JP2005163004A - Method for biodegradation treatment of styrenic polymer and microorganism used for the method - Google Patents

Method for biodegradation treatment of styrenic polymer and microorganism used for the method Download PDF

Info

Publication number
JP2005163004A
JP2005163004A JP2004056697A JP2004056697A JP2005163004A JP 2005163004 A JP2005163004 A JP 2005163004A JP 2004056697 A JP2004056697 A JP 2004056697A JP 2004056697 A JP2004056697 A JP 2004056697A JP 2005163004 A JP2005163004 A JP 2005163004A
Authority
JP
Japan
Prior art keywords
microorganism
polystyrene
styrene
decomposing
styrenic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004056697A
Other languages
Japanese (ja)
Other versions
JP4406305B2 (en
Inventor
Eisaku Oikawa
栄作 及川
Yoshinobu Ishibashi
良信 石橋
Taneaki Oikawa
胤昭 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004056697A priority Critical patent/JP4406305B2/en
Publication of JP2005163004A publication Critical patent/JP2005163004A/en
Application granted granted Critical
Publication of JP4406305B2 publication Critical patent/JP4406305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating styrenic polymers such as foaming styrene and the like by biodegradation. <P>SOLUTION: Presence of polystyrene decomposing microorganism is experimentally found by adding a solution of polystyrene beads to a culture solution of styrene trimer resistant microorganism and detecting polystyrene degradation ability. Foaming polystyrene is found to be decomposed by bringing a solution of the same to contact with the microorganism. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はスチレン系樹脂を微生物を用いて分解する方法に関する。本発明は、例えば廃棄された発泡スチロールの処理に用いることができる。   The present invention relates to a method for decomposing styrenic resin using microorganisms. The present invention can be used, for example, for disposal of discarded polystyrene foam.

発泡スチロールは、ポリスチレンをブタン等の発泡剤で膨張させたものである。製法と用途により、ビーズ法発泡スチロール(Expanded Polystyrene; EPS)、ポリスチレンペーパー(Polystyrene Paper; PSP)、押出ボード(Extruded Polystyrene; XPS)に分類され、EPSは主に農水産容器や緩衝包装材として、PSPは主に食品トレー、XPSは主に断熱建材に使用されている。発泡スチロールは断熱性や衝撃吸収性等に優れ、加工も容易であることから、今後もその消費が続くと考えられるが、使命を終えた後の発泡スチロールは産業および家庭で廃棄物として排出されている。このような状況において、他のプラスチック同様、発泡スチロールの廃棄物処理問題の解決は重要性を増しており、廃棄物ゼロのいわゆる“ゼロエミッション”を目指し、発泡スチロールリサイクル処理への取り組みが求められている。   The expanded polystyrene is obtained by expanding polystyrene with a foaming agent such as butane. Depending on the manufacturing method and application, it is classified into expanded polystyrene (EPS), polystyrene paper (PSP), and extruded polystyrene (XPS). EPS is mainly used for agricultural and fishery containers and buffer packaging materials. Is mainly used for food trays, XPS is mainly used for heat insulation building materials. Styrofoam is excellent in heat insulation, shock absorption, etc., and it is easy to process, so it is expected that consumption will continue in the future, but after completion of the mission, styrofoam is discharged as waste in industry and household . Under these circumstances, as with other plastics, the solution to the waste disposal problem of expanded polystyrene is becoming increasingly important, and there is a need for efforts to recycle expanded polystyrene with the aim of achieving zero waste. .

発泡スチロールのリサイクルの手法には、マテリアルリサイクルとサーマルリサイクルがある。発泡スチロールのマテリアルリサイクルとは、発泡スチロールを減容剤・溶解剤によって減容し、減容剤を分離した後、精製したポリスチレン樹脂を再利用するリサイクル法である。また、サーマルリサイクルとは、発泡スチロールを焼却処理した際に生じる燃焼熱を熱資源として利用するリサイクル法である。2002年度の我が国における発泡スチロールリサイクル率は、マテリアルリサイクルが39.1%、サーマルリサイクルが25.6%で、両方を合わせても約65%に過ぎず、残りは埋め立てや単純焼却によって処理されている。   Materials recycling methods include material recycling and thermal recycling. The material recycling of expanded polystyrene is a recycling method in which expanded polystyrene is reduced with a volume reducing agent / dissolving agent, the volume reducing agent is separated, and then the purified polystyrene resin is reused. Thermal recycling is a recycling method in which combustion heat generated when incinerated styrene foam is used as a heat resource. In FY2002, the polystyrene recycling rate in Japan was 39.1% for material recycling and 25.6% for thermal recycling, and only about 65% when both were combined. The rest was disposed of by landfill or simple incineration.

埋め立て処理は、将来に渡って土地を確保し続けることが困難であるばかりでなく、発泡スチロールを直接分解する微生物が知られていないことから、発泡スチロールが半永久的に土中に留まるという問題を有する。土壌中の発泡スチロールからは、熱や有機溶剤によって、いわゆる環境ホルモン性が疑われているスチレンダイマーやスチレントリマーといった内分泌攪乱物質が溶出したり、発ガン性が指摘されているスチレンモノマーが溶出したりする可能性があり、埋め立て処理は二次的な環境汚染を招く危険性を否定できない。また、サーマルリサイクルを含む焼却処理は、発泡スチロール自体によるダイオキシンの発生はないものの、塩化ビニル等との同時燃焼によるダイオキシン発生増強の懸念の問題が残る。さらに、ダイオキシン発生回避のための高温処理による焼却炉の消耗、発熱、さらに二酸化炭素の排出問題を伴う。こうした処理法は、結果的に人類の健康を損ね、地球温暖化を促進するばかりでなく、エネルギー浪費にもつながっている。それにもかかわらず発泡スチロールが埋め立てや焼却処理される理由の一つは、汚れ・臭い・色が付いたために従来のマテリアルリサイクル処理を施せないことである。   The landfill treatment not only makes it difficult to secure land for the future, but also has the problem that the polystyrene stays in the soil semipermanently because microorganisms that directly decompose the polystyrene are not known. From the polystyrene foam in the soil, endocrine disrupting substances such as styrene dimers and styrene trimers suspected of so-called environmental hormones are eluted by heat and organic solvents, and styrene monomers that are carcinogenic are pointed out. The landfill process cannot deny the danger of secondary environmental pollution. Moreover, incineration treatment including thermal recycling does not generate dioxin due to the expanded polystyrene itself, but there remains a problem of increasing dioxin generation due to simultaneous combustion with vinyl chloride or the like. In addition, incinerator exhaustion due to high temperature treatment to avoid dioxin generation, heat generation, and carbon dioxide emission problems. These treatment methods result in the loss of human health, promote global warming and lead to energy waste. Nevertheless, one of the reasons why polystyrene foam is landfilled or incinerated is that it cannot be subjected to conventional material recycling due to dirt, odor and color.

ところで、廃棄物処理方法の一つとして、微生物を用いた生物分解による方法が既に実用化されている。例えば、一次産業、食品加工業等からの有機性廃棄物を微生物により堆肥化する技術が知られている。一方、発泡スチロールのリサイクル率や処理技術は年々進んでいるが、発泡スチロールを生物分解する方法は知られていない。これは、発泡スチロールや発泡スチロールを溶解した後に生じるポリスチレンを直接的に分解できる微生物が知られていないためである。発泡スチロールを減容剤で処理するとスチレンモノマー、スチレンダイマー、スチレントリマー、ポリスチレンが生ずるが、スチレンモノマーを分解する微生物としてはPseudomonas属(非特許文献1,2,3)やXanthobacter属(非特許文献4)が知られているものの、スチレンダイマーやスチレントリマーおよびポリスチレンに対して、耐性や分解を示す微生物の報告は知られていない。   By the way, as one of the waste treatment methods, a biodegradation method using microorganisms has already been put into practical use. For example, techniques for composting organic waste from primary industries, food processing industries, etc. with microorganisms are known. On the other hand, although the recycling rate and processing technology of a polystyrene foam are progressing every year, the method of biodegrading a polystyrene foam is not known. This is because there is no known microorganism capable of directly decomposing polystyrene produced after dissolving polystyrene foam or polystyrene. When styrene foam is treated with a volume-reducing agent, styrene monomer, styrene dimer, styrene trimer, and polystyrene are produced. Microorganisms that decompose styrene monomer include the genus Pseudomonas (Non-patent Documents 1, 2, 3) and the genus Xanthobacter (Non-patent Document 4). However, there are no reports of microorganisms that show resistance or degradation to styrene dimers, styrene trimers, and polystyrene.

Niall D. O'Leary, Kevin E. O'Connor, Wouter Duetz and Alan D. W. Dobson (2001). Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.Microbiology. 147: 937-979.Niall D. O'Leary, Kevin E. O'Connor, Wouter Duetz and Alan D. W. Dobson (2001) .Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.Microbiology.147: 937-979. Ana Velasco, Sergio Alonso, Jose L. Garcia, J. Perera, and Eduardo Diaz. (1998) Genetic and Functional Analysis of the Styrene Catabolic Cluster of Pseudomonas sp. Strain Y2. J. Bacteriol. 180:1063-1071.Ana Velasco, Sergio Alonso, Jose L. Garcia, J. Perera, and Eduardo Diaz. (1998) Genetic and Functional Analysis of the Styrene Catabolic Cluster of Pseudomonas sp. Strain Y2. J. Bacteriol. 180: 1063-1071. Pedro Miguel Santos, Janet Martha Blatny, Ilaria Di Bartolo, Svein Valla, and Elisabetta Zennaro.(2000) Physiological Analysis of the Expression of Styrene Degradation Gene Cluster in Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 66: 1305-1310.Pedro Miguel Santos, Janet Martha Blatny, Ilaria Di Bartolo, Svein Valla, and Elisabetta Zennaro. (2000) Physiological Analysis of the Expression of Styrene Degradation Gene Cluster in Pseudomonas fluorescens ST. Appl.Environ. Microbiol. 66: 1305-1310. Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F. and de Bont, J. A. M. (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene degrading Xanthobacter strain 124X. Appl. Environ. Microbiol. 55: 2850-2855.Hartmans, S., Smits, JP, van der Werf, MJ, Volkering, F. and de Bont, JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene degrading Xanthobacter strain 124X. Appl. Environ. Microbiol. 55 : 2850-2855. O' connor K. E., Dobson A. D. W., and Hartmans S. (1997). Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63: 4287-4291.O 'connor K. E., Dobson A. D. W., and Hartmans S. (1997). Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63: 4287-4291. Sambrook, J., Fritsch. E. F. and Maniatis, T. : Molecular Cloning, 2nd Edition, Cold Spring Harbor Laboratory Press. 1989.Sambrook, J., Fritsch. E. F. and Maniatis, T .: Molecular Cloning, 2nd Edition, Cold Spring Harbor Laboratory Press. 1989. 芳倉太郎、北野政昭、西尾孝之、森下日出旗、池田勝洋、新妻啓寿 (1991) 2-MIB分解菌の高度上処理過程からの分離と2-MIB分解、用水と廃水、33: 463-470.Taro Yoshikura, Masaaki Kitano, Takayuki Nishio, Hidehito Morishita, Katsuhiro Ikeda, Keito Niizuma (1991) Separation of 2-MIB-degrading bacteria from advanced treatment process and 2-MIB decomposition, water and wastewater, 33: 463 -470. Ameur Cherif, Sara Borin, Aurora Rizzi, Hadda Ouzari, Abdellatif Boudabous, and Daniele Daffonchio. (2003) Bacillus anthracis Diverges from Related Clades of the Bacillus cereus group in 16S-23S Ribosomal DNA. Intergenic Transcribed Spacers Containing tRNA Genes. Appl. Environ. Microbiol. 69:33-40.Ameur Cherif, Sara Borin, Aurora Rizzi, Hadda Ouzari, Abdellatif Boudabous, and Daniele Daffonchio. (2003) Bacillus anthracis Diverges from Related Clades of the Bacillus cereus group in 16S-23S Ribosomal DNA.Intergenic Transcribed Spacers Containing tRNA Genes. Microbiol. 69: 33-40. Shoichi Yamada, Eiji Ohashi, Norio Agata, and Kasthuri Venkateswaran. (1999) Cloning and Nucleotide Sequence Analysis of gyrB and Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and Their Application to the Detection of B. cereus in Rice. Appl. Environ. Microbiol. 65: 1483-1490.Shoichi Yamada, Eiji Ohashi, Norio Agata, and Kasthuri Venkateswaran. (1999) Cloning and Nucleotide Sequence Analysis of gyrB and Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and Their Application to the Detection of B. cereus in Rice. Appl. Environ. Microbiol. 65: 1483-1490.

