JP2015156819A - Method for producing styrene monomer from polystyrene polymer, and gene and enzyme used for this method - Google Patents

Method for producing styrene monomer from polystyrene polymer, and gene and enzyme used for this method Download PDF

Info

Publication number
JP2015156819A
JP2015156819A JP2014032709A JP2014032709A JP2015156819A JP 2015156819 A JP2015156819 A JP 2015156819A JP 2014032709 A JP2014032709 A JP 2014032709A JP 2014032709 A JP2014032709 A JP 2014032709A JP 2015156819 A JP2015156819 A JP 2015156819A
Authority
JP
Japan
Prior art keywords
polystyrene
styrene monomer
enzyme
gene
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014032709A
Other languages
Japanese (ja)
Other versions
JP6553329B2 (en
Inventor
栄作 及川
Eisaku Oikawa
栄作 及川
胤昭 及川
Taneaki Oikawa
胤昭 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2014032709A priority Critical patent/JP6553329B2/en
Publication of JP2015156819A publication Critical patent/JP2015156819A/en
Application granted granted Critical
Publication of JP6553329B2 publication Critical patent/JP6553329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gene and an enzyme used for producing styrene monomer from polystyrene.SOLUTION: Genes producing styrene monomer from polystyrene according to the present invention bind to the terminal of polystyrene polymer at normal temperature and normal pressure and produce styrene monomer by the reaction of releasing styrene monomer one by one from the terminal. Preferably, the genes are a gene encoding a chitin binding protein and a gene encoding an exo-chitinase enzyme, which are used by simultaneously contacting with polystyrene.

Description

本発明は、発泡スチロール等のスチレン重合体およびスチレン系樹脂を酵素分解し、スチレンモノマーを生成する方法に関する。また、本発明は、例えば廃棄された発泡スチロールや発泡スチロールを溶かすことによって減容させたポリスチレンビーズから、この原料となるスチレンモノマーを再生させるために用いることができる。   The present invention relates to a method for producing a styrene monomer by enzymatic decomposition of a styrene polymer such as polystyrene foam and a styrene resin. Further, the present invention can be used to regenerate styrene monomer as a raw material from, for example, discarded polystyrene foam or polystyrene beads reduced in volume by dissolving polystyrene foam.

発泡スチロールは、ポリスチレンビーズにブタンなどのガスを吸収させた後に、100℃以上の高温水蒸気と圧力を加えることにより、発泡させて製造される。製法と用途により、ビーズ法発泡スチロール(Expanded Polystyrene; EPS)、ポリスチレンペーパー(Polystyrene Paper; PSP)、押出ボード(Extruded Polystyrene; XPS)に分類される。EPSは主に農水産容器や緩衝包装材として、PSPは主に食品トレー、XPSは主に断熱建材に使用されている。発泡スチロールは、断熱性や衝撃吸収性等に優れ、加工も容易であることから、今後もその消費が続くと考えられるが、使命を終えた後の発泡スチロールは産業および家庭で廃棄物として排出されている。このような状況において、他の化石燃料由来のプラスチック同様、原料の枯渇の問題や、CO2排出量の削減や、省エネなどの観点から発泡スチロールの廃棄物処理問題の解決は重要性を増しており、発泡スチロールリサイクル処理への取り組みが求められている。 Styrofoam is produced by allowing polystyrene beads to absorb a gas such as butane and then foaming by applying high-temperature steam at 100 ° C. or higher and pressure. It is classified into expanded polystyrene (EPS), polystyrene paper (PSP), and extruded board (XPS) depending on the production method and application. EPS is mainly used for agricultural and fishery containers and buffer packaging materials, PSP is mainly used for food trays, and XPS is mainly used for heat insulating building materials. Styrofoam is excellent in heat insulation, shock absorption, etc., and it is easy to process, so it will continue to be consumed in the future, but after its mission, it will be discharged as waste in industry and households. Yes. Under these circumstances, as with other fossil fuel-derived plastics, the problem of depletion of raw materials, the reduction of CO 2 emissions, and the problem of waste disposal of polystyrene foam are becoming increasingly important from the viewpoint of energy saving. There is a need for efforts to recycle polystyrene foam.

発泡スチロールのリサイクルの手法には、マテリアルリサイクルとサーマルリサイクルがある。発泡スチロールのマテリアルリサイクルとは、発泡スチロールを減容剤や加熱処理によって減容し、減容剤を分離した後、精製したポリスチレン樹脂を再利用するリサイクル法である。   Materials recycling methods include material recycling and thermal recycling. The material recycling of the expanded polystyrene is a recycling method in which the expanded polystyrene resin is reused after reducing the volume of the expanded polystyrene by a volume reducing agent or heat treatment, separating the volume reducing agent.

サーマルリサイクルとは、発泡スチロールを焼却処理した際に生じる燃焼熱を熱資源として利用するリサイクル法である。2012年度の我が国における発泡スチロールリサイクル率は、マテリアルリサイクルが56.8%、サーマルリサイクルが30.6%であり、合わせて87.4%がリサイクルされている。このうちのマテリアルリサイクルの大半が、元の発泡スチロールに戻す再利用法でなく、他の製品に生まれ変わるリサイクルである。また、ポリスチレン(ポリスチレンビーズを含む))からポリスチレンの原料であるスチレンモノマーへの材料リサイクルは、コストがかかる加熱処理により行う方法しかなく、ほとんど行われていない。   Thermal recycling is a recycling method in which combustion heat generated when incinerated styrene foam is used as a heat resource. In 2012, the polystyrene recycling rate in Japan was 56.8% for material recycling and 30.6% for thermal recycling, and a total of 87.4% was recycled. Most of the material recycling is not a recycling method to return to the original expanded polystyrene, but recycling that is reborn to other products. In addition, material recycling from polystyrene (including polystyrene beads) to styrene monomer, which is a raw material of polystyrene, can be performed only by a costly heat treatment method, and is hardly performed.

非特許文献1は、本発明者により、環境中からポリスチレンおよびスチレンモノマーを分解する微生物を単離し、この微生物種がBacillus thuringiensis STR-Y-O株であると同定を行った文献である。   Non-Patent Document 1 is a document in which a microorganism that degrades polystyrene and styrene monomer is isolated from the environment by the present inventor and identified as a Bacillus thuringiensis STR-Y-O strain.

特許文献1では、廃ポリスチレンから低コストで高純度のスチレンモノマーを効率よく回収する方法の提供がなされている。本提案は、廃ポリスチレンから油成分を回収するための熱分解装置と、凝縮器を組合せた油成分回収装置を互いに距離的に離れた複数の場所にそれぞれ設置し、各油成分回収装置で回収した油成分を共通の蒸留装置に輸送し、その蒸留装置で油成分を蒸留してスチレンモノマーを回収する方法の開発に関するものである。   Patent Document 1 provides a method for efficiently recovering high-purity styrene monomer at low cost from waste polystyrene. In this proposal, a thermal decomposition device for recovering oil components from waste polystyrene and an oil component recovery device combined with a condenser are installed at multiple locations separated from each other, and recovered by each oil component recovery device. The present invention relates to the development of a method for recovering styrene monomer by transporting the obtained oil component to a common distillation apparatus and distilling the oil component with the distillation apparatus.

特許文献2では、ポリスチレン樹脂からのスチレンモノマーの回収方法およびそれに用いられる装置の提供がなされている。ポリスチレン樹脂を主成分がスチレンモノマーである溶媒に溶解させて作った、ポリスチレン溶液を、加熱水蒸気に混合させた後、この混合気体を内部に触媒を入れた分解槽に供給し、この分解槽でポリスチレン樹脂を分解しスチレンモノマーを得る方法の開発である。   Patent Document 2 provides a method for recovering styrene monomer from polystyrene resin and an apparatus used therefor. A polystyrene solution made by dissolving a polystyrene resin in a solvent whose main component is a styrene monomer is mixed with heated steam, and then this mixed gas is supplied to a decomposition tank containing a catalyst inside. This is the development of a method for decomposing polystyrene resins to obtain styrene monomers.

