JP2005161831A - Write once optical recording medium and method for regenerating its recording - Google Patents
Write once optical recording medium and method for regenerating its recording Download PDFInfo
- Publication number
- JP2005161831A JP2005161831A JP2004066210A JP2004066210A JP2005161831A JP 2005161831 A JP2005161831 A JP 2005161831A JP 2004066210 A JP2004066210 A JP 2004066210A JP 2004066210 A JP2004066210 A JP 2004066210A JP 2005161831 A JP2005161831 A JP 2005161831A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- recording
- write
- recording medium
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
本発明は、追記型(WORM:Write Once Read Many)光記録媒体に係り、特に青色レーザ波長領域でも高密度の記録が可能な追記型光記録媒体に関する。 The present invention relates to a write once read many (WORM) optical recording medium, and more particularly to a write once optical recording medium capable of high density recording even in a blue laser wavelength region.
1.青色レーザ波長以下で記録再生が可能な追記型光記録媒体に関して
超高密度の記録が可能となる青色レーザの開発は急速に進んでおり、それに対応した追記型光記録媒体の開発が行われている。
従来の追記型光記録媒体では、有機材料からなる記録層にレーザ光を照射し、主に有機材料の分解・変質による屈折率変化を生じさせることで記録ピットを形成させており、記録層に用いられる有機材料の光学定数や分解挙動が、良好な記録ピットを形成させるための重要な要素となっている。
従って、青色レーザ対応の追記型光記録媒体の記録層に用いる有機材料としては、青色レーザ波長に対する光学的性質や分解挙動の適切な材料を選択する必要がある。即ち、未記録時の反射率を高め、またレーザの照射によって有機材料が分解し大きな屈折率変化が生じるようにするため(これによって大きな変調度が得られる)、記録再生波長は大きな吸収帯の長波長側の裾に位置するように選択される。何故ならば、有機材料の大きな吸収帯の長波長側の裾は、適度な吸収係数を有し且つ大きな屈折率が得られる波長領域となるためである(図1参照。従来の有機材料を記録層とした追記型光記録媒体では、図中の斜線部分に記録再生波長を設定する)。
1. Write-once type optical recording media capable of recording / reproducing below the wavelength of the blue laser The development of blue lasers capable of ultra-high-density recording is progressing rapidly, and the development of write-once type optical recording media corresponding to it has been carried out. Yes.
In conventional write-once optical recording media, recording pits are formed by irradiating a recording layer made of an organic material with laser light and causing a change in refractive index mainly due to decomposition and alteration of the organic material. The optical constant and decomposition behavior of the organic material used are important factors for forming good recording pits.
Therefore, it is necessary to select an organic material used for the recording layer of the write-once type optical recording medium compatible with blue laser, which has an appropriate optical property and decomposition behavior with respect to the blue laser wavelength. In other words, the recording / reproducing wavelength has a large absorption band in order to increase the reflectivity when unrecorded, and to cause a large change in refractive index due to decomposition of the organic material by laser irradiation (this provides a large degree of modulation). It is selected so as to be located at the bottom of the long wavelength side. This is because the long wavelength side skirt of the large absorption band of the organic material is a wavelength region having an appropriate absorption coefficient and a large refractive index (see FIG. 1. Recording conventional organic materials) In a recordable optical recording medium having a layer, a recording / reproducing wavelength is set in a hatched portion in the figure).
しかしながら、青色レーザ波長に対する光学的性質が従来並みの値を有する有機材料は未だ見出されていない。これは、青色レーザ波長近傍に吸収帯を持つ有機材料を得るためには、分子骨格を小さくするか又は共役系を短くする必要があるが、そうすると吸収係数の低下、即ち屈折率の低下を招くためである。
つまり、青色レーザ波長近傍に吸収帯を持つ有機材料は多数存在し、吸収係数を制御することは可能となるが、大きな屈折率を持たないため、大きな変調度を得ることができなくなる。
また、従来の追記型光記録媒体では、有機材料の分解・変質による屈折率変化と共に、基板変形によっても記録が行われており、例えば、図3〔市販のDVD−Rに記録を行った部分の基板面をAFM(アトミックフォースマイクロスコープ、Atomic force microscope)により観察した図〕に示すように、基板は反射層側に変形しており、この変形によって変調度を発生させている。
However, an organic material having an optical property with respect to a blue laser wavelength that is the same as the conventional value has not yet been found. In order to obtain an organic material having an absorption band in the vicinity of the blue laser wavelength, it is necessary to reduce the molecular skeleton or shorten the conjugated system, but this leads to a decrease in absorption coefficient, that is, a decrease in refractive index. Because.
That is, there are many organic materials having an absorption band near the blue laser wavelength, and the absorption coefficient can be controlled. However, since there is no large refractive index, a large degree of modulation cannot be obtained.
Further, in the conventional write-once type optical recording medium, recording is performed by the deformation of the substrate as well as the change in refractive index due to the decomposition and alteration of the organic material. For example, FIG. 3 [Parts recorded on a commercially available DVD-R As shown in FIG. 1, the substrate surface is deformed to the reflective layer side, and the degree of modulation is generated by the deformation. As shown in FIG. 2, the substrate surface is observed with an AFM (Atomic Force Microscope).
青色レーザ対応の有機材料としては、例えば、特許文献1〜5に記載がある。
しかし、これらの公報では、実施例を見ても溶液と薄膜のスペクトルを測定しているのみで、記録再生に関する記載はない。
特許文献6〜8では、実施例に記録の記載があるものの、記録波長は488nmであり、また記録条件や記録密度に関する記載はなく、良好な記録ピットが形成できた旨の記載があるのみである。
特許文献9では、実施例に記録の記載があるものの、記録波長は430nmであり、また記録条件や記録密度に関する記載はなく、良好な変調度が得られた旨の記載があるのみである。
特許文献10〜19では、実施例に記録波長430nm、NA0.65での記録例があるが、最短ピットが0.4μmという低記録密度条件(DVDと同等の記録密度)である。
特許文献20では、記録再生波長は405〜408nmであるが、記録密度に関する具体的な記載がなく、14T−EFM信号の記録という低記録密度条件である。
For example, Patent Documents 1 to 5 describe organic materials for blue lasers.
However, these publications only measure the spectra of the solution and the thin film even when looking at the examples, and there is no description regarding recording and reproduction.
In Patent Documents 6 to 8, although there is a description of recording in the examples, the recording wavelength is 488 nm, there is no description about recording conditions and recording density, and there is only a description that good recording pits can be formed. is there.
In Patent Document 9, although there is a description of recording in the examples, the recording wavelength is 430 nm, there is no description regarding recording conditions and recording density, and there is only a description that a good modulation degree is obtained.
In Patent Documents 10 to 19, there is a recording example with a recording wavelength of 430 nm and NA of 0.65 in Examples, but the low recording density condition (the recording density equivalent to DVD) is that the shortest pit is 0.4 μm.
In Patent Document 20, the recording / reproducing wavelength is 405 to 408 nm, but there is no specific description about the recording density, and the recording density is a low recording density condition of recording a 14T-EFM signal.
以上の特許文献で開示されている有機材料は、現在実用化されている青色半導体レーザの発振波長の中心である405nm近傍において、従来の追記型光記録媒体の記録層に要求される光学定数と同程度の光学定数を有する材料ではない。また、405nm近傍で記録条件を明確にし、DVDよりも高記録密度で記録された実施例がないため、実際に15〜25GBといったような高密度の記録が行えるかどうか不明である。更に、上記公知技術における実施例の多くは、従来のディスク構成(基板/有機材料層/反射層)での実験であり、そこに用いられる色素は従来と同じ光学特性と機能が要求されている。
従来の有機材料を用いた追記型光記録媒体では、変調度と反射率の確保の点から、記録再生波長に対し大きな屈折率と比較的小さな吸収係数(0.05〜0.10程度)を持つ有機材料しか使用することができない。
The organic materials disclosed in the above patent documents have optical constants required for a recording layer of a conventional write-once optical recording medium in the vicinity of 405 nm, which is the center of the oscillation wavelength of a blue semiconductor laser currently in practical use. It is not a material having the same optical constant. In addition, since there is no example in which recording conditions are clarified in the vicinity of 405 nm and recording is performed at a higher recording density than DVD, it is unclear whether high-density recording such as 15 to 25 GB can actually be performed. Furthermore, many of the examples in the above-mentioned known art are experiments in a conventional disk configuration (substrate / organic material layer / reflection layer), and the dyes used therein are required to have the same optical characteristics and functions as in the past. .
A conventional write-once optical recording medium using an organic material has a large refractive index and a relatively small absorption coefficient (about 0.05 to 0.10) with respect to the recording / reproducing wavelength from the viewpoint of securing the degree of modulation and the reflectance. You can only use organic materials that you have.
従って、従来の有機材料を用いた追記型光記録媒体では、記録再生波長近傍に有機材料の主吸収帯が存在するため、図2に示すように、有機材料の光学定数の波長依存性が大きくなり(波長によって光学定数が大きく変動する)、レーザの個体差や環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという問題があった。
更に、有機材料は記録光に対して十分な吸収能を持たないため、有機材料の膜厚を薄膜化することが不可能であり、従って、深い溝を持った基板を使用する必要があった(有機材料は通常スピンコート法によって形成されるため、有機材料を深い溝に埋めて厚膜化している)。そのため、深い溝を有する基板の形成が非常に難しくなり、光記録媒体としての品質を低下させる要因になっている。
また、有機材料の膜厚を薄くすることができないため、記録パワーマージン等が狭くなるといった問題点(記録再生特性の各種マージンが狭いという問題)を有していた。
Therefore, in a write-once type optical recording medium using a conventional organic material, the main absorption band of the organic material exists in the vicinity of the recording / reproducing wavelength, so that the wavelength dependence of the optical constant of the organic material is large as shown in FIG. (Optical constants vary greatly depending on the wavelength), recording characteristics such as recording sensitivity, modulation factor, jitter, error rate, and reflectivity for recording / reproducing wavelength fluctuations due to individual differences in lasers and environmental temperature changes There was a problem that etc. changed greatly.
Furthermore, since the organic material does not have sufficient absorption capability for recording light, it is impossible to reduce the film thickness of the organic material, and thus it is necessary to use a substrate having a deep groove. (Organic materials are usually formed by spin coating, so they are thickened by burying them in deep grooves). Therefore, it becomes very difficult to form a substrate having a deep groove, which is a factor of deteriorating the quality as an optical recording medium.
In addition, since the film thickness of the organic material cannot be reduced, there is a problem that the recording power margin and the like are narrowed (the problem that various margins of the recording / reproducing characteristics are narrow).
また、従来のCD、DVD系光記録媒体と異なる層構成及び記録方法に関して、以下のような技術が公開されている。
特許文献21には、基板/可飽和吸収色素含有層/反射層という層構成で、可飽和吸収色素の消衰係数(本発明でいう吸収係数)の変化により記録を行う技術が開示されている。
特許文献22には、基板/金属蒸着層/光吸収層/保護シ−トという層構成で、光吸収層によって発生した熱によって、金属蒸着層を変色又は変形させることで記録を行う技術が開示されている。
特許文献23には、基板/誘電体層/光吸収体を含む記録層/反射層という層構成で、記録層の膜厚を変えることにより溝部の深さを変えて記録を行う技術が開示されている。
特許文献24には、基板/光吸収体を含む記録層/金属反射層という層構成で、記録層の膜厚を10〜30%変化させることにより記録を行う技術が開示されている。
特許文献25には、基板/有機色素を含有する記録層/金属反射層/保護層という層構成で、基板の溝幅を未記録部に対して20〜40%広くすることにより記録を行う技術が開示されている。
Further, the following technologies are disclosed regarding the layer configuration and recording method different from those of conventional CD and DVD optical recording media.
Patent Document 21 discloses a technique for recording by changing the extinction coefficient (absorption coefficient in the present invention) of a saturable absorbing dye in a layer structure of substrate / saturable absorbing dye-containing layer / reflective layer. .
Patent Document 22 discloses a technique for recording by changing the color or deformation of a metal vapor deposition layer by heat generated by the light absorption layer in a layer configuration of substrate / metal vapor deposition layer / light absorption layer / protective sheet. Has been.
Patent Document 23 discloses a technique for recording by changing the depth of the groove portion by changing the film thickness of the recording layer in the layer configuration of substrate / dielectric layer / recording layer including light absorber / reflective layer. ing.
Patent Document 24 discloses a technique for performing recording by changing the film thickness of the recording layer by 10 to 30% in a layer configuration of substrate / recording layer including light absorber / metal reflective layer.
Patent Document 25 discloses a technique for recording by increasing the groove width of a substrate by 20 to 40% with respect to an unrecorded portion in a layer configuration of substrate / recording layer containing organic dye / metal reflective layer / protective layer. Is disclosed.
特許文献26には、基板/中間層/金属薄膜という層構成で、金属薄膜が変形しバブルを形成することにより記録を行う技術が開示されている。
特許文献27には、基板/光吸収層/記録補助層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献28には、基板/光吸収層/多孔質な記録補助層/光反射層、或いは、基板/多孔質な記録補助層/光吸収層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献29には、基板/多孔質な光吸収層/光反射層という層構成で、光吸収層を凹状に変形させると共に、光吸収層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献30には、基板/有機色素を含む記録層/記録補助層という層構成で、記録補助層と有機色素が相溶して、有機色素の吸収スペクトルを短波長側へシフトさせることで記録を行う技術が開示されている。
Patent Document 26 discloses a technique for recording by forming a bubble by deforming a metal thin film with a layer structure of substrate / intermediate layer / metal thin film.
In Patent Document 27, the recording auxiliary layer is deformed into a concave shape in a layer configuration of substrate / light absorption layer / recording auxiliary layer / light reflecting layer, and the light reflecting layer is deformed into a concave shape along with the deformation of the recording auxiliary layer. Thus, a technique for recording is disclosed.
In Patent Document 28, a recording auxiliary layer having a layer structure of substrate / light absorbing layer / porous recording auxiliary layer / light reflecting layer or substrate / porous recording auxiliary layer / light absorbing layer / light reflecting layer is provided. A technique is disclosed in which recording is performed by deforming into a concave shape and deforming the light reflecting layer into a concave shape along with the deformation of the recording auxiliary layer.
In Patent Document 29, the light absorption layer is deformed into a concave shape in a layer configuration of substrate / porous light absorption layer / light reflection layer, and the light reflection layer is deformed into a concave shape along with the deformation of the light absorption layer. A technique for recording with the above is disclosed.
In Patent Document 30, recording is performed by shifting the absorption spectrum of an organic dye to the short wavelength side in a layer structure of a substrate / recording layer containing an organic dye / recording auxiliary layer, in which the recording auxiliary layer and the organic dye are compatible. Techniques for performing are disclosed.
特許文献31には、基板上に反射層と記録層の機能を有する複合機能層、保護層を順次形成した層構成で、基板と複合機能層がバンプを形成することで記録を行う技術が開示されている。なお、複合機能層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金との規定がある。
特許文献32には、基板上に金属薄膜層、変形可能な緩衝層、反射層、保護層を順次形成した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚を薄くさせることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金との規定がある。また、緩衝層としては、変形し易く適当な流動性を持つ樹脂が用いられ、変形を促進させるために色素を含有させても良いとの記載がある。
特許文献33には、基板上に金属薄膜層、緩衝層、反射層を順次積層した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、緩衝層は色素と有機高分子の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
Patent Document 31 discloses a technique in which recording is performed by forming bumps on a substrate and the composite functional layer in a layer configuration in which a composite functional layer having a function of a reflective layer and a recording layer and a protective layer are sequentially formed on the substrate. Has been. In addition, as a composite functional layer, there exists a prescription | regulation with metals, such as nickel, chromium, titanium, or those alloys.
In Patent Document 32, a metal thin film layer, a deformable buffer layer, a reflective layer, and a protective layer are sequentially formed on a substrate, and the substrate and the metal thin film layer are deformed at the same time. A technique for recording by reducing the thickness is disclosed. In addition, as a metal thin film layer, there exists prescription | regulation with metals, such as nickel, chromium, titanium, or those alloys. In addition, as the buffer layer, there is a description that a resin that is easily deformable and has an appropriate fluidity is used, and a pigment may be contained in order to promote deformation.
In Patent Document 33, a metal thin film layer, a buffer layer, and a reflective layer are sequentially laminated on a substrate, and the substrate and the metal thin film layer are deformed. At the same time, the buffer layer thickness and the optical constant at the deformed portion are set. A technique for recording by changing is disclosed. In addition, as a metal thin film layer, there exists a description that metals, such as nickel, chromium, titanium, or those alloys are preferable. The buffer layer is made of a mixture of a dye and an organic polymer, and a dye having a large absorption band near the recording / reproducing wavelength is used.
特許文献34には、基板上に金属記録層、バッファ層、反射層を順次積層した層構成で、基板と金属記録層を変形させ、同時にこの変形部でのバッファ層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属記録層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、バッファ層は色素と樹脂の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
以上の公開技術は、基本的に青色レーザ波長領域での光記録媒体の実現を狙ったものではなく、青色レーザ波長領域で有効となる層構成や記録方法ではない。更に、上述の技術では、記録層中の色素に光吸収機能が必要となるため、色素の主吸収帯が記録再生波長近傍に存在しなければならず、色素の選択に大きな制限が加わる。
また、上述の技術では、その記録原理の主体が変形による場合が殆どである。この変形が記録原理の主体となると、良好なジッタや変調度が得られても、記録マーク間の干渉が大きくなるため、各種記録再生特性のマージンが狭くなるという問題がある。
In Patent Document 34, a metal recording layer, a buffer layer, and a reflective layer are sequentially laminated on a substrate, and the substrate and the metal recording layer are deformed. At the same time, the buffer layer thickness and the optical constant at the deformed portion are set. A technique for recording by changing is disclosed. In addition, as a metal recording layer, there exists a description that metals, such as nickel, chromium, titanium, or those alloys are preferable. The buffer layer is made of a mixture of a dye and a resin, and a dye having a large absorption band near the recording / reproducing wavelength is used.
The above disclosed technology is not basically aimed at realizing an optical recording medium in the blue laser wavelength region, and is not a layer configuration or a recording method effective in the blue laser wavelength region. Furthermore, in the above-described technique, since the dye in the recording layer needs to have a light absorption function, the main absorption band of the dye must exist in the vicinity of the recording / reproducing wavelength, which greatly restricts the selection of the dye.
In the above-described techniques, the main subject of the recording principle is mostly due to deformation. If this deformation becomes the main component of the recording principle, there is a problem that even if a good jitter and modulation degree are obtained, the interference between recording marks increases, and the margin of various recording / reproducing characteristics becomes narrow.
拡散方式と考えられる追記型光記録媒体については、例えばTDKが、CEATEC JAPAN 2003において、基板/ZnSSiO2/Si/Cu/ZnSSiO2/Agという構成の媒体を発表した。この媒体は変調度65%、ジッタ6%、反射率14%という特性であると報告されたが,本発明者らの追試においてSiとCuを隣接積層させると、放置、保存試験などで徐々に相互拡散をしてしまい、特性の劣化が見られた。これは2層拡散混合型の一つの欠点である。また、この媒体は変調度を得るために誘電体膜であるZnSSiO2を上下2層必要とするなど、多くの工程、コストがかかる。
また、本出願人は先願(特願2002−223720号)において、InとGeTeとの2層拡散混合型の媒体について開示したが、この先願発明では3TのシングルパターンのC/Nを評価しただけであり、2値記録において重要なランダムパターンが記録できるかどうかについては検討されていない。
以上のように、上記従来技術は青色レーザ波長領域での追記型光記録媒体の実現のために充分ではなく青色レーザ波長領域で有効となる層構成や記録方法ではない。
As for the write-once type optical recording medium considered to be a diffusion system, for example, TDK announced a medium having a structure of substrate / ZnSSiO 2 / Si / Cu / ZnSSiO 2 / Ag at CEATEC JAPAN 2003. This medium was reported to have characteristics of a modulation degree of 65%, a jitter of 6%, and a reflectivity of 14%. Interdiffusion occurred and deterioration of characteristics was observed. This is one drawback of the two-layer diffusion mixing type. In addition, this medium requires many processes and costs, such as requiring two upper and lower layers of ZnSSiO 2 that is a dielectric film in order to obtain the degree of modulation.
In addition, in the prior application (Japanese Patent Application No. 2002-223720), the present applicant disclosed a two-layer diffusion mixed medium of In and GeTe. In this prior application, the C / N of a single pattern of 3T was evaluated. However, it has not been studied whether or not an important random pattern can be recorded in binary recording.
As described above, the above prior art is not sufficient for realizing a write-once type optical recording medium in the blue laser wavelength region, and is not a layer configuration or recording method effective in the blue laser wavelength region.
2. 多値記録が可能な追記型光記録媒体について
近年、記録容量の増大を目的に多値記録技術が開発されている。最近はホームユーザーでも普通に容量の大きいオーディオデータや画像/動画データを扱うようになり、また一方、ハードディスクも大容量化が進み、CDやDVD系の光記録媒体では記録容量が足りなくなってきている。
そんな中で、従来型の光記録媒体の容量を高める記録方式として、「多値記録技術(Multi Level Technology)」が、米国のベンチャー企業カリメトリクス社(Calimetrics, Inc.)から提案されている。この多値記録技術は、簡単に言えば、記録線密度を向上させるものである。
従来のCDやDVD系の光記録媒体では、記録するデータ列に応じて各記録マーク端部の位置や長さを変えて記録し、再生時に記録マークの長さを判定している(スライス方式)。簡単に現行のスライス方式について説明する。
2. Write-once type optical recording medium capable of multi-value recording In recent years, multi-value recording technology has been developed for the purpose of increasing the recording capacity. Recently, even home users have been handling audio data and image / video data with a large capacity. On the other hand, the capacity of hard disks has been increasing, and the recording capacity of CD and DVD optical recording media has become insufficient. Yes.
Under such circumstances, as a recording method for increasing the capacity of a conventional optical recording medium, “Multi Level Technology” has been proposed by a US venture company, Calimetrics, Inc. In short, this multi-value recording technique improves the recording linear density.
In conventional CD and DVD optical recording media, recording is performed by changing the position and length of the end of each recording mark according to the data string to be recorded, and the length of the recording mark is determined during reproduction (slice method). ). The current slice method will be briefly described.
図4に示すように、まず記録すべき情報である記録データ(a)に対応した記録波形(b)を用いて、光記録媒体に記録マーク列(c)を形成させる。
その記録媒体に記録された記録マーク列(c)に再生光を照射して情報を再生すると、図(d)に示すような再生信号波形が得られる。
この再生信号波形は、(b)で示した記録波形のような矩形波とはならず鈍った波形になるため、再生信号波形を等化器で整形する(具体的には再生信号の高周波成分が増幅される)。
次いで、この等化波形(e)と閾値との交点を検出し、ウインドウ内で交点が検出されれば「1」、交点が検出されなければ「0」として二値データを出力する(f)。
そしてこの交点検出に得られた二値データ(f)をNRZ変換することによって(g)に示すような復号データを得ている。
As shown in FIG. 4, first, a recording mark row (c) is formed on an optical recording medium using a recording waveform (b) corresponding to recording data (a) which is information to be recorded.
When information is reproduced by irradiating the recording mark row (c) recorded on the recording medium with reproduction light, a reproduction signal waveform as shown in FIG.
Since this reproduced signal waveform is not a rectangular wave like the recording waveform shown in (b) but becomes a dull waveform, the reproduced signal waveform is shaped by an equalizer (specifically, a high frequency component of the reproduced signal). Is amplified).
Next, an intersection between the equalized waveform (e) and the threshold is detected, and binary data is output as “1” if an intersection is detected in the window, and “0” if no intersection is detected (f). .
The binary data (f) obtained for the intersection detection is subjected to NRZ conversion to obtain decoded data as shown in (g).
これに対して多値記録では、基本セルと呼ばれる固定長の領域内に、記録するマークの反射率の多値化で情報を表現する。即ち、従来のCDやDVD系の光記録媒体では、記録マークの有無で1ビットを表現しているが、多値記録では、記録マークの大きさを例えば8種類に変えて記録し、8つのレベルの異なる反射率として読出す(図5参照)。従って、1つの記録マークで3ビット分の情報を表わすことができるため、記録密度を高めることができる。
この多値記録では、通常、再生時のレーザ光のビームスポット径は、基本セル長よりも大きい。これによって、1つの記録マークで3ビット分の信号を表現することができるため、トラックピッチを詰めることなく、記録線密度を上げ、記録容量を増加させることができる。
On the other hand, in multi-level recording, information is expressed by multi-leveling of the reflectance of a mark to be recorded in a fixed-length area called a basic cell. That is, in a conventional CD or DVD optical recording medium, one bit is expressed by the presence or absence of a recording mark, but in multi-value recording, recording is performed by changing the size of the recording mark to, for example, eight types. Reading is performed as reflectivity having different levels (see FIG. 5). Therefore, since information for 3 bits can be expressed by one recording mark, the recording density can be increased.
In this multi-value recording, the beam spot diameter of the laser beam during reproduction is usually larger than the basic cell length. As a result, a signal for 3 bits can be expressed by one recording mark, so that the recording linear density can be increased and the recording capacity can be increased without reducing the track pitch.
この多値記録可能な追記型光記録媒体に関しては、特許文献35〜41等に記載がある。また、特許文献35には、有機色素からなる記録層を有する光記録媒体に多値記録を行うという概念、及び、該光記録媒体において記録層の深さ方向に多値記録を行うという概念が示されている。しかし、この文献では、赤色レーザ波長に対応した多値記録可能な追記型光記録媒体を想定しており、層構成や有機色素は従来のCDやDVD系の追記型光記録媒体と何ら変わるところがない。
上記特許文献36には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、基板のガラス転移点と反射率の熱伝導率を規定する発明が記載されている。
特許文献37には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、有機色素の熱分解特性を規定する発明が記載されている。
特許文献38〜39には、多値記録が可能なフタロシアニンやシアニン色素からなる記録層を有する光記録媒体において、波長、NA、グルーブ幅の関係を規定した発明が記載されている。
特許文献40には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、グルーブ上の記録層膜厚とグルーブ深さの関係を規定した発明が記載されている。
特許文献41には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、未記録時の反射率を40〜80%とする発明が記載されている。
The write-once type optical recording medium capable of multi-value recording is described in Patent Documents 35 to 41 and the like. Further, Patent Document 35 has a concept of performing multilevel recording on an optical recording medium having a recording layer made of an organic dye, and a concept of performing multilevel recording in the depth direction of the recording layer on the optical recording medium. It is shown. However, this document assumes a write-once type optical recording medium capable of multi-value recording corresponding to the red laser wavelength, and the layer configuration and organic dye are different from conventional CD and DVD type write-once optical recording media. Absent.
Patent Document 36 discloses an invention that defines the glass transition point of a substrate and the thermal conductivity of reflectance in an optical recording medium having a recording layer made of an organic dye capable of multilevel recording.
Patent Document 37 describes an invention that defines the thermal decomposition characteristics of an organic dye in an optical recording medium having a recording layer made of an organic dye capable of multilevel recording.
Patent Documents 38 to 39 describe an invention in which a relationship between wavelength, NA, and groove width is defined in an optical recording medium having a recording layer made of phthalocyanine or cyanine dye capable of multilevel recording.
Patent Document 40 describes an invention that defines the relationship between the recording layer thickness on the groove and the groove depth in an optical recording medium having a recording layer made of an organic dye capable of multi-value recording.
Patent Document 41 describes an invention in which an optical recording medium having a recording layer made of an organic dye capable of multilevel recording has a reflectance of 40 to 80% when not recorded.
ところで、多値記録では、従来の二値記録よりも高密度記録を実現させるため、大雑把に言えば基本セル長を従来の二値記録での最短マーク長と同程度に小さくしなければならない。つまり、多値記録における最短マークは二値記録の最短マークよりも非常に小さくなる(短くなる)。
即ち、従来の記録材料、層構成等のままで十分高密度化した多値記録が可能となるのであれば、これは従来の記録材料、層構成等のままでも最短マークを短くできることを意味するため、二値記録でも最短マーク長を短くして高密度化が図れることになる(実際通常の二値記録では、特別な記録再生方法等を利用しない限り現状以上に記録密度を高めることができない)。
従って、二値記録よりも十分高密度化した多値記録可能な追記型光記録媒体を実現させるためには、従来の記録材料、層構成等のままでは実現不可能であって、従来とは異なる記録材料や層構成が新たに必要になる筈である。
By the way, in multi-level recording, in order to realize higher-density recording than in conventional binary recording, roughly speaking, the basic cell length must be made as small as the shortest mark length in conventional binary recording. That is, the shortest mark in multilevel recording is much smaller (shorter) than the shortest mark in binary recording.
That is, if multi-level recording with sufficiently high density can be performed with the conventional recording material, layer structure, etc., this means that the shortest mark can be shortened even with the conventional recording material, layer structure, etc. Therefore, even in binary recording, the shortest mark length can be shortened to increase the density (in actual binary recording, the recording density cannot be increased beyond the current level unless a special recording / reproducing method or the like is used. ).
Therefore, in order to realize a write-once type optical recording medium capable of multi-level recording with a sufficiently higher density than binary recording, it cannot be realized with conventional recording materials, layer configurations, etc. Different recording materials and layer structures should be newly required.