本発明はこのような状況を鑑みてなされたものであり、その目的は発泡スチロール等のスチレン系重合体を生物分解により処理する方法を提供することである。また、発泡スチロール等の生物分解を可能とする微生物を提供する。   This invention is made | formed in view of such a condition, The objective is to provide the method of processing styrene-type polymers, such as a polystyrene foam, by biodegradation. Moreover, the microorganisms which enable biodegradation, such as a polystyrene foam, are provided.

本発明者らは、上記課題を解決すべく、発泡スチロールを溶解した際に大半を占めるポリスチレンを分解できる微生物を発見できれば、発泡スチロールを微生物分解し、最終的には堆肥化等のリサイクル処理が可能になると考えた。そこで本発明者らは、固形ポリスチレンビーズ(モノマー重合度3000)を溶解剤であるジクロロメタンで溶解し、発泡スチロールをジクロロメタンで溶解したものと同じ状態にした後、環境中から単離したスチレン酸化微生物やスチレントリマー耐性微生物の培養液に添加し、ポリスチレン分解能を高速液体クロマトグラフィーによって分析した。その結果、スチレン酸化微生物やスチレントリマー耐性微生物の中にポリスチレン分解能を有するものがあることを実験的に確認し、該微生物を用いて発泡スチロール分解処理ができることを見出し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors can discover a microorganism capable of decomposing polystyrene, which accounts for the majority when the expanded polystyrene is dissolved, so that the expanded polystyrene can be decomposed into microorganisms and finally recycled such as composting. I thought. Therefore, the present inventors dissolved solid polystyrene beads (monomer polymerization degree 3000) with dichloromethane as a solubilizing agent, and made the same state as that obtained by dissolving expanded polystyrene with dichloromethane, and then isolated styrene-oxidizing microorganisms isolated from the environment. It was added to a culture solution of styrene trimer resistant microorganisms, and polystyrene resolution was analyzed by high performance liquid chromatography. As a result, it was experimentally confirmed that some styrene-oxidizing microorganisms and styrene trimer-resistant microorganisms have polystyrene decomposability, and it was found that the styrene foam decomposition treatment can be performed using the microorganisms, thereby completing the present invention.

したがって本発明は、発泡スチロールをスチレン分解微生物やポリスチレン分解微生物を含む微生物を用いて分解処理する方法およびその微生物を提供するものであり、より具体的には、
(1)ポリスチレン分解能を有する微生物をスチレン系重合体と接触させる工程を含む、スチレン系重合体の分解方法、
(2)ポリスチレン分解能を有する微生物がArthrobacter属、Xanthomonas属、Sphingobacterium-Like、 Bacillus属のいずれかに属する微生物である、上記(1)に記載のスチレン系重合体の分解方法、
(3)ポリスチレン分解能を有する微生物が、Arthrobacter woluwensis PSD-1株、受託番号FERM P-19584で示されるXanthomonas sp. PSD-2株、受託番号FERM P-19583で示されるSphingobacterium-Like sp. PSD-6株、受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株のいずれかを含む、上記(1)または上記(2)のいずれかに記載のスチレン系重合体の分解方法、
(4)Arthrobacter属、Xanthomonas属、Sphingobacterium-Like、Bacillus属のいずれかに属するポリスチレン分解能を有する微生物、
(5)受託番号FERM P-19584,受託番号FERM P-19583,受託番号FERM P-19582のいずれかで示される、上記(4)に記載のポリスチレン分解能を有する微生物、
(6)スチレントリマー耐性能を指標として微生物をスクリーニングする工程を含む、ポリスチレン分解微生物を単離する方法、
(7)Bacillus属に属するスチレン分解能を有する微生物とスチレンを接触させる工程を含む、スチレンの分解方法、
(8)スチレン分解能を有する微生物が受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株である、上記(7)に記載のスチレンの分解方法、
(9)Bacillus属に属するスチレン分解能を有する微生物、
(10)受託番号FERM P-19582で示される、上記(9)に記載のスチレン分解能を有する微生物、
(11)上記(4)、上記(5)、上記(9)、上記(10)のいずれかに記載の微生物を含む、スチレン系重合体またはスチレン分解に用いる微生物製剤、
(12)スチレン系重合体を減容剤によって溶かして得られた溶解物をポリスチレン分解能を有する微生物と接触させる、スチレン系重合体の分解方法、
(13)スチレン系重合体を減容剤によって溶かして得られた溶解物と、ポリスチレン分解能を有する微生物の培養液を混合し、スチレン系重合物を分解する方法であって、前記微生物は、前記溶解物と前記培養液を混合した際に、表面に浮遊する前記減容剤の浮遊状態を解除する能力を有する、スチレン系重合体の分解方法、
(14)前記減容剤はリモネンである、上記(12)または上記(13)に記載のスチレン系重合体の分解方法、
(15)前記ポリスチレン分解能を有する微生物が受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株である、上記(12)〜上記(14)のいずれか1つに記載のスチレン系重合体の分解方法、
(16)前記減容剤は、有機溶媒である、上記(12)に記載のスチレン系重合体の分解方法、
(17)前記有機溶媒はジクロロメタンである、上記(16)に記載のスチレン系重合体の分解方法、
(18)前記ポリスチレン分解能を有する微生物がArthrobacter属、Xanthomonas属、Sphingobacterium-Like、 Bacillus属のいずれかに属する微生物である、上記(15)〜上記(17)のいずれか1つに記載のスチレン系重合体の分解方法、
(19)前記ポリスチレン分解能を有する微生物が、Arthrobacter woluwensis PSD-1株、受託番号FERM P-19584で示されるXanthomonas sp. PSD-2株、受託番号FERM P-19583で示されるSphingobacterium-Like sp. PSD-6株、受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株のいずれかを含む、上記(15)〜上記(17)のいずれか1つに記載のスチレン系重合体の分解方法、
(20)上記(12)〜上記(19)のいずれか1つに記載のスチレン系重合体の分解方法に使用されるポリスチレン分解能を有する微生物、
(21)上記(20)に記載の微生物を含む、微生物製剤、
を提供するものである。
Therefore, the present invention provides a method for decomposing styrene foam using a microorganism containing a styrene-decomposing microorganism or a polystyrene-degrading microorganism, and more specifically, the microorganism.
(1) A method for decomposing a styrenic polymer, comprising a step of contacting a microorganism having polystyrene decomposability with a styrenic polymer,
(2) The method for decomposing a styrenic polymer according to the above (1), wherein the microorganism having polystyrene degradability is a microorganism belonging to any of Arthrobacter, Xanthomonas, Sphingobacterium-Like, and Bacillus.
(3) Microorganisms having polystyrene resolution are Arthrobacter woluwensis PSD-1 strain, Xanthomonas sp. PSD-2 strain indicated by accession number FERM P-19584, Sphingobacterium-Like sp. PSD- indicated by accession number FERM P-19583 A method for decomposing a styrenic polymer according to either (1) or (2) above, comprising 6 strains and any of the Bacillus thuringiensis STR-YO strains indicated by accession number FERM P-19582,
(4) Microorganisms having polystyrene degradability belonging to any of Arthrobacter genus, Xanthomonas genus, Sphingobacterium-Like, and Bacillus genus,
(5) a microorganism having a polystyrene resolution according to the above (4), which is represented by any one of accession number FERM P-19584, accession number FERM P-19583, accession number FERM P-19582,
(6) A method for isolating polystyrene-degrading microorganisms, comprising a step of screening microorganisms using styrene trimer resistance as an index.
(7) A method for decomposing styrene, comprising a step of bringing styrene into contact with a microorganism having styrene-decomposing ability belonging to the genus Bacillus.
(8) The method for decomposing styrene as described in (7) above, wherein the microorganism having styrene decomposability is the Bacillus thuringiensis STR-YO strain represented by accession number FERM P-19582,
(9) A microorganism belonging to the genus Bacillus and having a styrene-decomposing ability,
(10) A microorganism having a styrene-decomposability described in the above (9), which is represented by an accession number FERM P-19582,
(11) A styrenic polymer or a microbial preparation used for styrene decomposition, comprising the microorganism according to any one of (4), (5), (9), and (10),
(12) A method for decomposing a styrenic polymer, wherein a lysate obtained by dissolving the styrenic polymer with a volume reducing agent is contacted with a microorganism having polystyrene decomposability,
(13) A method of decomposing a styrenic polymer by mixing a lysate obtained by dissolving a styrenic polymer with a volume reducing agent and a culture solution of a microorganism having polystyrene resolving ability, A method for decomposing a styrenic polymer having the ability to release the suspended state of the volume reducing agent floating on the surface when the lysate and the culture solution are mixed;
(14) The method for decomposing a styrenic polymer according to (12) or (13), wherein the volume reducing agent is limonene,
(15) The styrenic polymer according to any one of (12) to (14) above, wherein the microorganism having polystyrene decomposability is a Bacillus thuringiensis STR-YO strain represented by accession number FERM P-19582. Disassembly method,
(16) The method for decomposing a styrene polymer according to the above (12), wherein the volume reducing agent is an organic solvent,
(17) The method for decomposing a styrenic polymer according to (16), wherein the organic solvent is dichloromethane,
(18) The styrenic system according to any one of (15) to (17) above, wherein the microorganism having polystyrene decomposability is a microorganism belonging to any one of Arthrobacter, Xanthomonas, Sphingobacterium-Like, and Bacillus. Polymer decomposition method,
(19) The microorganism having the polystyrene decomposability is an Arthrobacter woluwensis PSD-1 strain, a Xanthomonas sp. PSD-2 strain indicated by accession number FERM P-19584, and a Sphingobacterium-Like sp. -6 strain, the method for decomposing a styrenic polymer according to any one of (15) to (17) above, comprising any of the Bacillus thuringiensis STR-YO strains represented by the accession number FERM P-19582,
(20) A microorganism having a polystyrene resolution used in the method for decomposing a styrenic polymer according to any one of (12) to (19) above,
(21) A microorganism preparation containing the microorganism according to (20) above,
Is to provide.

本発明により、発泡スチロールを始めとするスチレン系重合体を生物分解処理する方法が提供された。本発明の方法による発泡スチロール廃棄物処理は、これまでマテリアルリサイクルに不適であったEPSをも、焼却処理や埋め立て処理に頼ることなく処理可能となる。そのため、資源の有効利用、CO2削減による地球温暖化防止、燃焼工程がなく発熱が少ないため、焼却炉の寿命延長など地球環境に役立つ効果を与えることができる。将来的には、市販の処理機を用いた生ゴミ処理のように、個人や事業体レベルでEPSのリモネン溶解とコンポスト化を独自に行うことができるようなシステムが構築されれば、家庭や事業体から出る発泡スチロール廃棄物の減量を行うことができると考えられる。さらに、EPSの微生物分解物を堆肥として植物の肥料に使うことができれば、窒素や炭素の循環に役立ち、まさに“ゼロエミッション処理”の達成を可能とするものとなる。   According to the present invention, a method for biodegrading a styrenic polymer including styrene foam has been provided. In the polystyrene foam waste treatment according to the method of the present invention, EPS that has been unsuitable for material recycling can be treated without depending on incineration treatment or landfill treatment. For this reason, effective use of resources, prevention of global warming by reducing CO2, and the absence of a combustion process and low heat generation can provide beneficial effects on the global environment, such as extending the life of incinerators. In the future, if a system that can uniquely dissolve and compost EPS limonene at the individual or business level, such as garbage disposal using a commercially available processor, will be established. It is thought that it is possible to reduce the amount of styrofoam waste generated from business entities. Furthermore, if EPS microbial degradation products can be used as compost for plant fertilizers, it will help to circulate nitrogen and carbon, making it possible to achieve “zero emission treatment”.

本発明は、ポリスチレン分解能を有する微生物をスチレン系重合体と接触させる工程を含む、発泡スチロール、ポリスチレン等のスチレン系重合体の分解方法を提供する。ポリスチレン分解能を有する微生物を、本発明者らが具体的に見出したことによるものである。   The present invention provides a method for decomposing a styrenic polymer such as expanded polystyrene or polystyrene, which comprises a step of bringing a microorganism having polystyrene decomposability into contact with a styrenic polymer. This is because the present inventors specifically found a microorganism having a polystyrene resolution.

本発明においてスチレン系重合体とは、スチレンが2以上重合または他の化合物と共重合しているものをいい、例えば、スチレンダイマー、スチレントリマー、ポリスチレンは本発明に含まれる。また、本発明におけるスチレン系重合体は、ビーズ、ペレット、インゴット、ゲル、成形体、粉砕品、発泡スチロール、再生発泡スチレン系樹脂、これらの溶解物などの形態をとることができる。例えば発泡スチロール溶解物は本発明におけるスチレン系重合体に含まれるが、発泡スチロールを有機溶剤で溶解したものをいい、一般にはスチレンモノマー、スチレンダイマー、スチレントリマー、ポリスチレン等の混合物である。本発明におけるスチレン系重合体には、他の物質が混在していてもよく、例えば、発泡スチロールの塗装剤や食品等の付着物があってもよい。   In the present invention, the styrenic polymer means a polymer in which two or more styrenes are polymerized or copolymerized with other compounds. For example, styrene dimer, styrene trimer, and polystyrene are included in the present invention. Moreover, the styrenic polymer in the present invention can take the form of beads, pellets, ingots, gels, molded products, pulverized products, polystyrene foam, regenerated foamed styrenic resins, and dissolved products thereof. For example, a styrene foam dissolved product is included in the styrene-based polymer in the present invention, and refers to a material obtained by dissolving expanded styrene in an organic solvent, and is generally a mixture of styrene monomer, styrene dimer, styrene trimer, polystyrene and the like. In the styrenic polymer in the present invention, other substances may be mixed, and for example, there may be a styrofoam coating agent or a deposit such as food.

本発明に使用する微生物は、ポリスチレン分解能を有する微生物であれば、他の物質の分解能を有していてもよい。例えば、後述するBacillus thuringiensis STR-Y-O 株のようにポリスチレンとスチレンの両方の分解能を有する微生物は、スチレンモノマー、スチレンダイマー、スチレントリマー、ポリスチレン等の混合物である発泡スチロール溶解物の分解処理を目的とする場合に、より好ましい選択肢となる。ポリスチレン分解能を有する微生物であることは、例えば、後述する実施例のように、ポリスチレン溶液を添加した液体培地で微生物を数日間培養し、培養液中のポリスチレン濃度を高速液体クロマトグラフ等を用いて定量し、ポリスチレン量の変化を観察することによって確認することができる。   The microorganism used in the present invention may have the resolution of other substances as long as it has a polystyrene resolution. For example, microorganisms having both polystyrene and styrene resolution, such as the Bacillus thuringiensis STR-YO strain described later, are intended for the decomposition treatment of a polystyrene foam lysate that is a mixture of styrene monomer, styrene dimer, styrene trimer, polystyrene, etc. In some cases, it is a more preferred option. A microorganism having polystyrene resolution is, for example, cultivating a microorganism for several days in a liquid medium to which a polystyrene solution is added, as in the examples described later, and using a high-performance liquid chromatograph or the like to determine the polystyrene concentration in the culture solution. It can be confirmed by quantifying and observing changes in the amount of polystyrene.

ポリスチレン分解能を有する微生物の代表的なものとして、具体的には、Arthrobacter属、Xanthomonas属、Sphingobacterium-Like、Bacillus属のいずれかに属する微生物を挙げることができる。より具体的には、Arthrobacter woluwensis PSD-1株、Xanthomonas sp. PSD-2株、Sphingobacterium-Like sp. PSD-6株、Bacillus thuringiensis STR-Y-O 株を挙げることができる。これらの菌株は、ポリスチレン分解能が確認された最初の微生物であり、本発明者らによって単離され、16s-rDNAの解析から新規の株として分類されたものである。   Specific examples of microorganisms having polystyrene resolution include microorganisms belonging to any of Arthrobacter, Xanthomonas, Sphingobacterium-Like, and Bacillus. More specifically, Arthrobacter woluwensis PSD-1 strain, Xanthomonas sp. PSD-2 strain, Sphingobacterium-Like sp. PSD-6 strain, Bacillus thuringiensis STR-Y-O strain can be mentioned. These strains are the first microorganisms that have been confirmed to have polystyrene resolution, and have been isolated by the present inventors and classified as new strains from the analysis of 16s-rDNA.

本発明者らは、これら菌株を、独立行政法人産業技術総合研究所 特許生物寄託センターに寄託した。以下に、寄託を特定する内容を記載する。
(イ)寄託機関:独立行政法人産業技術総合研究所 特許生物寄託センター
(所在地:日本国茨城県つくば市東1丁目1番地1中央第6 郵便番号305-8566)
(ロ)寄託日:平成15年11月12日
(ハ)受託番号:
Xanthomonas sp. PSD-2株 (受託番号FERM P-19584)
Sphingobacterium-Like sp. PSD-6株 (受託番号FERM P-19583)
Bacillus thuringiensis STR-Y-O 株 (受託番号FERM P-19582)
The present inventors deposited these strains with the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology. The contents specifying the deposit are described below.
(I) Depositary institution: National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (Location: 1st, 1st, 1st East, Tsukuba, Ibaraki, Japan, postal code 305-8566)
(B) Deposit date: November 12, 2003 (c) Deposit number:
Xanthomonas sp. PSD-2 strain (Accession number FERM P-19584)
Sphingobacterium-Like sp. PSD-6 strain (Accession number FERM P-19583)
Bacillus thuringiensis STR-YO strain (Accession number FERM P-19582)

ポリスチレン分解微生物を単離するには、本発明者らが、ポリスチレン分解微生物を初めて具体的に単離した方法によることができる。すなわち、本発明者らによって完成された、スチレントリマー耐性能を指標として微生物をスクリーニングする方法である。従来は、ポリスチレン分解微生物の単離報告例がなかったことから、ポリスチレン分解微生物単離方法についても公知のものはなかった。ポリスチレンは常温で固体であるが、一般的な溶媒には溶けにくく特殊な溶媒を用いないと溶解しにくい。微生物の分解能をしらべるためにポリスチレンを特殊な溶媒に溶解して培地に添加したとすると、微生物への溶媒による影響が大きくなってポリスチレン分解能を評価できない可能性が高い。そこで、本発明者らはポリスチレンよりも取り扱いやすいスチレントリマーに注目し、単離方法を構築した。実施例のように、スチレントリマー耐性能を指標として微生物をスクリーニングする工程の後に、さらにポリスチレン分解能を確認する工程を行うことにより、より確実に単離することが可能となる。   In order to isolate the polystyrene-degrading microorganism, the present inventors can use a method in which the polystyrene-degrading microorganism is specifically isolated for the first time. That is, a method for screening microorganisms using styrene trimer resistance as an index, completed by the present inventors. Conventionally, since there has been no report of isolation of polystyrene-degrading microorganisms, there is no known method for isolating polystyrene-degrading microorganisms. Polystyrene is solid at room temperature, but it is difficult to dissolve in general solvents, and it is difficult to dissolve unless a special solvent is used. If polystyrene is dissolved in a special solvent and added to the culture medium in order to investigate the resolution of microorganisms, the influence of the solvent on the microorganisms increases and the possibility that polystyrene resolution cannot be evaluated is high. Therefore, the present inventors focused on styrene trimers that are easier to handle than polystyrene, and constructed an isolation method. As in the examples, after the step of screening microorganisms using styrene trimer resistance as an index, a step of further confirming polystyrene resolution can be carried out for more reliable isolation.

なお、単離した微生物が上記Arthrobacter属、Xanthomonas属、Sphingobacterium-Like、Bacillus属に属するか否かについては、微生物の分類同定のための16Sリボソーマル(r)DNAの塩基配列決定の操作(非特許文献6)を行って判断することができる。さらに微生物の分類のための相同性検索は、ウエッブ上のNational Center for Biotechnology Information (NCBI) 、http://www.ncbi.nlm.nih.gov:80/BLAST/で行うことができる。   Whether or not the isolated microorganism belongs to the Arthrobacter genus, Xanthomonas genus, Sphingobacterium-Like, Bacillus genus, whether or not the 16S ribosomal (r) DNA base sequence determination for classification and identification of the microorganism (non-patent Judgment can be made by performing literature 6). Furthermore, homology search for classification of microorganisms can be performed at the National Center for Biotechnology Information (NCBI) on the web, http://www.ncbi.nlm.nih.gov:80/BLAST/.

ポリスチレン分解能を有する微生物は、土壌から単離することができる。土壌の種類は問わないが、EPS、プラスチック、ゴム等の工業製品からの溶出等によりスチレンやポリスチレンを含有する可能性がある土壌であれば、本発明の微生物を単離できる可能性が高い。たとえば道路沿いの土壌は、自動車のタイヤにスチレンゴムを使用しているものがあることから、本発明に使用する微生物を採取するのに好適である。また、本発明に使用する微生物は、ポリスチレン分解能を有する限り、天然から単離した微生物を形質転換したものでもよい。   Microorganisms with polystyrene resolution can be isolated from soil. The type of soil is not limited, but if it is a soil that may contain styrene or polystyrene by elution from industrial products such as EPS, plastic, rubber, etc., there is a high possibility that the microorganism of the present invention can be isolated. For example, the soil along the road is suitable for collecting microorganisms used in the present invention because some of the tires use styrene rubber for automobile tires. In addition, the microorganism used in the present invention may be one obtained by transforming a microorganism isolated from nature as long as it has a polystyrene resolution.

ポリスチレン分解能を有する微生物とスチレン系重合体とを接触させる工程は、例えば、上記微生物が投入された微生物培養槽に分解対象のスチレン系重合体を投入することによって実施することができる。微生物培養槽はスチレン系重合体を効果的に分解できる環境を備えたものであれば特に限定されるものではないが、機械的な温度コントロール機能や攪拌機能等を備えていることが好ましい。また、微生物が固定化されている装置にスチレン系重合体を投入または通過等させる方法であってもよい。   The step of bringing a microorganism having polystyrene resolution into contact with a styrene polymer can be carried out, for example, by introducing a styrene polymer to be decomposed into a microorganism culture tank into which the microorganism is introduced. The microorganism culture tank is not particularly limited as long as it has an environment capable of effectively decomposing styrene-based polymers, but preferably has a mechanical temperature control function, a stirring function, and the like. Alternatively, a method may be used in which a styrene polymer is charged or passed through an apparatus in which microorganisms are immobilized.

ポリスチレン分解能を有する微生物とスチレン系重合体とを接触させる工程の前に、前処理が施されてもよい。例えば、成形体であるスチレン系重合体を直接本発明の微生物と接触させて分解処理することも可能であるが、成形体の直接分解は効率が悪いことがある。その場合に効率分解を効率化するための粉砕処理や有機溶剤による溶解処理を行うことは可能である。 また、発泡スチロールについて、本発明の分解方法実施の前に、リモネンやエステル 系のコハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチルなどの二塩基酸エステル混合液、あるいは石油系のn-パラフィンとキシレンの混合溶液で減容処理を行っ てもよい。   A pretreatment may be performed before the step of bringing the microorganism having polystyrene resolution into contact with the styrenic polymer. For example, it is possible to decompose a styrenic polymer, which is a molded product, by directly contacting the microorganism of the present invention, but direct degradation of the molded product may be inefficient. In that case, it is possible to perform a pulverization process for improving the efficiency of the decomposition or a dissolution process using an organic solvent. In addition, for the expanded polystyrene, before carrying out the decomposition method of the present invention, a mixture of dibasic acid esters such as limonene, ester-based dimethyl succinate, dimethyl glutarate, dimethyl adipate, or petroleum-based n-paraffin and xylene. Volume reduction may be performed with the mixed solution.

さらに、本工程とポリスチレン以外の化合物の分解工程が並行して進行していてもよい。例えば、タイヤやゴムを分解する場合やポリスチレン、スチレンモノマー等の混合物を分解する場合、ポリスチレン分解能を有する微生物に他の化合物分解能を有する微生物を混合して使用することにより、ポリスチレン分解工程と他の化合物の分解工程が並行して進行していてもよい。   Furthermore, this process and the decomposition process of compounds other than polystyrene may proceed in parallel. For example, when decomposing a tire or rubber, or when decomposing a mixture of polystyrene, styrene monomer, etc., by mixing a microorganism having polystyrene decomposability with a microorganism having other compound decomposing ability, The compound decomposition step may proceed in parallel.

ポリスチレン分解能を有する微生物は、一種類で使用してもよく、またはポリスチレン分解能を有する微生物が分解能を発揮しながら生息できる限り、他のポリスチレン分解能を有する微生物や他の化合物分解微生物と共存した状態で使用してもよい。例えば、既存のスチレン分解能を有する微生物が混合されていてもよい。   Microorganisms with polystyrene resolution may be used as a single type, or as long as microorganisms with polystyrene resolution can live while demonstrating resolution, they can coexist with microorganisms with other polystyrene resolution and other compound-degrading microorganisms. May be used. For example, an existing microorganism having styrene decomposability may be mixed.

また本発明は、Bacillus属に属するスチレン分解能を有する微生物および該微生物を用いたスチレンの分解方法を提供する。従来知られているスチレン分解菌はPseudomonas属とXanthobacter属等であったが、本発明者らによって、新たにBacillus属のスチレン分解微生物が同定されたことに基づくものである。   The present invention also provides a microorganism belonging to the genus Bacillus and having a styrene-degrading ability and a method for decomposing styrene using the microorganism. Conventionally known styrene-degrading bacteria include the genus Pseudomonas and the genus Xanthobacter, which are based on the fact that the present inventors have newly identified a styrene-degrading microorganism belonging to the genus Bacillus.

既知のスチレンモノマー分解微生物のうち、Pseudomonas属の微生物はその分解初期段階の経路も明らかにされている(非特許文献1)。これらの微生物によるスチレンモノマーの分解経路の初期段階では、スチレンモノマーがスチレンオペロンのstyA (large subunit)およびstyB (small subunit)遺伝子のコードするスチレンモノオキシゲナーゼ(SMO)酵素によって酸化されて、エポキシスチレンに転換される。その後、styC遺伝子のコードするエポキシスチレンイソメラーゼによってフェニルアセトアルデヒドに異性化され、さらにstyDのコードするフェニルアセトアルデヒドデヒドロゲナーゼ酵素によってフェニル酢酸に転換される。この後は別の遺伝子が関与し、フェニルアセチル-CoAに至る分解経路を経て、最終的にH2OやCO2まで分解資化されると考えられている。   Among known styrene monomer-degrading microorganisms, microorganisms belonging to the genus Pseudomonas have also been clarified in the initial stage of degradation (Non-patent Document 1). In the early stage of the degradation pathway of styrene monomer by these microorganisms, styrene monomer is oxidized by styrene monooxygenase (SMO) enzyme encoded by styA (large subunit) and styB (small subunit) genes of styrene operon to epoxy styrene. Converted. Thereafter, it is isomerized to phenylacetaldehyde by epoxy styrene isomerase encoded by styC gene, and further converted to phenylacetic acid by phenylacetaldehyde dehydrogenase enzyme encoded by styD. After this, another gene is involved, and it is thought that H2O and CO2 are finally decomposed and utilized through the degradation pathway leading to phenylacetyl-CoA.

O'connorらの報告(非特許文献5)より、スチレン分解における初期段階で働くスチレンモノオキシゲナーゼ(SMO)によってインドール(無色)をインディーゴーブルー(青色)に酸化させる反応も触媒できることが明らかになっている。スチレン分解微生物の選別は、上記知見を利用して、インドールを塗沫したスチレン添加寒天培地上に青色のコロニーとして容易に識別する方法をとることができる。   A report by O'connor et al. (Non-Patent Document 5) reveals that styrene monooxygenase (SMO), which works in the early stages of styrene decomposition, can also catalyze the reaction of indole (colorless) to indigo blue (blue). ing. The selection of styrene-degrading microorganisms can be performed by using the above knowledge and easily identifying the colonies as blue colonies on the styrene-added agar medium smeared with indole.

Bacillus属に属するスチレン分解能を有する微生物であれば、本発明のスチレン分解方法に用いることができるが、より具体的には、Bacillus thuringiensis STR-Y-O 株を挙げることができる。Bacillus thuringiensis STR-Y-O 株は、本発明者らによりポリスチレン分解能及びスチレン分解能を持つ微生物として見出され、寄託された。寄託を特定する情報は、上述のとおりである。Bacillus thuringiensis STR-Y-O 株のほか、本発明者らは、実施例において後述するとおり、Arthrobacter woluwensis PSD-1株、Xanthomonas sp. PSD-2株、Sphingobacterium-Like sp. PSD-6株等がSMO活性を有していることを明らかにしており、これらの菌株もまたスチレン分解方法に使用可能と考えられる。   Any microorganism having the ability to degrade styrene belonging to the genus Bacillus can be used in the styrene decomposition method of the present invention, and more specifically, Bacillus thuringiensis STR-Y-O strain can be mentioned. The Bacillus thuringiensis STR-Y-O strain was discovered and deposited as a microorganism having polystyrene and styrene resolution by the present inventors. The information specifying the deposit is as described above. In addition to the Bacillus thuringiensis STR-YO strain, the present inventors, as will be described later in the Examples, have SMO activity as Arthrobacter woluwensis PSD-1 strain, Xanthomonas sp. PSD-2 strain, Sphingobacterium-Like sp. PSD-6 strain, etc. These strains are also considered to be usable in the styrene decomposition method.

本発明は、上述の微生物を含む、スチレン系重合体またはスチレン分解用微生物製剤を提供する。上述微生物は、単独または他の微生物と混合して、そのままあるいは加工して微生物製剤とすることができる。微生物をゼオライトや樹脂等の担体に固定化して用いてもよい。微生物製剤の形態は、培養液、粉末、凍結乾燥菌体などを例として挙げられるが、これらに限定されるものではない。   The present invention provides a styrenic polymer or a microbial agent for decomposing styrene, comprising the above-described microorganism. The above-mentioned microorganisms can be used alone or mixed with other microorganisms to obtain a microorganism preparation as it is or after being processed. Microorganisms may be used immobilized on a carrier such as zeolite or resin. Examples of the form of the microbial preparation include, but are not limited to, a culture solution, powder, lyophilized cells, and the like.

本発明の微生物製剤は、微生物培養槽などに投入してスチレン系重合体分解処理に用いることができるほか、土壌中のスチレン系重合体分解を目的として、土壌に散布する利用方法も考えられる。   The microbial preparation of the present invention can be put into a microorganism culture tank or the like and used for styrene-based polymer decomposition treatment, and a method of using the microbial preparation by spraying on soil for the purpose of styrene-based polymer decomposition in soil is also conceivable.

また、本発明では、発泡スチロールをリモネンなどの減容剤や、ジクロロメタンなどの有機溶剤によって溶かし、得られた溶解物を微生物と接触させて発泡スチロールを分解する。   In the present invention, the expanded polystyrene is dissolved with a volume reducing agent such as limonene or an organic solvent such as dichloromethane, and the resulting dissolved product is brought into contact with microorganisms to decompose the expanded polystyrene.

この場合の微生物は、上述したスチレン重合体や、スチレンの分解能力を持つ微生物が利用される。   As the microorganism in this case, the above-mentioned styrene polymer or a microorganism capable of decomposing styrene is used.

なお、減容剤はリモネンに限定されたものでなく、発泡スチロールのリサイクル等の処理のために用いられているものや、発泡スチロールを溶かすことができるのであれば良い。また、有機溶媒はジクロロメタンに限定されたものでなく、発泡スチロールを溶かすことができるものであれば良い。   The volume reducing agent is not limited to limonene, but may be any one used for processing such as recycling of foamed polystyrene or capable of dissolving foamed polystyrene. Further, the organic solvent is not limited to dichloromethane, and any organic solvent can be used as long as it can dissolve the expanded polystyrene.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
[実施例1]スチレン酸化微生物の単離
仙台市内の国道4号線の路肩または山形市大字八森の畑から土壌を採取し、スチレン酸化菌の単離用の試料として用いた。20gの土壌試料を生理食塩水で懸濁し、室温30℃で10分間遠心した。遠心後の上清500μlを各種の濃度添加したスチレンモノマーを炭素源とする50mlの0.001%(w/v) 酵母エキスを含む基礎無機塩培地(非特許文献7)に植え継いだ。スチレンは原液をそれぞれ10μl(1.74mM), 30μl(5.24mM), 50μl(8.72mM), 100μl(17.4mM), 300μl(52.4mM), 500μl(87.2mM)を添加した(カッコ内は終濃度)。スチレンを添加した培養液を100ml容の共栓付三角フラスコに移し、30℃、130rpm、7日間振とう培養した。増殖を示すにごりが確認された後、スチレンを10μl添加した試料の培養液100μLを基礎無機塩寒天培地に塗沫し、室温の暗所で静置培養した。寒天培地には予め100mMのインドール(N,N-ジメチルホルムアミドに溶解)を100μl塗沫した。7日間程度培養して、青く発色したコロニーを同様の寒天培地に白金耳で画線し、さらに室温で7日間程度静置培養した。寒天培地に形成された単一の青色コロニーを10mlのLB培地(非特許文献8)に植え、30℃で1〜2日間振とう培養した。この培養液に等量の60%グリセロールを加え、-85℃で凍結保存した。
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
[Example 1] Isolation of Styrene Oxidizing Microorganism Soil was collected from the shoulder of National Highway No. 4 in Sendai city or the field of Yamamori Daimon Yamori and used as a sample for isolation of styrene oxidizing bacteria. A 20 g soil sample was suspended in physiological saline and centrifuged at 30 ° C. for 10 minutes. 500 μl of the supernatant after centrifugation was planted in 50 ml of a basic inorganic salt medium (non-patent document 7) containing 0.001% (w / v) yeast extract containing styrene monomer added with various concentrations as a carbon source. As for styrene, 10μl (1.74mM), 30μl (5.24mM), 50μl (8.72mM), 100μl (17.4mM), 300μl (52.4mM) and 500μl (87.2mM) were added to the stock solution (the final concentration in parentheses) . The culture solution added with styrene was transferred to a 100 ml Erlenmeyer flask with a stopper, and cultured with shaking at 30 ° C., 130 rpm for 7 days. After confirming the presence of growth, 100 μL of a culture solution of a sample to which 10 μl of styrene was added was smeared on a basic inorganic salt agar medium, followed by stationary culture in a dark place at room temperature. On the agar medium, 100 μl of 100 mM indole (dissolved in N, N-dimethylformamide) was applied in advance. After culturing for about 7 days, blue-colored colonies were streaked on the same agar medium with platinum ears, and further cultured at room temperature for about 7 days. A single blue colony formed on the agar medium was planted in 10 ml of LB medium (Non-patent Document 8) and cultured with shaking at 30 ° C. for 1-2 days. An equal amount of 60% glycerol was added to the culture and stored frozen at -85 ° C.

[実施例2]スチレントリマー耐性微生物の単離およびSMO活性試験
ポリスチレン分解菌はSMO活性を保有することが明らかでなく、SMO活性を指標として単離することができないため、ポリスチレン耐性菌として単離を試みた。仙台市若林区六丁ノ目産業道路わきの街路樹根元から土壌を採取し、ポリスチレン分解菌単離用の試料とした。20gの土壌試料を生理食塩水で懸濁し、室温、3,000rpmで5分遠心した。遠心後の上清500μlを、炭素源として各種の濃度のスチレントリマーを添加した酵母エキス0.001%(w/v) 50mlを含む基礎無機塩培地に植え継いだ。スチレントリマー(10μg/mlトルエン溶液, 関東化学)は、原液をそれぞれ10μl(1.56μM), 30μl(4.68μM), 50μl(7.8μM), 100μl(15.6μM), 300μl(46.8μM), 500μl(78μM)を添加した(カッコ内は終濃度)。スチレントリマーを添加した培養液を100ml容の共栓付三角フラスコに移し、30℃、130rpm、7日間振とう培養した。濁りが確認された後、スチレントリマーを10μl、30μl、または50μl添加した試料の培養液500μlを、新しい同じ組成の培地に植え継ぎ、さらに7日間培養した。同様の操作をもう一度行った。この集積培養液100μlを基礎無機塩寒天培地に塗沫し、室温の暗所で7日間静置培養した。寒天培地には予めスチレントリマーをそれぞれ10μl、30μl、50μl塗沫した。出現したコロニーを同様の寒天培地に白金耳で画線し、さらに室温の暗所で3日間培養した。それぞれのプレートから単一のコロニーを10mlのLB培地に植え、30℃で1〜2日間振とう培養した。この培養液に等量の60%グリセロールを加え、-85℃で凍結保存した。
[Example 2] Isolation of styrene trimer-resistant microorganisms and SMO activity test It is not clear that polystyrene-degrading bacteria possess SMO activity, and cannot be isolated using SMO activity as an indicator, so they are isolated as polystyrene-resistant bacteria. Tried. Soil was collected from the root of the street along the 6-chome industrial road in Wakabayashi-ku, Sendai, and used as a sample for isolating polystyrene-degrading bacteria. A 20 g soil sample was suspended in physiological saline and centrifuged at 3,000 rpm for 5 minutes at room temperature. 500 μl of the supernatant after centrifugation was planted in a basic inorganic salt medium containing 50 ml of yeast extract 0.001% (w / v) to which various concentrations of styrene trimer were added as a carbon source. Styrene trimer (10μg / ml toluene solution, Kanto Chemical Co., Ltd.) is the stock solution of 10μl (1.56μM), 30μl (4.68μM), 50μl (7.8μM), 100μl (15.6μM), 300μl (46.8μM), 500μl (78μM). ) Was added (final concentration in parentheses). The culture solution added with styrene trimer was transferred to a 100 ml Erlenmeyer flask with a stopper, and cultured with shaking at 30 ° C., 130 rpm for 7 days. After the turbidity was confirmed, 500 μl of the culture medium of the sample added with 10 μl, 30 μl, or 50 μl of styrene trimer was transferred to a new medium having the same composition and further cultured for 7 days. The same operation was performed once again. 100 μl of this enriched culture solution was smeared on a basic inorganic salt agar medium and left to stand for 7 days in the dark at room temperature. On the agar medium, 10 μl, 30 μl and 50 μl of styrene trimer were smeared in advance. The appearing colonies were streaked on the same agar medium with platinum ears, and further cultured in the dark at room temperature for 3 days. A single colony from each plate was inoculated into 10 ml of LB medium and cultured with shaking at 30 ° C. for 1-2 days. An equal amount of 60% glycerol was added to the culture and stored frozen at -85 ° C.

ポリスチレン耐性菌のSMO活性試験は、スチレン酸化細菌の単離実験と同様に、インドールを塗沫した基礎無機塩寒天培地にグリセロールストックしておいたポリスチレン耐性菌を植え、形成されたコロニーの色が青く発色するのを観察する方法によって行った。   In the SMO activity test of polystyrene-resistant bacteria, in the same manner as the isolation experiment of styrene-oxidizing bacteria, the polystyrene-resistant bacteria stored in glycerol stock were planted in basic inorganic salt agar coated with indole. This was done by observing the blue coloration.

[実施例3]抗生物質耐性試験
スチレン酸化細菌およびポリスチレン耐性細菌の抗生物質耐性能を、4種類の抗生物質について検討した。-85℃でグリセロールストックしておいた細菌を、終濃度50μg/mlの各種抗生物質入り1×LB寒天培地に画線して植え、30℃で2〜7日間培養した。抗生物質はアンピシリン、カナマイシン、テトラサイクリンを用いた。耐性はコロニー形成能力から判定した。
[Example 3] Antibiotic resistance test Antibiotic resistance performance of styrene-oxidizing bacteria and polystyrene-resistant bacteria was examined for four types of antibiotics. Bacteria that had been glycerol stocked at -85 ° C were streaked on 1 x LB agar medium containing various antibiotics at a final concentration of 50 µg / ml and cultured at 30 ° C for 2-7 days. Antibiotics used were ampicillin, kanamycin, and tetracycline. Resistance was determined from the ability to form colonies.

[実施例4]16SリボソーマルDNA塩基配列の決定
スチレン酸化細菌およびポリスチレン耐性細菌からのトータルDNAの調製は常法であるSDSとproteinase Kを用いた方法により調製した。トータルDNAからのPCRによる16SリボソーマルDNA(16S-rDNA)のクローニングは、既知のユニバーサルプライマーを用いて行った。PCRプライマーは既知の520Fプライマー5'-GCCACG(AC)GCCGCGGT-3'(配列番号1)および、1400Rプライマー5'- ACGGGCGGTGTGT(GA)C-3'(配列番号2)を用いることで、分類に適した遺伝子情報を得ることができる。特に本開発で単離したBacillus thuringiensis STR-Y-O株の分類には以下のプライマーを用いた。Basillus属の種を分類するために有効であることが(非特許文献8)によって示されている、16S-rDNAと23S-rDNAスペーサー領域を増幅するためのプライマーITS-A-f 5'-CCTTGTACACACCGCCCGT-3'(配列番号3)およびITS-A-r 5'-AAAATAGCTTTTTGGTGGAG-3'(配列番号4)と、さらに(非特許文献9)によってBacillus sereusとBacillus thuringiensisとを分類することに有効であることが示されているBacillus sereusのDNAジャイレース遺伝子gyrBに対するプライマーBC1 5'-ATTGGTGACACCGATCAAACA-3'(配列番号5)およびBC2r 5'-TCATACGTATGGATGTTATTC-3'(配列番号6)、さらにBacillus thuringiensisのDNAジャイレース遺伝子gyrBに対するプライマーBT1 5'-ATCGGTGATACAGATAAGACT-3'(配列番号7)およびRT2r 5'-CCTTCATACGTATGAATATTATTT-3'(配列番号8)を用いた。
Example 4 Determination of 16S Ribosomal DNA Base Sequence Total DNA from styrene-oxidizing bacteria and polystyrene-resistant bacteria was prepared by a conventional method using SDS and proteinase K. Cloning of 16S ribosomal DNA (16S-rDNA) by PCR from total DNA was performed using known universal primers. PCR primers are classified by using the known 520F primer 5'-GCCACG (AC) GCCGCGGT-3 '(SEQ ID NO: 1) and 1400R primer 5'-ACGGGCGGTGTGT (GA) C-3' (SEQ ID NO: 2). Appropriate genetic information can be obtained. In particular, the following primers were used for classification of Bacillus thuringiensis STR-YO strains isolated in this development. Primer ITS-Af 5'-CCTTGTACACACCGCCCGT-3 for amplifying 16S-rDNA and 23S-rDNA spacer regions, which has been shown by (Non-patent Document 8) to be effective in classifying species of the genus Basillus '(SEQ ID NO: 3) and ITS-Ar 5'-AAAATAGCTTTTTGGTGGAG-3' (SEQ ID NO: 4) and (Non-patent Document 9) show that they are effective for classifying Bacillus sereus and Bacillus thuringiensis. Primers BC1 5'-ATTGGTGACACCGATCAAACA-3 '(SEQ ID NO: 5) and BC2r 5'-TCATACGTATGGATGTTATTC-3' (SEQ ID NO: 6) for the Bacillus sereus DNA gyrase gene gyrB, and Bacillus thuringiensis DNA gyrase gene gyrB Primers BT1 5′-ATCGGTGATACAGATAAGACT-3 ′ (SEQ ID NO: 7) and RT2r 5′-CCTTCATACGTATGAATATTATTT-3 ′ (SEQ ID NO: 8) were used.

DNA塩基配列は310 Genetic Analyzer(ABI)を用いて決定し、DNA相同性解析は遺伝情報解析ソフトウエアGenetyx-MAC ver.9を用いて行った。   The DNA base sequence was determined using 310 Genetic Analyzer (ABI), and DNA homology analysis was performed using genetic information analysis software Genetyx-MAC ver.9.

[実施例5]スチレン分解能測定
スチレン分解実験は単離した6株のスチレン酸化細菌の内のSD-10株とSTR-Y-O株について試みた。-85℃でグリセロール溶液に保存しておいたスチレン酸化細菌を、LB寒天培地に画線し、30℃で一晩静置培養した。翌日、単一のコロニーを白金耳でかき取り、50mlのM9最小培地(非特許文献6)に植え継ぎ、100ml容の共栓付き三角フラスコを用いて、30℃で一晩振とう培養した。500μlの培養液を新しい50mlのM9最小培地に植え継ぎ培養を続けた。コントロールとしてM9最小培地のみを用いた。吸光度OD600nmが0.2に達したところで、ヘキサンで希釈した0.1μl/mlの濃度のスチレンモノマー溶液を200μl (18μg)添加した。その後、30℃で8日間振とう培養を続けた。培養液を24時間おきに4ml分取し、2mlのヘキサンと混合した。混合した溶液を遠心分離し、ヘキサン層を回収した。回収したヘキサン溶液はふた付きのバイアルビンに移し、ガスクロマトグラフ分析を行う直前まで4℃で保存した。この内の5μlをガスクロマトグラフ(GC)分析に用いて、スチレン濃度を測定した。GC装置は島津のGC-9Aを用いた。カラムはFFAP(島津)を用いた。GC分析の条件はキャリアーガスをHe、カラム温度を130℃、検出器温度を250℃で行った。
[Example 5] Measurement of styrene resolution Styrene degradation experiments were conducted on SD-10 strain and STR-YO strain among 6 isolated styrene-oxidizing bacteria. Styrene-oxidizing bacteria stored in a glycerol solution at -85 ° C were streaked on an LB agar medium and cultured at 30 ° C overnight. The next day, a single colony was scraped with a platinum loop, transferred to 50 ml of M9 minimal medium (Non-patent Document 6), and cultured overnight at 30 ° C. using a 100 ml Erlenmeyer flask with a stopper. 500 μl of the culture solution was transferred to a new 50 ml M9 minimal medium and continued to be cultured. Only M9 minimal medium was used as a control. When the absorbance OD600 nm reached 0.2, 200 μl (18 μg) of a styrene monomer solution diluted with hexane and having a concentration of 0.1 μl / ml was added. Thereafter, shaking culture was continued at 30 ° C. for 8 days. 4 ml of the culture solution was taken every 24 hours and mixed with 2 ml of hexane. The mixed solution was centrifuged, and the hexane layer was recovered. The collected hexane solution was transferred to a vial with a lid and stored at 4 ° C. until immediately before gas chromatographic analysis. Of this, 5 μl was used for gas chromatograph (GC) analysis to measure the styrene concentration. The GC-9A Shimadzu GC-9A was used. The column used was FFAP (Shimadzu). The GC analysis conditions were as follows: the carrier gas was He, the column temperature was 130 ° C, and the detector temperature was 250 ° C.

[実施例6]ポリスチレン分解能測定
ポリスチレン分解実験は、16S-rDNAの塩基配列より分類された微生物のうちPSD-3株と同種と同定されたPSD-4株およびPSD-5株を除く、PSD-1株、PSD-2株、PSD-3株、PSD-6株、およびスチレン酸化細菌STR-Y-O株について実施した。-85℃でグリセロール溶液に保存しておいた菌株をLB寒天培地に画線して、30℃で1〜2日間静置培養した。単一のコロニーを白金耳でかき取り、15mlのLB培地に植え継ぎ、50ml容の三角フラスコを用いて、30℃で一晩振とう培養した。250μlの培養液を25mlのM9培地それぞれの耐性菌につき4本ずつに植え継ぎ、100ml容の共栓付き三角フラスコを用いて、30℃で培養した。コントロールとしてM9培地のみを用いた。吸光度OD600nmが0.2に達したところで、ジクロロメタンで溶解した0.3mg/mlのポリスチレンビーズ(重合度n≒3,000)溶液を200μl(60μg)添加した。その後、30℃で8日間振とう培養を続けた。0、2、5、8日目の培養液25mlを、50ml容のガラス製の遠心菅に移した。2.5gのNaClを加え良く混合して溶解した。続いて2mlのジクロロメタンを加え良く混合した。混合した溶液を室温、3,000rpm、5分遠心分離し、ジクロロメタン層を2ml容のマイクロチューブに移した。0.1gの無水Na2SO4を加えて充分に混合し、室温下で10分間静置した。フラッシュ遠心し、上清をふた付きのバイアルビンに移し、分析まで4℃で保存した。この内の10μlを高速液体クロマトグラフ分析(LC)に用いてポリスチレン濃度を測定した。LC装置は島津のLC-10ADを用いた。カラムはShim-pack GPC-803(島津)を用いた。LC分析の条件は移動相をテトラヒドロフラン、流速を1ml/min、カラム温度を30℃、検出波長254nmで行った。
[Example 6] Measurement of polystyrene resolution Polystyrene degradation experiments were conducted using PSD-, except for the PSD-4 and PSD-5 strains identified as the same strain as the PSD-3 strain among microorganisms classified by the base sequence of 16S-rDNA. 1 strain, PSD-2 strain, PSD-3 strain, PSD-6 strain, and styrene-oxidizing bacteria STR-YO strain were carried out. Strains stored in glycerol solution at -85 ° C were streaked on LB agar medium and statically cultured at 30 ° C for 1-2 days. A single colony was scraped with a platinum loop, inoculated into 15 ml of LB medium, and cultured with shaking at 30 ° C. overnight in a 50 ml Erlenmeyer flask. 250 μl of the culture broth was inoculated into 4 pieces of 25 ml each of the M9 medium, and cultured at 30 ° C. using a 100 ml Erlenmeyer flask with a stopper. Only M9 medium was used as a control. When the absorbance OD 600 nm reached 0.2, 200 μl (60 μg) of a 0.3 mg / ml polystyrene bead solution (polymerization degree n≈3,000) dissolved in dichloromethane was added. Thereafter, shaking culture was continued at 30 ° C. for 8 days. 25 ml of the culture solution on days 0, 2, 5, and 8 was transferred to a 50 ml glass centrifuge. 2.5 g NaCl was added and mixed well to dissolve. Subsequently, 2 ml of dichloromethane was added and mixed well. The mixed solution was centrifuged at 3,000 rpm for 5 minutes at room temperature, and the dichloromethane layer was transferred to a 2 ml microtube. 0.1 g of anhydrous Na2SO4 was added and mixed well, and allowed to stand at room temperature for 10 minutes. Flush centrifuge and transfer the supernatant to a vial with a lid and store at 4 ° C. until analysis. 10 μl of this was used for high performance liquid chromatographic analysis (LC) to measure the polystyrene concentration. The LC device used was Shimadzu LC-10AD. As the column, Shim-pack GPC-803 (Shimadzu) was used. The LC analysis was performed under the conditions that the mobile phase was tetrahydrofuran, the flow rate was 1 ml / min, the column temperature was 30 ° C., and the detection wavelength was 254 nm.

[実施例7]スチレン酸化細菌の分類結果例
環境中から10株以上のインドール(無色)をインディーゴーブルー(青色)に酸化させる能力を有する細菌を単離することができた。SD-1〜SD-10株は仙台市の国道沿いから単離された細菌であり、STR-Y-O株は山形市の畑から単離した細菌である。単離した細菌のうち、6 株の16S-rDNA塩基配列に基づく分類を試みた結果を表1に示す。SD-1、SD-4およびSD-9株はいずれもAureobacterium resistensおよびMicrobacterium nematophilumと99.3 %の相同性が示され、これらの株は2つの属名が重なっていることから未同定株とした。SD-2株はArthrobacter woluwensisと99.8%示され、SD-10株はPseudomonas sp.と99.9%の相同性が示された。これらの結果より、SD-2株およびSD-9株はそれぞれ、Arthrobacter woluwensis SD-2株、Pseudomonas sp. SD-10株と命名した。STR-Y-O株はBacillus anthracis, Bacillus cereus, Bacillus thuringiensisと99.9%の相同性が示された。ここで、Bacillus anthracisは炭疽菌として知られる病原菌であるので、Ameurらの方法(非特許文献8)に従って、16S-rDNAと23S-rDNAの塩基配列の間のスペーサー領域の塩基配列を決定して炭疽菌か否か確認した。その結果、約400塩基の3塩基に炭疽菌に存在せず、B. cereusと B. thuringiensisのみに存在する塩基が確認されたことから、炭疽菌でないことを確認できた。続いて、Yamadaらの方法(非特許文献9)に従ってgyrB遺伝子に対するPCRの結果、B. thuringiensisのみを増幅することができるプライマーを用いた場合にアガロースゲル電気泳動の結果にDNAバンドが検出され、B. cereusのみを増幅することができるPCRプライマーを用いた場合には検出されなかった。この結果より、STR-Y-O株はB. thuringiensisであると同定し、B. thuringiensis STR-Y-O株と命名した。
[Example 7] Example of classification results of styrene-oxidizing bacteria Bacteria having the ability to oxidize 10 or more indole (colorless) to indigo blue (blue) from the environment could be isolated. The SD-1 to SD-10 strains are bacteria isolated from the national road along Sendai, and the STR-YO strain is a bacteria isolated from the field of Yamagata City. Table 1 shows the results of classification based on 16S-rDNA nucleotide sequences of 6 strains of the isolated bacteria. The SD-1, SD-4 and SD-9 strains all showed 99.3% homology with Aureobacterium resistens and Microbacterium nematophilum, and these strains were designated as unidentified strains because the two genus names overlapped. The SD-2 strain showed 99.8% with Arthrobacter woluwensis, and the SD-10 strain showed 99.9% homology with Pseudomonas sp. From these results, the SD-2 strain and the SD-9 strain were named Arthrobacter woluwensis SD-2 strain and Pseudomonas sp. SD-10 strain, respectively. The strain STR-YO showed 99.9% homology with Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis. Here, since Bacillus anthracis is a pathogen known as anthrax, the base sequence of the spacer region between the base sequences of 16S-rDNA and 23S-rDNA is determined according to the method of Ameur et al. It was confirmed whether it was anthrax. As a result, 3 bases of about 400 bases were not present in Bacillus anthracis, and only bases present in B. cereus and B. thuringiensis were confirmed. Subsequently, as a result of PCR on the gyrB gene according to the method of Yamada et al. (Non-patent document 9), when a primer capable of amplifying only B. thuringiensis was used, a DNA band was detected in the result of agarose gel electrophoresis, It was not detected when PCR primers capable of amplifying only B. cereus were used. From this result, the STR-YO strain was identified as B. thuringiensis and was named B. thuringiensis STR-YO strain.

[実施例8]ポリスチレン耐性細菌の分類結果例
10株のスチレントリマーに対して耐性を示す細菌を単離することができた。16S-rDNA塩基配列に基づく分類の結果、PSD-1、PSD-3およびPSD-4株はArthrobacter woluwensisと99.8%の相同性が示された(表1)。これらの株は同じ仙台市内の道路沿いで単離されたスチレン酸化細菌のSD-2株と同株でないかと考えている。この結果より、それぞれPSD-1、PSD-3およびPSD-4株はArthrobacter woluwensis PSD-1株、PSD-3およびPSD-4と命名した。また、PSD-2株はXanthomonas cynarae, Xanthomonas gardneaeおよびXanthomonas campestrisといずれも99.1%の相同性が示された。この結果より、PSD-2株は種までの同定には至らず、Xanthomonas sp. PSD-2株と命名した。PSD-6株はSphingobacterium-Like sp. およびSphingobacterium comitansとそれぞれ94.3%および94.2%と種レベルまで同定できたとはいいにくい相同性が示された。この結果より、PSD-6株は未同定株とてSphingobacterium-Like sp PSD-6株と命名した。
[Example 8] Example of classification results of polystyrene-resistant bacteria
Bacteria that were resistant to 10 strains of styrene trimer could be isolated. As a result of classification based on the 16S-rDNA base sequence, PSD-1, PSD-3 and PSD-4 strains showed 99.8% homology with Arthrobacter woluwensis (Table 1). I think these strains may be the same strain as the SD-2 strain of styrene-oxidizing bacteria isolated along the road in Sendai City. From these results, PSD-1, PSD-3 and PSD-4 strains were named Arthrobacter woluwensis PSD-1 strain, PSD-3 and PSD-4, respectively. In addition, PSD-2 strain showed 99.1% homology with Xanthomonas cynarae, Xanthomonas gardneae and Xanthomonas campestris. From this result, the PSD-2 strain was not identified until the species, and was named Xanthomonas sp. PSD-2 strain. The PSD-6 strain showed homology with Sphingobacterium-Like sp. And Sphingobacterium comitans, which was 94.3% and 94.2%, respectively. From this result, PSD-6 strain was named Sphingobacterium-Like sp PSD-6 strain as an unidentified strain.

Figure 2005163004
Figure 2005163004

[実施例9]抗生物質耐性およびSMO活性観察例
3種類の抗生物質に対する耐性を調べた結果とスチレンモノオキシゲナーゼ(SMO)活性の有無を調べた結果を表2に示す。スチレン酸化細菌とポリスチレン耐性菌はSTR-Y-O株以外はカナマイシン耐性があり、スチレン酸化細菌はすべてアンピシリン耐性であり、またポリスチレン酸化細菌はPSD-2株を除いてテトラサイクリン耐性であることが特徴である。これまで遺伝子まで特定されている3株(非特許文献1,2,3)のいずれもPseudomonas属のスチレン分解菌はすべてSMOをコードするstyAおよびstyB遺伝子を含むstyオペロン有することが明らかになっている。これら3株のstyA遺伝子間の相同性は92%ありPCRによりクローン化がなされている(非特許文献1)。単離したポリスチレン耐性菌においてもすべての株にSMO活性が示された(表2)。既存のstyA遺伝子に対するPCRプライマーを合成して、単離した7株のスチレンおよびポリスチレン分解菌からのトータルDNAを鋳型としてPCRを行い、styA遺伝子の所在の確認を試みた。その結果、データは示してないがstyA遺伝子と相同性のあるクローンは得られなかった。

Figure 2005163004
[Example 9] Observation of antibiotic resistance and SMO activity
Table 2 shows the results of examining the resistance to three types of antibiotics and the results of examining the presence or absence of styrene monooxygenase (SMO) activity. Styrene-oxidizing bacteria and polystyrene-resistant bacteria are kanamycin-resistant except for STR-YO strains, all styrene-oxidizing bacteria are ampicillin-resistant, and polystyrene-oxidizing bacteria are tetracycline resistant except for PSD-2 strain. . It has become clear that all three strains (Non-patent Documents 1, 2, and 3) that have been identified so far have sty operons including styA and styB genes that encode SMO. Yes. The homology between these three strains of styA gene is 92% and has been cloned by PCR (Non-patent Document 1). All strains also showed SMO activity in the isolated polystyrene-resistant bacteria (Table 2). PCR primers were synthesized for the existing styA gene, and PCR was performed using the total DNA from the seven isolated strains of styrene and polystyrene-degrading bacteria as a template to confirm the location of the styA gene. As a result, clones having no homology with the styA gene were not obtained, although no data was shown.
Figure 2005163004

[実施例10]ポリスチレンおよびスチレン分解能実験結果例
ポリスチレン耐性菌3株とスチレン分解が明らかになったSTR-Y-O株を用いて、ポリスチレン分解能実験を試みた。その結果、4株すべてがポリスチレン分解を示し、PSD-1株、PSD-2株、PSD-6株およびSTR-Y-O株は培養8日目でそれぞれ47%、24%、43%および56% (34μg)の分解を示した(図1)。発砲スチロールはポリスチレンピーズに空気を吹き込んで50倍の体積に膨らませて作製される。STR-Y-O株はスチレン分解能を有すると伴に単離した細菌の中で最も高いポリスチレン分解能を有していた。また、2株のスチレン酸化細菌を用いてスチレン分解能実験を試みた結果を図2に示す。SD-10株は培養8日目で初期濃度の50% (9μg)の分解を示し、STR-Y-O株は初期濃度の40 % (7.2μg)の分解を示した。
[Example 10] Example of polystyrene and styrene resolution experiment results A polystyrene resolution experiment was attempted using three polystyrene-resistant bacteria and STR-YO strains in which styrene degradation was clarified. As a result, all four strains showed polystyrene degradation, and the PSD-1, strain-2, PSD-6 and STR-YO strains were 47%, 24%, 43% and 56% on the 8th day of culture, respectively ( 34 μg) was shown (FIG. 1). Foamed polystyrene is made by blowing air into polystyrene peas and expanding it to 50 times the volume. The STR-YO strain had the highest polystyrene resolution among the bacteria isolated with styrene resolution. In addition, Fig. 2 shows the results of an experiment of styrene resolution using two strains of styrene-oxidizing bacteria. The SD-10 strain showed 50% (9 μg) degradation of the initial concentration on day 8 of culture, and the STR-YO strain showed 40% (7.2 μg) degradation of the initial concentration.

これまで、ポリスチレンを分解する細菌の報告はなく、単離した細菌のポリスチレン分解メカニズム解明が今後の課題である。しかしながら、ポリスチレン分解菌すべてにSMO活性が認められたことから、既存のstyオペロン(非特許文献1)と同様にスチレンを酸化させてスチレンオキシドを生成し、その後フェニルアセトアルデヒドを経由してフェニルアセチル-CoAに至る分解経路を有する可能性がある。一方前述の実験ではDNA相同性に基づくPCRによって、styAをクローン化ができなかった事実もあり、新規のSMOの可能性やポリスチレンの側鎖に反応して低分低分子化するメカニズムが不明であることなどからstyオペロン全体の構造解析を行って、既存のデータと比較して見る必要がある。   So far, there are no reports of bacteria that degrade polystyrene, and elucidation of the polystyrene degradation mechanism of the isolated bacteria is a future issue. However, since SMO activity was observed in all polystyrene-degrading bacteria, styrene was oxidized to form styrene oxide in the same way as the existing sty operon (Non-patent Document 1), and then phenylacetyl- May have a degradation pathway leading to CoA. On the other hand, styA could not be cloned by PCR based on DNA homology in the above-mentioned experiment, so the possibility of a novel SMO and the mechanism for reducing the molecular weight by reacting with the side chain of polystyrene is unknown. For some reason, it is necessary to analyze the structure of the entire sty operon and compare it with existing data.

これまで知られているスチレン分解菌はPseudomonas属とXanthobacter属などであったが、新たにBacillus属の微生物を同定することができた。また、ポリスチレンを分解するArthrobacter woluwensis, Xanthomonas属、Sphingobacterium属に近縁の細菌などを分類することができたことから、ポリスチレン分解細菌の多様性が示された。同時に自動車タイヤの磨耗による、スチレンやポリスチレンが多く含まれると考えられる道路沿いの土壌は、多種の分解細菌生息場所の一つであることを示すことができた。   The styrene-degrading bacteria known so far were the genus Pseudomonas and the genus Xanthobacter, but it was possible to newly identify microorganisms belonging to the genus Bacillus. In addition, it was possible to classify bacteria related to Arthrobacter woluwensis, Xanthomonas genus and Sphingobacterium genus that degrade polystyrene, indicating the diversity of polystyrene degrading bacteria. At the same time, we were able to show that the soil along the road, which is thought to be rich in styrene and polystyrene, due to the wear of automobile tires, is one of many different bacterial habitats.

[実施例11]リモネンおよびジクロロメタンで減容したEPSの微生物分解
(1)分解微生物の培養
-85℃でグリセロール溶液に保存していたPSD-1株、PSD-2株、PSD-6株、STR-Y-O株をLB寒天培地(非特許文献6)に白金耳で画線し、30℃で一晩静置培養した。翌日、単一のシングルコロニーを爪楊枝でかき取り、10mlのLB液体培地に植え継ぎ、37℃で一晩振とう培養した。予め、100 ml容の共栓付三角フラスコを1株あたり4本ずつ用意し、このフラスコにM9液体培地(非特許文献6)を25 mlずつ加えておいた。培養液250μlを予め用意したM9液体培地に植え継ぎ、30℃で振とう培養した。増殖度を示す吸光度OD600 nmが0.2に達したところで、0.3 mg/mlの発泡スチロール溶液(リモネンまたはジクロロメタンで減容したEPS)を200μl(60μg)添加し、30℃で振とう培養した。培養時間の0、2、5、8日目に、1本のフラスコ全量25mLを試料に以下のジクロロメタン抽出法によって、発泡スチロール溶解物を抽出した。この内の10μlを高速液体クロマトグラフ分析(LC)に用いて、発泡スチロール溶解物濃度を測定した。溶解物の定量はリテンションタイムが5.4分に検出される最も高いピークの溶解物を指標に行った。LC装置は島津のLC-10ADを用いた。カラムはShim-pack GPC-803(島津)を用いた。LC分析の条件は移動相をテトラヒドロフラン、流速を1 ml/min、カラム温度を35℃、検出波長254 nmで行った。コントロールはM9液体培地のみを用いた。
[Example 11] Microbial degradation of EPS reduced in volume with limonene and dichloromethane
(1) Culture of degrading microorganisms
The PSD-1 strain, PSD-2 strain, PSD-6 strain and STR-YO strain that had been stored in the glycerol solution at -85 ° C were streaked with platinum ears on the LB agar medium (Non-patent Document 6), 30 ° C And left overnight. The next day, a single single colony was scraped off with a toothpick, inoculated into 10 ml of LB liquid medium, and cultured with shaking at 37 ° C. overnight. Four 100 ml Erlenmeyer flasks with a stopper were prepared in advance, and 25 ml of M9 liquid medium (Non-patent Document 6) was added to each flask. 250 μl of the culture solution was transferred to a prepared M9 liquid medium and cultured with shaking at 30 ° C. When the absorbance OD 600 nm indicating the degree of growth reached 0.2, 200 μl (60 μg) of 0.3 mg / ml styrofoam solution (EPS diluted with limonene or dichloromethane) was added, and the mixture was cultured with shaking at 30 ° C. On the 0th, 2nd, 5th, and 8th days of the culture time, a styrene foam lysate was extracted from a total of 25 mL of one flask by the following dichloromethane extraction method. 10 μl of this was used for high performance liquid chromatographic analysis (LC) to measure the concentration of styrene foam lysate. The lysate was quantified using the lysate with the highest peak detected at a retention time of 5.4 minutes as an index. The LC device used was Shimadzu LC-10AD. As the column, Shim-pack GPC-803 (Shimadzu) was used. The conditions of LC analysis were as follows: the mobile phase was tetrahydrofuran, the flow rate was 1 ml / min, the column temperature was 35 ° C., and the detection wavelength was 254 nm. As a control, only M9 liquid medium was used.

(2)EPS溶解物のジクロロメタン抽出法
50 ml容共栓付ガラス製遠心管に0.4gのNaClを加え、次ぎに培養液25mlを移し、ボルテックスミックスチャーを用いて良く混合した。ジクロロメタン3mlを加え、2分間ボルテックスミックスチャーを用いて良く混合した。その後、室温3,000rpm、5分間遠心を行った。ジクロロメタン層(下層)をパスツールピペット用いて取り、予め無水硫酸ナトリウム0.1gを加えた2ml容マイクロチューブに移した。ボルテックスミックスチャーでよく混合し、室温10分間放置した。フラッシュ遠心し、上清をふた付のガラス製バイアルビンに移し、HPLC分析まで4℃で保存した。
(2) Dichloromethane extraction of EPS lysate
0.4 g NaCl was added to a glass centrifuge tube with a 50 ml stopper, and then 25 ml of the culture solution was transferred and mixed well using a vortex mixer. 3 ml of dichloromethane was added and mixed well using a vortex mixer for 2 minutes. Thereafter, centrifugation was performed at 3,000 rpm for 5 minutes at room temperature. The dichloromethane layer (lower layer) was taken using a Pasteur pipette and transferred to a 2 ml microtube to which 0.1 g of anhydrous sodium sulfate was added in advance. Mix well with vortex mixture and let stand at room temperature for 10 minutes. After flash centrifugation, the supernatant was transferred to a glass vial with a lid and stored at 4 ° C. until HPLC analysis.

(3)実験結果および考察
リモネンで減容した発泡スチロールのPSD-1株、PSD-2、PSD-6株、STR-Y-O株による分解実験を試みた。この結果を図3に示す。このように、STR-Y-O株を用いた場合は8日目までに、約67%(40μg)の分解が示された。データは示してないが、他の株による分解は認められなかった。
(3) Experimental results and discussion The decomposition experiment of the polystyrene foam volume reduced with limonene was attempted with PSD-1, PSD-2, PSD-6 and STR-YO strains. The result is shown in FIG. Thus, when the STR-YO strain was used, about 67% (40 μg) of degradation was shown by the 8th day. Data not shown, but no degradation by other strains was observed.

一方で、ジクロロメタンで減容した発泡スチロールの分解結果はすべての株で発泡スチロール溶解物の分解が示された。特にPSD-6株とSTR-Y-O株の分解結果を図4に示す。STR-Y-O株は8日目までに初期濃度の約61%(37μg)の分解が示された。   On the other hand, the decomposition results of the expanded polystyrene reduced with dichloromethane showed the decomposition of the expanded polystyrene solution in all strains. In particular, the degradation results of PSD-6 strain and STR-Y-O strain are shown in FIG. The STR-Y-O strain showed degradation of about 61% (37 μg) of the initial concentration by day 8.

リモネンで減容した際にSTR-Y-O株にのみ分解が認められ、他の株に分解が認められなかった理由の一つとして以下のことが推察された。まず、すべてのリモネン発泡スチロール溶解液を添加した微生物に増殖が認められた。しかし、添加したリモネンについて培養中に変化が認められた。リモネンは植物の精油成分として知られることもあり、培養液に添加すると浮遊し、界面(表面)一面を被うまでになっている様子が観察できる。STR-Y-O株では培養日数が進むにつれて、界面(表面)を浮遊していたリモネンが消失し、8日目までにはほとんど目で観察できないほどまでになった。この結果、リモネンは微生物の増殖は阻害しないが、発泡スチロール溶解物分解を阻害することを示唆している。また、STR-Y-O株はリモネンを分解して、発泡スチロール溶解物の分解も可能にしたことが推測された。STR-Y-O株のリモネン分解実験は試みてないが、もしリモネン分解を確認することができれば、リモネンで溶解したEPSの微生物分解処理に特に有用な微生物である。   Degradation was observed only in the STR-Y-O strain when the volume was reduced with limonene, and one of the reasons why no degradation was observed in the other strains was presumed as follows. First, all microorganisms to which limonene foamed styrene solution was added grew. However, changes were observed during the culture for the added limonene. Limonene is sometimes known as an essential oil component of plants, and it can be observed that it floats when it is added to the culture solution and covers the entire interface (surface). In the STR-Y-O strain, as the number of days of culture progressed, the limonene floating on the interface (surface) disappeared, and it became almost unobservable by the eye by the 8th day. As a result, it is suggested that limonene does not inhibit the growth of microorganisms, but inhibits the decomposition of foamed polystyrene. It was also speculated that the STR-Y-O strain decomposed limonene and made it possible to decompose the foamed polystyrene. We have not tried to decompose limonene in the STR-Y-O strain, but if limonene degradation can be confirmed, it is a particularly useful microorganism for microbial degradation of EPS dissolved in limonene.

さらに、今後、STR-Y-O株以外のポリスチレン分解微生物をEPSの微生物分解処理に用いる場合にはリモネンの分解阻害を解く方法を考慮する必要がある。   Furthermore, when polystyrene-degrading microorganisms other than the STR-Y-O strain are used for the microbial degradation treatment of EPS, it is necessary to consider a method for solving the inhibition of limonene degradation.

リモネン分解阻害を解く方法として、リモネン分解能力を持った微生物を同時に添加する方法が考えられる。   As a method for solving the inhibition of limonene decomposition, a method of simultaneously adding a microorganism having the ability to decompose limonene can be considered.

本発明で単離した微生物Arthrobacter woluwensis PSD-1株とXanthomonas sp. PSD-2株とSphingobacterium-Like sp PSD-6株およびBacillus thuringiensis STR-Y-O株を用いて、重合度3000のポリスチレン分解実験を行った結果を示す図である。Using the microorganisms Arthrobacter woluwensis PSD-1 strain, Xanthomonas sp. PSD-2 strain, Sphingobacterium-Like sp PSD-6 strain and Bacillus thuringiensis STR-YO strain isolated in the present invention, polystyrene degradation experiments with a polymerization degree of 3000 were conducted. It is a figure which shows the result. 本発明で単離した微生物Pseudomonas sp. SD-10株とBacillus thuringiensis STR-Y-O株を用いて、スチレンモノマー分解実験を行った結果を示す図である。It is a figure which shows the result of having conducted styrene monomer decomposition | disassembly experiment using microorganism Pseudomonas sp. SD-10 strain | stump | stock isolated by this invention, and Bacillus thuringiensis STR-Y-O strain | stump | stock. リモネンで減容したEPSの分解経日変化を示す図である。It is a figure which shows the time-dependent change of decomposition | disassembly of EPS reduced by limonene. ジクロロメタンで減容したEPSの分解経日変化を示す図である。It is a figure which shows the decomposition daily change of EPS reduced by the dichloromethane.

Claims (21)

ポリスチレン分解能を有する微生物をスチレン系重合体と接触させる工程を含む、スチレン系重合体の分解方法。 A method for decomposing a styrenic polymer, comprising a step of bringing a microorganism having polystyrene resolution into contact with a styrenic polymer. ポリスチレン分解能を有する微生物がArthrobacter属、Xanthomonas属、Sphingobacterium-Like、 Bacillus属のいずれかに属する微生物である、請求項1に記載のスチレン系重合体の分解方法。 The method for decomposing a styrenic polymer according to claim 1, wherein the microorganism having polystyrene decomposability is a microorganism belonging to any of Arthrobacter, Xanthomonas, Sphingobacterium-Like and Bacillus. ポリスチレン分解能を有する微生物が、Arthrobacter woluwensis PSD-1株、受託番号FERM P-19584で示されるXanthomonas sp. PSD-2株、受託番号FERM P-19583で示されるSphingobacterium-Like sp. PSD-6株、受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株のいずれかを含む、請求項1または請求項2のいずれかに記載のスチレン系重合体の分解方法。 Microorganisms having polystyrene resolution are Arthrobacter woluwensis PSD-1 strain, Xanthomonas sp. PSD-2 strain indicated by accession number FERM P-19584, Sphingobacterium-Like sp. PSD-6 strain indicated by accession number FERM P-19583, The method for decomposing a styrenic polymer according to any one of claims 1 and 2, comprising any one of Bacillus thuringiensis STR-YO strains represented by accession number FERM P-19582. Arthrobacter属、Xanthomonas属、Sphingobacterium-Like、Bacillus属のいずれかに属するポリスチレン分解能を有する微生物。 A microorganism having polystyrene degradability belonging to any of Arthrobacter genus, Xanthomonas genus, Sphingobacterium-Like, and Bacillus genus. 受託番号FERM P-19584,受託番号FERM P-19583,受託番号FERM P-19582のいずれかで示される、請求項4に記載のポリスチレン分解能を有する微生物。 The microorganism having polystyrene resolution according to claim 4, which is represented by any one of accession number FERM P-19584, accession number FERM P-19583, and accession number FERM P-19582. スチレントリマー耐性能を指標として微生物をスクリーニングする工程を含む、ポリスチレン分解微生物を単離する方法。 A method for isolating a polystyrene-degrading microorganism comprising a step of screening a microorganism using styrene trimer resistance as an index. Bacillus属に属するスチレン分解能を有する微生物とスチレンを接触させる工程を含む、スチレンの分解方法。 A method for decomposing styrene, comprising a step of bringing styrene into contact with a microorganism belonging to the genus Bacillus and having styrene-decomposing ability. スチレン分解能を有する微生物が受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株である、請求項7に記載のスチレンの分解方法。 The method for decomposing styrene according to claim 7, wherein the microorganism having styrene decomposability is Bacillus thuringiensis STR-Y-O strain represented by accession number FERM P-19582. Bacillus属に属するスチレン分解能を有する微生物。 A microorganism belonging to the genus Bacillus and having styrene-degrading ability. 受託番号FERM P-19582で示される、請求項9に記載のスチレン分解能を有する微生物。 The microorganism having styrene-decomposing ability according to claim 9, which is represented by an accession number FERM P-19582. 請求項4、請求項5、請求項9、請求項10のいずれかに記載の微生物を含む、スチレン系重合体またはスチレン分解に用いる微生物製剤。 A styrenic polymer or a microbial preparation used for decomposing styrene, comprising the microorganism according to any one of claims 4, 5, 9, and 10. スチレン系重合体を減容剤によって溶かして得られた溶解物をポリスチレン分解能を有する微生物と接触させる、スチレン系重合体の分解方法。 A method for decomposing a styrenic polymer, wherein a lysate obtained by dissolving a styrenic polymer with a volume reducing agent is contacted with a microorganism having polystyrene decomposability. スチレン系重合体を減容剤によって溶かして得られた溶解物と、ポリスチレン分解能を有する微生物の培養液を混合し、スチレン系重合物を分解する方法であって、
前記微生物は、前記溶解物と前記培養液を混合した際に、表面に浮遊する前記減容剤の浮遊状態を解除する能力を有する、スチレン系重合体の分解方法。
A method of decomposing a styrenic polymer by mixing a lysate obtained by dissolving a styrenic polymer with a volume reducing agent and a culture solution of a microorganism having polystyrene degradability,
The method for decomposing a styrenic polymer, wherein the microorganism has an ability to release the suspended state of the volume reducing agent floating on the surface when the lysate and the culture solution are mixed.
前記減容剤はリモネンである、請求項12または13に記載のスチレン系重合体の分解方法。 The method for decomposing a styrenic polymer according to claim 12 or 13, wherein the volume reducing agent is limonene. 前記ポリスチレン分解能を有する微生物が受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株である、請求項12〜14のいずれか1つに記載のスチレン系重合体の分解方法。 The method for decomposing a styrenic polymer according to any one of claims 12 to 14, wherein the microorganism having a polystyrene resolution is a Bacillus thuringiensis STR-Y-O strain represented by an accession number FERM P-19582. 前記減容剤は、有機溶媒である、請求項12に記載のスチレン系重合体の分解方法。 The method for decomposing a styrenic polymer according to claim 12, wherein the volume reducing agent is an organic solvent. 前記有機溶媒はジクロロメタンである、請求項16に記載のスチレン系重合体の分解方法。 The method for decomposing a styrenic polymer according to claim 16, wherein the organic solvent is dichloromethane. 前記ポリスチレン分解能を有する微生物がArthrobacter属、Xanthomonas属、Sphingobacterium-Like、 Bacillus属のいずれかに属する微生物である、請求項15〜17のいずれか1つに記載のスチレン系重合体の分解方法。 The method for decomposing a styrenic polymer according to any one of claims 15 to 17, wherein the microorganism having polystyrene decomposability is a microorganism belonging to any of Arthrobacter, Xanthomonas, Sphingobacterium-Like, and Bacillus. 前記ポリスチレン分解能を有する微生物が、Arthrobacter woluwensis PSD-1株、受託番号FERM P-19584で示されるXanthomonas sp. PSD-2株、受託番号FERM P-19583で示されるSphingobacterium-Like sp. PSD-6株、受託番号FERM P-19582で示されるBacillus thuringiensis STR-Y-O 株のいずれかを含む、請求項15〜17のいずれか1つに記載のスチレン系重合体の分解方法。 The microorganism having polystyrene decomposability is Arthrobacter woluwensis PSD-1 strain, Xanthomonas sp. PSD-2 strain indicated by accession number FERM P-19584, Sphingobacterium-Like sp. PSD-6 strain indicated by accession number FERM P-19583 The decomposition method of the styrenic polymer as described in any one of Claims 15-17 containing any of Bacillus thuringiensis STR-YO strain | stump | stock shown by accession number FERM P-19582. 請求項12〜19のいずれか1つに記載のスチレン系重合体の分解方法に使用されるポリスチレン分解能を有する微生物。 A microorganism having polystyrene decomposability used in the method for decomposing a styrenic polymer according to any one of claims 12 to 19. 請求項20に記載の微生物を含む、微生物製剤。 A microorganism preparation comprising the microorganism according to claim 20.
JP2004056697A 2003-11-13 2004-03-01 Biodegradation treatment method of styrenic polymer and microorganism used in this method Expired - Fee Related JP4406305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056697A JP4406305B2 (en) 2003-11-13 2004-03-01 Biodegradation treatment method of styrenic polymer and microorganism used in this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003384288 2003-11-13
JP2004056697A JP4406305B2 (en) 2003-11-13 2004-03-01 Biodegradation treatment method of styrenic polymer and microorganism used in this method

Publications (2)

Publication Number Publication Date
JP2005163004A true JP2005163004A (en) 2005-06-23
JP4406305B2 JP4406305B2 (en) 2010-01-27

Family

ID=34741758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056697A Expired - Fee Related JP4406305B2 (en) 2003-11-13 2004-03-01 Biodegradation treatment method of styrenic polymer and microorganism used in this method

Country Status (1)

Country Link
JP (1) JP4406305B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156819A (en) * 2014-02-24 2015-09-03 独立行政法人国立高等専門学校機構 Method for producing styrene monomer from polystyrene polymer, and gene and enzyme used for this method
KR101866374B1 (en) * 2017-05-19 2018-06-11 농업회사법인(주)이지엠앤알 Treatment Method for Styrofoam using Microbial Agent
CN115093982A (en) * 2022-04-20 2022-09-23 杭州师范大学 Pseudomonas ZB30 and application thereof in styrene waste gas degradation
CN115989085A (en) * 2020-06-25 2023-04-18 佐治亚州立大学研究基金会公司 Plastic polymer bioconversion process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124674A (en) * 1977-04-01 1978-10-31 Agency Of Ind Science & Technol Microbial decomposition of styrene oligomer
JPS5444087A (en) * 1977-09-14 1979-04-07 Agency Of Ind Science & Technol Decomposition of styrene oligomer
JP2000198875A (en) * 1998-04-09 2000-07-18 Matsushita Electric Ind Co Ltd Method for treating thermoplastic resin composition containing flame retardant
JP2001299331A (en) * 2000-04-19 2001-10-30 Nakatani Takanari Refuse treating medium, method for producing refuse treating medium, method for treating refuse and refuse treating machine
JP2003147119A (en) * 2001-11-08 2003-05-21 Sanyo Electric Co Ltd Method for disposing waste and apparatus for disposing waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124674A (en) * 1977-04-01 1978-10-31 Agency Of Ind Science & Technol Microbial decomposition of styrene oligomer
JPS5444087A (en) * 1977-09-14 1979-04-07 Agency Of Ind Science & Technol Decomposition of styrene oligomer
JP2000198875A (en) * 1998-04-09 2000-07-18 Matsushita Electric Ind Co Ltd Method for treating thermoplastic resin composition containing flame retardant
JP2001299331A (en) * 2000-04-19 2001-10-30 Nakatani Takanari Refuse treating medium, method for producing refuse treating medium, method for treating refuse and refuse treating machine
JP2003147119A (en) * 2001-11-08 2003-05-21 Sanyo Electric Co Ltd Method for disposing waste and apparatus for disposing waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156819A (en) * 2014-02-24 2015-09-03 独立行政法人国立高等専門学校機構 Method for producing styrene monomer from polystyrene polymer, and gene and enzyme used for this method
KR101866374B1 (en) * 2017-05-19 2018-06-11 농업회사법인(주)이지엠앤알 Treatment Method for Styrofoam using Microbial Agent
CN115989085A (en) * 2020-06-25 2023-04-18 佐治亚州立大学研究基金会公司 Plastic polymer bioconversion process
CN115093982A (en) * 2022-04-20 2022-09-23 杭州师范大学 Pseudomonas ZB30 and application thereof in styrene waste gas degradation
CN115093982B (en) * 2022-04-20 2024-03-29 杭州师范大学 Pseudomonas ZB30 and application thereof in styrene waste gas degradation

Also Published As

Publication number Publication date
JP4406305B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
Wright et al. A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere
Guerra et al. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation
Kumar et al. Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis
Watanabe Microorganisms relevant to bioremediation
Yoon et al. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell
Mattes et al. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution
Daly et al. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria
Yoshida et al. Ideonella sakaiensis, PETase, and MHETase: From identification of microbial PET degradation to enzyme characterization
Kumar et al. Landfill microbiome harbour plastic degrading genes: A metagenomic study of solid waste dumping site of Gujarat, India
Tuo et al. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil
Shah et al. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75
Miller et al. Isolation and characterization of Polycyclic Aromatic Hydrocarbon–degrading Mycobacterium isolates from soil
Liu et al. Isolation and characterization of crude-oil-degrading bacteria from oil-water mixture in Dagang oilfield, China
Franchi et al. Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula
Parales et al. Biocatalytic degradation of pollutants
Cupples The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation
Wu et al. Biodegradation of Di-n-butyl phthalate esters by Bacillus sp. SASHJ under simulated shallow aquifer condition
Heidari et al. Bisphenol A degradation by Ralstonia eutropha in the absence and presence of phenol
CA3143351C (en) System and method for bioremediation of pollutants
Al-Bahry et al. Potential in heavy oil biodegradation via enrichment of spore forming bacterial consortia
Paisio et al. Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1. 4
Mu et al. Anaerobic degradation of high-concentration polycyclic aromatic hydrocarbons (PAHs) in seawater sediments
Canul-Chan et al. Population structures shift during the biodegradation of crude and fuel oil by an indigenous consortium
Liu et al. Halophilic archaea and their extracellular polymeric compounds in the treatment of high salt wastewater containing phenol
JP4406305B2 (en) Biodegradation treatment method of styrenic polymer and microorganism used in this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141113

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees