 8 mm in thickness. The density of the sintered body was calculated from the outer shape and weight. Since the true density of the alloy is unknown, 6.56 g / cm 3 was used as the true density, and the sintered density was calculated as the ratio of the sintered body density to the true density (relative density). Table 1 shows the sintered density obtained by calculation.

比較例3〜6として、同一原料粉末を直接黒鉛型に挿入し、ホットプレスした場合の結果を、表1に示す。   As Comparative Examples 3 to 6, Table 1 shows the results when the same raw material powder was directly inserted into a graphite mold and hot pressed.

得られた焼結体のうちで、実施例4、8、および比較例4、6について、外形加工とボンディングを施し、スパッタリングターゲットを得た。試験に供したスパッタリングターゲットの性状を表2に示す。得られたスパッタリングターゲットを用いて、スパッタ装置(日本真空技術社製)を用いて、スパッタ試験を実施した。スパッタ試験の結果を、表2にあわせて示す。   Among the obtained sintered bodies, Examples 4 and 8 and Comparative Examples 4 and 6 were subjected to external processing and bonding to obtain a sputtering target. Table 2 shows the properties of the sputtering target subjected to the test. Using the obtained sputtering target, a sputtering test was performed using a sputtering apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.). The results of the sputtering test are also shown in Table 2.

表1から明らかなように、本発明により85%以上の密度の燒結体が得られることがわかる。また、表2から明らかなように、密度を85%以上とすることにより、問題なくスパッタリングが行えることがわかる。

Figure 2005163095
Figure 2005163095
As is apparent from Table 1, it can be seen that a sintered body having a density of 85% or more can be obtained by the present invention. Further, as is apparent from Table 2, it can be seen that sputtering can be performed without any problems by setting the density to 85% or more.
Figure 2005163095
Figure 2005163095

静水圧プレスに用いるゴム型を示したものである。It shows a rubber mold used for an isostatic press.

符号の説明Explanation of symbols

1 下ゴム板
2 上ゴム板
3 筒状ゴム
4 原料粉末
1 Lower rubber plate 2 Upper rubber plate 3 Cylindrical rubber 4 Raw material powder

Claims (5)

原料粉末を所定形状のゴム型に充填した後、該原料粉末に0.5トン以上の圧力で静水圧プレスを施すことにより圧粉体を得る工程、および、該圧粉体をホットプレスにより焼結する工程からなることを特徴とする焼結体の製造方法。   After the raw material powder is filled into a rubber mold having a predetermined shape, a step of obtaining a green compact by subjecting the raw material powder to isostatic pressing at a pressure of 0.5 ton or more, and the green compact is baked by hot pressing. The manufacturing method of the sintered compact characterized by including the process to tie. GaSb系合金粉末を所定形状のゴム型に充填した後、該GaSb系合金粉末に0.5トン以上の圧力で静水圧プレスを施すことにより圧粉体を得る工程、該圧粉体をホットプレスにより焼結する工程を含むことを特徴とするGaSb系合金スパッタリングターゲットの製造方法。   A step of obtaining a green compact by filling a GaSb-based alloy powder into a rubber mold having a predetermined shape and then subjecting the GaSb-based alloy powder to isostatic pressing at a pressure of 0.5 tons or more, and hot pressing the green compact The manufacturing method of the GaSb type alloy sputtering target characterized by including the process sintered by. 相対密度が85%以上であることを特徴とするGaSb系合金ターゲット。   A GaSb-based alloy target having a relative density of 85% or more. GaSb系合金が、1原子%以上かつ50原子%未満のGaを含み、残部がSbおよび不可避不純物からなる請求項3に記載のGaSb系合金ターゲット。   The GaSb-based alloy target according to claim 3, wherein the GaSb-based alloy contains Ga of 1 atomic% or more and less than 50 atomic%, and the balance is composed of Sb and inevitable impurities. GaSb系合金が、1原子%以上かつ50原子%未満のGaを含むGaSb合金を基とする合金であって、かつ、固相線温度が589℃以下である請求項3に記載のGaSb系合金ターゲット。
The GaSb-based alloy according to claim 3, wherein the GaSb-based alloy is an alloy based on a GaSb alloy containing 1 atomic% or more and less than 50 atomic% of Ga, and the solidus temperature is 589 ° C or lower. target.
JP2003402654A 2003-12-02 2003-12-02 METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME Pending JP2005163095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402654A JP2005163095A (en) 2003-12-02 2003-12-02 METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402654A JP2005163095A (en) 2003-12-02 2003-12-02 METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2005163095A true JP2005163095A (en) 2005-06-23

Family

ID=34726169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402654A Pending JP2005163095A (en) 2003-12-02 2003-12-02 METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2005163095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872772B1 (en) 2007-06-29 2008-12-09 한국생산기술연구원 Sputtering target and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872772B1 (en) 2007-06-29 2008-12-09 한국생산기술연구원 Sputtering target and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP5396276B2 (en) Sintered body manufacturing method, sintered body target, and sputtering target-backing plate assembly
EP2270252B1 (en) Sintered target and method for production of sintered material
EP1826291A1 (en) Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
JPH11172425A (en) Production of sputtering target
US20130206591A1 (en) Sputtering Target for Magnetic Recording Film and Method for Producing Same
JP2007045697A (en) Sputtering target for formation of phase-change film and process for production of sputtering target
JP3772972B2 (en) Silver alloy sputtering target for reflection layer formation of optical recording media
JPH1081962A (en) Production of ge-te-sb target for sputtering
JP3984849B2 (en) Ge-Bi alloy target for sputtering and method for producing the same
JP2005163095A (en) METHOD OF PRODUCING SINTERED COMPACT, GaSb BASED ALLOY SPUTTERING TARGET, AND METHOD OF PRODUCING THE SAME
JP4047552B2 (en) ZnS-SiO2 sputtering target
JP4900992B2 (en) Sputtering target and Ge layer, Ge compound layer, Ge alloy layer and optical disk, electric / electronic component, magnetic component using the sputtering target
JPH07268617A (en) Target for al alloy sputtering and its production
KR100663616B1 (en) Ge-Cr ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
JP2000087228A (en) Production of sputtering target
JPH0119448B2 (en)
JP3772971B2 (en) Silver alloy sputtering target for reflection layer formation of optical recording media
JP3916125B2 (en) ZnS-SiO2 sputtering target and optical recording medium on which a ZnS-SiO2 phase change optical disk protective film is formed using the target
JPH0570937A (en) Sputtering target for optical disk and production thereof
JP2789397B2 (en) High-purity target for producing optical recording film and method for producing the same
JP3803864B2 (en) Silver alloy sputtering target for reflection layer formation of optical recording media
JP4023136B2 (en) Silver alloy sputtering target for reflection layer formation of optical recording media
JPH1060634A (en) Sintered alloy target material for sputtering and its production
JPS62114137A (en) Production of sputtering target for optical recording
JPH0372153B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209