しかし、上記公知技術では、記録層の膜厚や反射層材料等の微調整は行っているものの、殆ど従来の記録材料、層構成等のままで多値記録を行うものであるから、従来に比べて小さい記録マークが形成できるという訳ではなく(従来よりも格段に小さい記録マークが、高い再生信頼性で記録再生できる筈がない)、記録再生技術によって従来よりも短い記録マークを信頼性よく再生できるようにしたに過ぎず、単に記録再生方法の発明を追記型光記録媒体に適用したに過ぎない。
また、上記公知技術では変形を主体として記録マークが形成されている(前述した図3参照)。この変形は、記録マーク間の長さが十分長い場合(記録線密度が低い場合)、或いは多値レベルが記録されたセルの長さが再生光のビーム径以上に連続しない場合は特に問題はないが、記録線密度が高くなる場合、或いは多値レベルが記録されたセルの長さが再生光のビーム径以上の長さで連続する場合は、変形が干渉しあって、その干渉が線形でなくなる(線形から大きく外れる)。
However, in the above known technique, although the film thickness of the recording layer and the reflective layer material are finely adjusted, multi-value recording is performed with almost the same conventional recording material, layer configuration, etc. Compared to conventional recording marks, it does not mean that smaller recording marks can be formed (recording / reproduction is much less reliable than conventional recording marks). The recording / reproducing method is merely applied to a write-once optical recording medium.
Further, in the above known technique, a recording mark is formed mainly by deformation (see FIG. 3 described above). This deformation is particularly problematic when the length between the recording marks is sufficiently long (when the recording linear density is low), or when the length of the cell in which the multilevel level is recorded is not continuous beyond the beam diameter of the reproduction light. However, if the recording linear density is high, or if the length of the cell in which the multilevel level is recorded is longer than the beam diameter of the reproduction light, the deformation interferes and the interference is linear. (Not far from linear).
この干渉が線形であるとは、干渉後の変形形状が、例えば、図6に示すように、あるセルの変形量と次の隣接セルの変形量とのほぼ加算で表されることを意味する〔図6(a)は、連続する3つのセルに変形を主体とする記録マークを形成した様子を平面図として示し、(b)は干渉がない場合のそれぞれの記録マークの変形量を断面図として示したもので、(c)はその変形が加算された様子を示した図である〕。
図7は、3つの連続したセルに変形を主体とする記録マークを形成した場合であって、その記録されたセルの一連の長さが再生ビーム径以下の場合、3つのセルの変形の干渉の違いによる再生信号の変化を模式的に示したものである。変形の干渉が線形であれば図7(b)のような変形状態になるが、変形の干渉が線形でなくなると、図7(c)、(d)のような変形状態を示すようになる。
しかし、この干渉した変形が再生ビーム径以下の長さであるため、変形状態の違いを検出することができず、変形状態が(b)、(c)、(d)のように異なった場合でも、ほぼ(e)に示すような再生信号が得られる。
従って、(e)に示したT1、T2、T3のサンプリングタイムで反射レベルを検出すれば、正しいデータを復元することができる。
The fact that the interference is linear means that the deformed shape after the interference is expressed, for example, by substantially adding the deformation amount of a certain cell and the deformation amount of the next adjacent cell, as shown in FIG. [FIG. 6A is a plan view showing a state in which recording marks mainly composed of deformation are formed in three consecutive cells, and FIG. 6B is a sectional view showing the deformation amount of each recording mark when there is no interference. (C) is a diagram showing how the deformation is added].
FIG. 7 shows a case where a recording mark mainly composed of deformation is formed in three consecutive cells, and when the series of recorded cells has a length equal to or smaller than the reproduction beam diameter, the interference of the deformation of the three cells. The change of the reproduction signal due to the difference is schematically shown. If the deformation interference is linear, the deformation state is as shown in FIG. 7B. If the deformation interference is not linear, the deformation state is shown in FIGS. 7C and 7D. .
However, since the interfering deformation is not longer than the reproduction beam diameter, the difference in deformation state cannot be detected, and the deformation states are different as shown in (b), (c), (d). However, a reproduction signal almost as shown in (e) can be obtained.
Accordingly, if the reflection level is detected at the sampling times T 1 , T 2 , and T 3 shown in (e), correct data can be restored.
一方、図8には、変形を主体とする記録マークが連続して7つ形成された場合であって、記録されたセルが連続し、その一連の長さが再生ビーム径よりも大きくなった場合の、変形の干渉の違いと再生信号の関係を模式的に示したものである。
この場合には、図7の場合に比べて変形の干渉がより線形でなくなり、例えば図8(b)、(c)、(d)のような変形状態を示すようになる(実際はもっと複雑になる)。この干渉した変形が再生ビーム径より大きな長さであるため、変形状態の違いを明瞭に検出することができ、(b)、(c)、(d)の変形状態に合わせて、例えば、それぞれ(e)、(f)、(g)のような再生信号が得られる。
従って、(e)、(f)、(g)に示したT1〜T7のサンプリングタイムで反射レベルを検出すると、干渉の違いによって異なったデータが復元されてしまい、もはや正しいデータを復元することができない。
このように、変形が記録の主体となると、記録パターンによって記録マーク間の干渉が全く異なってしまうため(どのような再生信号が得られるか予測できない)、記録再生特性が悪化する。
On the other hand, FIG. 8 shows a case where seven recording marks mainly composed of deformation are formed in succession, in which recorded cells are continuous, and the series length is larger than the reproduction beam diameter. In this case, the relationship between the difference in deformation interference and the reproduction signal is schematically shown.
In this case, the deformation interference is less linear than in the case of FIG. 7, and for example, the deformation states as shown in FIGS. 8B, 8C, and 8D are shown (actually more complicated). Become). Since this interfering deformation is longer than the reproduction beam diameter, the difference in deformation state can be clearly detected. According to the deformation states of (b), (c), and (d), for example, Playback signals such as (e), (f), and (g) are obtained.
Therefore, when the reflection level is detected at the sampling times T 1 to T 7 shown in (e), (f), and (g), different data is restored due to the difference in interference, and correct data is no longer restored. I can't.
As described above, when the deformation becomes the main subject of recording, the interference between the recording marks is completely different depending on the recording pattern (it is impossible to predict what kind of reproduction signal is obtained), so that the recording / reproduction characteristics are deteriorated.
3. PRML方式を用いた記録再生方法について
多値記録技術とは別の高密度化技術として、現行のスライス方式の替わりにPRML(パーシャル・レスポンス・アンド・マキシマム・ライクリフッド、Partial Response and Maximum Likelihood)方式の光記録媒体への利用が検討されている。
高密度化を図るために記録線密度を高めると、再生信号はより鈍った波形となる〔これは図4で説明したように、再生信号波形(d)は記録波形(b)のような矩形波にならないことを意味する〕。再生信号は等化器によって高周波成分が増幅され、等化波形へと変換されるが、高密度化されて波形が鈍ると、より高周波成分を増幅する必要がある。この高周波成分の増幅時には、等化器は信号劣化成分まで増幅を行ってしまうため、再生信号のSNRの大幅な低下を招くという問題がある。PRMLという技術は、この高密度化に伴う再生信号のSNRの低下を抑制するための再生信号処理法方式である。
3. Recording and playback method using the PRML method As a high-density technology different from the multi-value recording technology, instead of the current slice method, the PRML (Partial Response and Maximum Lifecycle, Partial Response and Maximum Likelihood) method Application to optical recording media is being studied.
When the recording linear density is increased in order to increase the density, the reproduction signal becomes a dull waveform. (As described in FIG. 4, the reproduction signal waveform (d) is a rectangle like the recording waveform (b). It means no waves.] The reproduction signal is amplified by a high frequency component by an equalizer and converted into an equalized waveform. However, when the density is increased and the waveform becomes blunt, it is necessary to amplify the high frequency component. When this high frequency component is amplified, the equalizer amplifies even the signal degradation component, which causes a problem that the SNR of the reproduction signal is greatly reduced. The technique called PRML is a reproduction signal processing method for suppressing a decrease in SNR of a reproduction signal due to the increase in density.
以下、簡単にPRML方式について説明する。
図9の(a)〜(d)は、図4の(a)〜(d)と同様であり、それぞれ、記録すべき情報である記録データ(a)、記録波形(b)、記録マーク列(c)、再生信号波形(d)である。
図9(d)の再生波形に対して、等化器でPR(1,1)特性,PR(1,2,1)特性,PR(1,2,2,1)特性に基づく等化を行った場合の等化波形を、それぞれ図9(e)〜(g)に示す。ここで、PR(1,1)特性とは、インパルス応答が、連続する2つの識別点に各々1:1の割合で出現する特性を示し、PR(1,2,1)特性とは、インパルス応答が、連続する3つの識別点に各々1:2:1の割合で出現する特性を示し、PR(1,2,2,1)特性とは、インパルス応答が、連続する4つの識別点に各々1:2:2:1の割合で出現する特性を示す。図9(e)〜(g)に示すように、PR特性が複雑になるほど等化波形が鈍ることが分る。
PRML方式では、再生波形の特性に近いPR特性で波形等化することにより、等化器による再生信号劣化成分の増幅を抑制することが可能となる。
Hereinafter, the PRML system will be briefly described.
9 (a) to 9 (d) are the same as FIGS. 4 (a) to 4 (d), and recording data (a), recording waveform (b), and recording mark string, which are information to be recorded, respectively. (C) Reproduction signal waveform (d).
9D is equalized based on the PR (1, 1) characteristic, the PR (1, 2, 1) characteristic, and the PR (1, 2, 2, 1) characteristic by an equalizer. The equalized waveforms when performed are shown in FIGS. 9 (e) to (g), respectively. Here, the PR (1, 1) characteristic indicates a characteristic in which an impulse response appears at a ratio of 1: 1 at two consecutive identification points, and the PR (1, 2, 1) characteristic indicates an impulse. The response shows a characteristic that appears at a ratio of 1: 2: 1 at three consecutive discrimination points, and the PR (1, 2, 2, 1) characteristic means that the impulse response is at four consecutive discrimination points. Each characteristic appears at a ratio of 1: 2: 2: 1. As shown in FIGS. 9E to 9G, it can be understood that the equalization waveform becomes dull as the PR characteristic becomes more complicated.
In the PRML system, it is possible to suppress amplification of the reproduction signal deterioration component by the equalizer by performing waveform equalization with PR characteristics close to those of the reproduction waveform.
PRML方式の再生信号処理では、等化波形信号の復号にあたって、最尤復号器の代表的な一つであるビタビ復号器が用いられるのが一般的である。例えば、等化器で再生波形がPR(1,2,1)特性に等化された場合、ビタビ復号器はPR(1,2,1)特性を満足する全ての系列の中から、等化波形のサンプル系列との誤差が最も小さい系列を選択し、選択された系列に対応する二値データ(復号データ)を出力する。
このように、PRML技術を用いることで、従来と同等の光学系を用いても高密度化が実現される訳であるが、PRML技術を用いた場合であっても、記録マーク間の干渉(符号間干渉)が大きくなって、その干渉が線形でなくなると(予測できない記録マーク間干渉が起こること)、もはや信頼性の高い記録再生が不能となる。即ち、PRML方式を適用できるのは、予測可能な記録マーク間の干渉が起こることが前提で、実際の記録マーク間干渉が予測と異なるとPRML方式を用いた効果がなくなる。
従って、記録マーク間の干渉を予測可能なレベルに抑制させるためには、記録マークの変形を抑制することが必要である。
In the reproduction signal processing of the PRML method, a Viterbi decoder, which is a representative maximum likelihood decoder, is generally used for decoding an equalized waveform signal. For example, when the reproduced waveform is equalized to the PR (1, 2, 1) characteristic by the equalizer, the Viterbi decoder equalizes from all the sequences that satisfy the PR (1, 2, 1) characteristic. A sequence having the smallest error from the waveform sample sequence is selected, and binary data (decoded data) corresponding to the selected sequence is output.
As described above, by using the PRML technology, a high density can be realized even if an optical system equivalent to the conventional one is used. However, even when the PRML technology is used, interference between recording marks ( When the intersymbol interference becomes large and the interference becomes non-linear (unpredictable inter-record mark interference occurs), highly reliable recording / reproduction is no longer possible. In other words, the PRML method can be applied on the premise that interference between predictable recording marks occurs, and if the actual interference between recording marks is different from the prediction, the effect of using the PRML method is lost.
Therefore, in order to suppress the interference between the recording marks to a predictable level, it is necessary to suppress the deformation of the recording marks.
青色レーザ波長域以下の短波長で多値記録が可能な追記型光記録媒体を実現できれば、先に詳しく説明したように、従来の二値記録よりもより高い品質を有する記録マークを形成することができるため、青色レーザ波長域以下の短波長で従来の二値記録が可能な追記型光記録媒体、及びPRML方式の適用により高密化が図られた追記型光記録媒体を同時に実現できる。そこで、青色レーザ波長域以下に対応した追記型光記録媒体の実現に当っての課題は、青色レーザ波長域以下の短波長で多値記録が可能な追記型光記録媒体を実現するための課題と考えて差し支えない。
青色レーザ波長域以下の短波長で多値記録が可能な追記型光記録媒体を実現するためには、次の(1)〜(3)が課題となる。
(1)小さな記録マークが形成できる。
(2)記録マーク間の干渉が少ない。
(3)記録マークの安定性が高い。
If a write-once type optical recording medium capable of multi-value recording at a short wavelength below the blue laser wavelength range can be realized, a recording mark having higher quality than conventional binary recording can be formed as described in detail above. Therefore, it is possible to simultaneously realize a write-once type optical recording medium that can perform conventional binary recording at a short wavelength below the blue laser wavelength region, and a write-once type optical recording medium that is made dense by applying the PRML method. Therefore, a problem in realizing a write-once type optical recording medium corresponding to the blue laser wavelength range or less is a problem to realize a write-once type optical recording medium capable of multi-value recording at a short wavelength below the blue laser wavelength range. You can think of it.
In order to realize a write-once type optical recording medium capable of multi-value recording at a short wavelength below the blue laser wavelength range, the following (1) to (3) are problems.
(1) A small recording mark can be formed.
(2) There is little interference between recording marks.
(3) The stability of the recording mark is high.
ところで、従来の追記型光記録媒体では、上述の〔従来の技術〕で詳しく説明したように、変形が主体で記録が行われている場合が多い。
二値記録の場合は、最短マークが再生ビーム径に対して十分な大きさを有しているため(おおよそ再生ビーム径の1/2程度)、最短マークから得られる振幅も大きい。つまり、最短マーク部の変形量が大きいことを意味する。
一方、多値記録では、最短マークが再生ビーム径に対して十分な大きさを有しないため、最短マークから得られる振幅が、二値記録の最短マークから得られる振幅の数分の1以下となる。つまり、最短マーク部の変形量が非常に小さくなること意味する。
ところで、従来のCD系やDVD系の追記型光記録媒体では、光吸収機能を有する有機色素が基板に直接接して設けられているため、基板が大きく変形する(有機色素の分解による複素屈折率変化等の寄与もあるが、基板変形が主体となって変調度が発生し易い)。基板変形は、その変形量が大きくなれば弾性変形領域を超えるため変形が固定されるが、弾性変形領域内の変形量である変形は、外部からの熱等によって変形が緩和される恐れがある。また弾性変形領域を越えた変形であっても、隣接した記録マークの形成時の熱や、隣接記録マークの変形によって、変形形状が大きく変わる恐れがある。
この様子を図10〜図11で説明する。
図10は、従来型の構造、即ち基板/色素層/Ag反射層/保護層構成を有する追記型光記録媒体の記録マークの様子を示すものである。
Aは、再生信号の波形を示し、Bは、保護層、Ag反射層、色素層を剥がして基板表面をAFMによって観察した像を示し、Cは、Bで測定した基板のAFM像から得た基板断面の変形量を表示した図である。この図から、記録部は非常に大きな変形を起こしており、その基板変形形状は記録マーク中央部近傍が凹んだ形状を示していることが分る。また、前記図6〜8で説明したように、変形の干渉(記録マーク内の変形の干渉)が線形でないことが明らかである。
By the way, in the conventional write-once type optical recording medium, as described in detail in the above-mentioned [Prior Art], recording is often performed mainly with deformation.
In the case of binary recording, since the shortest mark has a sufficient size with respect to the reproduction beam diameter (approximately about ½ of the reproduction beam diameter), the amplitude obtained from the shortest mark is also large. That is, the deformation amount of the shortest mark portion is large.
On the other hand, in multilevel recording, since the shortest mark does not have a sufficient size with respect to the reproduction beam diameter, the amplitude obtained from the shortest mark is less than a fraction of the amplitude obtained from the shortest mark in binary recording. Become. That is, it means that the deformation amount of the shortest mark portion is very small.
By the way, in the conventional CD-type and DVD-type write-once optical recording media, since the organic dye having the light absorption function is provided in direct contact with the substrate, the substrate is greatly deformed (the complex refractive index due to the decomposition of the organic dye). Although there is a contribution such as change, the degree of modulation is likely to occur mainly due to substrate deformation). If the amount of deformation of the substrate increases, the deformation exceeds the elastic deformation region, so that the deformation is fixed. However, the deformation that is the deformation amount in the elastic deformation region may be relaxed by heat from the outside. . Even if the deformation exceeds the elastic deformation region, the deformation shape may change greatly due to heat at the time of forming the adjacent recording mark or deformation of the adjacent recording mark.
This state will be described with reference to FIGS.
FIG. 10 shows a state of a recording mark of a write-once type optical recording medium having a conventional structure, that is, a substrate / dye layer / Ag reflective layer / protective layer configuration.
A shows the waveform of the reproduction signal, B shows an image obtained by detaching the protective layer, Ag reflection layer, and dye layer and observing the substrate surface by AFM, and C is obtained from the AFM image of the substrate measured by B It is the figure which displayed the deformation amount of the board | substrate cross section. From this figure, it can be seen that the recording portion has undergone a very large deformation, and the deformation shape of the substrate shows a concave shape near the central portion of the recording mark. Further, as described with reference to FIGS. 6 to 8, it is clear that the deformation interference (deformation interference in the recording mark) is not linear.
この従来の追記型光記録媒体に、図10と同じ記録を行った後、記録パワーの約1/5程度の弱いDC光を照射した時の記録マークの様子を図11に示す。
図11では、図10と同様に、Aは、再生信号の波形を示し、Bは、保護層、Ag反射層、色素層を剥がして、基板表面をAFMによって観察した像を示し、Cは、Bで測定した基板のAFM像から得た基板断面の変形量を表示した図である。この図から、弱DC光を照射することで基板の変形状態が変化し、これによって再生信号の波形も変化することが分る。これは弱DC光の照射によって基板の変形部における歪が緩和されたためと考えられる。
また、記録マーク部の基板変形形状が、弱いDC光の照射によって変化することから、記録マーク部上にある色素層にはまだ十分な光吸収機能が残っている筈であり、従来型の追記型光記録媒体では、変形が主体となって変調度を発生させていることが分る。
FIG. 11 shows the state of a recording mark when this conventional write-once type optical recording medium is irradiated with weak DC light of about 1/5 of the recording power after performing the same recording as in FIG.
In FIG. 11, similarly to FIG. 10, A shows the waveform of the reproduction signal, B shows the image obtained by observing the substrate surface by AFM after removing the protective layer, Ag reflection layer, and dye layer, and C is It is the figure which displayed the deformation amount of the board | substrate cross section obtained from the AFM image of the board | substrate measured by B. FIG. From this figure, it can be seen that the deformation state of the substrate changes by irradiating weak DC light, and the waveform of the reproduction signal also changes accordingly. This is presumably because the distortion in the deformed portion of the substrate was alleviated by the irradiation of weak DC light.
In addition, since the deformation shape of the substrate of the recording mark portion changes due to weak DC light irradiation, the dye layer on the recording mark portion should still have a sufficient light absorption function. It can be seen that in the type optical recording medium, the modulation is generated mainly by deformation.
このように、変形が主体で記録が行われると、
(1)記録マーク内の変形の干渉が大きくなり、変形状態の違いによって、即ち記録マーク長によって再生信号波形が変化する
(2)記録マーク間の干渉が大きくなり、変形状態の違いによって、即ち記録パターンによって(前後或いは隣接トラック間の記録マークの種類によって)再生信号波形が変化する
(3)再生時、隣接トラックへの記録時、高温環境下での放置、或いは経年放置によって変形が緩和され、再生信号波形が変化する
という問題が発生するため、
(イ)ジッタ、或いはエラー率等が悪化する
(ロ)ジッタ、或いはエラー率等の記録パワーマージンが狭くなる
(ハ)最適ジッタ、或いは最小エラー率が得られる記録状態において、そのアシンメトリが不適正化し易い(アシンメトリがゼロから大きくずれる)
(ニ)小さな記録マークを安定して形成することができない
(ホ)記録マーク間の干渉を予測できない
という弊害が発生する。
これらの弊害は従来の二値記録においても当然発生する問題であるが、従来の二値記録よりも記録線密度を高めた追記型光記録媒体、即ち多値記録やPRML方式を適用した追記型光記録媒体の場合に一層顕著になる。
In this way, when recording is performed mainly with deformation,
(1) Deformation interference in the recording mark is increased, and the reproduction signal waveform changes depending on the deformation state, that is, the recording mark length. (2) Interference between recording marks is increased, and the deformation state is different. The playback signal waveform varies depending on the recording pattern (depending on the type of recording mark between the front and back or adjacent tracks). (3) Deformation is mitigated by playback, recording on adjacent tracks, leaving under high temperature environment, or leaving over time. Because the problem that the playback signal waveform changes,
(B) Jitter or error rate deteriorates (b) Recording power margin such as jitter or error rate becomes narrow (c) Asymmetry is improper in the recording state where optimum jitter or minimum error rate is obtained (Asymmetry deviates greatly from zero)
(D) A small recording mark cannot be formed stably. (E) There is a problem that interference between recording marks cannot be predicted.
These problems are naturally problems in the conventional binary recording, but the write-once type optical recording medium having a higher recording linear density than the conventional binary recording, that is, the write-once type using the multi-level recording or the PRML method. This becomes more remarkable in the case of an optical recording medium.
更に、〔従来の技術〕で述べたように、従来の有機材料を記録層とした追記型光記録媒体では、次の(イ)〜(ニ)等の問題があった。
(イ)有機材料の選択の幅が非常に狭い
(ロ)波長依存性が非常に大きい
(ハ)基板の溝深さを深くしないと良好な記録再生特性を実現できない
(ニ)いわゆるランド部(溝間部)には記録ができない
そこで、本発明は、上記課題・問題点を解決し、次の(1)〜(7)のような特性を有し、変形量の小さい記録マークで大きな変調度を発生させることができる光記録媒体とその記録再生方法の実現を目的とする。
(1)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、二値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体とその記録再生方法。
(2)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、多値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体とその記録再生方法。
(3)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、PRML方式による信号処理系での記録再生に適した高密度記録可能な追記型光記録媒体とその記録再生方法。
(4)記録パワーの変動に対する、ジッタやエラー率等のマージンの広い追記型光記録媒体とその記録再生方法。
(5)記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体とその記録再生方法。
(6)転写性のよい浅溝基板でも記録再生が容易に行える追記型光記録媒体とその記録再生方法。
(7)ランド部にも記録が可能な追記型光記録媒体とその記録再生方法。
Furthermore, as described in [Prior Art], the write-once type optical recording medium using a conventional organic material as a recording layer has the following problems (a) to (d).
(B) The selection range of organic materials is very narrow (b) The wavelength dependence is very large (c) Good recording / reproduction characteristics cannot be realized unless the groove depth of the substrate is increased (d) So-called land portions ( Therefore, the present invention solves the above-mentioned problems and problems, has the following characteristics (1) to (7), and has a large modulation with a recording mark with a small deformation amount. It is an object of the present invention to realize an optical recording medium and a recording / reproducing method thereof.
(1) A high-density recordable write-once optical recording medium and a recording / reproducing method thereof capable of easily performing binary recording / reproduction even in a blue laser wavelength region (500 nm or less), particularly in a wavelength region near 405 nm.
(2) A high-density recordable write-once optical recording medium and a recording / reproducing method thereof capable of easily performing multi-value recording / reproduction even in a blue laser wavelength region (500 nm or less), particularly in a wavelength region near 405 nm.
(3) Write-once type optical recording medium capable of high-density recording suitable for recording / reproducing in a signal processing system using the PRML system, and recording / reproducing thereof, even in a blue laser wavelength region (500 nm or less), particularly in the wavelength region near 405 nm Method.
(4) A write-once optical recording medium having a wide margin such as jitter and error rate with respect to fluctuations in recording power and a recording / reproducing method thereof.
(5) A write-once optical recording medium in which recording characteristics such as recording sensitivity, modulation degree, jitter, and error rate, and reflectivity, etc. change little with respect to fluctuations in recording / reproducing wavelength, and a recording / reproducing method thereof.
(6) A write-once optical recording medium and a recording / reproducing method thereof that can be easily recorded / reproduced even on a shallow groove substrate having good transferability
(7) A write-once optical recording medium capable of recording on a land portion and a recording / reproducing method thereof.
上記課題は、次の1)〜37)の発明によって解決される。
1) 少なくとも、R、及びOの各元素(但し、RはY、Bi、In、Mo、V、及びランタン系列元素より選ばれる一種以上の元素を表し、Oは酸素を表す)を最小構成元素とする第一の薄膜と、第一の薄膜の変形・破壊を抑制し、第一の薄膜の状態変化を受容する第二の薄膜を有することを特徴とする追記型光記録媒体。
2) 第一の薄膜が、元素Mを含有し、Mが、Al、Cr、Mn、Sc、In、Ru、Rh、Co、Fe、Cu、Ni、Zn、Li、Si、Ge、Zr、Ti、Hf、Sn、Pb、Mo、V、及びNbの中から選ばれる少なくとも一種であることを特徴とする1)記載の追記型光記録媒体。
3) 更に有機材料薄膜を有することを特徴とする1)又は2)記載の追記型光記録媒体。
4) 第一の薄膜が、第二の薄膜と有機材料薄膜に挟まれた構造を有することを特徴とする3)記載の追記型光記録媒体。
5) 基板上に、少なくとも、第二の薄膜、第一の薄膜、有機材料薄膜、反射層が順次積層されたことを特徴とする4)記載の追記型光記録媒体。
6) 基板上に、少なくとも、有機材料薄膜、第一の薄膜、第二の薄膜、反射層が順次積層されたことを特徴とする4)記載の追記型光記録媒体。
7) 基板上に、少なくとも、第一の薄膜、第二の薄膜、反射層が順次積層されたことを特徴とする1)又は2)記載の追記型光記録媒体。
8) 基板上に、少なくとも、反射層、第二の薄膜、第一の薄膜、有機材料薄膜、カバー層が順次積層されたことを特徴とする4)記載の追記型光記録媒体。
9) 基板上に、少なくとも、反射層、有機材料薄膜、第一の薄膜、第二の薄膜、カバー層が順次積層されたことを特徴とする4)記載の追記型光記録媒体。
10) 基板上に、少なくとも、反射層、第二の薄膜、第一の薄膜、カバー層が順次積層されたことを特徴とする1)又は2)記載の追記型光記録媒体。
11) 第二の薄膜が、ZnS、又はZnS−SiO2を主成分とすることを特徴とする1)〜10)の何れかに記載の追記型光記録媒体。
12) 第一の薄膜が、RxMyOの組成で表され(x、yは原子数比)、x/(x+y)≧0.3であることを特徴とする2)〜11)の何れかに記載の追記型光記録媒体。
13) 第一の薄膜がR(元素R)とRO(元素Rの酸化物)を含有することを特徴とする1)〜11)の何れかに記載の追記型光記録媒体。
14) 第一の薄膜がR(元素R)とMO(元素Mの酸化物)を含有することを特徴とする2)〜11)の何れかに記載の追記型光記録媒体。
15) 第一の薄膜がRO(元素Rの酸化物)とMO(元素Mの酸化物)を含有することを特徴とする2)〜11)の何れかに記載の追記型光記録媒体。
16) 第一の薄膜がR(元素R)、RO(元素Rの酸化物)、及びMO(元素Mの酸化物)を含有することを特徴とする2)〜11)の何れかに記載の追記型光記録媒体。
17) 第一の薄膜が酸化ビスマスを含有することを特徴とする1)〜11)の何れかに記載の追記型光記録媒体。
18) 第一の薄膜がビスマスと酸化ビスマスを含有することを特徴とする1)〜11)の何れかに記載の追記型光記録媒体。
19) 第一の薄膜が、Bia4BbOd(但し、4Bは4B族の中から選ばれた少なくとも1種の元素、a、b、dは組成比、10≦a≦40、3≦b≦20、50≦d≦70)の組成を有することを特徴とする2)〜11)の何れかに記載の追記型光記録媒体。
20) 第一の薄膜が、Bia4BbXcOd(但し、4Bは4B族の中から選ばれた少なくとも1種の元素、Xは、Al、Cr、Mn、In、Co、Fe、Cu、Ni、Zn、Ti、及びSnの中から選ばれた少なくとも1種の元素、a、b、c、dは組成比、10≦a≦40、3≦b≦20、3≦c≦20、50≦d≦70)の組成を有することを特徴とする2)〜11)の何れかに記載の追記型光記録媒体。
21) 3種類以上の異なる再生信号レベルを生成する記録マークを形成でき、該再生信号レベルに基づいて記録マークの種類を判断できることを特徴とする1)〜20)の何れかに記載の追記型光記録媒体。
22) PRML方式による信号処理系で記録再生可能であることを特徴とする1)〜21)の何れかに記載の追記型光記録媒体。
23) 有機材料薄膜の主吸収帯が記録再生波長に対して長波長側に位置することを特徴とする1)〜22)の何れかに記載の追記型光記録媒体。
24) 有機材料薄膜の記録再生波長での複素屈折率虚部の値が、第一の薄膜よりも小さいことを特徴とする23)記載の追記型光記録媒体。
25) 有機材料薄膜が、記録再生波長近傍において主吸収帯に帰属しない吸収帯を有することを特徴とする23)又は24)記載の追記型光記録媒体。
26) 第一の薄膜の光吸収機能によって、下記イ)〜ル)の少なくとも一つの記録原理により記録マークを形成できることを特徴とする1)〜25)の何れかに記載の追記型光記録媒体。
イ)第一の薄膜及び/又は第二の薄膜を変形させる
ロ)第一の薄膜及び/又は第二の薄膜の複素屈折率を変化させる
ハ)第一の薄膜及び/又は第二の薄膜の組成を変化させる
ニ)第一の薄膜を溶融させる
ホ)第一の薄膜中の構成元素を、第二の薄膜又は有機材料薄膜へ拡散させる
ヘ)第一の薄膜の結晶状態・結晶構造を変化させる
ト)第一の薄膜中の構成元素を酸化/還元させる
チ)第一の薄膜中の組成分布を変化させる
リ)有機材料薄膜の体積を変化させる
ヌ)有機材料薄膜の複素屈折率を変化させる
ル)有機材料薄膜に空洞部を形成させる
27) 第一の薄膜及び/又は有機材料薄膜の面積方向と膜厚方向に、3種類以上の異なる再生信号レベルを生成する記録マークを形成できることを特徴とする26)記載の追記型光記録媒体。
28) 第一の薄膜及び/又は第二の薄膜の面積方向と膜厚方向に、3種類以上の異なる再生信号レベルを生成する記録マークを形成できることを特徴とする26)記載の追記型光記録媒体。
29) 500nm以下の光で記録再生可能であることを特徴とする1)〜28)の何れかに記載の追記型光記録媒体。
30) 第一の薄膜の記録再生波長における光吸収機能によって記録部を形成させることを特徴とする1)〜29)の何れかに記載の追記型光記録媒体の記録再生方法。
31) 第一の薄膜と有機材料薄膜の記録再生波長における光吸収機能によって記録部を形成させることを特徴とする1)〜29)の何れかに記載の追記型光記録媒体の記録再生方法。
32) 3種類以上の異なる再生信号レベルを生成する記録マークを形成させ、該再生信号レベルに基づいて記録マークの種類を判断することを特徴とする30)又は31)記載の記録再生方法。
33) PRML方式による信号処理系で記録再生を行うことを特徴とする30)〜32)の何れかに記載の記録再生方法。
34) 第一の薄膜の光吸収機能によって、下記イ)〜ル)の少なくとも一つの記録原理により記録マークを形成させることを特徴とする30)〜33)の何れかに記載の記録再生方法。
イ)第一の薄膜及び/又は第二の薄膜を変形させる
ロ)第一の薄膜及び/又は第二の薄膜の複素屈折率を変化させる
ハ)第一の薄膜及び/又は第二の薄膜の組成を変化させる
ニ)第一の薄膜を溶融させる
ホ)第一の薄膜中の構成元素を、第二の薄膜又は有機材料薄膜へ拡散させる
ヘ)第一の薄膜の結晶状態・結晶構造を変化させる
ト)第一の薄膜中の構成元素を酸化/還元させる
チ)第一の薄膜中の組成分布を変化させる
リ)有機材料薄膜の体積を変化させる
ヌ)有機材料薄膜の複素屈折率を変化させる
ル)有機材料薄膜に空洞部を形成させる
35) 第一の薄膜及び/又は有機材料薄膜の面積方向と膜厚方向に、3種類以上の異なる再生信号レベルを生成する記録マークを形成させることを特徴とする30)〜34)の何れかに記載の記録再生方法。
36) 第一の薄膜及び/又は第二の薄膜の面積方向と膜厚方向に、3種類以上の異なる再生信号レベルを生成する記録マークを形成させることを特徴とする30)〜34)の何れかに記載の記録再生方法。
37) 500nm以下の波長で記録再生を行うことを特徴とする30)〜36)の何れかに記載の記録再生方法。
The above problems are solved by the following inventions 1) to 37).