特許文献3では、耐衝撃性ポリスチレンからのスチレンモノマーの回収方法の提供がなされている。これは、硫酸塩及び/又は二酸化マンガン触媒を用いて、耐衝撃性ポリスチレンを加熱分解してスチレンモノマーを得る方法である。   Patent Document 3 provides a method for recovering styrene monomer from impact-resistant polystyrene. This is a method for obtaining a styrene monomer by thermally decomposing impact-resistant polystyrene using a sulfate and / or a manganese dioxide catalyst.

及川栄作、キンチダリン、遠藤剛、及川胤昭、石橋良信、発泡スチロールゼロエミッション処理構築のためのポリスチレン分解微生物の単離と分解特性、2003年、土木学会環境工学研究論文集、第40巻、pp.373-379.Eisaku Oikawa, Kinchidarin, Takeshi Endo, Masaaki Oikawa, Yoshinobu Ishibashi, Isolation and degradation characteristics of polystyrene-degrading microorganisms for the construction of polystyrene foam zero emission treatment, 2003, Proc. 373-379. Vaaje-Kolstad, G.,Horn, J. H., van Aalten, D. M. F., Synstad, B., and A.H., EIjsink, B. G. H.:The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens is Essential for Chitin Degradation, The J. Biol. Chrm, Vol. 280, No. 31, Issue of Auguest 5, pp. 28492-28497,2005.Vaaje-Kolstad, G., Horn, JH, van Aalten, DMF, Synstad, B., and AH, EIjsink, BGH: The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens is Essential for Chitin Degradation, The J. Biol Chrm, Vol. 280, No. 31, Issue of Auguest 5, pp. 28492-28497, 2005. Sambrook, J., Fritsch. E. F. and Maniatis, T. : Molecular Cloning, 2nd Edition, Cold Spring Harbor Laboratory Press. 1989.Sambrook, J., Fritsch. E. F. and Maniatis, T .: Molecular Cloning, 2nd Edition, Cold Spring Harbor Laboratory Press. 1989. 特開2003−335710JP 2003-335710 A 特開2001−294708JP 2001-294708 特開2001−288124JP 2001-288124 A

本発明は、ポリスチレン分解遺伝子を大腸菌などに導入して、この分解酵素を生産させ、この生産させた酵素を、常温および常圧下でポリスチレンと接触させて分解し、スチレンモノマーを製造する方法を提供すること、及び、ポリスチレンからスチレンモノマーを生成させる遺伝子、酵素、薬品、スチレンモノマー製造法、スチレンモノマー製造装置を提供することを目的とする。   The present invention provides a method for producing a styrene monomer by introducing a polystyrene degrading gene into Escherichia coli, etc., producing this degrading enzyme, and decomposing the produced enzyme by contacting with polystyrene under normal temperature and normal pressure. An object of the present invention is to provide a gene, an enzyme, a chemical, a styrene monomer production method, and a styrene monomer production apparatus that produce styrene monomer from polystyrene.

本発明者らは、環境中より溶媒で溶かした発泡スチロール(ポリスチレン溶液)を分解する能力を有した微生物Bacillus thuringiensis STR-Y-O株を同定した(非特許文献1)。その後、このSTR-Y-O株によるポリスチレン(PS)分解物の分子量分布をゲル浸透クロマトグラフ分析計(GPC)を用いて分析した。この結果、分子量の分布が低分子に移行する分解でなく、ピークの分子量のポリスチレン量のみが少なくなる分解が示された。分子量の分布が高分子から低分子へ移行する分解であれば、ポリスチレン鎖の内側でランダムに分解が生じることから、高分子のポリスチレンが低分子側へ移行した分布を示すと考えられる。これに対して、ポリスチレン鎖の末端で分解が生じた場合は、スチレンモノマーが一つずつ遊離する分解であることから、高分子から低分子への分布が生じにくいと考えられる。さらに、もし、末端から一つ一つスチレンモノマーを遊離する分解によるのであれば、分解生成物にスチレンモノマーが生成されるはずである。そこで、ガスクロマトグラフ質量分析計を用いて、分解物を分析した。この結果、菌を加えない培地のみのコントロールでは、スチレンモノマーは検出されなかったが、STR-Y-O株を植えた培養液では、スチレンモノマーが検出された。この結果より、分解酵素がポリスチレン鎖の内側からランダムに分解するエンド型の酵素でなく、ポリスチレン鎖の末端から分解するエキソ型の分解酵素であると推測した。   The present inventors have identified a microorganism Bacillus thuringiensis STR-Y-O strain having an ability to decompose a polystyrene foam (polystyrene solution) dissolved in a solvent from the environment (Non-patent Document 1). Then, the molecular weight distribution of the polystyrene (PS) degradation product by this STR-Y-O strain was analyzed using a gel permeation chromatograph analyzer (GPC). As a result, not the decomposition in which the molecular weight distribution shifts to a low molecule, but the decomposition in which only the amount of polystyrene at the peak molecular weight decreases. If the molecular weight distribution is a decomposition that shifts from a polymer to a low molecule, the decomposition occurs randomly inside the polystyrene chain, which is considered to indicate a distribution in which the polystyrene of the polymer moves to the low molecule side. On the other hand, when decomposition occurs at the end of the polystyrene chain, it is considered that the styrene monomer is released one by one, so that the distribution from the polymer to the low molecule is unlikely to occur. Furthermore, if the decomposition is to release styrene monomer one by one from the end, styrene monomer should be produced in the decomposition product. Therefore, the decomposition product was analyzed using a gas chromatograph mass spectrometer. As a result, styrene monomer was not detected in the medium-only control without addition of bacteria, but styrene monomer was detected in the culture solution in which the STR-Y-O strain was planted. From this result, it was speculated that the degrading enzyme was not an endo-type enzyme that decomposes randomly from the inside of the polystyrene chain, but an exo-type degrading enzyme that decomposes from the end of the polystyrene chain.

さらに、STR-Y-O株の培養液から、ポリスチレン分解酵素活性を指標に酵素の部分生成を行った。酵素活性の測定は蛍光物質で標識したポリスチレンを合成し、この標識体が酵素分解によって生じる蛍光偏光度の変化を蛍光偏光度測定装置により測定した。酵素精製は、硫酸アンモニウム分画、陰イオン交換膜、陽イオン交換膜を用いて行った。この精製酵素を用いて、分解活性を分析したところ、分解活性は消失していた。   Furthermore, partial production of the enzyme was performed from the culture solution of the STR-Y-O strain using the polystyrene degrading enzyme activity as an index. The enzyme activity was measured by synthesizing polystyrene labeled with a fluorescent substance, and the change in the degree of fluorescence polarization caused by enzymatic degradation of the labeled body was measured with a fluorescence polarization degree measuring device. Enzyme purification was performed using ammonium sulfate fractionation, anion exchange membrane, and cation exchange membrane. When the degradation activity was analyzed using this purified enzyme, the degradation activity was lost.

さらにこの精製酵素をポリアクリルアミドゲル電気泳動して、分子量を見積もったところ、20Kdaの位置にタンパク質が検出された。そこで、このタンパク質をペプチダーゼ酵素を用いて断片化し、得られたペプチド断片のアミノ酸配列を決定し、データベースと照合した。この結果、この分子はSerratia marcescens のキチン結合タンパク質CBP21と同定された。キチンとは窒素を含む糖の重合体であり、カニやエビなどの節足動物や甲殻類の外骨格を構成する物質である。   Furthermore, when this purified enzyme was subjected to polyacrylamide gel electrophoresis and the molecular weight was estimated, a protein was detected at a position of 20 Kda. Therefore, this protein was fragmented using a peptidase enzyme, and the amino acid sequence of the obtained peptide fragment was determined and collated with a database. As a result, this molecule was identified as the Serratia marcescens chitin-binding protein CBP21. Chitin is a sugar polymer containing nitrogen, and is a substance constituting the exoskeleton of arthropods such as crabs and shrimps and crustaceans.

CBP21タンパク質は、Vaaje-Kolstadら(非特許文献2)の研究により、キチンに結合するが、キチン分解活性はなく、別のキチン分解酵素であるキチナーゼと供に働くことにより、キチナーゼの分解酵素活性を高める働きをするタンパク質であることが示されていた。   CBP21 protein binds to chitin according to the study of Vaaje-Kolstad et al. (Non-patent Document 2), but has no chitinolytic activity and works together with chitinase, another chitinolytic enzyme, thereby degrading chitinase degrading enzyme. It was shown to be a protein that works to increase

精製したCBP21タンパク質のみでは、ポリスチレンの分解活性が示されなかったこと、また、CBP21はキチンの分解活性を持たず、キチナーゼの分解活性を高める働きがあることなどから、STR-Y-O株によるキチン分解は、CBP21の他にキチナーゼが必要でないかと推察した。そこで、Bacillus thuringiensis STR-Y-O株と同種でゲノムがweb上に一般に公開されているBacillus thuringiensis AI Hakam株をはじめとする3株のBacillus thuringiensis のCBP21およびキチナーゼを検索した。この結果、3株ともに、CBP21、エンド型キチナーゼ、エキソ型キチナーゼをそれぞれコードする遺伝子を有していることが示された。   The purified CBP21 protein alone did not show polystyrene degradation activity, and CBP21 does not have chitin degradation activity and has a function to enhance chitinase degradation activity. Speculated that in addition to CBP21, chitinase was necessary. Therefore, we searched for CBP21 and chitinase of three strains of Bacillus thuringiensis, including the Bacillus thuringiensis AI Hakam strain, which is the same species as the Bacillus thuringiensis STR-Y-O strain and whose genome is publicly available on the web. As a result, all three strains were shown to have genes encoding CBP21, endo-type chitinase, and exo-type chitinase, respectively.

以上の研究より、STR-Y-O株によるポリスチレン分解は、ポリスチレン鎖の末端からスチレンモノマーを遊離させる反応を触媒する、エキソ型のキチナーゼとキチン結合タンパク質の相乗効果によるものでないかと推察するに至った。   From the above studies, it has been speculated that the degradation of polystyrene by the STR-Y-O strain may be due to the synergistic effect of exo-type chitinase and chitin-binding protein, which catalyses the reaction of releasing styrene monomer from the end of the polystyrene chain.

そこで、AI Hakam株のDNA配列情報を参考に作製したオリゴマーDNAプライマーを用いて、STR-Y-O株の染色体上のCBP21をコードするcbp21遺伝子とエキソキチナーゼChi36をコードするchi36遺伝子をPCR増幅法により増幅した。   Therefore, PCR was used to amplify the cbp21 gene encoding CBP21 on the chromosome of the STR-YO strain and the chi36 gene encoding exochitinase Chi36 on the chromosome of the STR-YO strain using oligomer DNA primers prepared with reference to the DNA sequence information of AI Hakam strain. did.

次に増幅したそれぞれの遺伝子を大腸菌に導入して発現させ、酵素を生産した。さらに、生産した酵素を精製した上で、ポリスチレンを含む溶液に加えて、ポリスチレンモノマーの生成の有無をガスクロマトグラフ質量分析計により分析した。この結果、CBP21タンパク質のみ、Chi36酵素のみを添加した場合は、スチレンモノマーの生成がほとんど検出されなかったが、CBP21タンパク質とChi36酵素の両方を添加した場合に優位なスチレンモノマー生成が検出された。以上の実験結果より、キチン結合タンパク質CBP21とエキソキチナーゼChi36の両方がポリスチレンを分解して、スチレンモノマーを生成する酵素であることが結論づけられた。   Next, each amplified gene was introduced into E. coli and expressed to produce an enzyme. Furthermore, after refine | purifying the produced enzyme, in addition to the solution containing polystyrene, the presence or absence of the production | generation of the polystyrene monomer was analyzed with the gas chromatograph mass spectrometer. As a result, when only the CBP21 protein and only the Chi36 enzyme were added, the production of styrene monomer was hardly detected, but when both the CBP21 protein and the Chi36 enzyme were added, the dominant styrene monomer production was detected. From the above experimental results, it was concluded that both chitin-binding protein CBP21 and exochinase Chi36 are enzymes that decompose polystyrene and produce styrene monomers.

本発明で同定したポリスチレン分解酵素遺伝子を保有する微生物Bacillus thuringiensis STR-Y-O株は、独立行政法人製品評価技術基盤機構に受託番号FERM P-19582として保存されており、入手可能である。   The microorganism Bacillus thuringiensis STR-Y-O strain having the polystyrene-degrading enzyme gene identified in the present invention is stored as the accession number FERM P-19582 at the National Institute of Technology and Evaluation, and is available.

本発明によれば、常温および常圧下において微生物や酵素からスチレンモノマーを精製させることができる。   According to the present invention, a styrene monomer can be purified from microorganisms and enzymes at normal temperature and normal pressure.

本発明によるポリスチレン残存率の実験結果を示すグラフであり、新品EPSと5年使用済みEPS、培養液上清を用いた実験の比較結果を示している。It is a graph which shows the experimental result of the polystyrene residual rate by this invention, and has shown the comparison result of the experiment using new EPS, 5-year used EPS, and a culture supernatant. PCRクローニングに用いたプライマーを示す表である。It is a table | surface which shows the primer used for PCR cloning. 本発明によるスチレンモノマー量の実験結果を示すグラフである。It is a graph which shows the experimental result of the amount of styrene monomers by this invention. スチレンモノマー生成量の比較結果を示す図である。It is a figure which shows the comparison result of the styrene monomer production amount. CBP21およびChi36の組み合わせによるPS→SM転換率を示すグラフである。It is a graph which shows the PS-> SM conversion rate by the combination of CBP21 and Chi36. 酵素1mol当たりの精製したスチレンモノマーのmol重量を示す表である。It is a table | surface which shows the mol weight of the refined styrene monomer per mol of enzyme.

実験方法:
使用菌株:
今回の実験で使用した菌株は以下の通りである。
ポリスチレン分解酵素遺伝子を保有する微生物Bacillus thuringiensis STR-Y-O株は、山形県山形市の廃プラスチックや廃ビニール品などが長時間集積した状態で廃棄された畑土壌より単離した菌株である。本株は、独立行政法人製品評価技術基盤機構に受託番号FERM P-19582として寄託しており、入手可能である。
experimental method:
Strains used:
The strains used in this experiment are as follows.
The strain Bacillus thuringiensis STR-YO, which possesses a polystyrene-degrading enzyme gene, is a strain isolated from field soil that has been disposed of for a long time with waste plastics and waste vinyl products from Yamagata City, Yamagata Prefecture. This stock has been deposited with the National Institute of Technology and Evaluation as Accession Number FERM P-19582 and is available.

使用培地:
微生物培養の培地としてはLB培地を用いた。LB培地の組成は、トリプトン10g、酵母エキス5g、NaCl 5g、グルコース1g、寒天15g(寒天培地の場合)、蒸留水1L(up to 1L)であり、これをオートクレーブ滅菌(20min、121℃、2atm)して用いた。組換え大腸菌の培養の際は各培地にアンピシリンを終濃度が50μg/mlになるように添加した。
STR-Y-O株を用いたポリスチレン分解実験は、LB培地とM9培地(非特許文献3)を用いた。
Medium used:
LB medium was used as a culture medium for microorganisms. The composition of LB medium is tryptone 10 g, yeast extract 5 g, NaCl 5 g, glucose 1 g, agar 15 g (in the case of agar medium), distilled water 1 L (up to 1 L), and this is autoclaved (20 min, 121 ° C., 2 atm) ) And used. When culturing the recombinant Escherichia coli, ampicillin was added to each medium so that the final concentration was 50 μg / ml.
In the polystyrene degradation experiment using the STR-YO strain, LB medium and M9 medium (Non-patent Document 3) were used.

使用試薬および材料:
新品の発泡スチロールとしては、牡蠣いかだ養殖用のいかだの浮きとして製造された発泡スチロールを用いた。5年使用された発泡スチロールとしては、牡蠣いかだ養殖用のいかだに取り付けて5年間呉市の瀬戸内海沿岸で使用されたものを用いた。これらの発泡スチロールを手で細かくちぎり、d-リモネン(和光純薬工業)を用いて終濃度が0.3mg/mlになるように溶解した。
Reagents and materials used:
As a new polystyrene foam, a polystyrene foam produced as a raft float for oyster raft cultivation was used. Styrofoam used for 5 years was used for 5 years on the Seto Inland Sea coast of Kure City after being attached to a raft for raising oyster rafts. These polystyrene foams were broken by hand and dissolved using d-limonene (Wako Pure Chemical Industries) to a final concentration of 0.3 mg / ml.

実験装置:
ゲル浸透クロマトグラフ分析は、日本分光PU-2080Plusを用いた。カラムはShodex GF-510HQを用い、移動相はテトラヒドロフランを用いた。
ガスクロマトグラフ質量分析は、日本電子JmsQ1000GC K9を用いた。カラムはスペルコequity5、内径0.25μm、長さ30mを用いた。
Experimental device:
For gel permeation chromatographic analysis, JASCO PU-2080Plus was used. The column was Shodex GF-510HQ and the mobile phase was tetrahydrofuran.
JEOL JmsQ1000GC K9 was used for gas chromatograph mass spectrometry. The column used was Spellcoequity 5, inner diameter 0.25 μm, and length 30 m.

実験手順:
(1) cbp21遺伝子のPCRクローニング
まず、STR-Y-O株を培養し、染色体調整した後、2通りのプライマーでPCR増幅を行った。cbp21遺伝子の塩基配列決定に用いるためのPCRは、cbp-F0プライマー5’-CAGCATTTGCTGGTGGAGCTGCGA-3’)とcbp-R1プライマー(5’-GTAGCCAATCTGACTACTTGTC-3’)を用いて行った。大腸菌でタンパク質の生産を行う場合のPCRは、5’末端のシグナルシークエンスをコードしているDNA配列を欠き、BamHIサイトを導入したcbp-N2プライマー (5’-CACGGATCCCATGGATACGTAGAATCACC-3’)およびcbp-R1プライマー(5’-GTAGCCAATCTGACTACTTGTC-3’)を用いて行った。また、PCRはEx-Taq DNAポリメラーゼ(タカラバイオ)または、PRIME-STAR DNAポリメラーゼ(タカラバイオ)を用いて、PCR増幅を行った。得られた塩基配列決定用のPCR産物はアガロースゲル電気泳動し、目的の大きさのDNAを回収し、回収したDNA断片をpGEM-Tベクター(プロメガ)に組み込んだ。その後、この組換えプラスミドを大腸菌に導入した。この組換え大腸菌からプラスミドを調整し、このプラスミドのインサート部位の塩基配列を決定した。大腸菌によるタンパク質生産用のPCR産物は制限酵素BamHIとScaIで切断して、得られた750bpのDNA断片をポリアクリルアミドゲル電気泳動により回収した。最後に、この回収したDNA断片を発現ベクターpQE81L(キアゲン)のBamHIとSmaIサイトにライゲーションし、大腸菌DH5aに導入して、形質転換体DH5a+pQE81L+ cbp21を得た。この組換え大腸菌をCBP21の大量生産に用いた。
Experimental procedure:
(1) PCR cloning of the cbp21 gene First, the STR-YO strain was cultured, and after chromosome adjustment, PCR amplification was performed using two kinds of primers. PCR for use in determining the base sequence of the cbp21 gene was performed using cbp-F0 primer 5′-CAGCATTTGCTGGTGGAGCTGCGA-3 ′) and cbp-R1 primer (5′-GTAGCCAATCTGACTACTTGTC-3 ′). In the case of protein production in E. coli, PCR is performed by cbp-N2 primer (5'-CACGGATCCCATGGATACGTAGAATCACC-3 ') and cbp-R1 lacking the DNA sequence encoding the 5' end signal sequence and introducing the BamHI site. This was performed using a primer (5′-GTAGCCAATCTGACTACTTGTC-3 ′). PCR was performed using Ex-Taq DNA polymerase (Takara Bio) or PRIME-STAR DNA polymerase (Takara Bio). The obtained PCR product for base sequence determination was subjected to agarose gel electrophoresis, DNA of a desired size was recovered, and the recovered DNA fragment was incorporated into a pGEM-T vector (Promega). Thereafter, this recombinant plasmid was introduced into E. coli. A plasmid was prepared from this recombinant E. coli, and the nucleotide sequence of the insert site of this plasmid was determined. The PCR product for protein production by E. coli was cleaved with restriction enzymes BamHI and ScaI, and the resulting 750 bp DNA fragment was recovered by polyacrylamide gel electrophoresis. Finally, this recovered DNA fragment was ligated to the BamHI and SmaI sites of the expression vector pQE81L (Qiagen) and introduced into E. coli DH5a to obtain a transformant DH5a + pQE81L + cbp21. This recombinant Escherichia coli was used for mass production of CBP21.

クローニングしたcbp21遺伝子の、AI Hakam株のcbp21遺伝子との相同性は、核酸レベルで87.1 %(全体:361bp)であり、アミノ酸レベルでは、C末端に4残基の差異が見られるものの94.6 %(全体:187残基)であった。   The homology of the cloned cbp21 gene with the cbp21 gene of AI Hakam strain is 87.1% (total: 361bp) at the nucleic acid level, and at the amino acid level, 94.6% Total: 187 residues).

(2) chi36遺伝子のPCRクローニング
まず、STR-Y-O株を培養し、染色体調整した後、chi-F1プライマー(5’-CCAGCACCYGCTGTGGCTTC-3’)およびchi-R1プライマー(5’-GAGAGTYATGTTGAAGGTATG-3’)を用いて、PCR増幅を行った。得られた2.5KbのPCR産物をポリアクリルアミドゲル電気泳動により回収し、クローニングベクターpGEM-T(プロメガ)に組み込み、大腸菌DH5aに導入して、形質転換体DH5α+pGEM-T+chi36を得た。この組換え大腸菌からプラスミドを調整し、塩基配列を決定した。次に、pGEM-T+chi36を鋳型にして、chi-N2プライマー(5’-ACGGATCCGCAAACAATTTAGGTTCAAAATTACTCG-3’)およびベクター側のRVプライマー(5’-CAGGAAACAGCTATGAC-3’)を用いてPCR増幅を行った。このPCR産物を High Pure PCR Product Purification Kit(ロッシュ)により精製した。精製したPCR産物を制限酵素BamHIとSspIで切断した。得られた1133bpのDNA断片をポリアクリルアミドゲル電気泳動により回収した。最後に、この回収したDNA断片を発現ベクターpQE81L(キアゲン)のBamHIとSmaIサイトにライゲーションし、大腸菌DH5aにトランスフォーメーションして、形質転換体DH5a+pQE81L+ chi36を得た。
(2) chi36 gene PCR cloning First, after culturing STR-YO strain and chromosome adjustment, chi-F1 primer (5'-CCAGCACCYGCTGTGGCTTC-3 ') and chi-R1 primer (5'-GAGAGTYATGTTGAAGGTATG-3') PCR amplification was performed using The obtained 2.5 Kb PCR product was recovered by polyacrylamide gel electrophoresis, incorporated into a cloning vector pGEM-T (Promega), and introduced into E. coli DH5a to obtain a transformant DH5α + pGEM-T + chi36. A plasmid was prepared from this recombinant Escherichia coli, and the nucleotide sequence was determined. Next, PCR amplification was performed using pGEM-T + chi36 as a template and chi-N2 primer (5′-ACGGATCCGCAAACAATTTAGGTTCAAAATTACTCG-3 ′) and vector-side RV primer (5′-CAGGAAACAGCTATGAC-3 ′). This PCR product was purified by High Pure PCR Product Purification Kit (Roche). The purified PCR product was cleaved with restriction enzymes BamHI and SspI. The obtained 1133 bp DNA fragment was recovered by polyacrylamide gel electrophoresis. Finally, this recovered DNA fragment was ligated to the BamHI and SmaI sites of the expression vector pQE81L (Qiagen), and transformed into E. coli DH5a to obtain a transformant DH5a + pQE81L + chi36.

クローニングしたchi36遺伝子の、AI Hakam株のchi36遺伝子との相同性は核酸レベルで96.3%、アミノ酸レベルで90%であった。   The homology of the cloned chi36 gene with the chi36 gene of AI Hakam strain was 96.3% at the nucleic acid level and 90% at the amino acid level.

これらの結果より、今後は組換えDNA技術を応用することにより、このキチン結合タンパク質CBP21をコードする遺伝子やエキソ型キチナーゼchi36をコードする遺伝子を大腸菌等に導入して、組換え酵素の発現を高め、酵素を大量生産させ、この酵素をスチレンモノマー製造材料として用いることにより、さらに効率良いスチレンモノマー製造を行うことができると考えられる。   Based on these results, the recombinant DNA technology will be applied in the future to introduce the gene encoding this chitin-binding protein CBP21 and the gene encoding exo-type chitinase chi36 into Escherichia coli, etc. to enhance the expression of the recombinant enzyme. It is considered that more efficient styrene monomer production can be performed by mass-producing the enzyme and using this enzyme as a styrene monomer production material.

タンパク質の精製
(1) 大腸菌形質転換体の大量培養および超音波破砕
(a) -85 ℃でグリセロール溶液に保存していた、大腸菌形質転換体(DH5a + pQE81 + cbp21)および大腸菌形質転換体(DH5a + pQE81 + chi36)をそれぞれ、100μg/mLのアンピシリン(Amp)入りの1× LB寒天培地に画線し、37℃で一晩静置培養した。
(b) 出現したシングルコロニーを20mLのAmp入りの1×LB液体培地に植菌し、37 ℃で一晩、130rpmで振とう培養した。
(c) 翌日10mLの培養液をAmp入りの1 x LB液体培地1Lに植え継ぎ、増殖度OD600 nmが0.5になるまで110rpm、30℃で振とう培養した。
(d) 終濃度が 0.3mMになるようにIPTG(タカラバイオ)を添加し、さらに2時間培養した。
(e) 培養液を高速遠心機にセットし、4 ℃、5,000 rpm、5分遠心して集菌する。その後、培地を捨て、菌体をチューブに移し、次の操作まで-85 ℃で保存した。
(f) (a)〜(e)の操作を繰り返し行い、Amp入り1 × LB液体培地10 L分のそれぞれの菌体を集菌した。
(h) 菌体は培養液1Lの菌体当たりに、1 mLのlysis buffer(50mMM NaH2PO4、100mM Tris-HCl pH8.0、300mM NaCl、250mM Imidazol)を添加し懸濁した。
(i) (h)を超音波破砕機で細胞を破壊した。(超音波破砕機の条件:10秒運転, 60秒 停止 を15分間繰り返す)
(j) 細胞破壊液を微量高速遠心機にセットし、4 ℃、15,000rpm、20 分遠心した。
(k) 上清を新しいチューブに移し、プロテインアッセイキットI (BIO-RAD Laboratories)を用いて定量した。
Protein purification
(1) Mass culture and sonication of E. coli transformants
(a) Each of E. coli transformant (DH5a + pQE81 + cbp21) and E. coli transformant (DH5a + pQE81 + chi36) stored in a glycerol solution at -85 ° C, each containing 100 μg / mL ampicillin (Amp) Were streaked on 1 × LB agar medium and incubated at 37 ° C. overnight.
(b) The emerged single colony was inoculated into 1 × LB liquid medium containing 20 mL of Amp, and cultured with shaking at 130 rpm overnight at 37 ° C.
(c) On the next day, 10 mL of the culture solution was transferred to 1 L of 1 × LB liquid medium containing Amp, and cultured with shaking at 110 ° C. and 30 ° C. until the growth degree OD600 nm became 0.5.
(d) IPTG (Takara Bio) was added to a final concentration of 0.3 mM, and further cultured for 2 hours.
(e) Place the culture in a high-speed centrifuge and collect the cells by centrifugation at 4 ° C, 5,000 rpm for 5 minutes. Thereafter, the medium was discarded, the cells were transferred to a tube, and stored at -85 ° C until the next operation.
(f) The operations of (a) to (e) were repeated to collect 10 L of each 1 × LB liquid medium containing Amp.
(h) The bacterial cells were suspended by adding 1 mL of lysis buffer (50 mM NaH 2 PO 4 , 100 mM Tris-HCl pH 8.0, 300 mM NaCl, 250 mM Imidazol) per 1 L of the culture medium.
(i) In (h), cells were disrupted with an ultrasonic crusher. (Conditions of ultrasonic crusher: 10 seconds operation, 60 seconds stop repeated for 15 minutes)
(j) The cell disruption solution was set in a micro high speed centrifuge and centrifuged at 4 ° C., 15,000 rpm for 20 minutes.
(k) The supernatant was transferred to a new tube and quantified using protein assay kit I (BIO-RAD Laboratories).

(2) Ni-NTAカラムクロマトグラフィー法によるタンパク質の精製
以下の手順で行った。(a) 5 mLのNi-NTA Superflow レジン (キアゲン)を1 x 10 cmのcolumnに注いだ。(b) columnを40 mLのlysis bufferで平衡化させた。(c) lysis bufferに交換したタンパク質を0.5 mL/minの流速でcolumnにロードした。(d) columnを40 mLのlysis bufferで洗った。Columnを40 mLのwash buffer(50mM NaH2PO4,100mMTrisHCl pH8.0,300mMNaCl, 20mM Imidazol)で洗浄した。(e) columnに40 mLのelution buffer(50mM NaH2PO4,100mMTrisHCl pH8.0,300mMNaCl, 250mM Imidazol)を加えCBP21又はChi36を溶出させた。1 mLずつフラクションを回収した。(f) 吸光度により、タンパク質の吸収がえられたフラクションを、Centriplus 10 (Amicon,Inc)を用いてTris-DTT buffer (20mM Tris-HCL,0.1mMDTT)に交換および濃縮した。(g) タンパク質はプロテインアッセイキットI (BIO-RAD Laboratories)を用いて定量した。(h) 精製した酵素は、ポリスチレン分解実験まで、4℃保存した。
(2) Purification of protein by Ni-NTA column chromatography The procedure was as follows. (a) 5 mL of Ni-NTA Superflow resin (Qiagen) was poured into a 1 x 10 cm column. (b) The column was equilibrated with 40 mL of lysis buffer. (c) The protein exchanged into the lysis buffer was loaded onto the column at a flow rate of 0.5 mL / min. (d) The column was washed with 40 mL lysis buffer. The column was washed with 40 mL of wash buffer (50 mM NaH 2 PO 4 , 100 mM TrisHCl pH 8.0, 300 mM NaCl, 20 mM Imidazol). (e) 40 mL of elution buffer (50 mM NaH 2 PO 4 , 100 mM TrisHCl pH 8.0, 300 mM NaCl, 250 mM Imidazol) was added to the column to elute CBP21 or Chi36. Fractions were collected 1 mL each. (f) The fraction in which protein absorption was obtained by absorbance was exchanged and concentrated to Tris-DTT buffer (20 mM Tris-HCL, 0.1 mM DTT) using Centriplus 10 (Amicon, Inc). (g) Protein was quantified using Protein Assay Kit I (BIO-RAD Laboratories). (h) The purified enzyme was stored at 4 ° C. until the polystyrene degradation experiment.

(3) タンパク質の電気泳動SDS-PAGEによる確認
SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)により、精製タンパク質の純度を確認した。
(3) Confirmation by SDS-PAGE of protein electrophoresis
The purity of the purified protein was confirmed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE).

精製したタンパク質を用いたポリスチレンからスチレンモノマーの生成実験
(1) 反応液の調整
(a) 表に示す通りに、50mL容のガラス製遠心管に精製酵素や緩衝液を加え、これにリモネンで溶かした発泡スチロール(=0.3mg/mlポリスチレン溶液)を添加し、水で10mLに調整した。
(b) 遠心管をアルミホイルで巻いて遮光し、37℃で4日間、穏やかに振とうしながら反応させた。
Production experiment of styrene monomer from polystyrene using purified protein
(1) Preparation of reaction solution
(a) As shown in the table, add purified enzyme or buffer solution to a 50 mL glass centrifuge tube, add foamed polystyrene (= 0.3 mg / ml polystyrene solution) dissolved in limonene, and adjust to 10 mL with water. did.
(b) The centrifuge tube was wrapped with aluminum foil to shield it from light, and reacted at 37 ° C. for 4 days with gentle shaking.

Figure 2015156819
Figure 2015156819

(2) 分解物の抽出
(a) 培養液にジクロロメタン2 mLを加え、2分間ボルテックスミキサーで混合する。
(b) 室温3,000 rpm、5分間遠心を行う。
(c) ジクロロメタン層(下層)をパスツールで、無水硫酸ナトリウム0.1 gを加えた2 mL容マイクロチューブに移す。
(d) ボルテックスでよく混合し、室温10分間放置する。
(e) フラッシュ遠心し、上清をふた付のバイアルビンに移す。分析まで4℃で保存する
(f) ポリスチレン分解物の分析は、ポリスチレン分解物量の定量や分子量分布の分析をゲル浸透クロマトグラフ(GPC)分析計を用いて行った。また、スチレンモノマーの定量分析は、ガスクロマトグラフ質量(GS-MS)分析計を用いて行った。
(2) Extraction of degradation products
(a) Add 2 mL of dichloromethane to the culture and mix for 2 minutes with a vortex mixer.
(b) Centrifuge at 3,000 rpm for 5 minutes at room temperature.
(c) Using a Pasteur, transfer the dichloromethane layer (lower layer) to a 2 mL microtube containing 0.1 g of anhydrous sodium sulfate.
(d) Mix well by vortexing and leave at room temperature for 10 minutes.
(e) Centrifuge the flash and transfer the supernatant to a vial with a lid. Store at 4 ° C until analysis
(f) The polystyrene degradation product was analyzed using a gel permeation chromatograph (GPC) analyzer to determine the amount of polystyrene degradation product and to analyze the molecular weight distribution. The quantitative analysis of styrene monomer was performed using a gas chromatograph mass (GS-MS) analyzer.

ポリスチレン分解菌STR-Y-O株によるポリスチレン分解能分析
(a) STR-Y-O株を10mLの1×LB培地を入れた50mL容の三角フラスコを用いて30℃で振とう培養した。この培養液200μlを20mLのM9培地の入った100mL容共栓付き三角フラスコに植え継ぎ、さらに、3日間振とう培養した。
(b) 菌体を含む培養液を用いた分解実験の場合は、培養液に0.3mg/mlのリモネンで溶かしたEPSを200μl添加し、30℃で8日間振とうした。これに対して、培養液の上清を用いた分解実験の際は、三角フラスコの培養液を50ml容遠心管に移し、4℃、15,000rpmで15分遠心した。上清を新しい共栓付き三角フラスコへ移し、これに0.3mg/mlのリモネンで溶かしたEPSを200μl添加し、30℃で8日間振とうした。
(c) 培養液中の分解物をジクロロメタン抽出し、抽出した分解物の分析はゲル浸透クロマトグラフ(GPC)分析計およびガスクロマトグラフ質量分析計を用いて行った。
Polystyrene resolution analysis with polystyrene-degrading bacteria STR-YO strain
(a) The STR-YO strain was cultured with shaking at 30 ° C. in a 50 mL Erlenmeyer flask containing 10 mL of 1 × LB medium. 200 μl of this culture solution was transferred into a 100 mL conical stoppered flask containing 20 mL of M9 medium, and further cultured with shaking for 3 days.
(b) In the case of a decomposition experiment using a culture solution containing bacterial cells, 200 μl of EPS dissolved in 0.3 mg / ml limonene was added to the culture solution and shaken at 30 ° C. for 8 days. On the other hand, in the decomposition experiment using the supernatant of the culture solution, the culture solution in the Erlenmeyer flask was transferred to a 50 ml centrifuge tube and centrifuged at 4 ° C. and 15,000 rpm for 15 minutes. The supernatant was transferred to a new Erlenmeyer flask with a stopper, 200 μl of EPS dissolved in 0.3 mg / ml limonene was added, and the mixture was shaken at 30 ° C. for 8 days.
(c) The degradation product in the culture solution was extracted with dichloromethane, and the extracted degradation product was analyzed using a gel permeation chromatograph (GPC) analyzer and a gas chromatograph mass spectrometer.

実験結果の考察
(1) CBP21およびChi36の大量精製
精製したCBP21タンパク質をポリアクリルアミドゲル電気泳動した結果、発現誘導剤IPTG添加により、予測された21.9kDaの位置にバンドが検出され、顕著に発現誘導されたことが確認された。また、ニッケルカラムを通すことで6×His-tagを人工的に付加したCBP21を高純度に精製できていることを確認した。精製したCBP21の溶液中の濃度は濃縮前が0.832 (μg/μL)、濃縮後が0.360(μg/μL)であり、最終的に精製できた総量は10Lから、600μgと非上に微量であった。
精製したChi36タンパク質をポリアクリルアミドゲル電気泳動した結果、IPTG添加により、予測された37.7kDaの位置にバンドが検出され、顕著に発現誘導されたことが確認された。また、ニッケルカラムを通すことで6×His-tagを人工的に付加したChi36を高純度に精製できていることを確認した。精製できたChi36の溶液中の濃度は濃縮前が0.840 (μg /μl)、濃縮後が1.008(μg /μl)であり、最終的に精製できた総量は10Lの培養液から、2400μg (2.4 mg)と非常に微量であった。CBP21およびChi36タンパク質生産量が通常より少ない理由として、バチルス菌と大腸菌のコドン使用頻度の違いによる可能性がある。今後は大腸菌で使用される頻度の高いコドンにDNA配列を返還したうえで、タンパク質生産を行う必要があると考えられた。
Discussion of experimental results
(1) Mass purification of CBP21 and Chi36 As a result of polyacrylamide gel electrophoresis of purified CBP21 protein, a band was detected at the predicted 21.9 kDa position by adding the expression inducer IPTG. confirmed. It was also confirmed that CBP21 with artificially added 6 × His-tag could be purified with high purity by passing it through a nickel column. The concentration of purified CBP21 in the solution was 0.832 (μg / μL) before concentration and 0.360 (μg / μL) after concentration, and the total amount finally purified was from 10 L to 600 μg, with a very small amount. It was.
The purified Chi36 protein was subjected to polyacrylamide gel electrophoresis. As a result, a band was detected at the predicted position of 37.7 kDa when IPTG was added, confirming that expression was remarkably induced. Moreover, it was confirmed that Chi36, to which 6 × His-tag was artificially added, was purified with high purity by passing through a nickel column. The concentration of the purified Chi36 in the solution was 0.840 (μg / μl) before concentration and 1.008 (μg / μl) after concentration, and the total amount finally purified was 2400 μg (2.4 mg ) And very small amount. The reason why CBP21 and Chi36 protein production is less than normal may be due to the difference in codon usage between Bacillus and E. coli. In the future, it was considered necessary to perform protein production after returning the DNA sequence to codons frequently used in E. coli.

(2) 大量精製したCBP21およびChi36を用いたポリスチレンからスチレンモノマー生成
精製したCBP21とChi36を用いてポリスチレン(PS)の分解実験を行った。実験に使用した酵素量は、CBP21が100 μgでChi36は400 μgである。
ガスクロマトグラフ質量分析の結果より算出した、スチレンモノマー(SM)生成量は酵素を添加しない資料と比べてCBP21のみを添加した場合とChi36のみを添加した場合もわずか0.1mg/L(CBP21)から0.18mg/L(chi36)が検出された。これに対して、CBP21とChi36の両方を添加した場合は、CBP21又はChi36単体で分解を行った場合に比べて、CBP21に対し約10倍(最大14倍)、Chi36に対し約6倍(最大9倍)の約1mg/LのSMが生成された。
CBP21とChi36の両方を添加した場合のPS→SM転換率は、6.5 %(最大9.1 %)と高い転換率を得ることができた。これらの結果から、CBP21とChi36の両方のタンパク質がポリスチレンPSからSMを生成させる酵素であると結論づけられた。
さらに、CBP21およびChi36がそれぞれ1 mol当たりに、生成したSMのmol重量を算出した。この結果、CBP21は、1 mol当たり4.70 molのSM生成が算出された。また、Chi36は、1 mol当たり1.88 molのSM生成が算出された。CBP21単体ではChi36単体よりもSM生成量が少ないにもかかわらず、CBP21とChi36を両方加えるた場合は、1 mol当たりに生成するSMの分子量はCBP21の方がChi36よりも増大することが示された。従って、mol比からは、CBP21の方がChi36よりPSからSM生成への貢献度が高いと言える。
これらの結果から、当初の推測通り、PSを分解してSMを生成する反応において、CBP21とChi36の両タンパク質が関係しており、STR-Y-O株におけるPSの初期分解はCBP21とChi36の両タンパク質の協同によるSMの生成反応であることが明らかになった。
(2) Production of styrene monomer from polystyrene using a large amount of purified CBP21 and Chi36 Polystyrene (PS) decomposition experiments were conducted using purified CBP21 and Chi36. The amount of enzyme used in the experiment is 100 μg for CBP21 and 400 μg for Chi36.
The amount of styrene monomer (SM) calculated from the results of gas chromatograph mass spectrometry is only 0.1 mg / L (CBP21) to 0.18 when only CBP21 is added and when only Chi36 is added compared to materials without enzyme mg / L (chi36) was detected. On the other hand, when both CBP21 and Chi36 are added, it is about 10 times (up to 14 times) for CBP21 and about 6 times (up to maximum) for CBP21, compared to when CBP21 or Chi36 is decomposed alone. 9 times) of about 1 mg / L of SM was produced.
When both CBP21 and Chi36 were added, the PS → SM conversion rate was 6.5% (maximum 9.1%), and a high conversion rate was obtained. From these results, it was concluded that both CBP21 and Chi36 proteins are enzymes that generate SM from polystyrene PS.
Furthermore, the mol weight of SM produced for each 1 mol of CBP21 and Chi36 was calculated. As a result, CBP21 was calculated to produce 4.70 mol of SM per mol. Chi36 was calculated to produce 1.88 mol of SM per mol. Even though CBP21 alone produces less SM than Chi36 alone, when both CBP21 and Chi36 are added, the molecular weight of SM produced per mol is shown to be higher for CBP21 than for Chi36. It was. Therefore, from the mol ratio, it can be said that CBP21 has a higher contribution to PS production from PS than Chi36.
From these results, as expected, both CBP21 and Chi36 proteins are involved in the reaction that degrades PS to produce SM, and the initial degradation of PS in the STR-YO strain is both CBP21 and Chi36 proteins. It was clarified that this reaction was an SM formation reaction.

(3) STR-Y-O株の培養液上清を用いたポリスチレンからスチレンモノマー生成
STR-Y-O株によるリモネンで溶かした新品の発泡スチロールと5年使用済みの発泡スチロールの分解を分析したところ、劣化・損傷のある発泡スチロールにおいても新品発泡スチロールと同等の初期濃度のポリスチレンの20%分解能が確認され、劣化・損傷の有無にかかわらず分解能を発揮できることが示された。さらに、STR-Y-O株の培養液を遠心集菌し、菌体を取り除いた培養液上清を用いて同様の実験を行ったところ、その培養液上清においても、菌体を含む場合と同等の初期濃度のポリスチレンの20%分解能が確認された。さらにこの分解物にスチレンモノマーが検出された。この結果は、cbp21とchi36の塩基配列決定の結果からも言えることであるが、両遺伝子ともに5’末端にシグナルシークエンスをコードすることが示され、両遺伝子のコードするタンパク質が細胞外へ分泌され、この分泌された両タンパク質によりPSがSMへ転換されたのではないかと推察された。
このことから、分解酵素は細胞外分泌型の酵素であること考えられ、STR-Y-O株によるPS分解は取り扱いの面において、菌体を必要としないで物質(酵素)として扱うことができ、野生型のSTR-Y-O株の培養効率を最適化して、酵素の生産効率を上げることができれば、cbp21遺伝子とchi36遺伝子を導入した大腸菌組換え体による生産によらずとも、安価にスチレンモノマーを生成できるものと考えられ、取扱が簡素化されることから、より実用的なものになる可能性がある。使用済みの発泡スチロールをリモネンなどの有機溶媒で溶かした溶液を、直接STR-Y-O株の培養液上清に加えて、常温・常圧でSMを生成し、この生成されたSMを含む溶液を蒸留装置に加えて、SMを精製する方法を提供できる。
(3) Styrene monomer production from polystyrene using culture supernatant of STR-YO strain
Analysis of decomposition of new foamed polystyrene dissolved in limonene by STR-YO and foamed polystyrene used for 5 years confirmed that 20% resolution of polystyrene with an initial concentration equivalent to that of new foamed polystyrene is confirmed even in degraded and damaged foamed polystyrene. It was shown that the resolution can be exhibited regardless of deterioration or damage. Furthermore, when the culture solution of the STR-YO strain was collected by centrifugation and the supernatant was removed, the same experiment was performed. An initial concentration of 20% resolution of polystyrene was confirmed. Furthermore, styrene monomer was detected in this decomposition product. This result can also be said from the results of sequencing of cbp21 and chi36, but both genes were shown to encode a signal sequence at the 5 'end, and the proteins encoded by both genes were secreted outside the cell. Therefore, it was speculated that PS was converted to SM by both secreted proteins.
From this, it is considered that the degrading enzyme is an extracellular secreted enzyme, and PS degradation by STR-YO strain can be handled as a substance (enzyme) without the need for bacterial cells in terms of handling, wild type If the efficiency of enzyme production can be improved by optimizing the culture efficiency of the STR-YO strain, the styrene monomer can be produced at low cost, regardless of the production by recombinant Escherichia coli with the cbp21 and chi36 genes. It is considered that the handling will be simplified, and it may become more practical. A solution of used polystyrene foam in an organic solvent such as limonene is added directly to the culture supernatant of the STR-YO strain to produce SM at room temperature and pressure, and the solution containing this produced SM is distilled. In addition to equipment, a method for purifying SM can be provided.

以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiment of the present invention has been described in detail above, but the present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the present invention described in the claims. Deformation / change is possible.

Claims (16)

配列表の配列番号1で示されるアミノ酸配列のポリスチレン分解酵素活性を有した、キチナーゼ酵素をコードするDNA配列の遺伝子。 A gene having a DNA sequence encoding a chitinase enzyme having polystyrene degrading enzyme activity of the amino acid sequence represented by SEQ ID NO: 1 in the Sequence Listing. 前記遺伝子の遺伝子産物であるキチナーゼ酵素であって、配列番号1のアミノ酸配列の酵素。 A chitinase enzyme that is a gene product of the gene, wherein the enzyme has the amino acid sequence of SEQ ID NO: 1. 配列表の配列番号2で示されるアミノ酸配列のポリスチレン分解酵素活性を有した、キチンに結合性を示すタンパク質酵素をコードするDNA配列の遺伝子。 A gene having a DNA sequence encoding a protein enzyme having a polystyrene-degrading enzyme activity of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing and binding to chitin. 前記キチン結合性を示すタンパク質酵素であって、配列番号2のアミノ酸配列の酵素。 A protein enzyme having the chitin-binding property and having the amino acid sequence of SEQ ID NO: 2. 配列表の配列番号3で示される、請求項2のタンパク質にヒスチジンタグが付加された融合タンパク質をコードするDNA配列の遺伝子。 The gene of the DNA sequence which codes the fusion protein which the histidine tag was added to the protein of Claim 2 shown by sequence number 3 of a sequence table. 配列表の配列番号4で示される、請求項4のタンパク質にヒスチジンタグが付加された融合タンパク質をコードするDNA配列の遺伝子。 The gene of the DNA sequence which codes the fusion protein which the histidine tag was added to the protein of Claim 4 shown by sequence number 4 of a sequence table. 請求項1および請求項3のいずれかの遺伝子を微生物に導入して作製した、スチレンモノマーを製造するために用いる組換え微生物。 A recombinant microorganism used for producing a styrene monomer produced by introducing the gene of any one of claims 1 and 3 into a microorganism. 請求項1および請求項3のいずれかの遺伝子を有する微生物。 A microorganism having the gene of any one of claims 1 and 3. 請求項2および請求項4のいずれかの酵素を同時にポリスチレンに接触させて、スチレンモノマーを製造する方法。 A method for producing a styrene monomer by simultaneously contacting the enzyme of any one of claims 2 and 4 with polystyrene. スチレンモノマーを製造するために請求項2および請求項4のいずれかの酵素を固定化した担体などの材料や錠剤とした薬品。 A drug such as a carrier, such as a carrier on which the enzyme according to claim 2 or 4 is immobilized, or a medicine for producing a styrene monomer. 請求項1および請求項3のいずれかに記載の遺伝子を用いてスチレンモノマーを製造するスチレンモノマー製造装置。 The styrene monomer manufacturing apparatus which manufactures a styrene monomer using the gene in any one of Claim 1 and Claim 3. 請求項2および請求項4のいずれかに記載の酵素を用いてスチレンモノマーを製造するスチレンモノマー製造装置。 The styrene monomer manufacturing apparatus which manufactures a styrene monomer using the enzyme in any one of Claim 2 and Claim 4. ポリスチレン分解活性を有し、またキチン結合タンパク質を有し、さらにスチレンモノマー生成活性を有する微生物。 A microorganism having polystyrene-degrading activity, chitin-binding protein, and styrene monomer-forming activity. ポリスチレン分解活性を有し、またエキソ型キチナーゼ酵素活性を有し、さらにスチレンモノマー生成活性を有する微生物。 A microorganism having polystyrene degrading activity, exo-type chitinase enzyme activity, and further having styrene monomer-forming activity. 請求項10または請求項11に記載の微生物一方、あるいは請求項10および請求項11に記載の微生物を同時を固定化した担体などの材料や微生物を粉末や錠剤とした薬品。 A microorganism such as a powder or a tablet, wherein the microorganism according to claim 10 or claim 11, or a material such as a carrier on which the microorganism according to claim 10 and claim 11 is simultaneously immobilized, or a microorganism. 請求項10または請求項11に記載の微生物一方、あるいは請求項10および請求項11に記載の微生物を同時を固定化した担体などの材料や微生物を粉末や錠剤とした添加物。 An additive in which one of the microorganisms according to claim 10 or claim 11, or a material such as a carrier on which the microorganisms according to claim 10 and claim 11 are simultaneously immobilized, or a microorganism as a powder or a tablet.
JP2014032709A 2014-02-24 2014-02-24 Method for producing styrene monomer from polystyrene polymer and gene and enzyme used in this method Active JP6553329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032709A JP6553329B2 (en) 2014-02-24 2014-02-24 Method for producing styrene monomer from polystyrene polymer and gene and enzyme used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032709A JP6553329B2 (en) 2014-02-24 2014-02-24 Method for producing styrene monomer from polystyrene polymer and gene and enzyme used in this method

Publications (2)

Publication Number Publication Date
JP2015156819A true JP2015156819A (en) 2015-09-03
JP6553329B2 JP6553329B2 (en) 2019-07-31

Family

ID=54181412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032709A Active JP6553329B2 (en) 2014-02-24 2014-02-24 Method for producing styrene monomer from polystyrene polymer and gene and enzyme used in this method

Country Status (1)

Country Link
JP (1) JP6553329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874490A (en) * 2022-06-17 2022-08-09 江南大学 Polystyrene pretreatment and enzyme degradation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189924A (en) * 1998-12-25 2000-07-11 San Kaihatsu Kk Pyrolytic device for polystyrene resin waste
JP2001240696A (en) * 2000-02-29 2001-09-04 Sanesu:Kk Method for recovering styrene monomer from waste of polystyrene resin by solvent catalyst method
JP2003335710A (en) * 2002-05-21 2003-11-28 Toshiba Plant Kensetsu Co Ltd Method for recovering styrene monomer
JP2005163004A (en) * 2003-11-13 2005-06-23 Japan Organo Co Ltd Method for biodegradation treatment of styrenic polymer and microorganism used for the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189924A (en) * 1998-12-25 2000-07-11 San Kaihatsu Kk Pyrolytic device for polystyrene resin waste
JP2001240696A (en) * 2000-02-29 2001-09-04 Sanesu:Kk Method for recovering styrene monomer from waste of polystyrene resin by solvent catalyst method
JP2003335710A (en) * 2002-05-21 2003-11-28 Toshiba Plant Kensetsu Co Ltd Method for recovering styrene monomer
JP2005163004A (en) * 2003-11-13 2005-06-23 Japan Organo Co Ltd Method for biodegradation treatment of styrenic polymer and microorganism used for the method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK[ONLINE], ACCESSION NO. AAT31944 <HTTPS://WWW.NCBI.NLM.NIH.GOV/PROTEIN/47503268?SAT=, JPN6017045426, ISSN: 0003837756 *
DATABASE GENBANK[ONLINE], ACCESSION NO. AE017334 <HTTPS://WWW.NCBI.NLM.NIH.GOV/NUCCORE/50082967?SAT=, JPN6017045425, ISSN: 0003837755 *
DATABASE GENBANK[ONLINE], ACCESSION NO. AHCP01000011 <HTTPS://WWW.NCBI.NLM.NIH.GOV/NUCCORE/AHCP01000, JPN6017045427, ISSN: 0003837757 *
DATABASE GENBANK[ONLINE], ACCESSION NO. EPF14784 <HTTPS://WWW.NCBI.NLM.NIH.GOV/PROTEIN/EPF14784>19-, JPN6017045428, ISSN: 0003837758 *
EXTREMOPHILES (2003) VOL.7, P385-390, JPN6017045429, ISSN: 0003837759 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874490A (en) * 2022-06-17 2022-08-09 江南大学 Polystyrene pretreatment and enzyme degradation method

Also Published As

Publication number Publication date
JP6553329B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
Sulaiman et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach
Dong et al. Biochemical characterization of a novel azoreductase from Streptomyces sp.: application in eco-friendly decolorization of azo dye wastewater
van Hylckama Vlieg et al. Halohydrin dehalogenases are structurally and mechanistically related to short-chain dehydrogenases/reductases
van Loo et al. Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis
Lee et al. A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers
Ninh et al. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering
Abad et al. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst
Heiss et al. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2, 4, 6-trinitrophenol degradation
Wang et al. Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2 S, 3 S)-2, 3-butanediol
Kim et al. The development of a thermostable CiP (Coprinus cinereus peroxidase) through in silico design
Guo et al. Efficient (3R)-acetoin production from meso-2, 3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2, 3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin
Hooks et al. Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid
Park et al. Production of D− Amino Acid Using Whole Cells of Recombinant Escherichiacoli with Separately and Coexpressed D− Hydantoinase and N‐Carbamoylase
Ye et al. Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl reductase and a glucose dehydrogenase
Arntzen et al. Alginate degradation: insights obtained through characterization of a thermophilic exolytic alginate lyase
Ujiie et al. Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli
Rhimi et al. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production
Han et al. Epimerase (Msed_0639) and mutase (Msed_0638 and Msed_2055) convert (S)-methylmalonyl-coenzyme A (CoA) to succinyl-CoA in the Metallosphaera sedula 3-hydroxypropionate/4-hydroxybutyrate cycle
Zhu et al. The RNA polymerase of marine cyanophage Syn5
Sekar et al. Activation of an otherwise silent xylose metabolic pathway in Shewanella oneidensis
JP2017518744A (en) Dicarbonyl reductase mutant and its application
Wang et al. Engineering pH-tolerant mutants of a cyanide dihydratase
Woo et al. Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Rhodobacterales bacterium HTCC2654
Karagüler et al. Characterization of a new acidic NAD+-dependent formate dehydrogenase from thermophilic fungus Chaetomium thermophilum
Choo et al. High‐level production of phenylacetaldehyde using fusion‐tagged styrene oxide isomerase

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6553329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250