1) At least each element of R and O (where R represents one or more elements selected from Y, Bi, In, Mo, V, and lanthanum series elements, and O represents oxygen). A write-once type optical recording medium comprising: a first thin film; and a second thin film that suppresses deformation and destruction of the first thin film and accepts a change in state of the first thin film.
2) The first thin film contains the element M, where M is Al, Cr, Mn, Sc, In, Ru, Rh, Co, Fe, Cu, Ni, Zn, Li, Si, Ge, Zr, Ti 1) The write-once type optical recording medium according to 1), which is at least one selected from Hf, Sn, Pb, Mo, V, and Nb.
3) The recordable optical recording medium according to 1) or 2), further comprising an organic material thin film.
4) The write once optical recording medium according to 3), wherein the first thin film has a structure sandwiched between the second thin film and the organic material thin film.
5) The write-once type optical recording medium as described in 4), wherein at least a second thin film, a first thin film, an organic material thin film, and a reflective layer are sequentially laminated on a substrate.
6) The write-once type optical recording medium according to 4), wherein at least an organic material thin film, a first thin film, a second thin film, and a reflective layer are sequentially laminated on a substrate.
7) The recordable optical recording medium according to 1) or 2), wherein at least a first thin film, a second thin film, and a reflective layer are sequentially laminated on a substrate.
8) The write-once type optical recording medium according to 4), wherein at least a reflective layer, a second thin film, a first thin film, an organic material thin film, and a cover layer are sequentially laminated on a substrate.
9) The write-once type optical recording medium according to 4), wherein at least a reflective layer, an organic material thin film, a first thin film, a second thin film, and a cover layer are sequentially laminated on a substrate.
10) The write-once type optical recording medium according to 1) or 2), wherein at least a reflective layer, a second thin film, a first thin film, and a cover layer are sequentially laminated on a substrate.
11) The second thin film, ZnS, or write-once optical recording medium according to any one of features 1) to 10) that the ZnS-SiO 2 as a main component.
12) The first thin film is represented by a composition of RxMyO (x and y are atomic ratios), and x / (x + y) ≧ 0.3. Write-once optical recording medium.
13) The write-once type optical recording medium according to any one of 1) to 11), wherein the first thin film contains R (element R) and RO (oxide of element R).
14) The write-once type optical recording medium according to any one of 2) to 11), wherein the first thin film contains R (element R) and MO (oxide of element M).
15) The write-once optical recording medium according to any one of 2) to 11), wherein the first thin film contains RO (oxide of element R) and MO (oxide of element M).
16) The first thin film contains R (element R), RO (element R oxide), and MO (element M oxide), according to any one of 2) to 11) Write-once optical recording medium.
17) The write once optical recording medium according to any one of 1) to 11), wherein the first thin film contains bismuth oxide.
18) The write once optical recording medium according to any one of 1) to 11), wherein the first thin film contains bismuth and bismuth oxide.
19) The first thin film is Bia4BbOd (where 4B is at least one element selected from Group 4B, a, b, d are composition ratios, 10 ≦ a ≦ 40, 3 ≦ b ≦ 20, 50) The write-once type optical recording medium according to any one of 2) to 11), which has a composition of ≦ d ≦ 70).
20) The first thin film is Bia4BbXcOd (where 4B is at least one element selected from Group 4B, X is Al, Cr, Mn, In, Co, Fe, Cu, Ni, Zn, Ti) And at least one element selected from Sn, a, b, c, d are composition ratios, 10 ≦ a ≦ 40, 3 ≦ b ≦ 20, 3 ≦ c ≦ 20, 50 ≦ d ≦ 70) The write-once type optical recording medium according to any one of 2) to 11), which has the following composition:
21) The write-once type according to any one of 1) to 20), wherein a recording mark for generating three or more different reproduction signal levels can be formed, and the type of the recording mark can be determined based on the reproduction signal level. Optical recording medium.
22) The write-once type optical recording medium according to any one of 1) to 21), which is recordable and reproducible by a signal processing system using a PRML system.
23) The write-once optical recording medium according to any one of 1) to 22), wherein the main absorption band of the organic material thin film is located on the long wavelength side with respect to the recording / reproducing wavelength.
24) The write-once type optical recording medium according to 23), wherein the value of the imaginary part of the complex refractive index at the recording / reproducing wavelength of the organic material thin film is smaller than that of the first thin film.
25) The write-once optical recording medium as described in 23) or 24), wherein the organic material thin film has an absorption band that does not belong to the main absorption band in the vicinity of the recording / reproducing wavelength.
26) The write-once optical recording medium according to any one of 1) to 25), wherein a recording mark can be formed by at least one recording principle of the following a) to b) by the light absorption function of the first thin film. .
A) Deform the first thin film and / or the second thin film b) Change the complex refractive index of the first thin film and / or the second thin film c) The first thin film and / or the second thin film Changing the composition d) Melting the first thin film e) Diffusing the constituent elements in the first thin film to the second thin film or organic material thin film f) Changing the crystal state and crystal structure of the first thin film G) Oxidation / reduction of the constituent elements in the first thin film h) Change the composition distribution in the first thin film i) Change the volume of the organic material thin film n) Change the complex refractive index of the organic material thin film (2) Forming a cavity in the organic material thin film 27) It is possible to form a recording mark that generates three or more different reproduction signal levels in the area direction and the film thickness direction of the first thin film and / or the organic material thin film. 26) Write-once type optical recording medium
28) The write-once type optical recording according to 26), wherein recording marks for generating three or more different reproduction signal levels can be formed in the area direction and film thickness direction of the first thin film and / or the second thin film. Medium.
29) The write-once type optical recording medium according to any one of 1) to 28), wherein recording and reproduction are possible with light of 500 nm or less.
30) The recording / reproducing method for a write-once optical recording medium according to any one of 1) to 29), wherein the recording portion is formed by a light absorption function at a recording / reproducing wavelength of the first thin film.
31) The recording / reproducing method for a write-once optical recording medium according to any one of 1) to 29), wherein the recording portion is formed by a light absorption function at a recording / reproducing wavelength of the first thin film and the organic material thin film.
32) The recording / reproducing method according to 30) or 31), wherein a recording mark for generating three or more different reproduction signal levels is formed, and the type of the recording mark is determined based on the reproduction signal level.
33) The recording / reproducing method according to any one of 30) to 32), wherein recording / reproducing is performed in a signal processing system using a PRML system.
34) The recording / reproducing method according to any one of 30) to 33), wherein a recording mark is formed on the basis of at least one of the following recording principles (a) to (l) by the light absorption function of the first thin film.
A) Deform the first thin film and / or the second thin film b) Change the complex refractive index of the first thin film and / or the second thin film c) The first thin film and / or the second thin film Changing the composition d) Melting the first thin film e) Diffusing the constituent elements in the first thin film to the second thin film or organic material thin film f) Changing the crystal state and crystal structure of the first thin film G) Oxidation / reduction of the constituent elements in the first thin film h) Change the composition distribution in the first thin film i) Change the volume of the organic material thin film n) Change the complex refractive index of the organic material thin film Lu) Form a cavity in the organic material thin film 35) Form a recording mark that generates three or more different reproduction signal levels in the area direction and film thickness direction of the first thin film and / or the organic material thin film. 30) to 34) characterized in that Recording and reproducing method.
36) Any one of 30) to 34), wherein recording marks for generating three or more different reproduction signal levels are formed in the area direction and film thickness direction of the first thin film and / or the second thin film. The recording / reproducing method according to claim 1.
37) The recording / reproducing method according to any one of 30) to 36), wherein recording / reproducing is performed at a wavelength of 500 nm or less.
以下、上記本発明について詳しく説明する。
本発明者らは、上記課題を解決するために、本発明の関連発明として、基板上に、少なくとも、R及びOの各元素(但し、RはY、Bi、In、Mo、V及びランタン系列元素より選ばれる一種以上の元素を表し、Oは酸素を表す)からなる薄膜(以下、RO膜という。本発明の第一の薄膜に相当する。)と有機材料薄膜、更には反射層を順次積層した追記型光記録媒体とその記録再生方法を発明した。
この関連発明の一部の構成例は、上記課題を解決するために非常に有効であるが、例えば、基板/RO膜/有機材料薄膜/反射層からなる追記型光記録媒体では、RO膜や有機材料薄膜の膜厚を最適化しないと、RO膜の変形が大きくなり、場合によってはRO膜が破壊する可能性があることが分った。例えば、この層構成の追記型光記録媒体の場合、最適記録パワー近傍では良好な記録再生特性を得ることができるが、最適記録パワーよりも記録パワーを増加させると、RO膜の変形が大きくなり(場合によっては破壊が生じる)、ジッタやエラー率の記録パワーマージンが狭くなる場合が生じる(具体的な現象としては、記録パワーを高めると変調度が不連続的に急増する)。
Hereinafter, the present invention will be described in detail.
In order to solve the above-mentioned problems, the present inventors have made at least each of R and O elements (provided that R is Y, Bi, In, Mo, V, and lanthanum series) on a substrate as a related invention of the present invention. One or more elements selected from the elements are represented, and O represents oxygen (hereinafter referred to as RO film, which corresponds to the first thin film of the present invention), an organic material thin film, and further a reflective layer. A laminated write-once optical recording medium and a recording / reproducing method thereof have been invented.
Some examples of the configuration of the related invention are very effective for solving the above-described problems. For example, in a write-once optical recording medium composed of a substrate / RO film / organic material thin film / reflection layer, an RO film or It has been found that if the thickness of the organic material thin film is not optimized, the deformation of the RO membrane increases, and in some cases, the RO membrane may be destroyed. For example, in the case of a write-once type optical recording medium having this layer structure, good recording / reproducing characteristics can be obtained in the vicinity of the optimum recording power. However, if the recording power is increased beyond the optimum recording power, the deformation of the RO film increases. (Destruction may occur in some cases), and the recording power margin of jitter and error rate may be narrowed (specifically, as the recording power is increased, the modulation degree increases rapidly and discontinuously).
また、変形の寄与が高まる現象は、記録パワーが高まる場合だけでなく、記録マーク長が長くなっても同様な効果が見られる(記録マーク長が長いほど変形の寄与が高まる)。そのため、最適ジッタやエラー率が得られる記録状態では、アシンメトリが悪化(マイナス化)する場合が生じる可能性がある。
このRO膜の変形が大きくなる原因の一つは、RO膜への記録形態の一つとして変形や溶融等の比較的大きな変化を伴う記録形態があるが、この記録形態が主体となることを抑制できないためである。即ち、先の層構成例では、RO膜における、変形や溶融等の比較的大きな変化を伴う記録形態が自由に生じてしまう可能性が高い層構成となっていた。また、基板がRO膜に直接接しているため、基板にも多量の熱が伝わる。そのため基板が膨張変形を引き起こし、この変形がRO膜を更に大きく変形させ、また場合によっては破壊を起こさせる。
そこで、本発明では、RO膜に相当する第一の薄膜に加えて、第一の薄膜の変形・破壊を抑制し、第一の薄膜の溶融、組成変化、拡散、結晶状態変化、酸化/還元等の状態変化を受容する層として第二の薄膜を設ける構造とした。
この第二の薄膜は、第一の薄膜と接していると、第一の薄膜の変形・破壊を抑制し、第一の薄膜の溶融、組成変化、拡散、結晶状態変化、酸化/還元等の状態変化を受容する機能を有効に利用することができるが、第一の薄膜と第二の薄膜の間に他の層が介在していても構わない(第二の薄膜の機能は失われない)。
The phenomenon in which the contribution of deformation increases is not only the case where the recording power increases, but the same effect can be seen even when the recording mark length increases (the longer the recording mark length, the greater the contribution of deformation). For this reason, there is a possibility that the asymmetry deteriorates (minus) in the recording state where the optimum jitter and error rate can be obtained.
One of the reasons for the large deformation of the RO membrane is one of the recording modes on the RO membrane, which is accompanied by relatively large changes such as deformation and melting. This is because it cannot be suppressed. That is, the previous layer configuration example has a layer configuration in which there is a high possibility that a recording form with a relatively large change such as deformation or melting in the RO film will occur freely. In addition, since the substrate is in direct contact with the RO membrane, a large amount of heat is also transmitted to the substrate. Therefore, the substrate causes expansion deformation, and this deformation causes the RO membrane to be deformed more greatly, and in some cases, causes destruction.
Therefore, in the present invention, in addition to the first thin film corresponding to the RO film, the deformation and destruction of the first thin film are suppressed, and the first thin film is melted, changed in composition, diffused, changed in crystalline state, oxidized / reduced. The second thin film is provided as a layer that accepts a state change such as the above.
When the second thin film is in contact with the first thin film, the deformation and destruction of the first thin film are suppressed, and the first thin film is melted, changed in composition, diffused, changed in crystalline state, oxidized / reduced, etc. The function of accepting the state change can be used effectively, but other layers may be interposed between the first thin film and the second thin film (the function of the second thin film is not lost). ).
本発明の課題である変形量の小さい記録マークで、大きな変調度を発生させることを実現させるためのポイントは、次の(イ)〜(ホ)である。
(イ)光吸収機能を有する層が溶融、組成変化(分解、変質等を含む)、拡散、結晶状態変化、酸化/還元等の状態変化を起こし、光吸収機能を有する層自体が大きく変形しないようにすること
(ロ)光吸収機能を有する層の近傍に変形・破壊を抑制する層を設け、光吸収機能を有する層を大きく変形させないこと
(ハ)光吸収機能を有する層が溶融、組成変化(分解、変質等を含む)、拡散、結晶状態変化、酸化/還元等の状態変化を起こし、基板等の変形し易い隣接層に多くの熱を伝えないこと(光吸収機能を有する層で発生した熱を、光吸収機能を有する層で消費する。これによって基板等の変形を小さくすることが可能となる。)
(ニ)変形量を低減させても十分な変調度を発生させるために、大きな光学定数変化を起こす層を有すること
(ホ)変形量を低減させても十分な変調度を発生させるために、隣接層との層界面を不明瞭化する記録原理を利用すること
これらの点を考慮して、第一の薄膜と、第一の薄膜の変形・破壊を抑制し、第一の薄膜の溶融、組成変化、拡散、結晶状態変化、酸化/還元等の状態変化を受容する第二の薄膜との組み合わせることにより、記録マークにおける変形の寄与を従来に比べて非常に小さくすることができ、また記録パワーの増加による変形の寄与の激増を防ぐことが可能できるため、〔発明が解決しようとする課題〕で説明した課題・問題点を解決することができる。
The following points (a) to (e) are points for realizing generation of a large degree of modulation with a recording mark having a small deformation amount, which is an object of the present invention.
(A) A layer having a light absorption function undergoes state changes such as melting, composition change (including decomposition, alteration, etc.), diffusion, crystal state change, oxidation / reduction, and the light absorption function layer itself is not greatly deformed. (B) A layer that suppresses deformation / destruction is provided in the vicinity of the layer having the light absorption function, and the layer having the light absorption function is not greatly deformed. (C) The layer having the light absorption function is melted and composed. Change (including decomposition, alteration, etc.), diffusion, crystalline state change, state change such as oxidation / reduction, etc., do not transmit much heat to adjacent deformable layers such as substrates (in a layer with light absorption function) The generated heat is consumed by the layer having a light absorption function, which makes it possible to reduce the deformation of the substrate and the like.)
(D) having a layer that causes a large change in optical constant in order to generate a sufficient degree of modulation even if the amount of deformation is reduced, and (e) in order to generate a sufficient degree of modulation even if the amount of deformation is reduced, Taking advantage of the recording principle that obscure the layer interface with the adjacent layer, taking into account these points, the deformation and destruction of the first thin film and the first thin film are suppressed, By combining with a second thin film that accepts state changes such as composition change, diffusion, crystal state change, oxidation / reduction, etc., the contribution of deformation in the recording mark can be made much smaller than before, and recording can be performed. Since it is possible to prevent a drastic increase in the contribution of deformation due to an increase in power, the problems and problems described in [Problems to be Solved by the Invention] can be solved.
ところで、従来の追記型光記録媒体では、有機材料の分解・変質によって記録再生波長における吸収係数を低下させ、これによる大きな屈折率変化を利用して変調度を発生させていた。
これに対し、本発明の追記型光記録媒体では、従来、光吸収機能による熱発生層であり且つ分解・変質に起因した屈折率(複素屈折率の実部)変化による記録層として機能していた有機材料薄膜から、主たる熱発生層の機能を分離させ、有機材料薄膜とは別に光吸収機能を有する第一の薄膜を設けた点、さらに第二の薄膜を設けた点に特徴がある。
本発明では、次のイ)〜ル)の記録原理に基づいて記録マークが形成される。
イ)第一の薄膜及び/又は第二の薄膜を変形させる
ロ)第一の薄膜及び/又は第二の薄膜の複素屈折率を変化させる
ハ)第一の薄膜及び/又は第二の薄膜の組成を変化させる
ニ)第一の薄膜を溶融させる
ホ)第一の薄膜中の構成元素を、第二の薄膜又は有機材料薄膜へ拡散させる
ヘ)第一の薄膜の結晶状態・結晶構造を変化させる
ト)第一の薄膜中の構成元素を酸化/還元させる
チ)第一の薄膜中の組成分布を変化させる
リ)有機材料薄膜の体積を変化させる
ヌ)有機材料薄膜の複素屈折率を変化させる
ル)有機材料薄膜に空洞部を形成させる
By the way, in the conventional write-once type optical recording medium, the absorption coefficient at the recording / reproducing wavelength is lowered by the decomposition and alteration of the organic material, and the degree of modulation is generated by utilizing the large refractive index change.
In contrast, the write-once type optical recording medium of the present invention has conventionally functioned as a heat generation layer with a light absorption function and a recording layer with a change in refractive index (real part of complex refractive index) caused by decomposition and alteration. The feature is that the function of the main heat generating layer is separated from the organic material thin film, the first thin film having a light absorption function is provided separately from the organic material thin film, and the second thin film is further provided.
In the present invention, a recording mark is formed based on the following recording principles (a) to (l).
A) Deform the first thin film and / or the second thin film b) Change the complex refractive index of the first thin film and / or the second thin film c) The first thin film and / or the second thin film Changing the composition d) Melting the first thin film e) Diffusing the constituent elements in the first thin film to the second thin film or organic material thin film f) Changing the crystal state and crystal structure of the first thin film G) Oxidation / reduction of the constituent elements in the first thin film h) Change the composition distribution in the first thin film i) Change the volume of the organic material thin film n) Change the complex refractive index of the organic material thin film Le) Make a cavity in the organic material thin film
特に本発明では、第一の薄膜、及び/又は第二の薄膜の各種状態変化〔即ち、上記イ)〜チ)〕を主体として記録マークを形成することが好ましい。中でも好ましいのは、ロ)〜チ)である。例えば、組成の変化、溶融、結晶状態の変化、酸化/還元、或いは構成元素の隣接層への拡散(本発明で言う状態変化)を利用することができるため、第一の薄膜の複素屈折率を大きく変えることができ、また隣接層との層界面を不明瞭化することができ、例えば、多重反射効果を有効でなくすことができるため、小さな変形であっても大きな変調度を得ることができる。
即ち、これらの記録原理を用いることで、変形記録を主体としない記録を達成できるのである。
In particular, in the present invention, it is preferable to form a recording mark mainly using various state changes of the first thin film and / or the second thin film [that is, the above a) to h)]. Of these, b) to h) are preferred. For example, since the composition change, melting, change in crystal state, oxidation / reduction, or diffusion of constituent elements to adjacent layers (state change in the present invention) can be used, the complex refractive index of the first thin film Can be greatly changed, and the layer interface with the adjacent layer can be obscured. For example, since the multiple reflection effect can be made ineffective, a large degree of modulation can be obtained even with a small deformation. it can.
That is, by using these recording principles, it is possible to achieve recording that does not mainly use deformation recording.
1. 第一の薄膜の機能
本発明では、第一の薄膜が主たる光吸収機能を担う。
この第一の薄膜は、正常分散を示す材料であるため(有機材料のように、ある波長範囲内に大きな吸収帯を有する材料でないため、複素屈折率の波長依存性が小さい)、レーザの個体差や、環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという従来の問題を大幅に解消することができる。
従来の追記型光記録媒体では、有機材料薄膜が記録層と光吸収層の機能を兼用していたため、記録再生波長に対して大きな屈折率nと比較的小さな吸収係数kを有することが有機材料の必須条件であり、そのため有機材料を分解させる温度まで到達させるには、比較的厚い膜厚が必要となっていた(また相変化型の光記録媒体に対し基板の溝深さが非常に深くなっていた)。
しかし、本発明の光記録媒体では、有機材料薄膜に主たる光吸収機能や記録機能を持たせる必要がないため、有機材料薄膜の膜厚は従来に比べて薄くすることが可能となる。
また、有機材料薄膜の薄膜化が可能となったことにより、転写性(成形性)に優れた溝深さの浅い基板を使用することが可能となり、光記録媒体の信号品質が大幅に向上すると共に従来に比べて基板を容易かつ安価に製造(成形)できる。
また、上記記録原理によるため再生時に基板の溝形状の影響を受け難く、基板形状のばらつきに対する許容度が大きくなり、従来に比べて基板の製造を容易かつ安価に行うことができる。
また、有機材料薄膜を薄くすることが可能なため、記録パワーマージン等を広げることが可能となる。
1. Function of first thin film In the present invention, the first thin film bears the main light absorption function.
This first thin film is a material exhibiting normal dispersion (since it is not a material having a large absorption band in a certain wavelength range like an organic material, the wavelength dependency of the complex refractive index is small). Significantly eliminates the conventional problem of significant changes in recording characteristics such as recording sensitivity, modulation factor, jitter, and error rate, and reflectivity in response to fluctuations in recording and playback wavelengths due to differences and changes in environmental temperature. be able to.
In the conventional write-once type optical recording medium, since the organic material thin film functions as both the recording layer and the light absorption layer, the organic material has a large refractive index n and a relatively small absorption coefficient k with respect to the recording / reproducing wavelength. Therefore, in order to reach the temperature at which the organic material is decomposed, a relatively thick film thickness is required (and the groove depth of the substrate is very deep with respect to the phase change type optical recording medium). )
However, in the optical recording medium of the present invention, the organic material thin film does not need to have a main light absorption function or recording function, and therefore the organic material thin film can be made thinner than the conventional one.
In addition, since the organic material thin film can be made thinner, it is possible to use a substrate having a shallow groove depth with excellent transferability (moldability), and the signal quality of the optical recording medium is greatly improved. In addition, the substrate can be manufactured (molded) easily and at a lower cost than in the past.
Further, due to the recording principle described above, it is difficult to be affected by the groove shape of the substrate during reproduction, and the tolerance for variations in the substrate shape is increased, so that the substrate can be manufactured easily and inexpensively as compared with the conventional case.
In addition, since the organic material thin film can be thinned, the recording power margin and the like can be increased.
第一の薄膜は、光吸収機能と共に記録機能をも有する。
具体的には、第一の薄膜の光吸収機能によって、第一の薄膜自身が次のような状態変化を起こす。
イ)変形(但し、従来に比べて変形量が小さい)
ロ)複素屈折率の変化
ハ)組成の変化
ニ)溶融
ホ)構成元素の隣接層への拡散
ヘ)結晶状態・結晶構造の変化
ト)構成元素の酸化/還元
チ)薄膜中の組成分布変化
例えば、500nm以下の記録再生波長に対して光吸収機能を有すると共に、記録機能をも持たせるために、R又はMに、500nm以下の記録再生波長に対して光吸収機能を有する元素を選択することが好ましい。
また、大きな複素屈折率変化、組成の変化、結晶状態の変化、溶融、或いは隣接層に構成元素を拡散させるために、第一の薄膜において、R元素単独、又は酸化物となった状態で、比較的低融点を有するような元素を選択することが好ましい。
以上の観点から、第一の薄膜のRとしては、Y、Bi、In、Mo、V、及びランタン系列元素より選ばれる一種以上の元素を用いる。Oは酸素を表す。中でもRをBiとした酸化ビスマス(BiとOからなる)、及びビスマスと酸化ビスマスの混合体は、多値記録を行う上では好ましい例として挙げられる。更に第一の薄膜には、Al、Cr、Mn、Sc、In、Ru、Rh、Co、Fe、Cu、Ni、Zn、Li、Si、Ge、Zr、Ti、Hf、Sn、Pb、Mo、V、及びNbの中から選ばれる少なくとも一種の元素Mを含有させることが好ましい。
The first thin film has a recording function as well as a light absorption function.
Specifically, the first thin film itself undergoes the following state change by the light absorption function of the first thin film.
B) Deformation (however, the amount of deformation is smaller than conventional)
B) Changes in complex refractive index c) Changes in composition d) Melting e) Diffusion of constituent elements into adjacent layers f) Changes in crystal state and crystal structure g) Oxidation / reduction of constituent elements h) Changes in composition distribution in thin film For example, in order to have a light absorption function with respect to a recording / reproducing wavelength of 500 nm or less and also to have a recording function, an element having a light absorption function with respect to a recording / reproducing wavelength of 500 nm or less is selected for R or M It is preferable.
Further, in order to diffuse a constituent element to a large complex refractive index change, composition change, crystal state change, melting, or adjacent layer, in the first thin film, in the state of R element alone or oxide, It is preferable to select an element having a relatively low melting point.
From the above viewpoint, as R of the first thin film, one or more elements selected from Y, Bi, In, Mo, V, and lanthanum series elements are used. O represents oxygen. Among them, bismuth oxide (composed of Bi and O) in which R is Bi, and a mixture of bismuth and bismuth oxide are preferable examples for performing multilevel recording. Furthermore, the first thin film includes Al, Cr, Mn, Sc, In, Ru, Rh, Co, Fe, Cu, Ni, Zn, Li, Si, Ge, Zr, Ti, Hf, Sn, Pb, Mo, It is preferable to contain at least one element M selected from V and Nb.
R及びO、又はR、M及びOの各元素からなる材料を用いる利点は以下のようである。
(1)酸化物とすることで膜の硬度を高めることができる(第一の薄膜自体の変形、或いは基板等の隣接層の変形を抑制することが可能である)
(2)酸化物とすることで保存安定性を高めることができる
(3)Bi等の500nm以下の波長域の光に対して光吸収率が高い元素を含ませることで、記録感度を向上させることができる
(4)Bi等の低融点元素、或いは、拡散を起こし易い元素を含ませることで、大きな変形を伴わないにも拘わらず大きな変調度を発生させる記録マークを形成させることができる
(5)スパッタ等の気相成長法により良好な薄膜を形成することができる
The advantages of using a material composed of R and O or R, M and O are as follows.
(1) The hardness of the film can be increased by using an oxide (deformation of the first thin film itself or deformation of adjacent layers such as a substrate can be suppressed).
(2) Storage stability can be improved by using an oxide. (3) Recording sensitivity is improved by including an element having a high light absorptance with respect to light of a wavelength region of 500 nm or less such as Bi. (4) By including a low-melting-point element such as Bi or an element that easily causes diffusion, a recording mark that generates a large degree of modulation can be formed despite large deformation ( 5) A good thin film can be formed by vapor deposition such as sputtering.
RxMyO(x、yは原子数比)で表される第一の薄膜では、x/(x+y)≧0.3とすることにより第一の薄膜自体の変形、或いは基板等の隣接層の変形を抑制することが可能となり、記録マーク間の干渉を小さくすることができる。
また、記録再生特性の一層の向上を図るにはRとしてBiを選択することが好ましい。
また、Bia4BbOd又はBia4BbXcOdで表される第一の薄膜を採用することにより、記録再生特性や保存安定性等を改善させることができる。4B族元素としてはC、Si、Ge、Sn、Pbが挙げられるが、中でもSiとGeが特に好ましい。Xは、Al、Cr、Mn、In、Co、Fe、Cu、Ni、Zn、Ti、及びSnの中から選ばれた少なくとも1種の元素である。
また、Bia4BbXcOdの場合には、添加元素Mの作用により、大きな複素屈折率変化、組成の変化、溶融を起こしたり、或いは隣接層に構成元素を拡散させる能力が更に向上する。
In the first thin film represented by RxMyO (where x and y are atomic ratios), by setting x / (x + y) ≧ 0.3, deformation of the first thin film itself or deformation of adjacent layers such as a substrate can be performed. It is possible to suppress the interference between the recording marks.
In order to further improve the recording / reproduction characteristics, it is preferable to select Bi as R.
Further, by adopting the first thin film represented by Bia4BbOd or Bia4BbXcOd, it is possible to improve recording / reproduction characteristics, storage stability, and the like. Examples of the group 4B element include C, Si, Ge, Sn, and Pb. Among these, Si and Ge are particularly preferable. X is at least one element selected from Al, Cr, Mn, In, Co, Fe, Cu, Ni, Zn, Ti, and Sn.
In the case of Bia4BbXcOd, the ability of the additive element M further increases the ability to cause a large complex refractive index change, composition change, melting, or diffusion of constituent elements in the adjacent layer.
ところで、本発明の第一の薄膜は、R元素の完全な酸化物のみからなる膜に限定されるものではなく、R元素とR元素の酸化物を同時に含有してもよい(R+ROと略記する)。
また、RO膜が元素Mを含有する場合は、(1)R−M−Oの三元化合物、(2)R+MO(元素Rと元素Mの酸化物からなる混合物)、(3)RO+MO(元素Rの酸化物と元素Mの酸化物からなる混合物)、(4)R+RO+MO(元素R、元素Rの酸化物、及び元素Mの酸化物からなる混合物)、或いは(1)〜(4)の組み合わせからなる元素、化合物を同時に含有してよい。逆に言えば、本発明で言う第一の薄膜とは、前記のような混合物を含めた総称である。
そして、例えば元素R(非酸化物状態)を記録によって酸化させ、これに伴って第一の薄膜の複素屈折率を大きく変化させることができる。この酸化という記録原理を用いれば、非変形記録を実現でき、符号間干渉の小さい記録を行なうことができる。
By the way, the first thin film of the present invention is not limited to a film made only of a complete oxide of R element, but may contain an R element and an oxide of R element simultaneously (abbreviated as R + RO). ).
Further, when the RO film contains the element M, (1) R-M-O ternary compound, (2) R + MO (mixture of oxides of element R and element M), (3) RO + MO (element A mixture of an oxide of R and an oxide of element M), (4) R + RO + MO (a mixture of an oxide of element R, an oxide of element R, and an oxide of element M), or a combination of (1) to (4) An element and a compound may be contained at the same time. In other words, the first thin film referred to in the present invention is a general term including the mixture as described above.
For example, the element R (non-oxide state) can be oxidized by recording, and the complex refractive index of the first thin film can be greatly changed accordingly. If this recording principle of oxidation is used, non-deformed recording can be realized and recording with small intersymbol interference can be performed.
但し、第一の薄膜において、元素R及び/又は元素Mが非酸化物状態で多く存在する場合は、第一の薄膜の保存安定性を低下させる場合があるので、元素R及び/又は元素M単体の含有量は、元素R及び/又は元素Mの酸化物量に対して少ない方が好ましい。この割合は、記録感度、ジッタ、保存安定性等の兼ね合いによって適宜調整することが好ましい。
一方、酸化物状態の元素R、Mについては、還元という記録原理を利用することができ、酸化の場合と同様な効果を得ることができる。
本発明では、光吸収機能及び記録機能の主体が元素R又はその酸化物であり、本発明で列挙した元素R群が特有な効果を有する。
特に、第一の薄膜がRxMyOの組成で表される場合(x、yは原子数比)、x/(x+y)≧0.3とすることにより、記録再生特性の向上を図ることができる。但し、細かな記録再生特性や保存安定性の調整にはx/(x+y)≧0.3の範囲外の第一の薄膜を使用することも有効で、本発明はx/(x+y)≧0.3の範囲に限定されるものではない。
第一の薄膜の厚さは20〜500Åが望ましい。
However, in the first thin film, when the element R and / or the element M are present in a large amount in a non-oxide state, the storage stability of the first thin film may be lowered. Therefore, the element R and / or the element M The content of the simple substance is preferably smaller than the oxide amount of element R and / or element M. This ratio is preferably adjusted as appropriate in consideration of the recording sensitivity, jitter, storage stability, and the like.
On the other hand, for the elements R and M in the oxide state, the recording principle of reduction can be used, and the same effect as in the case of oxidation can be obtained.
In the present invention, the main component of the light absorption function and the recording function is the element R or an oxide thereof, and the element R group listed in the present invention has a unique effect.
In particular, when the first thin film is represented by a composition of RxMyO (x and y are atomic ratios), x / (x + y) ≧ 0.3 can improve recording / reproduction characteristics. However, it is also effective to use the first thin film outside the range of x / (x + y) ≧ 0.3 for fine adjustment of recording / reproduction characteristics and storage stability. In the present invention, x / (x + y) ≧ 0. It is not limited to the range of .3.
The thickness of the first thin film is desirably 20 to 500 mm.
2. 第二の薄膜の機能
第二の薄膜は、第一の薄膜の変形・破壊を抑制し、第一の薄膜の溶融、組成変化、拡散、結晶状態変化、酸化/還元等の状態変化を受容する機能を有する
一般的には、第一の薄膜は記録再生波長に対して比較的大きな吸収を有するため、反射率などの観点から薄く形成される(但し、第一の薄膜の吸収係数の大小によってはこの限りではない)。従って、基板上に直接第一の薄膜が設けられると、第一の薄膜は高い硬度を有する薄膜ではあるが、基板の膨張によって大きく変形させられたり、場合によっては破壊されたりする。
そこで、本発明では、第二の薄膜によって第一の薄膜の変形・破壊を抑制する。例えば第二の薄膜によって基板の変形による第一の薄膜の変形・破壊を抑制するためには、基板/第二の薄膜/第一の薄膜の順のように、基板と第一の薄膜の間に第二の薄膜を挿入するのが効果的であるが、基板/第一の薄膜/第二の薄膜の順にしてもその効果は十分発揮することができる。これは、第一の薄膜の膜厚が比較的薄いため、第二の薄膜の効果が出易いためと考えられる。
2. Function of the second thin film The second thin film suppresses deformation and destruction of the first thin film, and accepts state changes such as melting, composition change, diffusion, crystal state change, oxidation / reduction, etc. of the first thin film. In general, since the first thin film has a relatively large absorption with respect to the recording / reproducing wavelength, it is formed thin from the viewpoint of reflectivity and the like (however, depending on the absorption coefficient of the first thin film) Is not this limit). Therefore, when the first thin film is provided directly on the substrate, the first thin film is a thin film having a high hardness, but it is greatly deformed or sometimes destroyed by the expansion of the substrate.
Therefore, in the present invention, deformation and destruction of the first thin film are suppressed by the second thin film. For example, in order to suppress the deformation / destruction of the first thin film due to the deformation of the substrate by the second thin film, the order between the substrate and the first thin film is as follows: substrate / second thin film / first thin film. It is effective to insert the second thin film into the substrate, but the effect can be sufficiently exhibited even in the order of the substrate / first thin film / second thin film. This is presumably because the effect of the second thin film is likely to occur because the thickness of the first thin film is relatively thin.
第二の薄膜は、第一の薄膜の変形・破壊を抑制する以外に、記録機能を有する。即ち、本発明の追記型光記録媒体では、前述したように、
イ)第一の薄膜及び/又は第二の薄膜を変形させる
ロ)第一の薄膜及び/又は第二の薄膜の複素屈折率を変化させる
ハ)第一の薄膜及び/又は第二の薄膜の組成を変化させる
ニ)第一の薄膜を溶融させる
ホ)第一の薄膜中の構成元素を、第二の薄膜又は有機材料薄膜へ拡散させる
ヘ)第一の薄膜の結晶状態・結晶構造を変化させる
ト)第一の薄膜中の構成元素を酸化/還元させる
チ)第一の薄膜中の組成分布を変化させる
等により記録が行なわれるが、例えば、第一の薄膜と第二の薄膜が隣接する構造の場合、第二の薄膜は第一の薄膜の状態変化を受容し、第一の薄膜との界面を不明瞭化する機能を有する。
The second thin film has a recording function in addition to suppressing deformation and destruction of the first thin film. That is, in the write-once type optical recording medium of the present invention, as described above,
A) Deform the first thin film and / or the second thin film b) Change the complex refractive index of the first thin film and / or the second thin film c) The first thin film and / or the second thin film Change the composition d) Melt the first thin film e) Diffuse the constituent elements in the first thin film to the second thin film or organic material thin film f) Change the crystal state and crystal structure of the first thin film G) Oxidation / reduction of constituent elements in the first thin film. H) Recording is performed by changing the composition distribution in the first thin film. For example, the first thin film and the second thin film are adjacent to each other. In the case of the structure, the second thin film has a function of receiving a change in state of the first thin film and obfuscating the interface with the first thin film.
この界面の不明瞭化とは、未記録時とは異なる界面状態になることを広く指し、例えば、第一の薄膜と第二の薄膜の界面で混合が起こったり、各層の構成元素が拡散するなどして、第一の薄膜と第二の薄膜の界面近傍で複素屈折率の傾斜が起こる場合を指す(未記録状態では、複素屈折率が層界面で不連続化するが、記録によって層界面近傍で複素屈折率が緩やかに変化することを傾斜と呼ぶ)。
このように、第二の薄膜が、第一の薄膜の溶融、組成変化、拡散、結晶状態の変化、酸化/還元等を受容し、第一の薄膜と第二の薄膜の層界面を不明瞭化することができるため、例えば、多重反射効果を大きく変えることができ、結果として大きな変調度を得ることができる。
この他、第二の薄膜の重要な機能としは、熱伝導率の調整機能がある。第二の薄膜の熱伝導率を調整することによって、バラツキの少ない微小な記録マークを効率よく形成できるようになる。
更に、第二の薄膜は、反射率、トラッキング信号、記録感度を制御する機能を有するが、これらの特性は、材料の選択、膜厚の設定により適宜調整することが可能である。
This obscuration of the interface widely refers to an interface state different from that at the time of non-recording. For example, mixing occurs at the interface between the first thin film and the second thin film, or constituent elements of each layer diffuse. In this case, the gradient of the complex refractive index occurs near the interface between the first thin film and the second thin film (in the unrecorded state, the complex refractive index becomes discontinuous at the layer interface, The gradual change of the complex refractive index in the vicinity is called inclination).
In this way, the second thin film accepts the melting, composition change, diffusion, crystal state change, oxidation / reduction, etc. of the first thin film, and the layer interface between the first thin film and the second thin film is unclear. For example, the multiple reflection effect can be greatly changed, and as a result, a large degree of modulation can be obtained.
In addition, an important function of the second thin film is a function of adjusting thermal conductivity. By adjusting the thermal conductivity of the second thin film, minute recording marks with little variation can be formed efficiently.
Further, the second thin film has a function of controlling the reflectance, the tracking signal, and the recording sensitivity, and these characteristics can be appropriately adjusted by selecting a material and setting the film thickness.
第二の薄膜としては、通常、第一の薄膜の熱によって分解、昇華、空洞化等を起こさない材料が好ましく、例えば、Al2O3、MgO、BeO、ZrO2、UO2、ThO2などの単純酸化物系の酸化物;SiO2、2MgO・SiO2、MgO・SiO2、CaO・SiO3、ZrO2・SiO2、3Al2O3・2SiO2、2MgO・2Al2O3・5SiO2、Li2O・Al2O3・4SiO2などのケイ酸塩系の酸化物;Al2TiO5、MgAl2O4、Ca10(PO4)6(OH)2、BaTiO3、LiNbO3、PZT〔Pb(Zr,Ti)O3〕、PLZT〔(Pb,La)(Zr,Ti)O3〕、フェライトなどの複酸化物系の酸化物;或いは、Si3N4、Si6−ZAlZOZN8−Z、AlN、BN、TiNなどの窒化物系の非酸化物;SiC、B4C、TiC、WCなどの炭化物系の非酸化物;LaB6、TiB2、ZrB2などのホウ化物系の非酸化物;CdS、MoS2などの硫化物系の非酸化物;MoSi2などのケイ化物系の非酸化物;アモルファス炭素、黒鉛、ダイアモンド等の炭素系の非酸化物を用いることができる。更に、第二の薄膜として有機物を用いることも可能である。 As the second thin film, a material which does not cause decomposition, sublimation, cavitation, etc. by the heat of the first thin film is usually preferable. For example, Al 2 O 3 , MgO, BeO, ZrO 2 , UO 2 , ThO 2, etc. oxides of simple oxide-based; SiO 2, 2MgO · SiO 2 , MgO · SiO 2, CaO · SiO 3, ZrO 2 · SiO 2, 3Al 2 O 3 · 2SiO 2, 2MgO · 2Al 2 O 3 · 5SiO 2 Silicate-based oxides such as Li 2 O.Al 2 O 3 .4SiO 2 ; Al 2 TiO 5 , MgAl 2 O 4 , Ca 10 (PO 4 ) 6 (OH) 2 , BaTiO 3 , LiNbO 3 , PZT [Pb (Zr, Ti) O 3 ], PLZT [(Pb, La) (Zr, Ti) O 3 ], double oxide oxides such as ferrite; or Si 3 N 4 , Si 6-Z Al Z O Z N 8-Z, AlN, BN, non-oxide of the nitride such as TiN; SiC, B 4 C, TiC, non-oxide carbide system such as WC; LaB 6, TiB 2 Boron-based non-oxides such as ZrB 2 ; Sulfide-based non-oxides such as CdS and MoS 2 ; Silicide-based non-oxides such as MoSi 2 ; Carbon-based non-oxides such as amorphous carbon, graphite and diamond Non-oxides can be used. Furthermore, an organic substance can be used as the second thin film.
例えば、記録再生光に対する透明性や生産性の観点から、SiO2、ZnS又はZnS・SiO2を主体(主成分)とすることが好ましい例として挙げられる。また、断熱効果を十分得るためには、ZrO2を主体(主成分)とすることも好ましい。更に、ZnS、ZrO2、Y2O3、SiO2からなる酸化物、或いはZrO2、TiO2、SiO2及びXからなり、XがY2O3、CeO、Al2O3、MgO、CaO、NbO、希土類酸化物から選ばれた少なくとも1種である酸化物も好ましい。
また、第二の薄膜には、第一の薄膜の溶融、組成変化、拡散、結晶状態の変化、酸化/還元等の状態変化を受容する機能を持たせるが、この機能を効果的に働かせるためには、第二の薄膜の熱伝導率、硬度も重要となる場合がある。この熱伝導率、硬度の点では、第二の薄膜としてZnSを主体とすることが好ましい(ZnS・SiO2を用いる場合は、ZnSの割合を高めることが好ましい)。なお、ZnSを主体とする第二の薄膜が、Agを主成分とする反射層と隣接する場合は、Agの硫化を防止するための耐硫化層を設けることができる。
第二の薄膜は、通常は反射率を高めるために、記録再生波長に対して透明であることが好ましいが、記録感度を調整するために記録再生波長に対する光吸収機能をある程度付与することも可能である。
なお、第二の薄膜の厚さは20〜2000Åが望ましい。また、通常は、第二の薄膜の膜厚は第一の薄膜よりも厚いことが好ましい。
For example, it is preferable to use SiO 2 , ZnS, or ZnS · SiO 2 as a main component (main component) from the viewpoint of transparency to recording / reproducing light and productivity. In order to obtain a sufficient heat insulating effect, it is also preferable to use ZrO 2 as a main component (main component). Furthermore, it consists of an oxide made of ZnS, ZrO 2 , Y 2 O 3 , SiO 2 , or made of ZrO 2 , TiO 2 , SiO 2 and X, and X is Y 2 O 3 , CeO, Al 2 O 3 , MgO, CaO. An oxide that is at least one selected from NbO and rare earth oxides is also preferable.
In addition, the second thin film has a function of accepting state changes such as melting, composition change, diffusion, crystal state change, oxidation / reduction, etc. of the first thin film. In some cases, the thermal conductivity and hardness of the second thin film are also important. In terms of the thermal conductivity and hardness, it is preferable that ZnS is mainly used as the second thin film (in the case of using ZnS · SiO 2 , it is preferable to increase the ratio of ZnS). When the second thin film mainly composed of ZnS is adjacent to the reflective layer mainly composed of Ag, a sulfidation resistant layer for preventing sulfidation of Ag can be provided.
The second thin film is preferably transparent to the recording / reproducing wavelength in order to increase the reflectance, but it is also possible to provide a light absorption function to the recording / reproducing wavelength to adjust the recording sensitivity. It is.
The thickness of the second thin film is preferably 20 to 2000 mm. In general, the second thin film is preferably thicker than the first thin film.
3. 有機材料薄膜の機能
有機材料薄膜の機能としては、(a)断熱機能(例えば、反射層と第一の薄膜に有機材料薄膜が挟まれる構造の場合)(b)変調度の発生機能、(c)再生信号波形を補償する機能、(d)反射率やトラッキング信号等の制御機能、(e)記録感度の制御機能に大別することができる。
反射層を有する追記型光記録媒体の場合、第一の薄膜と反射層が隣接した構造とすると、第一の薄膜で吸収されたエネルギーが効率よく熱に変換されなくなり、適当な記録パワーで記録できなくなる場合が発生する。この場合、第一の薄膜と反射層の間に有機材料薄膜を導入すると、非常に薄い有機材料薄膜であっても十分な断熱効果を得ることができる。
ところで、有機材料薄膜はスピンコート法によって成膜させる場合が多い。このスピンコート法で有機材料薄膜を形成する場合、ランド部に比べてグルーブ部の有機材料薄膜の膜厚が厚くなるため、グルーブ部では十分な断熱効果を確保し、ランド部では熱が逃げ易い構造となる(従って、クロストークの抑制が可能となる)。従って、グルーブ記録の場合、断熱層として有機材料薄膜を用いることにより、記録再生特性の向上を図ることが可能となる。
3. Functions of the organic material thin film The functions of the organic material thin film include (a) a heat insulation function (for example, a structure in which the organic material thin film is sandwiched between the reflective layer and the first thin film), (b) a modulation generation function, (c It can be roughly divided into a function for compensating the reproduction signal waveform, a function for controlling the reflectivity and the tracking signal, and a function for controlling the recording sensitivity.
In the case of a write once optical recording medium having a reflective layer, if the first thin film and the reflective layer are adjacent to each other, the energy absorbed by the first thin film is not efficiently converted into heat, and recording is performed with an appropriate recording power. The case where it becomes impossible occurs. In this case, when an organic material thin film is introduced between the first thin film and the reflective layer, a sufficient heat insulating effect can be obtained even with a very thin organic material thin film.
By the way, an organic material thin film is often formed by spin coating. When an organic material thin film is formed by this spin coating method, the film thickness of the organic material thin film in the groove portion is thicker than that in the land portion. It becomes a structure (thus, crosstalk can be suppressed). Therefore, in the case of groove recording, it is possible to improve the recording / reproducing characteristics by using an organic material thin film as the heat insulating layer.
また、有機材料薄膜は以下の現象を引き起こすことにより、(b)変調度の発生機能を発現する。
・記録によって有機材料薄膜の体積が変化する
・記録によって有機材料薄膜の複素屈折率が変化する
・記録によって有機材料薄膜中に空洞部を形成する
・記録による第一の薄膜の状態変化を受容する
・反射層の変形を受容する
なお、ここで言う「第一の薄膜の状態変化」とは、変形、複素屈折率の変化、組成の変化、溶融、構成元素の隣接層への拡散(混合)、結晶状態・結晶構造変化、酸化/還元、組成分布の変化等を指す。
In addition, the organic material thin film exhibits the following phenomenon, and (b) exhibits a function of generating a modulation degree.
・ Recording changes the volume of the organic material thin film ・ Recording changes the complex refractive index of the organic material thin film ・ Recording forms a cavity in the organic material thin film ・ Accepts changes in the state of the first thin film due to recording・ Receiving deformation of the reflective layer Note that the “change in state of the first thin film” referred to here is deformation, change in complex refractive index, change in composition, melting, diffusion of constituent elements to adjacent layers (mixing) , Crystal state / crystal structure change, oxidation / reduction, composition distribution change, etc.
(c)の再生信号波形を補償する機能とは、第一の薄膜のみでは、再生信号波形が乱れる場合があるが〔記録極性がHigh to Low(ハイ・トゥー・ロー)の単一極性となり難い〕、有機材料薄膜を隣接層として設けることによって、再生信号波形を所望の波形(一般的には、記録極性をHigh to Low化する)にすることができる機能である。
有機材料薄膜は、その複素屈折率と膜厚を非常に広い範囲で制御することができるため、(d)の反射率やトラッキング信号等の制御機能を有することは明らかである。
また、(e)の機能については、本発明は第一の薄膜に主たる光吸収機能を付与するが、有機材料薄膜の複素屈折率(特に複素屈折率の虚部)を制御することで、有機材料薄膜を光吸収層として補助的に用いることが可能なため、記録感度を制御することができる。
The function of compensating the reproduction signal waveform in (c) is that the reproduction signal waveform may be disturbed only with the first thin film [the recording polarity is unlikely to be a single polarity of High to Low (High to Low). ] By providing an organic material thin film as an adjacent layer, the reproduction signal waveform can be made into a desired waveform (generally, the recording polarity is made High to Low).
Since the organic material thin film can control the complex refractive index and the film thickness within a very wide range, it is clear that the organic material thin film has a control function such as the reflectance and tracking signal of (d).
In addition, regarding the function of (e), the present invention provides the first thin film with a main light absorption function, but by controlling the complex refractive index (particularly, the imaginary part of the complex refractive index) of the organic material thin film, Since the material thin film can be supplementarily used as the light absorption layer, the recording sensitivity can be controlled.
本発明では、有機材料の選択の幅を大幅に拡大するため、及び有機材料薄膜を用いた追記型光記録媒体でありながら、記録再生波長近傍での複素屈折率変化を小さくするために(波長依存性を小さくする)、有機材料薄膜は、その主吸収帯が記録再生波長に対して長波長側に位置することが好ましい(図12参照。斜線部分が記録再生波長を示す)。
有機材料薄膜を光吸収層として補助的に用いる場合、有機材料薄膜の記録再生波長での複素屈折率虚部の値は、第一の薄膜の複素屈折率の虚部の値よりも小さいことが好ましい。何故ならば、有機材料薄膜の記録再生波長での複素屈折率虚部の値を必要以上に大きくすることは、波長依存性を悪化させることに繋がるからである。
また、有機材料薄膜を光吸収層として補助的に用いる場合、有機材料薄膜は、その主吸収帯が記録再生波長に対して長波長側に位置し、かつ、記録再生波長近傍に主吸収帯に帰属しない吸収帯を有することが好ましい。
In the present invention, in order to greatly expand the range of selection of the organic material and to reduce the complex refractive index change in the vicinity of the recording / reproducing wavelength while being a write-once type optical recording medium using an organic material thin film (wavelength It is preferable that the organic material thin film has a main absorption band located on the long wavelength side with respect to the recording / reproducing wavelength (see FIG. 12, the hatched portion indicates the recording / reproducing wavelength).
When an organic material thin film is used supplementarily as a light absorbing layer, the value of the imaginary part of the complex refractive index at the recording / reproducing wavelength of the organic material thin film may be smaller than the value of the imaginary part of the complex refractive index of the first thin film. preferable. This is because increasing the value of the imaginary part of the complex refractive index at the recording / reproducing wavelength of the organic material thin film more than necessary leads to worsening the wavelength dependency.
When an organic material thin film is used as a light absorption layer as an auxiliary layer, the organic material thin film has a main absorption band located on the long wavelength side with respect to the recording / reproducing wavelength and has a main absorption band near the recording / reproducing wavelength. It is preferable to have an absorption band that does not belong.
なお、本発明でいう「主吸収帯」とは、図13に示すように、可視域の範囲で最も吸収の大きな吸収帯を指し、一般的にはHOMO−LUMO(ホモ−ルモ)の遷移に基づく吸収帯を指す。また、本発明でいう「主吸収帯に帰属せず、主吸収帯よりも短波長側にある吸収帯」とは、図13に示すように、主吸収帯とは別の遷移に基づく吸収帯を指す(HOMO−LUMOの遷移を主体とする吸収帯ではない)。
このように、有機材料薄膜に補助的に光吸収機能を付与する場合であっても、主吸収帯に帰属しない吸収帯を記録再生波長近傍に有する有機材料薄膜を用いるため、波長依存性を小さくすることが可能となる。
以上の説明は、1つの有機材料が主吸収帯と、主吸収帯に帰属しない吸収帯を有する場合であるが、本発明では、2つ以上の有機材料を混合して図13に示すような吸収スペクトルを形成させた有機材料薄膜を用いることもでき、この場合も従来に比べて波長依存性を大幅に改善することができる。
In addition, as shown in FIG. 13, the “main absorption band” in the present invention refers to an absorption band having the largest absorption in the visible range, and generally refers to a transition of HOMO-LUMO. Refers to the absorption band based on. The “absorption band not belonging to the main absorption band and located on the shorter wavelength side than the main absorption band” as used in the present invention is an absorption band based on a transition different from the main absorption band as shown in FIG. (It is not an absorption band mainly composed of a HOMO-LUMO transition).
Thus, even when an organic material thin film is supplementarily provided with a light absorption function, the wavelength dependence is reduced because an organic material thin film having an absorption band that does not belong to the main absorption band in the vicinity of the recording / reproducing wavelength is used. It becomes possible to do.
The above description is a case where one organic material has a main absorption band and an absorption band that does not belong to the main absorption band. In the present invention, two or more organic materials are mixed and as shown in FIG. An organic material thin film in which an absorption spectrum is formed can also be used. In this case, the wavelength dependency can be greatly improved as compared with the conventional case.
本発明では変形を主体としない記録原理を用いるが、変形を排除するものではなく、記録マーク間干渉を予測できるレベルに抑制するため、変形量を低減させるのが狙いである。従って、本発明の追記型光記録媒体においても、例えば、第一の薄膜、第二の薄膜、反射層の変形を用いることができる。
有機材料薄膜は、その膜厚を制御することで隣接層の変形のし易さを制御することができる。つまり、変形記録を利用する場合、有機材料層の膜厚等によっても記録感度を調節することができる。
以上のように、有機材料薄膜は、複素屈折率や膜厚を変えることで、記録感度を制御することができる。
In the present invention, a recording principle that does not mainly involve deformation is used, but this does not exclude deformation, and the aim is to reduce the deformation amount in order to suppress the interference between recording marks to a predictable level. Therefore, in the write-once type optical recording medium of the present invention, for example, deformation of the first thin film, the second thin film, and the reflective layer can be used.
The organic material thin film can control the ease of deformation of the adjacent layer by controlling the film thickness. That is, when using deformation recording, the recording sensitivity can be adjusted by the film thickness of the organic material layer.
As described above, the organic material thin film can control the recording sensitivity by changing the complex refractive index and the film thickness.
本発明では、記録機能及び光吸収機能の主体を第一の薄膜とするため、有機材料薄膜から主たる記録機能と主たる光吸収機能を排除できる。その結果、基本的に有機材料薄膜の記録再生波長における複素屈折率実部の変化を利用する必要がなくなり(勿論、記録によって複素屈折率実部が変化しても構わない)、また、有機材料薄膜は記録再生波長に対して光吸収機能を有する必要がなくなることから、有機材料の光学定数に関する従来のような厳しい制限が不要になるという顕著な効果を奏する。従って、記録再生が青色レーザ波長領域で行われる場合であっても、有機材料として、赤色レーザ波長領域に大きな吸収帯を有し青色レーザ波長領域に大きな吸収帯を持たない材料、例えばCD−RやDVD−R用の色素を用いることができる。 In the present invention, since the main of the recording function and the light absorption function is the first thin film, the main recording function and the main light absorption function can be excluded from the organic material thin film. As a result, it is basically unnecessary to use the change in the real part of the complex refractive index at the recording / reproducing wavelength of the organic material thin film (of course, the real part of the complex refractive index may be changed by recording). Since the thin film does not need to have a light absorption function with respect to the recording / reproducing wavelength, it has a remarkable effect that a strict restriction as in the related art relating to the optical constant of the organic material becomes unnecessary. Therefore, even when recording / reproduction is performed in the blue laser wavelength region, as an organic material, a material that has a large absorption band in the red laser wavelength region and does not have a large absorption band in the blue laser wavelength region, for example, CD-R And a dye for DVD-R can be used.
また従来は、波長制御のために、複雑な置換基や合成上困難性の高い色素を記録層として用いる必要があったが、本発明の有機材料薄膜ではそのような複雑な波長制御は不必要なため、コストの安い有機材料を選択することが可能となる。
更に、本発明における有機材料薄膜には、大きな吸収帯が記録再生波長よりも十分離れて存在する色素などの有機材料を用いることができるため(大きな吸収帯近傍では屈折率が異常分散性を示し、屈折率が波長によって大きく異なるという性質を示すが、大きな吸収帯から十分離れた波長領域では屈折率は正常分散性を示し、屈折率は波長に対し緩やかな変化を示す)、レーザの個体差や、環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという従来の問題を大幅に解消することができる。
Conventionally, in order to control the wavelength, it has been necessary to use a complicated substituent or a dye having a high synthesis difficulty as a recording layer. However, the organic material thin film of the present invention does not require such a complicated wavelength control. Therefore, it is possible to select an organic material with a low cost.
Furthermore, since the organic material thin film in the present invention can use an organic material such as a dye having a large absorption band sufficiently away from the recording / reproducing wavelength (the refractive index shows anomalous dispersion near the large absorption band). The refractive index varies greatly depending on the wavelength, but in the wavelength region sufficiently away from the large absorption band, the refractive index shows normal dispersion, and the refractive index shows a gradual change with respect to the wavelength.) In addition, recording characteristics such as recording sensitivity, modulation degree, jitter, and error rate, and reflectivity greatly change with respect to fluctuations in recording / reproducing wavelength due to changes in environmental temperature, etc. Can do.
なお、本発明の通常の態様では、有機材料薄膜の主吸収帯と記録再生波長の関係を「記録再生波長に対して有機材料の主吸収帯が長波長側に存在する」ように設定するが、これに限定される訳ではなく、有機材料の主吸収帯と記録再生波長の関係は任意に設定することが可能である。
但し、本発明の実施に際しては、別途光吸収層(第一の薄膜)が存在することから、反射率を高めるために、有機材料薄膜の主吸収帯と記録再生波長を遠ざけることが好ましい。この場合、記録再生波長に対して有機材料薄膜の主吸収帯が長波長側に存在しても、逆に短波長側に存在してもよい。
上記の説明から分るように、本発明は、赤色領域から青色領域まで、更には青色領域以下も含む広い範囲の記録再生波長に対して適用可能であり、用いられる記録再生波長に合わせて、後述するような公知の有機材料(特に色素)の中から上記条件を満たす材料を適宜選択することにより目的とする光記録媒体を得ることができる。
In the normal mode of the present invention, the relationship between the main absorption band of the organic material thin film and the recording / reproducing wavelength is set so that “the main absorption band of the organic material exists on the long wavelength side with respect to the recording / reproducing wavelength”. However, the present invention is not limited to this, and the relationship between the main absorption band of the organic material and the recording / reproducing wavelength can be arbitrarily set.
However, since a separate light absorption layer (first thin film) is present in the practice of the present invention, it is preferable to keep the main absorption band of the organic material thin film away from the recording / reproducing wavelength in order to increase the reflectance. In this case, the main absorption band of the organic material thin film may exist on the long wavelength side with respect to the recording / reproducing wavelength, or conversely, may exist on the short wavelength side.
As can be seen from the above description, the present invention can be applied to a wide range of recording / reproducing wavelengths from the red region to the blue region, and even below the blue region, and according to the recording / reproducing wavelength used, A desired optical recording medium can be obtained by appropriately selecting a material satisfying the above conditions from known organic materials (particularly dyes) as described later.
有機材料薄膜に用いられる有機材料としては、いわゆる色素が好ましい。
本発明では、反射率を確保するために、有機材料の主吸収帯と記録再生波長を十分遠ざけることが好ましい。例えば、記録再生波長が赤色領域にある場合は、有機材料の主吸収帯に対して記録再生波長は短波長側にあっても、長波長側にあってもよい。一方、記録再生波長が青色領域以下にある場合は、有機材料の主吸収帯に対して記録再生波長を長波長側に設定することは、有機材料の分子骨格を小さくしなければいけない(共役系を短くする)ことを意味し、これは分解・爆発性の低下を招く恐れがあり、また溶解性の低下や結晶性の向上によって薄膜の形成が困難になる可能性があるため好ましくない。
従って、十分な熱分解特性を確保し、かつ良質な薄膜を形成させるために、記録再生波長が青色レーザ波長領域以下にある場合は、その主吸収帯が記録再生波長よりも長波長側に存在するような有機材料を選択することが好ましい。
As the organic material used for the organic material thin film, a so-called pigment is preferable.
In the present invention, it is preferable to sufficiently keep the main absorption band of the organic material and the recording / reproducing wavelength sufficiently in order to ensure the reflectance. For example, when the recording / reproducing wavelength is in the red region, the recording / reproducing wavelength may be on the short wavelength side or the long wavelength side with respect to the main absorption band of the organic material. On the other hand, when the recording / reproducing wavelength is below the blue region, setting the recording / reproducing wavelength to the longer wavelength side with respect to the main absorption band of the organic material requires a smaller molecular skeleton of the organic material (conjugated system). This is not preferable because it may lead to degradation of decomposition and explosive properties, and it may become difficult to form a thin film due to a decrease in solubility and an improvement in crystallinity.
Therefore, in order to ensure sufficient thermal decomposition characteristics and to form a high-quality thin film, when the recording / reproducing wavelength is below the blue laser wavelength region, the main absorption band exists on the longer wavelength side than the recording / reproducing wavelength. It is preferable to select such an organic material.
上記の要件を満足する色素としては、ポリメチン系、ナフタロシアニン系、フタロシアニン系、スクアリリウム系、クロコニウム系、ピリリウム系、ナフトキノン系、アントラキノン(インダンスレン)系、キサンテン系、トリフェニルメタン系、アズレン系、テトラヒドロコリン系、フェナンスレン系、トリフェノチアジン系、アゾ系、ホルマザン系各色素、及びこれらの金属錯体化合物などが挙げられる。
色素層の形成は、蒸着、スパッタリング、CVD、溶剤塗布などの通常の手段によって行なうことができる。塗布法を用いる場合には、上記染料などを有機溶剤に溶解して、スプレー、ローラーコーティング、ディッピング、スピンコーティングなどの慣用のコーティング法で行なうことができる。
用いられる有機溶剤としては、一般にメタノール、エタノール、イソプロパノールなどアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;テトラヒドロフラン、ジオキサン、ジエチルエーテル、エチレングリコールモノメチルエーテルなどのエーテル類;酢酸メチル、酢酸エチルなどのエステル類;クロロホルム、塩化メチレン、ジクロルエタン、四塩化炭素、トリクロルエタンなどの脂肪族ハロゲン化炭素類;ベンゼン、キシレン、モノクロルベンゼン、ジクロルベンゼンなどの芳香族類;メトキシエタノール、エトキシエタノールなどのセロソルブ類;ヘキサン、ペンタン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素類などが挙げられる。
色素層の膜厚は、100Å〜10μm、好ましくは100〜2000Åとする。
The dyes that satisfy the above requirements include polymethine, naphthalocyanine, phthalocyanine, squarylium, croconium, pyrylium, naphthoquinone, anthraquinone (indanthrene), xanthene, triphenylmethane, and azulene. , Tetrahydrocholine-based, phenanthrene-based, triphenothiazine-based, azo-based and formazan-based dyes, and metal complex compounds thereof.
The dye layer can be formed by ordinary means such as vapor deposition, sputtering, CVD, and solvent coating. In the case of using the coating method, the above-described dye or the like can be dissolved in an organic solvent, and the coating can be performed by a conventional coating method such as spraying, roller coating, dipping, or spin coating.
As the organic solvent to be used, alcohols such as methanol, ethanol and isopropanol; ketones such as acetone, methyl ethyl ketone and cyclohexanone; amides such as N, N-dimethylacetamide and N, N-dimethylformamide; sulfoxide such as dimethyl sulfoxide Ethers such as tetrahydrofuran, dioxane, diethyl ether and ethylene glycol monomethyl ether; esters such as methyl acetate and ethyl acetate; aliphatic halogenated carbons such as chloroform, methylene chloride, dichloroethane, carbon tetrachloride and trichloroethane; Aromatics such as benzene, xylene, monochlorobenzene and dichlorobenzene; cellosolves such as methoxyethanol and ethoxyethanol; hexane, pentane, Cyclohexane, and hydrocarbons such as methylcyclohexane.
The film thickness of the dye layer is 100 to 10 μm, preferably 100 to 2000 mm.
また、本発明では、第一の薄膜及び/又は有機材料薄膜の面積方向と膜厚方向に、3種類以上の異なる再生信号レベルを生成する記録マークを形成できる。
通常、3種類以上の異なる再生信号レベルを生成するためには、図5のように仮想された基本セルに対して、記録マ−クの面積比(光記録媒体の平面方向の面積比)を変えることが一般的である。しかし、本発明では、この面積比以外に、光記録媒体の断面方向の記録マーク形成領域の大きさを変えることで、3種類以上の異なる再生信号レベルを生成することができる。
本発明で言う、「膜厚方向に3種類以上の異なる再生信号レベルを生成する記録マークを形成する」とは、光記録媒体の断面方向の記録マーク形成領域の大きさを変えることで記録マ−クを形成し、この断面方向の記録マーク形成領域の大きさの違いに基づいて3種類以上の異なる再生信号レベルを生成することを意味する。
なお、本発明では、光記録媒体の断面方向に階調を持たせて記録することが好ましいが、勿論平面方向に階調を持たせて記録することも可能である。
ところで本発明では、前述したように、第一の薄膜及び/又は第二の薄膜の組成変化、第一の薄膜の溶融、第一の薄膜中の構成元素の拡散、第一の薄膜の結晶状態・結晶構造変化、第一の薄膜中の構成元素の酸化/還元、第一の薄膜中の組成分布変化、有機材料薄膜の体積変化、有機材料薄膜の空洞部形成等によって記録部を形成することができるため、ナノ粒子の分散や空洞部の形成によって生じる「超解像効果」を生じさせることも可能である。従って、本発明の追記型光記録媒体は、高密度記録、多値記録に適している。
In the present invention, recording marks that generate three or more different reproduction signal levels can be formed in the area direction and film thickness direction of the first thin film and / or the organic material thin film.
Usually, in order to generate three or more different reproduction signal levels, the recording mark area ratio (area ratio in the planar direction of the optical recording medium) is set to the virtual basic cell as shown in FIG. It is common to change. However, in the present invention, in addition to the area ratio, three or more different reproduction signal levels can be generated by changing the size of the recording mark formation region in the cross-sectional direction of the optical recording medium.
In the present invention, “to form a recording mark that generates three or more different reproduction signal levels in the film thickness direction” means to change the size of the recording mark forming area in the cross-sectional direction of the optical recording medium. This means that three or more different reproduction signal levels are generated based on the difference in the size of the recording mark formation region in the cross-sectional direction.
In the present invention, it is preferable to record with a gradation in the cross-sectional direction of the optical recording medium, but it is of course possible to record with a gradation in the plane direction.
In the present invention, as described above, the composition change of the first thin film and / or the second thin film, the melting of the first thin film, the diffusion of the constituent elements in the first thin film, the crystal state of the first thin film. Forming the recording part by changing the crystal structure, oxidizing / reducing the constituent elements in the first thin film, changing the composition distribution in the first thin film, changing the volume of the organic material thin film, forming the cavity of the organic material thin film, etc. Therefore, it is possible to produce a “super-resolution effect” caused by dispersion of nanoparticles or formation of a cavity. Therefore, the write-once type optical recording medium of the present invention is suitable for high density recording and multilevel recording.
本発明の追記型光記録媒体は、基板上に、少なくとも前記第一の薄膜、第二の薄膜を有する構造、或いは、基板上に、少なくとも前記第一の薄膜、第二の薄膜、有機材料薄膜を有する構造を特徴とするが、以下、他の構成要素について説明する。
基板の素材としては、熱的、機械的に優れた特性を有し、基板側から(基板を通して)記録再生が行われる場合には光透過特性にも優れたものであれば、特別な制限はない。
具体例としては、ポリカーボネート、ポリメタクリル酸メチル、非晶質ポリオレフィン、セルロースアセテート、ポリエチレンテレフタレートなどが挙げられるが、ポリカーボネートや非晶質ポリオレフィンが好ましい。
基板の厚さは用途により異なり、特に制限はない。
The write once optical recording medium of the present invention has a structure having at least the first thin film and the second thin film on a substrate, or at least the first thin film, the second thin film, and an organic material thin film on the substrate. The other components are described below.
As a material of the substrate, there is a special restriction as long as it has excellent thermal and mechanical properties and has excellent light transmission characteristics when recording / reproducing is performed from the substrate side (through the substrate). Absent.
Specific examples include polycarbonate, polymethyl methacrylate, amorphous polyolefin, cellulose acetate, polyethylene terephthalate and the like, and polycarbonate and amorphous polyolefin are preferred.
The thickness of the substrate varies depending on the application and is not particularly limited.
反射層の材料としては、再生光の波長で反射率の十分高いもの、例えば、Au、Al、Ag、Cu、Ti、Cr、Ni、Pt、Ta、Pdなどの金属を単独で或いは合金にして用いることができる。中でもAu、Al、Ag、及びそれらの合金は反射率が高く反射層の材料として適している。
また、上記金属を主成分として他の元素を含んでいても良く、他の元素としては、Mg、Se、Hf、V、Nb、Ru、W、Mn、Re、Fe、Co、Rh、Ir、Zn、Cd、Ga、In、Si、Ge、Te、Pb、Po、Sn、Biなどの金属及び半金属を挙げることができる。
中でもAg、及びその合金を主成分とするものは、コストが安く高反射率が出易い点から特に好ましい。
金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多層膜を形成し、反射層として用いることも可能である。
反射層を形成する方法としては、例えば、スパッタ法、イオンプレーティング法、化学蒸着法、真空蒸着法等が挙げられる。
反射層の好ましい膜厚は、50〜300nmである。
As a material of the reflective layer, a material having a sufficiently high reflectance at the wavelength of the reproduction light, for example, a metal such as Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, Pd, alone or in an alloy is used. Can be used. Among them, Au, Al, Ag, and alloys thereof have high reflectivity and are suitable as a material for the reflective layer.
Further, the above metal may be the main component and other elements may be included. Examples of other elements include Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Mention may be made of metals and metalloids such as Zn, Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi.
Among these, those containing Ag and an alloy thereof as a main component are particularly preferable from the viewpoint of low cost and high reflectivity.
It is also possible to form a multilayer film by alternately stacking a low refractive index thin film and a high refractive index thin film using a material other than metal, and use it as a reflective layer.
Examples of the method for forming the reflective layer include sputtering, ion plating, chemical vapor deposition, and vacuum vapor deposition.
A preferable film thickness of the reflective layer is 50 to 300 nm.
また、基板の上や反射層の下に反射率の向上、記録特性の改善、密着性の向上等のために公知の無機系又は有機系の上引層、下引層、或いは接着層を設けることもできる。
反射層や干渉層の上に形成する保護層の材料としては、反射層や干渉層を外力から保護するものであれば特に限定されない。有機材料としては、熱可塑性樹脂、熱硬化性樹脂、電子線硬化性樹脂、UV硬化性樹脂等が挙げられる。また、無機材料としては、SiO2、SiN4、MgF2、SnO2等が挙げられる。
熱可塑性樹脂、熱硬化性樹脂は適当な溶剤に溶解した塗布液を塗布し乾燥することによって形成することができる。UV硬化性樹脂は、そのまま又は適当な溶剤に溶解した塗布液を塗布し、UV光を照射して硬化させることによって形成することができる。UV硬化性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートなどのアクリレート系樹脂を用いることができる。
これらの材料は単独で用いても混合して用いても良いし、1層だけでなく多層膜にして用いても良い。
Also, a known inorganic or organic overcoat layer, undercoat layer, or adhesive layer is provided on the substrate or under the reflective layer in order to improve reflectivity, improve recording characteristics, improve adhesion, etc. You can also.
The material of the protective layer formed on the reflective layer and the interference layer is not particularly limited as long as it protects the reflective layer and the interference layer from external force. Examples of the organic material include a thermoplastic resin, a thermosetting resin, an electron beam curable resin, and a UV curable resin. Examples of the inorganic material include SiO 2 , SiN 4 , MgF 2 , SnO 2 and the like.
Thermoplastic resins and thermosetting resins can be formed by applying a coating solution dissolved in a suitable solvent and drying. The UV curable resin can be formed by applying a coating solution as it is or dissolved in an appropriate solvent and irradiating with UV light to cure. As the UV curable resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, and polyester acrylate can be used.
These materials may be used alone or in combination, and may be used as a multilayer film as well as a single layer.
保護層の形成方法としては、記録層と同様にスピンコート法やキャスト法等の塗布法、スパッタ法、化学蒸着法等が用いられるが、中でもスピンコート法が好ましい。
保護層の膜厚は、一般に0.1〜100μmの範囲であるが、本発明においては、3〜30μmが好ましい。
また、反射層或いは干渉層面に更に基板を貼り合わせてもよく、また反射層や干渉層面相互を内面とし対向させ光学記録媒体2枚を貼り合わせても良い。
基板鏡面側に、表面保護やゴミ等の付着防止のために紫外線硬化樹脂層や、無機系薄膜等を成膜してもよい。
As a method for forming the protective layer, a coating method such as a spin coating method or a casting method, a sputtering method, a chemical vapor deposition method, or the like is used as in the recording layer. Among these, a spin coating method is preferable.
The thickness of the protective layer is generally in the range of 0.1 to 100 μm, but is preferably 3 to 30 μm in the present invention.
Further, the substrate may be further bonded to the reflective layer or the interference layer surface, or two optical recording media may be bonded to each other with the reflective layer or the interference layer surface facing each other.
An ultraviolet curable resin layer, an inorganic thin film, or the like may be formed on the mirror surface side of the substrate in order to protect the surface and prevent the adhesion of dust.
カバー層は、高密度化を図るため高NAのレンズを用いる場合に必要となる。例えば高NA化すると、再生光が透過する部分の厚さを薄くする必要がある。これは、高NA化に伴い、光学ピックアップの光軸に対してディスク面が垂直からズレる角度(いわゆるチルト角、光源の波長の逆数と対物レンズの開口数の積の2乗に比例する)により発生する収差の許容量が小さくなるためであり、このチルト角が基板の厚さによる収差の影響を受け易いためである。
従って、基板の厚さを薄くしてチルト角に対する収差の影響をなるべく小さくするようにしている。
そこで、例えば基板上に凹凸を形成して記録層とし、その上に反射層を設け、更にその上に光を透過する薄膜である光透過性のカバー層を設けるようにし、カバー層側から再生光を照射して記録層の情報を再生するような光記録媒体(いわゆるROM型)や、基板上に反射層を設け、その上に記録層を設け、更にこの上に光透過性を有するカバー層を設けるようにし、カバー層側から再生光を照射して記録層の情報を再生するような光記録媒体が提案されている。
このようにすれば、カバー層を薄型化していくことで対物レンズの高NA化に対応可能である。つまり、薄いカバー層を設け、このカバー層側から記録再生することで、更なる高記録密度化を図ることができる。
なお、このようなカバー層は、ポリカーボネートシートや、紫外線硬化型樹脂により形成されるのが一般的である。また、本発明で言うカバー層には、カバー層を接着するための層を含めてもよい。
本発明の追記型光記録媒体に使用されるレーザ光は、高密度記録のため波長が短いほど好ましいが、特に350〜530nmのレーザ光が好ましく、その代表例としては、中心波長405nmのレーザ光が挙げられる。
The cover layer is necessary when using a lens with a high NA in order to increase the density. For example, when the NA is increased, it is necessary to reduce the thickness of the portion through which the reproduction light is transmitted. This is due to the angle at which the disk surface deviates from the optical axis of the optical pickup as the NA increases (so-called tilt angle, proportional to the square of the product of the reciprocal of the wavelength of the light source and the numerical aperture of the objective lens). This is because the allowable amount of generated aberration is reduced, and this tilt angle is easily affected by the aberration due to the thickness of the substrate.
Therefore, the thickness of the substrate is reduced to minimize the influence of aberration on the tilt angle.
Therefore, for example, a recording layer is formed by forming irregularities on a substrate, a reflective layer is provided on the recording layer, and a light-transmitting cover layer, which is a thin film that transmits light, is provided on the recording layer. An optical recording medium (so-called ROM type) that reproduces information on the recording layer by irradiating light, or a reflective layer provided on the substrate, a recording layer provided thereon, and a light-transmitting cover thereon There has been proposed an optical recording medium in which a layer is provided and information on the recording layer is reproduced by irradiating the reproducing light from the cover layer side.
In this way, the NA of the objective lens can be increased by reducing the thickness of the cover layer. That is, it is possible to further increase the recording density by providing a thin cover layer and recording / reproducing from the cover layer side.
Such a cover layer is generally formed of a polycarbonate sheet or an ultraviolet curable resin. Further, the cover layer referred to in the present invention may include a layer for adhering the cover layer.
The laser beam used in the write-once type optical recording medium of the present invention is preferably as the wavelength is shorter for high-density recording, but a laser beam with a wavelength of 350 to 530 nm is particularly preferable. Is mentioned.
本発明によれば、次の(1)〜(7)のような追記型光記録媒体とその記録再生方法を実現できる。
(1)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、二値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体とその記録再生方法。
(2)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、多値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体とその記録再生方法。
(3)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、PRML方式による信号処理系での記録再生に適した高密度記録可能な追記型光記録媒体とその記録再生方法。
(4)記録パワーの変動に対する、ジッタやエラー率等のマージンの広い追記型光記録媒体とその記録再生方法。
(5)記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体とその記録再生方法。
(6)転写性のよい浅溝基板を用いても記録再生が容易に行える追記型光記録媒体とその記録再生方法。
(7)ランド部にも記録が可能な追記型光記録媒体とその記録再生方法。
According to the present invention, the following write-once type optical recording medium and the recording / reproducing method thereof can be realized as in the following (1) to (7).
(1) A high-density recordable write-once optical recording medium and a recording / reproducing method thereof capable of easily performing binary recording / reproduction even in a blue laser wavelength region (500 nm or less), particularly in a wavelength region near 405 nm.
(2) A high-density recordable write-once optical recording medium and a recording / reproducing method thereof capable of easily performing multi-value recording / reproduction even in a blue laser wavelength region (500 nm or less), particularly in a wavelength region near 405 nm.
(3) Write-once type optical recording medium capable of high-density recording suitable for recording / reproducing in a signal processing system using the PRML system, and recording / reproducing thereof, even in a blue laser wavelength region (500 nm or less), particularly in the wavelength region near 405 nm Method.
(4) A write-once optical recording medium having a wide margin such as jitter and error rate with respect to fluctuations in recording power and a recording / reproducing method thereof.
(5) A write-once optical recording medium in which recording characteristics such as recording sensitivity, modulation degree, jitter, and error rate, and reflectivity, etc. change little with respect to fluctuations in recording / reproducing wavelength, and a recording / reproducing method thereof.
(6) A write-once optical recording medium and a recording / reproducing method thereof that can be easily recorded / reproduced even with a shallow groove substrate having good transferability.
(7) A write-once optical recording medium capable of recording on a land portion and a recording / reproducing method thereof.
以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.
実施例1
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚65nmのZnS−SiO2薄膜(第二の薄膜、ZnS:SiO2=85:15)と膜厚15nmのBiFeO薄膜(第一の薄膜、ターゲット組成:Bi3Fe5O12)を順次積層した。
次いでBiFeO薄膜の上に、下記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法によって形成し、更にその上にスパッタ法で膜厚150nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
なお、〔化1〕の色素は、従来のDVD−RやDVD+Rに用いられる材料であり、青色レーザ領域には吸収が殆どない材料である。
<記録条件>
・変調方式 : 8−16変調
・記録線密度 : 1T=0.0917(μm)
最短マーク長3T=0.275(μm)
・記録線速度 : 6.0(m/s)
・波形等化 : ノーマルイコライザ
その結果、図15に示すように、記録パワーが7.0mWで8.0%という良好なジッタ値が得られ、良好な二値記録特性を実現することができた。
また、記録パワーが最適記録パワーを超えた場合でも、記録マーク部の再生信号レベル(RF Level)が大きく変化することがなく、高い変調度を有し、広い記録パワーマージンを有する追記型光記録媒体を実現することができた。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiFeO薄膜表面の変形状態をAFMにより調べた。
その結果、変形量は最大でも20nmであることが確認できた。
Example 1
On a polycarbonate substrate having a guide groove (groove depth 50 nm) (substrate thickness 0.6 mm), a ZnS—SiO 2 thin film (second thin film, ZnS: SiO 2 = 85: 15) having a film thickness of 65 nm is formed by sputtering. ) And a 15 nm thick BiFeO thin film (first thin film, target composition: Bi 3 Fe 5 O 12 ) were sequentially laminated.
Next, on the BiFeO thin film, an organic material thin film (average film thickness of about 30 nm) made of a dye represented by the following [Chemical Formula 1] is formed by a spin coating method, and an Ag reflection layer having a film thickness of 150 nm is formed thereon by a sputtering method. A write-once optical recording medium of the present invention was prepared by providing a protective layer made of an ultraviolet curable resin and having a thickness of about 5 μm.
The dye of [Chemical Formula 1] is a material used for conventional DVD-R and DVD + R, and is a material that hardly absorbs in the blue laser region.
<Recording conditions>
Modulation method: 8-16 modulation Recording linear density: 1T = 0.0917 (μm)
Shortest mark length 3T = 0.275 (μm)
・ Recording linear velocity: 6.0 (m / s)
Waveform equalization: normal equalizer As a result, as shown in FIG. 15, a good jitter value of 8.0% was obtained at a recording power of 7.0 mW, and a good binary recording characteristic could be realized. .
Further, even when the recording power exceeds the optimum recording power, the reproduction signal level (RF Level) of the recording mark portion does not change greatly, and has a high modulation degree and a wide recording power margin. The medium could be realized.
Further, the protective layer made of an ultraviolet curable resin and the Ag reflection layer of the write-once optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol, and the deformation state of the BiFeO thin film surface was examined by AFM.
As a result, it was confirmed that the deformation amount was 20 nm at the maximum.
比較例1
ZnS−SiO2薄膜(第二の薄膜)を設けない点、及びBiFeO薄膜(第一の薄膜)を膜厚5nmにした点以外は、実施例1と同様にして追記型光記録媒体を作成し、実施例1と同様な記録再生評価を行った結果、図14のような結果が得られた。
この追記型光記録媒体では、5.8mW近傍で10.0%という非常に良好なジッタ値が得られ、良好な二値記録特性を実現することができた。
しかし、記録パワーが最適記録パワーを超えると、記録マーク部の再生信号レベル(RF Level)が大きく変化した。
実施例1と比較例1の実験結果の比較図を、図16〜図17として示す。
図16は両者のジッタを比較した図、図17は両者のスペース部と記録マーク部の再生信号レベルの変化を比較した図である。
図17から明らかなように、本発明の追記型光記録媒体によって、高変調度でかつ変調度の急増がない記録を実現できることが確かめられた。
また、図16から明らかなように、変調度の急増を低減した結果、ジッタ値と、ジッタの記録パワーマージンを大幅に改善できることが確かめられた。
Comparative Example 1
A write-once optical recording medium was prepared in the same manner as in Example 1 except that the ZnS-SiO 2 thin film (second thin film) was not provided and that the BiFeO thin film (first thin film) was 5 nm thick. As a result of performing the same recording / reproduction evaluation as in Example 1, the result as shown in FIG. 14 was obtained.
With this write-once optical recording medium, a very good jitter value of 10.0% was obtained in the vicinity of 5.8 mW, and good binary recording characteristics could be realized.
However, when the recording power exceeds the optimum recording power, the reproduction signal level (RF Level) of the recording mark portion changes greatly.
Comparative diagrams of the experimental results of Example 1 and Comparative Example 1 are shown as FIGS.
FIG. 16 is a diagram comparing the jitters of the two, and FIG. 17 is a diagram comparing the changes in the reproduction signal levels of the space part and the recording mark part of both.
As is clear from FIG. 17, it was confirmed that the write-once type optical recording medium of the present invention can realize recording with a high degree of modulation and no sudden increase in the degree of modulation.
Further, as is apparent from FIG. 16, it was confirmed that the jitter value and the recording power margin of the jitter can be greatly improved as a result of reducing the rapid increase in the modulation degree.
実施例2
ZnS−SiO2の膜厚を50nm、及びBiFeOの膜厚を10nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 2
A write-once optical recording medium of the present invention was prepared in the same manner as in Example 1 except that the film thickness of ZnS—SiO 2 was 50 nm and the film thickness of BiFeO was 10 nm, and the recording power is shown in Table 1. The same recording experiment was conducted except that the point was changed to the one. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例3
BiFeOの替りにBiFeCuOを用い膜厚を12nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 3
Except for using BiFeCuO instead of BiFeO and changing the film thickness to 12 nm, the write-once optical recording medium of the present invention was prepared in the same manner as in Example 1, and the recording power was changed to that shown in Table 1. Conducted a similar recording experiment. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例4
BiFeOの替りにBiFeAlOを用い膜厚を10nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 4
Except that BiFeAlO was used instead of BiFeO and the film thickness was changed to 10 nm, the write-once type optical recording medium of the present invention was prepared in the same manner as in Example 1, and the recording power was changed to that shown in Table 1. Conducted a similar recording experiment. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例5
BiFeOの替りにBiAlOを用い膜厚を7nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 5
Except that BiAlO was used instead of BiFeO and the film thickness was 7 nm, the write-once type optical recording medium of the present invention was prepared in the same manner as in Example 1, and the recording power was changed to that shown in Table 1. Conducted a similar recording experiment. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例6
BiFeOの替りにBiDyFeOを用い膜厚を17nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 6
A write-once optical recording medium of the present invention was prepared in the same manner as in Example 1 except that BiDyFeO was used instead of BiFeO and the film thickness was changed to 17 nm, and the same recording experiment was performed. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例7
BiFeOの替りにInFeOを用い膜厚を8nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 7
Except for using InFeO instead of BiFeO and changing the film thickness to 8 nm, the write-once type optical recording medium of the present invention was prepared in the same manner as in Example 1 and the recording power was changed to that shown in Table 1. Conducted a similar recording experiment. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例8
〔化1〕で示される色素の替りに〔化2〕で示される色素を用い、第1の薄膜の膜厚を12nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。なお、〔化2〕の有機材料は、従来のDVD−RやDVD+Rに用いることのできる材料であるが、前記図13に示すような、青色レーザ領域にも吸収係数の小さなブロードな吸収帯を有する材料である(但し、主吸収帯は記録再生波長よりも長波長側に存在する)。
従って、本実施例では、BiFeO膜膜と〔化2〕の有機材料薄膜の両方の光吸収機能で記録を行うことができ、実際、最適記録パワーを約1.0mW低下させることができた。
The write-once light of the present invention is the same as in Example 1, except that the dye represented by [Chemical 2] is used instead of the dye represented by [Chemical 1] and the film thickness of the first thin film is 12 nm. A similar recording experiment was performed except that a recording medium was prepared and the recording power was changed to that shown in Table 1. As a result, as shown in Table 1, good binary recording characteristics could be realized. The organic material of [Chemical Formula 2] is a material that can be used for conventional DVD-R and DVD + R, but has a broad absorption band with a small absorption coefficient in the blue laser region as shown in FIG. (However, the main absorption band exists on the longer wavelength side than the recording / reproducing wavelength).
Therefore, in this embodiment, recording can be performed with the light absorption function of both the BiFeO film and the organic material thin film of [Chemical Formula 2], and the optimum recording power can actually be reduced by about 1.0 mW.
実施例9
ZnS−SiO2の替りにAlNを用い、第1の薄膜の膜厚を10nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 9
A write-once optical recording medium of the present invention was prepared in the same manner as in Example 1 except that AlN was used instead of ZnS-SiO 2 and the thickness of the first thin film was 10 nm. A similar recording experiment was conducted except that the points were changed to those shown in. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例10
ZnS−SiO2の替りにSi3N4を用い、第1の薄膜の膜厚を10nmにした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
Example 10
A write-once optical recording medium of the present invention was prepared in the same manner as in Example 1 except that Si 3 N 4 was used instead of ZnS—SiO 2 and the thickness of the first thin film was 10 nm. A similar recording experiment was conducted except that the above was changed to that shown in Table 1. As a result, as shown in Table 1, good binary recording characteristics could be realized.
実施例11
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚15nmのBiFeO薄膜(第一の薄膜)と膜厚100nmのZnS−SiO2薄膜(第二の薄膜)を順次積層した。
次いでZnS−SiO2薄膜の上に、スパッタ法で膜厚150nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
上記光記録媒体に対し、実施例1と同様の条件で、従来の二値記録を行った。
その結果、表1に示すように、良好な二値記録特性を実現することができた。
また、記録パワーが最適記録パワーを超えた場合でも、記録マーク部の再生信号レベル(RF Level)が大きく変化することがなく、高い変調度を有し、広い記録パワーマージンを有する追記型光記録媒体を実現することができた。
Example 11
On a polycarbonate substrate having a guide groove (groove depth 50 nm) (substrate thickness 0.6 mm), a BiFeO thin film (first thin film) having a film thickness of 15 nm and a ZnS-SiO 2 thin film having a film thickness 100 nm are formed by sputtering. The second thin film) was sequentially laminated.
Next, a 150 nm-thick Ag reflecting layer and a protective layer having a thickness of about 5 μm made of an ultraviolet curable resin were provided on the ZnS—SiO 2 thin film by sputtering to produce a write-once type optical recording medium of the present invention.
Conventional binary recording was performed on the optical recording medium under the same conditions as in Example 1.
As a result, as shown in Table 1, good binary recording characteristics could be realized.
Further, even when the recording power exceeds the optimum recording power, the reproduction signal level (RF Level) of the recording mark portion does not change greatly, and has a high modulation degree and a wide recording power margin. The medium could be realized.
実施例12
BiFeOの替りにBiOを用い、膜厚を12nmとした点以外は、実施例1と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
更に、本実施例の追記型光記録媒体は、未記録時の反射率が約25(%)と高く、また変調度も約70(%)という高変調度を有していた。
更に、80℃85%RH、100時間という保存安定性試験でも、アーカイバルジッタ、シェルフジッタともに、ジッタ増加量が0.7(%)以下で、非常に良好な保存安定性を有することを確認した。
Example 12
The write-once type optical recording medium of the present invention was prepared in the same manner as in Example 1 except that BiO was used instead of BiFeO and the film thickness was 12 nm, and the recording power was changed to that shown in Table 1. A similar recording experiment was conducted except for the above. As a result, as shown in Table 1, good binary recording characteristics could be realized.
Further, the write-once type optical recording medium of this example had a high reflectance of about 25 (%) when unrecorded, and a high degree of modulation of about 70 (%).
Furthermore, in the storage stability test at 80 ° C and 85% RH for 100 hours, both archival jitter and shelf jitter were confirmed to have very good storage stability with an increase in jitter of 0.7% or less. did.
実施例13
BiFeOの代りにBiOを用いた点以外は、実施例11と同様にして本発明の追記型光記録媒体を作成し、記録パワーを表1に示したものに変えた点以外は同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
更に、本実施例の追記型光記録媒体は未記録時の反射率が約25〜30(%)と高く、変調度も約70(%)という高変調度を有していた。
Example 13
Except for using BiO instead of BiFeO, a write-once optical recording medium of the present invention was prepared in the same manner as in Example 11, and the same recording experiment was performed except that the recording power was changed to that shown in Table 1. Went. As a result, as shown in Table 1, good binary recording characteristics could be realized.
Furthermore, the write-once type optical recording medium of this example had a high reflectance of about 25 to 30 (%) when unrecorded, and the degree of modulation was as high as about 70 (%).
実施例14
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚50nmのZnS−SiO2薄膜(第二の薄膜、ZnS:SiO2=70:30)と、BixFeyOの組成からなるターゲットを用いて(x、yは原子数比)、膜厚10〜15nmのx、yの異なるBiFeO薄膜(第一の薄膜)を順次積層した。
次いで、各BiFeO薄膜の上に、前記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約40nm)をスピンコート法によって形成し、更にその上に、スパッタ法で膜厚150nmのAgPdCu反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、従来の二値記録を行った。
<記録条件>
・変調方式 : (1)8−16変調、及び、(2)1−7変調
・記録線密度 : (1)8−16変調の場合
1T=0.0917(μm)
最短マーク長3T=0.275(μm)
(2)1−7変調の場合
1T=0.1026(μm)
最短マーク長2T=0.205(μm)
・記録線速度 : 6.0(m/s)
・波形等化 : ノーマルイコライザ
図48はx/(x+y)とジッタ(σ/Tw)の関係、図49はx/(x+y)と変調度(Modulated amplitude)及び反射率の関係を調べた結果である。但し、図49の変調度は、1−7変調を用いた場合の値である。また、図48、図49の横軸x/(x+y)は、0の場合はFeOが100%、1の場合はBiOが100%であることを示す。
以上の結果から、第一の薄膜が、RxMyOの組成で表される場合(x、yは原子数比)、x/(x+y)≧0.3の範囲において、良好なジッタ特性が実現でき、かつ高変調度と高反射率を実現できることが確認でき、本発明の有効性が実証された。
Example 14
On a polycarbonate substrate having a guide groove (groove depth 50 nm) (substrate thickness 0.6 mm), a ZnS—SiO 2 thin film (second thin film, ZnS: SiO 2 = 70: 30) having a film thickness of 50 nm using a sputtering method. ) And a target having a composition of BixFeyO (x and y are atomic ratios), BiFeO thin films (first thin films) having a thickness of 10 to 15 nm and different x and y were sequentially laminated.
Next, on each BiFeO thin film, an organic material thin film (average film thickness of about 40 nm) made of the dye represented by the above [Chemical Formula 1] is formed by a spin coating method. A write-once optical recording medium of the present invention was prepared by providing an AgPdCu reflective layer and a protective layer made of an ultraviolet curable resin and having a thickness of about 5 μm.
Conventional binary recording was performed on the above optical recording medium under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd.
<Recording conditions>
Modulation method: (1) 8-16 modulation and (2) 1-7 modulation Recording linear density: (1) 8-16 modulation
1T = 0.0917 (μm)
Shortest mark length 3T = 0.275 (μm)
(2) 1-7 modulation
1T = 0.026 (μm)
Shortest mark length 2T = 0.205 (μm)
・ Recording linear velocity: 6.0 (m / s)
Waveform equalization: normal equalizer FIG. 48 shows the relationship between x / (x + y) and jitter (σ / Tw), and FIG. 49 shows the results of examining the relationship between x / (x + y), modulation factor (modulated amplitude), and reflectance. is there. However, the degree of modulation in FIG. 49 is a value when 1-7 modulation is used. 48 and 49, the horizontal axis x / (x + y) indicates that 0 is FeO is 100%, and 1 is BiO is 100%.
From the above results, when the first thin film is represented by the composition of RxMyO (x and y are atomic ratios), good jitter characteristics can be realized in the range of x / (x + y) ≧ 0.3, Moreover, it was confirmed that a high degree of modulation and a high reflectance could be realized, and the effectiveness of the present invention was proved.
比較例2
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、FOM−559(和光純薬社製フタロシアニン)からなる有機材料薄膜(平均膜厚約80nm)をスピンコート法によって形成し、更にその上に、スパッタ法により、膜厚150nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて追記型光記録媒体を作成した(従来の層構成を青色領域でも適用した例)。
なお、FOM−559(和光純薬社製フタロシアニン)は、従来型の追記型光記録媒体に用いられる有機材料と同様に、記録再生波長である405nm近傍で比較的小さな複素屈折率虚部(吸収係数)と、比較的大きな複素屈折率実部を有する材料である。
上記光記録媒体に対し、実施例1と同様の条件で、従来の二値記録を行った。
その結果、表1に示すように、記録パワー11.0mWでジッタ値が10.1%となった。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流して基板表面の変形状態をAFMにより調べた。
その結果、変形量は最大では100nmを超えており、基板溝深さ以上の変形を起こしていることが確認できた。
また、図18に示すように、隣接トラックに記録した記録マークの変形によって(図18のM)、その記録マークよりも時間的に先に記録された記録マークの変形状態(図18のN)が干渉を受け、その形状が大きく変わっていることが確認できた。
従って、更なる高密度化には不利であることが明らかになった。
Comparative Example 2
On a polycarbonate substrate having a guide groove (groove depth 50 nm) (substrate thickness 0.6 mm), an organic material thin film (average film thickness of about 80 nm) made of FOM-559 (phthalocyanine manufactured by Wako Pure Chemical Industries, Ltd.) is formed by spin coating. Further, a write-once optical recording medium was prepared by providing a 150 nm-thick Ag reflection layer and a protective layer having a thickness of about 5 μm made of an ultraviolet curable resin by sputtering. Example applied to the blue region).
Note that FOM-559 (phthalocyanine manufactured by Wako Pure Chemical Industries, Ltd.) has a relatively small complex refractive index imaginary part (absorption) in the vicinity of 405 nm, which is the recording / reproducing wavelength, like the organic material used in the conventional write-once optical recording medium. Coefficient) and a relatively large complex refractive index real part.
Conventional binary recording was performed on the optical recording medium under the same conditions as in Example 1.
As a result, as shown in Table 1, the jitter value was 10.1% at a recording power of 11.0 mW.
Further, the protective layer made of the ultraviolet curable resin and the Ag reflection layer of the write-once type optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol, and the deformation state of the substrate surface was examined by AFM.
As a result, the deformation amount exceeded 100 nm at the maximum, and it was confirmed that deformation more than the substrate groove depth occurred.
Further, as shown in FIG. 18, the deformation state of the recording mark recorded earlier in time (N in FIG. 18) by the deformation of the recording mark recorded in the adjacent track (M in FIG. 18). It was confirmed that the shape changed greatly due to interference.
Therefore, it became clear that it was disadvantageous for further densification.
実施例15
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚12nmのBiaSibOd薄膜(第一の薄膜)、膜厚65nmのZnSSiO2薄膜(第二の薄膜)を順次設け、更にその上にスパッタ法で膜厚100nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で従来の二値記録を行った。
<記録条件>
・変調方式 : 8−16変調
・記録線密度 : 1T=0.0917(μm)
・記録線速度 : 6.0(m/s)
・波形等化 : ノーマルイコライザー
本実施例において、BiaSibOd薄膜の組成比を種々変化させたところ、概ね12%以下のジッタが得られたが、特に、10≦a≦40、3≦b≦20、50≦d≦70の範囲において、ジッタが10%以下の媒体が得られた。その際の記録パワーは8.5mW付近であり、良好な二値記録特性を実現することができた。
また、80℃、相対湿度85%の環境下で100時間の保存試験を行い、ジッタ劣化を調査した結果、アーカイバルジッタは0.8%以下、シェルフジッタは0.4%以下の劣化に留まった。
Example 15
On a polycarbonate substrate having a guide groove (groove depth 50 nm) (substrate thickness 0.6 mm), using a sputtering method, a 12 nm thick BiaSibOd thin film (first thin film), a 65 nm thick ZnSSiO 2 thin film ( second thin film) The write-once type optical recording medium of the present invention was prepared by sequentially providing an Ag reflective layer having a thickness of 100 nm and a protective layer having a thickness of about 5 μm made of an ultraviolet curable resin by sputtering.
Conventional binary recording was performed on the above optical recording medium under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd.
<Recording conditions>
Modulation method: 8-16 modulation Recording linear density: 1T = 0.0917 (μm)
・ Recording linear velocity: 6.0 (m / s)
-Waveform equalization: Normal equalizer In this example, when the composition ratio of the BiaSibOd thin film was changed variously, jitter of approximately 12% or less was obtained, but in particular, 10≤a≤40, 3≤b≤20, In the range of 50 ≦ d ≦ 70, a medium having a jitter of 10% or less was obtained. The recording power at that time was about 8.5 mW, and good binary recording characteristics could be realized.
In addition, as a result of investigating jitter degradation under an environment of 80 ° C. and relative humidity 85% and investigating jitter degradation, archival jitter was 0.8% or less and shelf jitter was 0.4% or less. It was.
実施例16
BiaSibOdの代りにBiaGebOdを用いた点以外は、実施例15と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、特に、10≦a≦40、3≦b≦20、50≦d≦70の範囲において、ジッタが10%以下の媒体が得られた。その際の記録パワーは8.4mW付近であり、良好な二値記録特性を実現することができた。
また、80℃、相対湿度85%の環境下で100時間の保存試験を行い、ジッタ劣化を調査した結果、アーカイバルジッタは0.7%以下、シェルフジッタは0.4%以下の劣化に留まった。
Example 16
Except for using BiaGebOd instead of BiaSibOd, the write-once type optical recording medium of the present invention was prepared in the same manner as in Example 15 and the same recording experiment was conducted. As a result, a medium having a jitter of 10% or less was obtained particularly in the range of 10 ≦ a ≦ 40, 3 ≦ b ≦ 20, and 50 ≦ d ≦ 70. The recording power at that time was around 8.4 mW, and good binary recording characteristics could be realized.
In addition, as a result of investigating jitter degradation under an environment of 80 ° C. and relative humidity 85% and investigating jitter degradation, archival jitter was 0.7% or less and shelf jitter was 0.4% or less. It was.
実施例17
BiaSibOdの代りにBiaSibFecOd薄膜を用いた点以外は、実施例15と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、10≦a≦40、3≦b≦20、3≦c≦20、50≦d≦70の範囲において、ジッタが9.5%以下の媒体が得られた。その際の記録パワーは8.8mW付近であり、良好な二値記録特性を実現することができた。
また、80℃、相対湿度85%の環境下で100時間の保存試験を行い、ジッタ劣化を調査した結果、アーカイバルジッタは0.8%以下、シェルフジッタは0.2%以下の劣化に留まった。
Example 17
A write-once optical recording medium of the present invention was prepared in the same manner as in Example 15 except that a BiaSibFecOd thin film was used instead of BiaSibOd, and a similar recording experiment was performed. As a result, a medium having a jitter of 9.5% or less was obtained in the range of 10 ≦ a ≦ 40, 3 ≦ b ≦ 20, 3 ≦ c ≦ 20, and 50 ≦ d ≦ 70. The recording power at that time was around 8.8 mW, and good binary recording characteristics could be realized.
In addition, as a result of investigating jitter deterioration under the environment of 80 ° C. and relative humidity 85% and investigating jitter deterioration, archival jitter is 0.8% or less and shelf jitter is 0.2% or less. It was.
実施例18
BiaSibFecOdの組成比をBi3SiFe4O12とし、Feの代りにAl、Cr、Mn、In、Co、Cu、Ni、Zn、Tiをそれぞれ用いた点以外は、実施例17と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、どの元素をFeの代わりに用いてもジッタが10%以下の媒体が得られた。その際の記録パワーは約8.2mW付近であり、良好な二値記録特性を実現することができた。
また、80℃、相対湿度85%の環境下で100時間の保存試験を行い、ジッタ劣化を調査した結果、アーカイバルジッタは1.0%以下、シェルフジッタは0.3%以下の劣化に留まった。
Example 18
The same composition as in Example 17 except that the composition ratio of BiaSibFecOd was Bi 3 SiFe 4 O 12 and Al, Cr, Mn, In, Co, Cu, Ni, Zn, and Ti were used instead of Fe, respectively. The write-once type optical recording medium of the invention was prepared and the same recording experiment was conducted. As a result, a medium having a jitter of 10% or less was obtained no matter which element was used instead of Fe. The recording power at that time was about 8.2 mW, and good binary recording characteristics could be realized.
In addition, as a result of investigating jitter degradation under a 100-hour storage test in an environment of 80 ° C. and relative humidity 85%, archival jitter is 1.0% or less and shelf jitter is 0.3% or less. It was.
比較例3
BiaSibOdの代りにBi1Fe9O12を用いた点以外は、実施例15と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、特に、10≦a≦40、3≦b≦20、50≦d≦70の範囲において、ジッタが12.0%以下の媒体が得られた。
しかし、80℃、相対湿度85%の環境下で100時間の保存試験を行い、ジッタ劣化を調査した結果、アーカイバルジッタは4.8%、シェルフジッタは0.9%という大きな劣化を示した。
Comparative Example 3
A write-once optical recording medium was prepared in the same manner as in Example 15 except that Bi 1 Fe 9 O 12 was used instead of BiaSibOd, and the same recording experiment was performed. As a result, a medium having a jitter of 12.0% or less was obtained particularly in the range of 10 ≦ a ≦ 40, 3 ≦ b ≦ 20, and 50 ≦ d ≦ 70.
However, as a result of investigating jitter degradation under a 100-hour storage test in an environment of 80 ° C. and relative humidity 85%, archival jitter was 4.8% and shelf jitter was 0.9%. .
実施例19
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚65nmのZnS−SiO2薄膜(本発明でいう第二の薄膜。ZnS:SiO2=90:10)を設けた。
この第二の薄膜の上に、BiターゲットとFeOターゲット(組成Fe2O3)を用いて(二元スパッタ)、膜厚10nmのBiFeO薄膜(本発明で言う第一の薄膜)を、BiとFeOのスパッタパワーを変化させて成膜した。
続いて、第一の薄膜上に、前記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法によって形成し、更にその上にスパッタ法で膜厚150nmのAgNdCu反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
なお、〔化1〕の色素は、従来のDVD−RやDVD+Rに用いられる材料であり、青色レーザ領域には吸収が殆どない材料である。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で記録を行った(従来の二値記録)。
<記録条件>
・ 変調方式 : 8−16変調、3T信号の繰返し記録
・ 記録線密度 : 最短マーク長(3T)=0.275(μm)
・ 記録線速度 : 6.0(m/s)
・ 波形等化 : ノーマルイコライザー
その結果、図50に示すように、FeOターゲットのスパッタパワーに対し、Biターゲットのスパッタパワーを高めるほどジッタが大幅に良くなることが確認できた。
なお図50中の凡例は、BiとFeOのターゲットにかけたスパッタパワーを示す。
この二元スパッタにより得られた膜は、BixFeyOの組成で表すことができるが、このBiFeO膜は、BiとFeOからなる混合物、又はBi、BiO、及びFeOからなる混合物であると考えられる。
従って、この実施例の結果から、BiとFeOからなる混合物、又はBi、BiO、及びFeOからなる混合物が、高密度記録を実現する上で重要であることを実証することができた。
Example 19
On a polycarbonate substrate having a guide groove (groove depth of 50 nm) (substrate thickness: 0.6 mm), a ZnS—SiO 2 thin film having a thickness of 65 nm ( second thin film referred to in the present invention: ZnS: SiO 2 ) by sputtering. = 90:10).
On this second thin film, using a Bi target and a FeO target (composition Fe 2 O 3 ) (binary sputtering), a BiFeO thin film (first thin film referred to in the present invention) having a thickness of 10 nm is formed as Bi and The film was formed by changing the sputtering power of FeO.
Subsequently, an organic material thin film (average film thickness of about 30 nm) made of the dye represented by the above [Chemical Formula 1] is formed on the first thin film by a spin coating method, and further a film thickness of 150 nm is formed thereon by a sputtering method. A write-once optical recording medium of the present invention was prepared by providing an AgNdCu reflective layer and a protective layer made of an ultraviolet curable resin and having a thickness of about 5 μm.
The dye of [Chemical Formula 1] is a material used for conventional DVD-R and DVD + R, and is a material that hardly absorbs in the blue laser region.
Recording was performed on the above optical recording medium under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. (conventional binary recording) ).
<Recording conditions>
Modulation method: 8-16 modulation, 3T signal repetitive recording Recording linear density: Shortest mark length (3T) = 0.275 (μm)
-Recording linear velocity: 6.0 (m / s)
-Waveform equalization: Normal equalizer As a result, as shown in FIG. 50, it was confirmed that the jitter was significantly improved as the sputtering power of the Bi target was increased with respect to the sputtering power of the FeO target.
The legend in FIG. 50 indicates the sputtering power applied to the Bi and FeO targets.
The film obtained by this binary sputtering can be represented by the composition of BixFeyO, but this BiFeO film is considered to be a mixture of Bi and FeO or a mixture of Bi, BiO and FeO.
Therefore, from the results of this example, it was proved that a mixture of Bi and FeO or a mixture of Bi, BiO, and FeO is important for realizing high-density recording.
以上、実施例1〜13、及び比較例2では、従来の二値記録で、中程度の記録密度で記録した例を示した。その内容を纏めて下記表1に示す。
以下の実施例20〜28では、従来の二値記録で高密度記録した例を示す。
実施例20
実施例1で作成した追記型光記録媒体に対し、更なる高密度記録の可能性を探るため、下記の条件で従来の2値記録を行った。
<記録条件>
・変調方式 : 1−7変調
・記録密度 : 最短マーク長2T=0.273(μm)、0.261
(μm)、0.250(μm)、0.240(μm)、
0.231(μm)、0.222(μm)、0.214
(μm)、0.205(μm)
・記録線速度: 6.0(m/s)
・波形等化 : ノーマルイコライザー
図19は1トラック単独記録時のジッタ(σ/Tw)の記録パワー依存性を示し、図20は連続トラック記録時のジッタ(σ/Tw)の記録パワー依存性を示す(何れの図においも、凡例は最短マーク長2Tの長さを示す)。
何れの結果からも、本発明の追記型光記録媒体が非常に高い記録密度でも優れた記録再生特性を示すことが分る。
なお、比較例2の追記型光記録媒体では、2T=0.205(μm)での記録は行なえなかったが(ジッタ測定不能)、本発明の追記型光記録媒体では、2T=0.205(μm)となる記録条件であっても(1トラックのみの記録)、記録パワー約7.4(mw)で、ジッタ(σ/Tw)13.3(%)という非常に良好な値を得ることができた(記録密度が低い場合は、表1に示すように、本発明の追記型光記録媒体と従来〔比較例2〕の追記型光記録媒体の差異がそれほど顕著に現れていなかったが、高密度で記録すると両者の差は歴然となる)。
Examples 20 to 28 below show examples of high density recording by conventional binary recording.
Example 20
Conventional binary recording was performed on the write-once type optical recording medium prepared in Example 1 under the following conditions in order to investigate the possibility of further high-density recording.
<Recording conditions>
Modulation method: 1-7 modulation Recording density: Shortest mark length 2T = 0.273 (μm), 0.261
(Μm), 0.250 (μm), 0.240 (μm),
0.231 (μm), 0.222 (μm), 0.214
(Μm), 0.205 (μm)
Recording linear velocity: 6.0 (m / s)
Waveform equalization: Normal equalizer FIG. 19 shows the recording power dependence of jitter (σ / Tw) when recording one track alone, and FIG. 20 shows the recording power dependence of jitter (σ / Tw) during continuous track recording. (In each figure, the legend indicates the length of the shortest mark length 2T).
From any of the results, it can be seen that the write-once type optical recording medium of the present invention exhibits excellent recording / reproducing characteristics even at a very high recording density.
In the recordable optical recording medium of Comparative Example 2, recording at 2T = 0.205 (μm) could not be performed (jitter measurement is impossible). However, in the recordable optical recording medium of the present invention, 2T = 0.205. Even under the recording condition of (μm) (recording of only one track), a very good value of jitter (σ / Tw) of 13.3 (%) is obtained with a recording power of about 7.4 (mw). (When the recording density was low, as shown in Table 1, the difference between the write-once type optical recording medium of the present invention and the conventional write-once type optical recording medium was not so noticeable. However, when recording at high density, the difference between the two becomes obvious.)
実施例21
本発明の追記型光記録媒体の有効性を検証するため、実施例1で作成した追記型光記録媒体と、比較例2で作成した追記型光記録媒体の短マーク形成能力の比較を行った。
なお、記録条件は下記に示す通りで、記録ストラテジの影響を排除するため、単一周期(2T)の記録を行なった。
<記録条件>
・変調方式 : 1−7変調(但し、2T単一マークの記録)
・記録密度 : 最短マーク長2T=0.273(μm)、0.261
(μm)、0.250(μm)、0.240(μm)、
0.231(μm)、0.222(μm)、0.214
(μm)、0.205(μm)
・記録線速度: 6.0(m/s)
・波形等化 : ノーマルイコライザー
各記録線速度で記録パワーを変えて最小ジッタ値(σ/Tw)を求めた結果、マーク長(2T)に対して図21のような結果が得られた。
この図21から明らかなように、本発明の追記型光記録媒体が、従来型の追記型光記録媒体よりも優れた短マーク形成能力を有することが確かめられた。
Example 21
In order to verify the effectiveness of the write-once optical recording medium of the present invention, the short mark forming ability of the write-once optical recording medium created in Example 1 and the write-once optical recording medium created in Comparative Example 2 was compared. .
The recording conditions were as follows, and recording was performed in a single cycle (2T) in order to eliminate the influence of the recording strategy.
<Recording conditions>
Modulation method: 1-7 modulation (however, recording of 2T single mark)
Recording density: shortest mark length 2T = 0.273 (μm), 0.261
(Μm), 0.250 (μm), 0.240 (μm),
0.231 (μm), 0.222 (μm), 0.214
(Μm), 0.205 (μm)
Recording linear velocity: 6.0 (m / s)
Waveform equalization: Normal equalizer As a result of obtaining the minimum jitter value (σ / Tw) by changing the recording power at each recording linear velocity, the result shown in FIG. 21 was obtained with respect to the mark length (2T).
As is apparent from FIG. 21, it was confirmed that the write-once type optical recording medium of the present invention has a short mark forming ability superior to that of the conventional write-once type optical recording medium.
実施例22
本発明の別の追記型光記録媒体の有効性を検証するため、実施例11で作成した追記型光記録媒体と、比較例2で作成した追記型光記録媒体の短マーク形成能力の比較を行った。
なお、記録条件は下記に示す通りで、記録ストラテジの影響を排除するため、単一周期(2T)の記録を行なった。
<記録条件>
・変調方式 : 1−7変調(但し、2T単一マークの記録)
・記録密度 : 最短マーク長2T=0.273(μm)、0.261
(μm)、0.250(μm)、0.240(μm)、
0.231(μm)、0.222(μm)、0.214
(μm)、0.205(μm)
・記録線速度: 6.0(m/s)
・波形等化 : ノーマルイコライザー
各記録線速度で記録パワーを変えて最小ジッタ値(σ/Tw)を求めた結果、マーク長(2T)に対して図22のような結果が得られた。
この図22から明らかなように、本発明の追記型光記録媒体が、従来型の追記型光記録媒体よりも優れた短マーク形成能力を有することが確かめられた。
Example 22
In order to verify the effectiveness of another write-once type optical recording medium of the present invention, the short mark forming ability of the write-once type optical recording medium produced in Example 11 and the write-once type optical recording medium produced in Comparative Example 2 was compared. went.
The recording conditions were as follows, and recording was performed in a single cycle (2T) in order to eliminate the influence of the recording strategy.
<Recording conditions>
Modulation method: 1-7 modulation (however, recording of 2T single mark)
Recording density: shortest mark length 2T = 0.273 (μm), 0.261
(Μm), 0.250 (μm), 0.240 (μm),
0.231 (μm), 0.222 (μm), 0.214
(Μm), 0.205 (μm)
Recording linear velocity: 6.0 (m / s)
Waveform equalization: Normal equalizer As a result of obtaining the minimum jitter value (σ / Tw) by changing the recording power at each recording linear velocity, the result as shown in FIG. 22 was obtained for the mark length (2T).
As is apparent from FIG. 22, it was confirmed that the write-once type optical recording medium of the present invention has a short mark forming ability superior to that of the conventional write-once type optical recording medium.
実施例23
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚65nmのZnS−SiO2薄膜(本発明でいう第二の薄膜)、膜厚10nmのBiO薄膜(本発明で言う第一の薄膜)を順次設け、その上に前記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法によって形成し、更にその上にスパッタ法で膜厚150nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
なお、〔化1〕の色素は、従来のDVD−RやDVD+Rに用いられる材料であり、青色レーザ領域には吸収が殆どない材料である。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で記録を行った(従来の二値記録)。
<記録条件>
・ 変調方式 : 1−7変調
・ 記録線密度 : 最短マーク長(2T)=0.231(μm)
・ 記録線速度 : 6.0(m/s)
・ 波形等化 : ノーマルイコライザー
その結果、図23に示すように、連続記録部において(図中の凡例「σ/Tw 3Track」。一方「σ/Tw 1Track」は1トラックのみ記録を行ない、両隣のトラックは未記録状態とした記録を示す)、記録パワーが6.2mWで9.5%という良好なジッタ値が得られ、かつ60%以上の変調度(Modulated amplitude)を有する、良好な二値記録特性を実現することができた。また、1トラック記録と連続記録によるジッタに大きな差異が見られず、クロストークの小さな記録が実現できていることが分る。
Example 23
On a polycarbonate substrate having a guide groove (groove depth 50 nm) (substrate thickness 0.6 mm), a ZnS—SiO 2 thin film ( second thin film as referred to in the present invention) having a thickness of 65 nm using a sputtering method, and a film thickness 10 nm. BiO thin films (first thin film referred to in the present invention) are sequentially provided, and an organic material thin film (average film thickness of about 30 nm) made of the dye represented by the above [Chemical Formula 1] is formed thereon by spin coating, A write-once optical recording medium of the present invention was prepared by providing an Ag reflection layer having a thickness of 150 nm and a protective layer having a thickness of about 5 μm made of an ultraviolet curable resin on the surface by sputtering.
The dye of [Chemical Formula 1] is a material used for conventional DVD-R and DVD + R, and is a material that hardly absorbs in the blue laser region.
Recording was performed on the above optical recording medium under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. (conventional binary recording) ).
<Recording conditions>
Modulation method: 1-7 modulation Recording linear density: Shortest mark length (2T) = 0.231 (μm)
-Recording linear velocity: 6.0 (m / s)
-Waveform equalization: Normal equalizer As a result, as shown in FIG. 23, in the continuous recording section (the legend “σ / Tw 3Track” in the figure. On the other hand, “σ / Tw 1Track” records only one track, Track indicates recording in an unrecorded state), a good jitter value of 9.5% is obtained at a recording power of 6.2 mW, and a good binary value having a modulation degree of 60% or more (Modulated Amplitude) Recording characteristics could be realized. It can also be seen that there is no significant difference in jitter between 1-track recording and continuous recording, and that recording with small crosstalk can be realized.
実施例24
実施例23と同様の追記型光記録媒体を作製し、最短マーク長(2T)の長さを0.222(μm)とした以外は、実施例23と同様の記録実験を行った。
その結果、図24に示すように、連続記録部(図中の凡例「σ/Tw 3Track」参照。なお「σ/Tw 1Track」は1トラックのみ記録を行ない、両隣のトラックは未記録状態とした記録を示す。)において、記録パワー6.8mWで9.5%という良好なジッタ値が得られ、かつ60%以上の変調度(Modulated amplitude)を有する、良好な二値記録特性を実現することができた。また、1トラック記録と連続記録によるジッタに大きな差異が見られず、クロストークの小さな記録が実現できていることが分る。
Example 24
A recordable optical recording medium similar to that in Example 23 was manufactured, and a recording experiment similar to that in Example 23 was performed, except that the shortest mark length (2T) was set to 0.222 (μm).
As a result, as shown in FIG. 24, the continuous recording section (refer to the legend “σ / Tw 3Track” in the figure. Note that “σ / Tw 1Track” records only one track, and both adjacent tracks are unrecorded. A good jitter value of 9.5% is obtained at a recording power of 6.8 mW and a good binary recording characteristic having a modulation degree of 60% or more is realized. I was able to. It can also be seen that there is no significant difference in jitter between 1-track recording and continuous recording, and that recording with small crosstalk can be realized.
実施例25
実施例23と同様の追記型光記録媒体を作製し、最短マーク長(2T)の長さを0.214(μm)とした以外は、実施例23と同様の記録実験を行った。
その結果、図25に示すように、連続記録部(図中の凡例「σ/Tw 3Track」参照。なお「σ/Tw 1Track」は1トラックのみ記録を行ない、両隣のトラックは未記録状態とした記録を示す。)において、記録パワー6.6mWで11.4%という良好なジッタ値が得られ、かつ60%以上の変調度(Modulated amplitude)を有する、良好な二値記録特性を実現することができた。また、1トラック記録と連続記録によるジッタに大きな差異が見られず、クロストークの小さな記録が実現できていることが分る。
Example 25
A recordable optical recording medium similar to that in Example 23 was manufactured, and a recording experiment similar to that in Example 23 was performed, except that the shortest mark length (2T) was 0.214 (μm).
As a result, as shown in FIG. 25, the continuous recording section (refer to the legend “σ / Tw 3Track” in the figure. Note that “σ / Tw 1Track” records only one track, and both adjacent tracks are unrecorded. (1) shows a good jitter value of 11.4% at a recording power of 6.6 mW, and realizes a good binary recording characteristic having a modulation degree of 60% or more. I was able to. It can also be seen that there is no significant difference in jitter between 1-track recording and continuous recording, and that recording with small crosstalk can be realized.
実施例26
実施例23と同様の追記型光記録媒体を作製し、最短マーク長(2T)の長さを0.205(μm)とした以外は、実施例23と同様の記録実験を行った。
その結果、図26に示すように、連続記録部(図中の凡例「σ/Tw 3Track」参照。なお「σ/Tw 1Track」は1トラックのみ記録を行ない、両隣のトラックは未記録状態とした記録を示す。)において、記録パワー6.6mWで13.0%という良好なジッタ値が得られ、かつ60%以上の変調度(Modulated amplitude)を有する、良好な二値記録特性を実現することができた。また、1トラック記録と連続記録によるジッタに大きな差異が見られず、クロストークの小さな記録が実現できていることが分る。
なお、比較例2の追記型光記録媒体では、2T=0.205(μm)での記録は行なえなかったが(ジッタ測定不能)、本発明の追記型光記録媒体では、2T=0.205(μm)となる記録条件であっても(1トラックのみの記録)、記録パワー約6.6(mw)で、ジッタ(σ/Tw)11.8(%)という非常に良好な値を得ることができた(記録密度が低い場合は、表1に示すように、本発明の追記型光記録媒体と従来〔比較例2〕の追記型光記録媒体の差異がそれほど顕著に現れていなかったが、高密度で記録すると両者の差は歴然となる)。
Example 26
A recordable optical recording medium similar to that in Example 23 was manufactured, and a recording experiment similar to that in Example 23 was performed, except that the shortest mark length (2T) was set to 0.205 (μm).
As a result, as shown in FIG. 26, the continuous recording portion (refer to the legend “σ / Tw 3Track” in the figure. Note that “σ / Tw 1Track” records only one track, and both adjacent tracks are unrecorded. In this case, a good jitter value of 13.0% is obtained at a recording power of 6.6 mW, and a good binary recording characteristic having a modulation degree of 60% or more is realized. I was able to. It can also be seen that there is no significant difference in jitter between 1-track recording and continuous recording, and that recording with small crosstalk can be realized.
In the write-once type optical recording medium of Comparative Example 2, recording at 2T = 0.205 (μm) could not be performed (jitter measurement is impossible), but in the write-once type optical recording medium of the present invention, 2T = 0.205. Even under the recording condition of (μm) (recording of only one track), a very good value of jitter (σ / Tw) 11.8 (%) is obtained with a recording power of about 6.6 (mw). (When the recording density was low, as shown in Table 1, the difference between the write-once type optical recording medium of the present invention and the conventional write-once type optical recording medium was not so noticeable. However, when recording at high density, the difference between the two becomes obvious.)
実施例27
前記〔化1〕で示される色素の代りに前記〔化2〕で示される色素を用いた点以外は、実施例23と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。なお、〔化2〕の有機材料は、従来のDVD−RやDVD+Rに用いることのできる材料であるが、前記図13に示すような、青色レーザ領域にも吸収係数の小さなブロードな吸収帯を有する材料である(但し、主吸収帯は記録再生波長よりも長波長側に存在する)。
従って、本実施例では、BiO膜膜(第一の薄膜)と〔化2〕の有機材料薄膜の両方の光吸収機能で記録を行うことができ、実際、最適記録パワーを約0.8mW低下させることができた。
Example 27
A write-once optical recording medium of the present invention was prepared in the same manner as in Example 23 except that the dye represented by [Chemical Formula 2] was used instead of the dye represented by [Chemical Formula 1], and the same recording was performed. The experiment was conducted. The organic material of [Chemical Formula 2] is a material that can be used for conventional DVD-R and DVD + R, but has a broad absorption band with a small absorption coefficient in the blue laser region as shown in FIG. (However, the main absorption band exists on the longer wavelength side than the recording / reproducing wavelength).
Therefore, in this embodiment, recording can be performed with the light absorption function of both the BiO film (first thin film) and the organic material thin film of [Chemical Formula 2], and the optimum recording power is actually reduced by about 0.8 mW. I was able to.
実施例28
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚50nmのZnS−SiO2薄膜(本発明でいう第二の薄膜、ZnS:SiO2=80:20)、膜厚15nmのBiFeO薄膜(本発明で言う第一の薄膜、ターゲット組成はBi6Fe5Oz、酸素量は同定不能)を順次設け、その上に、前記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法によって形成し、更にその上に、スパッタ法により膜厚150nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
なお、〔化1〕の色素は、従来のDVD−RやDVD+Rに用いられる材料であり、青色レーザ領域には吸収が殆どない材料である。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で記録を行った(従来の二値記録)。
<記録条件>
・ 変調方式 : 1−7変調
・ 記録線密度 : 最短マーク長(2T)=0.205(μm)
・ 記録線速度 : 6.0(m/s)
・ 波形等化 : リミットイコライザー
その結果、図51に示すように、連続記録部において、記録パワーが7.5mW近傍で8.6%という非常に良好なジッタ値が得られ、かつ70%以上の変調度を有する、良好な二値記録特性を実現することができた(再生パワーは0.5mW)。
なお図中の凡例「σ/Tw」はジッタ値を示し、「Modulated amplitude」は変調度を示す。
また、その時のアイパターンを図52に示すが、非常に良好な記録が行なえていることが確認できた。
Example 28
On a polycarbonate substrate having a guide groove (groove depth of 50 nm) (substrate thickness: 0.6 mm), a ZnS—SiO 2 thin film having a thickness of 50 nm ( second thin film referred to in the present invention, ZnS: SiO 2 ) by sputtering. = 80: 20), a BiFeO thin film having a thickness of 15 nm (the first thin film referred to in the present invention, the target composition is Bi 6 Fe 5 O z , and the oxygen amount is not identifiable) are sequentially provided, ] An organic material thin film (average film thickness of about 30 nm) made of a dye represented by the following formula is formed by a spin coating method, and further a film thickness of about 150 nm made of an Ag reflection layer having a film thickness of 150 nm and an ultraviolet curable resin is formed thereon by a sputtering method. A write-once optical recording medium of the present invention was prepared by providing a protective layer of 5 μm.
The dye of [Chemical Formula 1] is a material used for conventional DVD-R and DVD + R, and is a material that hardly absorbs in the blue laser region.
Recording was performed on the above optical recording medium under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. (conventional binary recording) ).
<Recording conditions>
Modulation method: 1-7 modulation Recording linear density: Shortest mark length (2T) = 0.205 (μm)
-Recording linear velocity: 6.0 (m / s)
-Waveform equalization: Limit equalizer As a result, as shown in FIG. 51, in the continuous recording section, a very good jitter value of 8.6% is obtained at a recording power of around 7.5 mW, and 70% or more. Good binary recording characteristics with a modulation factor could be realized (reproduction power was 0.5 mW).
Note that the legend “σ / Tw” in the figure indicates the jitter value, and “Modulated amplitude” indicates the modulation degree.
The eye pattern at that time is shown in FIG. 52, and it was confirmed that very good recording was performed.
以下の実施例29〜35及び比較例4〜5では、多値記録を行なった例を示す。
実施例29
実施例1で作成した追記型光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、8値の多値記録を行った。
<記録条件>
・記録線密度 : 基本セル長=0.47(μm)
・記録線速度 : 3.5(m/s)
・記録パターン : 孤立マークと連続マーク(2つの空の基本セルを挟
んで、多値レベルが同一な記録マークが4つ連続した連続マークと
1つの孤立マークを、7つの異なる多値レベルについて記録した)
その結果、図27に示すように、変調度(ダイナミックレンジ)が大きく(変調度は60%)、連続記録部においても多値記録レベルの変動が非常に小さな記録を実現できることが分った。
また、上記の実験では、溝部(グルーブ部)に多値記録を行ったが、溝間部(ランド)にも同様に記録が行えた。
Examples 29 to 35 and Comparative Examples 4 to 5 below show examples in which multi-value recording is performed.
Example 29
For the write-once optical recording medium created in Example 1, eight values were used under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. Multi-valued recording was performed.
<Recording conditions>
Recording linear density: Basic cell length = 0.47 (μm)
Recording linear velocity: 3.5 (m / s)
・ Recording pattern: Isolated mark and continuous mark (with two empty basic cells
Then, four consecutive recording marks with the same multi-value level
One isolated mark was recorded for 7 different multilevel levels)
As a result, as shown in FIG. 27, it has been found that the modulation degree (dynamic range) is large (modulation degree is 60%), and even in the continuous recording portion, it is possible to realize recording in which the fluctuation of the multilevel recording level is very small.
In the above experiment, multi-value recording was performed on the groove (groove), but recording was also possible on the groove (land).
比較例4
比較例2の追記型光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、8値の多値記録を行った。
<記録条件>
・記録線密度 : 基本セル長=0.47(μm)
・記録線速度 : 3.5(m/s)
・記録パターン : 孤立マークと連続マーク(実施例29と同様)
その結果、図28に示すように、連続記録部において、いわゆる「変調度のひげ」が発生し、多値記録レベルの変動が非常大きくなり(連続記録部において、再生レベルが同一でなくてはならない)、多値記録に適さないことが確認できた。また、記録パワーを低下させると変調度のひげが発生しなくなることが確認できたが、この時は、変調度(ダイナミックレンジ)が非常に小さくなり(変調度は20%)、またSNRが低下した。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流して基板表面の変形状態をAFMにより調べた。
その結果、図29に示すように、基本セルに対する記録マークの面積比が大きいレベルの連続記録部で〔(d)〜(f)〕、線形でない記録マーク間の干渉が発生しており、「変調度のひげ」が、変形の干渉による変形形状の大幅な劣化に基づくものであることが確認できた。
また、図30に示すように、基板の変形量と変調度のひげ量(連続記録マーク部の先頭と後端との再生レベルの差)の関係を調べた結果、変形量が約50nmを超えると連続記録部のレベル均一性が乱れ、多値記録に適さなくなることが分った。
即ち、変形量を低減させないと多値記録に対応した追記型光記録媒体を実現できないことが明らかとなった(しかし、この比較例4の追記型光記録媒体では、変形量を大きくしないと十分な変調度が発生しない)。
更に、上記の実験では、溝部(グルーブ部)に多値記録を行ったが、溝間部(ランド)には全く記録が行えなかった。
Comparative Example 4
For the write-once type optical recording medium of Comparative Example 2, an optical disc evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. was used. Value recording was performed.
<Recording conditions>
Recording linear density: Basic cell length = 0.47 (μm)
Recording linear velocity: 3.5 (m / s)
Recording pattern: isolated mark and continuous mark (same as Example 29)
As a result, as shown in FIG. 28, so-called “modulation whisker” occurs in the continuous recording portion, and the fluctuation of the multi-level recording level becomes very large (the playback level must be the same in the continuous recording portion). It was confirmed that it was not suitable for multi-value recording. Further, it was confirmed that when the recording power was reduced, the modulation factor was not whisked, but at this time, the modulation factor (dynamic range) was very small (modulation factor was 20%) and the SNR was reduced. did.
Further, the protective layer made of the ultraviolet curable resin and the Ag reflection layer of the write-once type optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol, and the deformation state of the substrate surface was examined by AFM.
As a result, as shown in FIG. 29, interference between non-linear recording marks is generated in the continuous recording portion having a large area ratio of the recording mark to the basic cell [(d) to (f)]. It was confirmed that the “modulation whiskers” were based on a significant deterioration of the deformed shape due to deformation interference.
Further, as shown in FIG. 30, as a result of examining the relationship between the deformation amount of the substrate and the whisker amount of the modulation degree (difference in reproduction level between the head and the rear end of the continuous recording mark portion), the deformation amount exceeds about 50 nm. As a result, it was found that the level uniformity of the continuous recording portion was disturbed, making it unsuitable for multi-value recording.
That is, it became clear that the write-once type optical recording medium corresponding to multilevel recording cannot be realized unless the deformation amount is reduced (however, the write-once type optical recording medium of Comparative Example 4 is sufficient unless the deformation amount is increased). The degree of modulation does not occur).
Furthermore, in the above experiment, multi-value recording was performed in the groove portion (groove portion), but no recording was possible in the groove portion (land).
実施例30
実施例29において、更に基本セルを小さくし(想定容量25GB)、以下の条件で、8値の多値記録を行った。
<記録条件>
・記録線密度 : 基本セル長=0.24(μm)
・記録線速度 : 5.0(m/s)
・記録パターン: 階段波形(図31参照。基本セル5つにレベル0を記録し、続く32個の基本セルにレベルxを記録するパターンを、xをレベル0〜レベル7まで変えて記録)
その結果、図31に示すように、変調度(ダイナミックレンジ)が大きく(変調度は60%以上)、連続記録部においても多値記録レベルの変動が非常に小さな記録を実現できることが分った。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiFeO表面の変形状態をSEM(走査型電子顕微鏡)により調べた。
その結果、図32に示すように、殆ど変形を伴わないで記録マークが形成されていることが確認できた(SEM写真では明らかな変形が認められない。但し、記録マークの様子をはっきりさせるために、セル長を0.26μmとして記録した)。
また、記録部表面と断面のTEM像観察から、本発明の多値記録可能な追記型光記録媒体では、BiFeO薄膜(第一の薄膜)、ZnS−SiO2(第二の薄膜)、及び有機材料薄膜の面積方向への多値記録と共に、膜厚方向にも多値記録されていることが確認できた。
Example 30
In Example 29, the basic cell was further reduced (assumed capacity 25 GB), and 8-level multi-value recording was performed under the following conditions.
<Recording conditions>
Recording linear density: Basic cell length = 0.24 (μm)
Recording linear velocity: 5.0 (m / s)
Recording pattern: staircase waveform (see FIG. 31. Level 0 is recorded in 5 basic cells and level x is recorded in the following 32 basic cells, and x is changed from level 0 to level 7)
As a result, as shown in FIG. 31, it has been found that the modulation degree (dynamic range) is large (modulation degree is 60% or more), and even in the continuous recording portion, it is possible to realize recording in which the fluctuation of the multilevel recording level is very small. .
In addition, the protective layer made of the ultraviolet curable resin and the Ag reflection layer of the write-once optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol to show the deformation state of the BiFeO surface by SEM (scanning electron microscope). We investigated by.
As a result, as shown in FIG. 32, it was confirmed that the recording mark was formed with almost no deformation (an obvious deformation was not recognized in the SEM photograph. However, in order to clarify the state of the recording mark. The cell length was recorded as 0.26 μm).
Further, from the TEM image observation of the surface and cross section of the recording portion, the write-once type optical recording medium capable of multi-value recording of the present invention has a BiFeO thin film (first thin film), ZnS-SiO 2 (second thin film), and organic It was confirmed that multi-value recording was also performed in the film thickness direction along with multi-value recording in the area direction of the material thin film.
実施例31
実施例29において、基本セル長を0.24(μm)として、以下の条件で8値の多値記録を行なった。
<記録条件>
・記録線速度 : 3.0(m/s)
・記録パターン: 多値レベル0−1−0−3−0−5−0−7−0の
繰り返し記録(図5参照)
また、この記録を行なった追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiFeO表面の変形状態をSEM(走査型電子顕微鏡)により調べた。
図33は基本セル長が0.24(μm)時のSEM像、図34は基本セル長が0.24(μm)時の再生信号である。
この結果から、BiFeO表面には大きな変形を伴うことなく記録部が形成されており、各多値レベルが明確に分離できた再生信号を得られることが分った。
Example 31
In Example 29, eight-value multi-value recording was performed under the following conditions with a basic cell length of 0.24 (μm).
<Recording conditions>
Recording linear velocity: 3.0 (m / s)
・ Recording pattern: Multi-level 0-1-0-3-0-5-0-7-0
Repeated recording (see Fig. 5)
Further, the protective layer made of an ultraviolet curable resin and the Ag reflection layer of the write-once type optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol to show the deformation state of the BiFeO surface by SEM (scanning electron microscope). We investigated by.
FIG. 33 shows an SEM image when the basic cell length is 0.24 (μm), and FIG. 34 shows a reproduction signal when the basic cell length is 0.24 (μm).
From this result, it was found that the recording part was formed on the BiFeO surface without significant deformation, and it was possible to obtain a reproduction signal in which each multi-value level could be clearly separated.
比較例5
比較例4において、基本セル長を0.32(μm)、及び0.24(μm)として、以下の条件で8値の多値記録を行なった。
<記録条件>
・記録線速度 : 基本セル長0.32(μm)の時は4.0(m/s)
0.24(μm)の時は3.0(m/s)
・記録パターン: 多値レベル0−1−0−3−0−5−0−7−0の
繰り返し記録(図5参照)
また、この記録を行なった追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流して基板表面の変形状態をSEM(走査型電子顕微鏡)により調べた。
図35は基本セル長が0.32(μm)時のSEM像、図36は基本セル長が0.32(μm)時の再生信号、図37は基本セル長が0.24(μm)時のSEM像、図38は基本セル長が0.24(μm)時の再生信号である。
この結果から、従来型の追記型光記録媒体では、大きな変形を伴って記録部が形成されており、基本セル長が短くなるとマーク間干渉が増大し(図37参照。レベル7のマークが熱干渉を受けて歪んでいる)、図38に示すように、各多値レベルが明確に分離できない再生信号(図34と比較)となってしまうことが分る。
Comparative Example 5
In Comparative Example 4, 8-level multi-value recording was performed under the following conditions with the basic cell lengths of 0.32 (μm) and 0.24 (μm).
<Recording conditions>
Recording linear velocity: 4.0 (m / s) when the basic cell length is 0.32 (μm)
3.0 (m / s) when 0.24 (μm)
・ Recording pattern: Multi-level 0-1-0-3-0-5-0-7-0
Repeated recording (see Fig. 5)
In addition, the protective layer made of the ultraviolet curable resin and the Ag reflection layer of the write-once optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol to show the deformation state of the substrate surface by SEM (scanning electron microscope). We investigated by.
35 is an SEM image when the basic cell length is 0.32 (μm), FIG. 36 is a reproduction signal when the basic cell length is 0.32 (μm), and FIG. 37 is when the basic cell length is 0.24 (μm). FIG. 38 shows a reproduction signal when the basic cell length is 0.24 (μm).
From this result, in the conventional write-once type optical recording medium, the recording part is formed with a large deformation, and when the basic cell length is shortened, the interference between marks increases (see FIG. 37. The mark of level 7 is heated). As shown in FIG. 38, it is understood that each multi-value level becomes a reproduction signal that cannot be clearly separated (compared with FIG. 34).
実施例32
実施例23で作成した追記型光記録媒体に対し、基本セル長を0.24(μm)として、以下の条件で8値の多値記録を行なった。
<記録条件>
・記録線速度 : 3.0(m/s)
・記録パターン : 多値レベル0−1−0−3−0−5−0−7−0の
繰り返し記録(図5参照)
また、この記録を行なった追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiO表面の変形状態をSEM(走査型電子顕微鏡)により調べた。図39は基本セル長が0.24(μm)時のSEM像、図40は基本セル長が0.24(μm)時の再生信号である。
この結果から、BiO表面には大きな変形を伴うことなく記録部が形成されており(多少変形した領域が観測されるが、その変形領域は基本セル長に対し非常に小さい)、各多値レベルが明確に分離できた再生信号を得られることが分った。また、上記の実験では、溝部(グルーブ部)に多値記録を行ったが、溝間部(ランド)にも同様に記録が行えた。
Example 32
For the write-once type optical recording medium produced in Example 23, 8-level multi-value recording was performed under the following conditions with a basic cell length of 0.24 (μm).
<Recording conditions>
Recording linear velocity: 3.0 (m / s)
・ Recording pattern: Multi-level 0-1-0-3-0-5-0-7-0
Repeated recording (see Fig. 5)
In addition, the protective layer made of an ultraviolet curable resin and the Ag reflection layer of the write-once optical recording medium on which this recording was performed were peeled off, and the organic material thin film was washed away with ethanol to change the deformation state of the BiO surface with an SEM (scanning electron microscope). It was investigated by. 39 shows an SEM image when the basic cell length is 0.24 (μm), and FIG. 40 shows a reproduction signal when the basic cell length is 0.24 (μm).
From this result, a recording part is formed on the BiO surface without a large deformation (a slightly deformed region is observed, but the deformed region is very small with respect to the basic cell length), and each multi-value level It was found that a reproduced signal that was clearly separated could be obtained. In the above experiment, multi-value recording was performed on the groove (groove), but recording was also possible on the groove (land).
実施例33
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚50nmのZnS−SiO2薄膜(本発明でいう第二の薄膜、ZnS:SiO2=85:15)、膜厚20nmのBiO薄膜(本発明で言う第一の薄膜、ターゲット組成はBi2O3)を順次設け、その上に、前記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約25nm)をスピンコート法によって形成し、更にその上に、スパッタ法により膜厚150nmのAg反射層、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
なお、〔化1〕の色素は、従来のDVD−RやDVD+Rに用いられる材料であり、青色レーザ領域には吸収が殆どない材料である。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で記録を行った(従来の二値記録)。
<記録条件>
・記録線密度 : 基本セル長=0.24〜0.32(μm)
・記録線速度 : 5.0(m/s)
・記録パターン: ランダムパターン
記録再生の詳細は、次の文献(1)〜(3)に記載されている条件・方法を用いた。
(1) A. Shimizu et al.: “Data Detection using Pattern Recognition for Multi−level Optical Recording”, ISOM 2001 Technical Digest, Taipei, Taiwan, (October 2001), pp. 300−301.
(2) K. Sakagami et al.: “A New Data Modulation Method for Multi−level Optical Recording”, ISOM/ODS 2002 Postdeadline Papers, Waikoloa, Hawaii, (July 2002), pp. 54−56.
(3) Y. Kadokawa et al.: “Multi−level Optical Recording Using a Blue Laser”, ODS 2003 Technical Digest, Vancouver, BC Canada, (May 2003), pp. 294−296.
また多値記録の評価にはSDR(sigma to dynamic range)を用いた。なお、SDRは次の式(1)で求められる値である。
また、上記文献に記載されているように、BER(ビットエラーレート)が10−5以下となる記録が実現されるためには、SDRは3.2%以下でなくてはならない。この前提をふまえた上で、基本セル長を変えてSDRの測定を行った。
各基本セル長に対応する記録容量を図53に示した。図中の「Required valeu」は、要求されるSDR値の水準を示す。即ち、この要求値よりも低いことが必要である。図から分るように、連続記録部においてSDRが3.2%以下となるのは、基本セル長がおよそ0.24μmより大きい(長い)場合であり、本発明の記録媒体に対して多値記録を適用することにより、基板厚0.6mmと対物レンズNA0.65を用いたシステムであっても、記録容量23GB以上(単層)という超大容量を実現できることが明らかになった。
このように、基板厚0.6mmと対物レンズNA0.65を用いたシステムで、記録容量23GB以上という超大容量を実現した例は、発明者らが知る限り皆無である。
更に、基板厚0.1mmと対物レンズNA0.85を用いたシステムの場合、本発明の記録媒体に対して多値記録を適用することにより、記録容量30GB以上(単層)という超大容量を実現できることが明らかになった。
なお、本実施例は実験結果の一例を示すものであって、本発明の追記型光記録媒体の記録容量を23GBに限定するものではない。
Example 33
On a polycarbonate substrate having a guide groove (groove depth of 50 nm) (substrate thickness: 0.6 mm), a ZnS—SiO 2 thin film having a thickness of 50 nm ( second thin film referred to in the present invention, ZnS: SiO 2 ) by sputtering. = 85: 15), a 20 nm thick BiO thin film (the first thin film referred to in the present invention, the target composition is Bi 2 O 3 ), and an organic material comprising the dye represented by the above [Chemical Formula 1] A material thin film (average film thickness of about 25 nm) is formed by a spin coating method, and further, an Ag reflection layer having a film thickness of 150 nm and a protective layer made of an ultraviolet curable resin are provided by sputtering. The write-once type optical recording medium of the invention was prepared.
The dye of [Chemical Formula 1] is a material used for conventional DVD-R and DVD + R, and is a material that hardly absorbs in the blue laser region.
Recording was performed on the above optical recording medium under the following conditions using an optical disk evaluation apparatus DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. (conventional binary recording) ).
<Recording conditions>
Recording linear density: Basic cell length = 0.24 to 0.32 (μm)
Recording linear velocity: 5.0 (m / s)
Recording pattern: Random pattern The details of recording / reproduction used the conditions and methods described in the following documents (1) to (3).
(1) A. Shimizu et al. : “Data Detection using Pattern Recognition for Multi-level Optical Recording”, ISOM 2001 Technical Digest, Taipei, Taiwan, (October 2001), p. 300-301.
(2) K. Sakagami et al. : "A New Data Modulation Method for Multi-level Optical Recording", ISO / ODS 2002 Postdeline Papers, Waikoloa, Hawaii, (July 2002), p. 54-56.
(3) Y. Kadokawa et al. "Multi-level Optical Recording Using a Blue Laser", ODS 2003 Technical Digest, Vancouver, BC Canada, (May 2003), pp. 294-296.
In addition, SDR (sigma to dynamic range) was used for evaluation of multi-level recording. SDR is a value obtained by the following equation (1).
Also, as described in the above document, in order to realize recording with a BER (bit error rate) of 10 −5 or less, the SDR must be 3.2% or less. Based on this premise, SDR was measured by changing the basic cell length.
The recording capacity corresponding to each basic cell length is shown in FIG. “Required value” in the figure indicates the level of the required SDR value. That is, it must be lower than this required value. As can be seen from the figure, the SDR is 3.2% or less in the continuous recording portion when the basic cell length is larger (longer) than about 0.24 μm, which is multivalued compared to the recording medium of the present invention. By applying the recording, it became clear that even a system using a substrate thickness of 0.6 mm and an objective lens NA of 0.65 can realize a super large capacity of a recording capacity of 23 GB or more (single layer).
Thus, as far as the inventors know, there is no example in which a super large capacity of a recording capacity of 23 GB or more is realized by a system using a substrate thickness of 0.6 mm and an objective lens NA of 0.65.
Furthermore, in the case of a system using a substrate thickness of 0.1 mm and an objective lens NA of 0.85, an ultra-high capacity of 30 GB or more (single layer) is realized by applying multi-value recording to the recording medium of the present invention. It became clear that we could do it.
This example shows an example of experimental results, and the recording capacity of the write-once type optical recording medium of the present invention is not limited to 23 GB.
実施例34
実施例30において(即ち実施例1の追記型光記録媒体に対して)、第一の薄膜をMoO3とした点以外は、同様の追記型光記録媒体を作成し、同様の記録パターンを記録した。その結果、実施例30とほぼ同様な記録波形を得ることができた。
Example 34
In Example 30 (that is, with respect to the write-once type optical recording medium of Example 1), except that the first thin film was made of MoO 3 , the same write-once type optical recording medium was prepared and the same recording pattern was recorded. did. As a result, a recording waveform almost similar to that in Example 30 could be obtained.
実施例35
実施例30において(即ち実施例1の追記型光記録媒体に対して)、第一の薄膜をV2O5とした点以外は、同様の追記型光記録媒体を作成し、同様の記録パターンを記録した。その結果、実施例30とほぼ同様な記録波形を得ることができた
Example 35
In Example 30 (that is, with respect to the write-once type optical recording medium of Example 1), the same write-once type optical recording medium was prepared and the same recording pattern was used except that the first thin film was V 2 O 5. Was recorded. As a result, a recording waveform almost similar to that in Example 30 could be obtained.
実施例36
実施例1で作成した追記型光記録媒体に対し、最短マーク長が0.205μmとなる記録線密度でPR(1,2,1)方式を用いて記録再生を行った。
PRML方式で復号した結果、BER(ビットエラーレート)は10−5台となり非常に良好な記録再生が行えることが確認できた。
Example 36
Recording / reproduction was performed on the write-once type optical recording medium prepared in Example 1 using the PR (1, 2, 1) system at a recording linear density at which the shortest mark length was 0.205 μm.
As a result of decoding by the PRML method, it was confirmed that the BER (bit error rate) was 10 −5 units and very good recording and reproduction could be performed.
実施例37
実施例23で作成した追記型光記録媒体に対し、最短マーク長が0.205μmとなる記録線密度でPR(1,2,1)方式を用いて記録再生を行った。
PRML方式で復号した結果、BER(ビットエラーレート)は10−5台となり非常に良好な記録再生が行えることが確認できた。
Example 37
Recording / reproduction was performed on the write-once type optical recording medium prepared in Example 23 using the PR (1, 2, 1) method at a recording linear density where the shortest mark length was 0.205 μm.
As a result of decoding by the PRML method, it was confirmed that the BER (bit error rate) was 10 −5 units and very good recording and reproduction could be performed.
比較例6
比較例2で作成した追記型光記録媒体に対し、最短マーク長が0.205μmとなる記録線密度でPR(1,2,1)方式を用いて記録再生を行った。
その結果、通常の二値記録におけるジッタ評価ではジッタ値が20%を超え、PRML方式で復号した結果、BER(ビットエラーレート)も10−3台となり、この記録線密度では、PRML方式を適用しても記録再生が行えないことが確認できた。
Comparative Example 6
Recording / reproduction was performed on the write-once type optical recording medium prepared in Comparative Example 2 using the PR (1, 2, 1) method at a recording linear density where the shortest mark length was 0.205 μm.
As a result, in jitter evaluation in normal binary recording, the jitter value exceeds 20%, and as a result of decoding by the PRML method, the BER (bit error rate) is 10 −3 units, and the PRML method is applied at this recording linear density. However, it was confirmed that recording and playback could not be performed.
実施例38
実施例1で作成した追記型光記録媒体の吸収率Qを測定した。具体的には、該光記録媒体の反射率Rと透過率Tを測定し、1−R−Tなる値を吸収率Qとした(図41中のX)。
また比較のため、実施例1の追記型光記録媒体と同様にして、青色レーザ波長域でも記録再生が可能な材料であるフタロシアニン化合物を使用している市販のCD−Rの吸収率Q(図41中のZ)と、比較例2で作成した追記型光記録媒体の吸収率Q(図41中のY)も測定した(フタロシアニン化合物を用いた市販のCD−Rそのままでは、基板のトラックピッチや基板厚の関係で、青色レーザ対応の評価装置では記録再生できないが、市販のCD−Rを破壊してフタロシアニン化合物を溶剤で洗い流し、青色レーザに対応した基板に再度塗布し直すと、青色レーザ対応の評価装置で記録再生が可能である)。
その結果、本発明の追記型光記録媒体は、500nm以下の波長域、特に400nmの近傍で吸収率Qの変動が非常に小さいことが確認できた。
従って、本発明の追記型光記録媒体は、記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体を実現できることが確認できた。
Example 38
The absorptance Q of the write-once type optical recording medium prepared in Example 1 was measured. Specifically, the reflectance R and transmittance T of the optical recording medium were measured, and the value 1-RT was defined as the absorption factor Q (X in FIG. 41).
For comparison, as in the write-once type optical recording medium of Example 1, the absorption factor Q of a commercially available CD-R using a phthalocyanine compound, which is a material that can be recorded and reproduced even in the blue laser wavelength region (see FIG. 41) and the absorption factor Q (Y in FIG. 41) of the write-once type optical recording medium prepared in Comparative Example 2 were also measured (the track pitch of the substrate with the commercially available CD-R using the phthalocyanine compound as it was. Due to the relationship between the thickness of the substrate and the thickness of the substrate, it cannot be recorded / reproduced by an evaluation device compatible with blue lasers. However, when a commercially available CD-R is destroyed, the phthalocyanine compound is washed away with a solvent and applied again to a substrate compatible with blue lasers. It can be recorded and played back with a corresponding evaluation device).
As a result, it was confirmed that the write-once type optical recording medium of the present invention has a very small variation in the absorptance Q in the wavelength region of 500 nm or less, particularly in the vicinity of 400 nm.
Therefore, the write-once optical recording medium of the present invention is a write-once optical recording medium with little change in recording characteristics such as recording sensitivity, modulation degree, jitter, error rate, and reflectance, etc., with respect to fluctuations in the recording / reproducing wavelength. It was confirmed that it could be realized.
実施例39
実施例38同様に、実施例23で作成した追記型光記録媒体の吸収率Qを測定した。具体的には、該光記録媒体の反射率Rと透過率Tを測定し、1−R−Tなる値を吸収率Qとした(図42中のW)。図42中のY、Zは実施例38と同様である。
その結果、本発明の追記型光記録媒体は、500nm以下の波長域、特に400nmの近傍で吸収率Qの変動が非常に小さいことが確認できた。
従って、本発明によれば、記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体を実現できることが確認できた。
Example 39
Similarly to Example 38, the absorptivity Q of the write-once optical recording medium prepared in Example 23 was measured. Specifically, the reflectance R and transmittance T of the optical recording medium were measured, and the value 1-RT was defined as the absorption factor Q (W in FIG. 42). 42, Y and Z are the same as in Example 38.
As a result, it was confirmed that the write-once type optical recording medium of the present invention has a very small variation in the absorptance Q in the wavelength region of 500 nm or less, particularly in the vicinity of 400 nm.
Therefore, according to the present invention, it is confirmed that a write-once type optical recording medium can be realized in which recording characteristics such as recording sensitivity, modulation degree, jitter, and error rate, and changes in reflectance and the like are small with respect to fluctuations in recording and reproducing wavelengths. did it.
実施例40
実施例1と比較例1で作成した追記型光記録媒体に形成された記録マークがどのような原理に基づいて形成されているか、また両者に違いがあるかを確認する実験を行った。
実施例1と比較例1で作成した追記型光記録媒体の記録部分をFIB(集束イオンビーム加工装置)によって切断し、この部分をTEM(透過型電子顕微鏡)で観察した。
その結果、比較例1において、変調度が急増した部分(最小ジッタよりも高い記録パワーで記録した部分)の記録マーク部では、図44に示すように、BiFeO薄膜が大きく変形し、破壊されたような記録マークとなっており、この大きな変形と破壊が、ジッタの悪化や、記録パワーマージンの悪化につながっていることが確認できた。
一方、実施例1の記録マーク部は、図43に示すように、BiFeO薄膜に大きな変形や破壊が見られないことが確かめられた。
また、明らかに、BiFeO薄膜(第一の薄膜)とZnS−SiO2薄膜(第二の薄膜)の界面の不明瞭化が起きており、有機材料薄膜にも空洞部の形成が見られる場合があり、本発明の記録原理の正当性が裏付けられた。
以上の結果から、本発明の記録原理が変形を主体とするものでないことが確認できた。
Example 40
An experiment was conducted to confirm on what principle the recording marks formed on the write-once type optical recording media prepared in Example 1 and Comparative Example 1 were formed, and whether there was a difference between the two.
The recording part of the write-once type optical recording medium prepared in Example 1 and Comparative Example 1 was cut with FIB (focused ion beam processing apparatus), and this part was observed with a TEM (transmission electron microscope).
As a result, in Comparative Example 1, the BiFeO thin film was greatly deformed and destroyed in the recording mark portion of the portion where the modulation degree increased rapidly (the portion recorded with a recording power higher than the minimum jitter) as shown in FIG. It was confirmed that the large deformation and destruction led to deterioration of jitter and recording power margin.
On the other hand, as shown in FIG. 43, it was confirmed that the recording mark portion of Example 1 shows no significant deformation or destruction in the BiFeO thin film.
Obviously, the interface between the BiFeO thin film (first thin film) and the ZnS-SiO 2 thin film (second thin film) is obscured, and the organic material thin film may have a cavity. Yes, the validity of the recording principle of the present invention was confirmed.
From the above results, it was confirmed that the recording principle of the present invention is not mainly composed of deformation.
実施例41
実施例31で基本セル長を0.24(μm)とした記録部分が、どのような原理に基づいて形成されているかを、実施例40と同様にしてFIBとTEMで観察した。
その結果、図45に示すように、有機材料薄膜(色素層)の分解・変質、及び体積膨張、BiFeO層とZnS−SiO2層の微小変形、BiFeO層とZnS−SiO2層界面の不明瞭化(両層の材料の溶融・混合・拡散)によって記録マークが形成されていることが確認できた。
更に、電子線回折による分析では、記録部では結晶化が起こっており、結晶粒が形成されていることが確認され、本発明の記録原理の正当性が裏付けられた。
Example 41
Based on what principle the recording portion having the basic cell length of 0.24 (μm) in Example 31 was formed was observed by FIB and TEM as in Example 40.
As a result, as shown in FIG. 45, the decomposition and deterioration of the organic material thin film (dye layer), and volume expansion, small deformation of the BiFeO layer and ZnS-SiO 2 layer, BiFeO layer and ZnS-SiO 2 layer obscuring the interface It was confirmed that the recording mark was formed by crystallization (melting, mixing, and diffusion of the materials of both layers).
Furthermore, in the analysis by electron beam diffraction, crystallization occurred in the recording portion, and it was confirmed that crystal grains were formed, and the validity of the recording principle of the present invention was confirmed.
実施例42
案内溝(溝深さ50nm)を有するポリカーボネート基板上に(基板厚0.6mm)、スパッタ法を用いて膜厚約10nmのBiO薄膜(第一の薄膜。ターゲット組成はBi2O3)と膜厚約100nmのZnS−SiO2薄膜(第二の薄膜)を順次積層した。
次いでZnS−SiO2薄膜の上に、スパッタ法で膜厚約150nmのAg反射層、紫外線硬化型樹脂からなる保護層を設けて本発明の追記型光記録媒体を作成した。
この追記型光記録媒体に、マーク長が約0.89(μm)の単一周期記録を行ない、実施例40と同様にしてFIBとTEMで観察した。
その結果、図47に示すように(図46は未記録部のTEM像)、BiO層とZnS−SiO2層の微小変形、BiO層とZnS−SiO2層界面の不明瞭化(両層の材料の溶融・混合・拡散)によって記録マークが形成されていることが確認できた。
更に、電子線回折による分析では、記録部では結晶化が起こっており、結晶粒が形成されていることが確認され、本発明の記録原理の正当性が裏付けられた。
Example 42
On a polycarbonate substrate having a guide groove (groove depth of 50 nm) (substrate thickness 0.6 mm), a BiO thin film (first thin film; target composition is Bi 2 O 3 ) and a film having a film thickness of about 10 nm by sputtering. A ZnS—SiO 2 thin film (second thin film) having a thickness of about 100 nm was sequentially laminated.
Then, a write-once optical recording medium of the present invention was prepared by providing an Ag reflective layer having a thickness of about 150 nm and a protective layer made of an ultraviolet curable resin on the ZnS-SiO 2 thin film by sputtering.
This write-once optical recording medium was subjected to single period recording with a mark length of about 0.89 (μm), and observed by FIB and TEM in the same manner as in Example 40.
As a result, as shown in FIG. 47 (FIG. 46 is a TEM image of an unrecorded part), the BiO layer and the ZnS—SiO 2 layer are slightly deformed, and the interface between the BiO layer and the ZnS—SiO 2 layer is obscured (both layers) It was confirmed that the recording mark was formed by melting, mixing, and diffusion of the material.
Furthermore, in the analysis by electron beam diffraction, crystallization occurred in the recording portion, and it was confirmed that crystal grains were formed, and the validity of the recording principle of the present invention was confirmed.
n 複素屈折率の実部
k 複素屈折率の虚部
δn 記録再生波長変動による複素屈折率の実部の変化
δk 記録再生波長変動による複素屈折率の虚部の変化
δλ 記録再生波長の幅(変動)
T1〜T7 サンプリングタイム
A 再生信号の波形
B 保護層、Ag反射層、色素層を剥がして基板表面をAFM観察した像
C Bで測定した基板のAFM像から基板断面の変形量を表示した図
M 隣接トラックに記録した記録マーク
N Mよりも時間的に先に記録された記録マーク
a 多値レベル2(図5参照)の連続記録部
b 多値レベル3(図5参照)の連続記録部
c 多値レベル4(図5参照)の連続記録部
d 多値レベル5(図5参照)の連続記録部
e 多値レベル6(図5参照)の連続記録部
f 多値レベル7(図5参照)の連続記録部
X 実施例1の追記型光記録媒体の吸収率
W 実施例23の追記型光記録媒体の吸収率
Y 比較例2の追記型光記録媒体の吸収率
Z 市販のCD−Rの吸収率
n Real part of complex index of refraction k Imaginary part of complex index of refraction δn Change of real part of complex index of refraction due to fluctuations in recording and reproduction wavelength δk Change of imaginary part of complex index of refraction due to fluctuations in recording and reproduction wavelength δλ Width of recording and reproduction wavelength (variation )
T 1 to T 7 Sampling time A Reproduced signal waveform B Image obtained by removing the protective layer, Ag reflection layer, and dye layer and observing the substrate surface with AFM CB Amount of deformation of the substrate cross section was displayed from the AFM image of the substrate measured with CB Fig. M Recording mark recorded on adjacent track NM Recording mark recorded earlier in time than M a Continuous recording section of multi-level 2 (see Fig. 5) b Continuous recording of multi-level 3 (see Fig. 5) Part c Continuous recording part of multi-level 4 (see FIG. 5) d Continuous recording part of multi-level 5 (see FIG. 5) e Continuous recording part of multi-level 6 (see FIG. 5) f Multi-level 7 (FIG. 5) X) Absorption rate of write-once optical recording medium of Example 1 W Absorption rate of write-once optical recording medium of Example 23 Y Absorption rate of write-once optical recording medium of Comparative Example Z Commercially available CD -R absorption
Claims (37)
イ)第一の薄膜及び/又は第二の薄膜を変形させる
ロ)第一の薄膜及び/又は第二の薄膜の複素屈折率を変化させる
ハ)第一の薄膜及び/又は第二の薄膜の組成を変化させる
ニ)第一の薄膜を溶融させる
ホ)第一の薄膜中の構成元素を、第二の薄膜又は有機材料薄膜へ拡散させる
ヘ)第一の薄膜の結晶状態・結晶構造を変化させる
ト)第一の薄膜中の構成元素を酸化/還元させる
チ)第一の薄膜中の組成分布を変化させる
リ)有機材料薄膜の体積を変化させる
ヌ)有機材料薄膜の複素屈折率を変化させる
ル)有機材料薄膜に空洞部を形成させる The write-once type optical recording medium according to any one of claims 1 to 25, wherein a recording mark can be formed by at least one of the following recording principles (a) to (l) by the light absorption function of the first thin film.
A) Deform the first thin film and / or the second thin film b) Change the complex refractive index of the first thin film and / or the second thin film c) The first thin film and / or the second thin film Changing the composition d) Melting the first thin film e) Diffusing the constituent elements in the first thin film to the second thin film or organic material thin film f) Changing the crystal state and crystal structure of the first thin film G) Oxidation / reduction of the constituent elements in the first thin film h) Change the composition distribution in the first thin film i) Change the volume of the organic material thin film n) Change the complex refractive index of the organic material thin film Le) Make a cavity in the organic material thin film
イ)第一の薄膜及び/又は第二の薄膜を変形させる
ロ)第一の薄膜及び/又は第二の薄膜の複素屈折率を変化させる
ハ)第一の薄膜及び/又は第二の薄膜の組成を変化させる
ニ)第一の薄膜を溶融させる
ホ)第一の薄膜中の構成元素を、第二の薄膜又は有機材料薄膜へ拡散させる
ヘ)第一の薄膜の結晶状態・結晶構造を変化させる
ト)第一の薄膜中の構成元素を酸化/還元させる
チ)第一の薄膜中の組成分布を変化させる
リ)有機材料薄膜の体積を変化させる
ヌ)有機材料薄膜の複素屈折率を変化させる
ル)有機材料薄膜に空洞部を形成させる 34. The recording / reproducing method according to claim 30, wherein a recording mark is formed by at least one of the following recording principles (a) to (l) by the light absorption function of the first thin film.
A) Deform the first thin film and / or the second thin film b) Change the complex refractive index of the first thin film and / or the second thin film c) The first thin film and / or the second thin film Changing the composition d) Melting the first thin film e) Diffusing the constituent elements in the first thin film to the second thin film or organic material thin film f) Changing the crystal state and crystal structure of the first thin film G) Oxidation / reduction of the constituent elements in the first thin film h) Change the composition distribution in the first thin film i) Change the volume of the organic material thin film n) Change the complex refractive index of the organic material thin film Le) Make a cavity in the organic material thin film
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004066210A JP4271063B2 (en) | 2003-04-16 | 2004-03-09 | Write-once optical recording medium and recording / reproducing method thereof |
US10/824,227 US6933032B2 (en) | 2003-04-15 | 2004-04-14 | Write-once-read-many optical recording media and process for recording and reproducing information on the media |
DE602004010451T DE602004010451T2 (en) | 2003-04-15 | 2004-04-14 | Write-once, multi-read optical disc and method for writing and reading the disc |
EP04008899A EP1475793B1 (en) | 2003-04-15 | 2004-04-14 | Write-once-read-many optical recording medium and process for recording and reproducing of the optical medium |
US11/159,920 US7413788B2 (en) | 2003-04-15 | 2005-06-23 | Write-once-read-many optical recording media and process for recording and reproducing information on the media |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003112141 | 2003-04-16 | ||
JP2003289428 | 2003-08-07 | ||
JP2003385810 | 2003-11-14 | ||
JP2004066210A JP4271063B2 (en) | 2003-04-16 | 2004-03-09 | Write-once optical recording medium and recording / reproducing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005161831A true JP2005161831A (en) | 2005-06-23 |
JP4271063B2 JP4271063B2 (en) | 2009-06-03 |
Family
ID=34743787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004066210A Expired - Fee Related JP4271063B2 (en) | 2003-04-15 | 2004-03-09 | Write-once optical recording medium and recording / reproducing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4271063B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007061021A1 (en) * | 2005-11-22 | 2007-05-31 | Sony Corporation | Recordable optical recording medium and method for manufacturing same |
JP2007247053A (en) * | 2005-11-22 | 2007-09-27 | Ricoh Co Ltd | Sputtering target and draw type optical recording medium |
WO2008016126A1 (en) * | 2006-08-01 | 2008-02-07 | Ricoh Company, Ltd. | Recordable optical recording medium and recording method thereof |
JP2008055723A (en) * | 2006-08-30 | 2008-03-13 | Ricoh Co Ltd | Write once type optical recording medium |
JP2008077818A (en) * | 2006-08-24 | 2008-04-03 | Tdk Corp | Optical recording medium |
JP2008084515A (en) * | 2006-09-01 | 2008-04-10 | Ricoh Co Ltd | Write once type optical recording medium and its recording method |
JP2008165900A (en) * | 2006-12-28 | 2008-07-17 | Tdk Corp | Optical recording medium |
WO2008123620A1 (en) * | 2007-04-02 | 2008-10-16 | Ricoh Company, Ltd. | Worm optical recording medium |
WO2008126573A1 (en) * | 2007-03-28 | 2008-10-23 | Ricoh Company, Ltd. | Optical recording medium, sputtering target, and method for manufacturing the same |
JP2008276900A (en) * | 2007-04-02 | 2008-11-13 | Ricoh Co Ltd | Write once optical recording medium |
JP2008273167A (en) * | 2007-04-03 | 2008-11-13 | Ricoh Co Ltd | Photorecording medium, sputtering target and manufacturing method of photorecording medium and sputtering target |
JP2009020919A (en) * | 2006-08-01 | 2009-01-29 | Ricoh Co Ltd | Write-once type optical recording medium and recording method therefor |
US7897535B2 (en) | 2006-03-01 | 2011-03-01 | Ricoh Company, Ltd. | Sputtering target and manufacturing method therefor, and recordable optical recording medium |
US7976922B2 (en) | 2006-12-12 | 2011-07-12 | Ricoh Company, Ltd. | Optical recording medium |
US8124211B2 (en) | 2007-03-28 | 2012-02-28 | Ricoh Company, Ltd. | Optical recording medium, sputtering target, and method for manufacturing the same |
US8227067B2 (en) | 2007-01-30 | 2012-07-24 | Ricoh Company, Ltd. | Optical recording medium, and sputtering target and method for producing the same |
-
2004
- 2004-03-09 JP JP2004066210A patent/JP4271063B2/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007247053A (en) * | 2005-11-22 | 2007-09-27 | Ricoh Co Ltd | Sputtering target and draw type optical recording medium |
WO2007061021A1 (en) * | 2005-11-22 | 2007-05-31 | Sony Corporation | Recordable optical recording medium and method for manufacturing same |
US7924694B2 (en) | 2005-11-22 | 2011-04-12 | Sony Corporation | Write-once type optical recording medium and fabrication method thereof |
US7897535B2 (en) | 2006-03-01 | 2011-03-01 | Ricoh Company, Ltd. | Sputtering target and manufacturing method therefor, and recordable optical recording medium |
US8124212B2 (en) | 2006-03-01 | 2012-02-28 | Ricoh Company, Ltd. | Sputtering target and manufacturing method therefor, and recordable optical recording medium |
WO2008016126A1 (en) * | 2006-08-01 | 2008-02-07 | Ricoh Company, Ltd. | Recordable optical recording medium and recording method thereof |
JP4667427B2 (en) * | 2006-08-01 | 2011-04-13 | 株式会社リコー | Write-once optical recording medium |
KR101017963B1 (en) | 2006-08-01 | 2011-03-02 | 가부시키가이샤 리코 | Recordable optical recording medium and recording method thereof |
JP2009020919A (en) * | 2006-08-01 | 2009-01-29 | Ricoh Co Ltd | Write-once type optical recording medium and recording method therefor |
JP2008077818A (en) * | 2006-08-24 | 2008-04-03 | Tdk Corp | Optical recording medium |
JP2008055723A (en) * | 2006-08-30 | 2008-03-13 | Ricoh Co Ltd | Write once type optical recording medium |
JP4680852B2 (en) * | 2006-08-30 | 2011-05-11 | 株式会社リコー | Write-once optical recording medium |
JP2008084515A (en) * | 2006-09-01 | 2008-04-10 | Ricoh Co Ltd | Write once type optical recording medium and its recording method |
US7976922B2 (en) | 2006-12-12 | 2011-07-12 | Ricoh Company, Ltd. | Optical recording medium |
JP4645590B2 (en) * | 2006-12-28 | 2011-03-09 | Tdk株式会社 | Optical recording medium |
JP2008165900A (en) * | 2006-12-28 | 2008-07-17 | Tdk Corp | Optical recording medium |
US8227067B2 (en) | 2007-01-30 | 2012-07-24 | Ricoh Company, Ltd. | Optical recording medium, and sputtering target and method for producing the same |
WO2008126573A1 (en) * | 2007-03-28 | 2008-10-23 | Ricoh Company, Ltd. | Optical recording medium, sputtering target, and method for manufacturing the same |
US8124211B2 (en) | 2007-03-28 | 2012-02-28 | Ricoh Company, Ltd. | Optical recording medium, sputtering target, and method for manufacturing the same |
JP2008276900A (en) * | 2007-04-02 | 2008-11-13 | Ricoh Co Ltd | Write once optical recording medium |
WO2008123620A1 (en) * | 2007-04-02 | 2008-10-16 | Ricoh Company, Ltd. | Worm optical recording medium |
US8147942B2 (en) | 2007-04-02 | 2012-04-03 | Ricoh Company, Ltd. | Worm optical recording medium |
JP2008273167A (en) * | 2007-04-03 | 2008-11-13 | Ricoh Co Ltd | Photorecording medium, sputtering target and manufacturing method of photorecording medium and sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JP4271063B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7413788B2 (en) | Write-once-read-many optical recording media and process for recording and reproducing information on the media | |
JP4271063B2 (en) | Write-once optical recording medium and recording / reproducing method thereof | |
JP3897695B2 (en) | Write-once optical recording medium with low-to-high recording polarity for short wavelengths | |
US7245576B2 (en) | Optical recording medium and optical recording-reproducing method | |
KR100770808B1 (en) | Optical recording medium, manufacturing method thereof, method for recording data on optical recording medium, and data reproducing method | |
JP4577872B2 (en) | Write-once optical recording medium | |
JP4577891B2 (en) | Optical recording medium | |
JP4117878B2 (en) | Write-once optical recording medium and recording method thereof | |
JP4667427B2 (en) | Write-once optical recording medium | |
JP4778300B2 (en) | Write-once optical recording medium | |
JP5094698B2 (en) | Dye for optical information recording medium and optical information recording medium | |
KR101017963B1 (en) | Recordable optical recording medium and recording method thereof | |
US20040115559A1 (en) | Optical information recording medium and process for recording thereon | |
JP2004119007A (en) | High density play back only optical disk | |
KR20050029765A (en) | High density readable only optical disc and method for preparing the same | |
JP5160330B2 (en) | Dye for optical information recording medium and optical information recording medium | |
JP2002298439A (en) | Optical recording medium and reproducing method | |
Hosoda et al. | Inorganic recordable disk with more eco-friendly material for blue | |
JP3844704B2 (en) | Write-once type optical recording medium capable of multi-value recording and multi-value recording method | |
JP2006289940A (en) | Phase change-type optical information recording medium | |
KR100573680B1 (en) | Multi level super resolution optical disc | |
KR20010090164A (en) | High density optical storage medium | |
JP2004213745A (en) | Write-once type optical recording medium | |
JP2005100504A (en) | Phase change information recording medium and its recording and reproducing method | |
JP2005246625A (en) | Optical information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |