JP2005161397A - Solder and its manufacturing method - Google Patents

Solder and its manufacturing method Download PDF

Info

Publication number
JP2005161397A
JP2005161397A JP2004193356A JP2004193356A JP2005161397A JP 2005161397 A JP2005161397 A JP 2005161397A JP 2004193356 A JP2004193356 A JP 2004193356A JP 2004193356 A JP2004193356 A JP 2004193356A JP 2005161397 A JP2005161397 A JP 2005161397A
Authority
JP
Japan
Prior art keywords
solder
dispersed
alloy
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004193356A
Other languages
Japanese (ja)
Inventor
Yuuma Horio
裕磨 堀尾
Takahiro Hayashi
林  高廣
Kenzaburo Iijima
健三郎 飯島
Junya Suzuki
順也 鈴木
Masayoshi Sekine
正好 関根
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Ikuo Onuma
郁雄 大沼
Yoshikazu Takaku
佳和 高久
Suihei O
翠萍 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2004193356A priority Critical patent/JP2005161397A/en
Publication of JP2005161397A publication Critical patent/JP2005161397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solder suitable for welding a electrothermal transmutation module and to provide its manufacturing method. <P>SOLUTION: The solder has a structure in which one or more kinds of dispersed phases are dispersed in a matrix phase, and the dispersed phases has a solidus temperature higher than that of the matrix phase. The solidus temperature of the matrix phase of the solder is desirably ≥240°C, while the dispersed phases are desirably fine phases with the average grain size ≤5 μm. It is preferable that the solder is an alloy having a composition in which the volume fraction of the dispersed phase is ≤40%, that this alloy is particularly Bi-Cu-X radicals alloy or Bi-Zn-X radicals alloy, and that the solder is in the form of powder with the grain size ≤100 μm prepared by a liquid quenching method or a thin strip with the film thickness ≤500 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱電変換モジュールの接合用として好適なはんだに係り、とくに、はんだの高温強度向上に関する。   The present invention relates to a solder suitable for joining thermoelectric conversion modules, and more particularly to improving the high-temperature strength of solder.

熱電半導体モジュールは、熱電材料であるp型半導体素子とn型半導体素子とを一対の基板の対向面側に設けられた電極を介して、p、nの素子が電気的に直列になるように、基板により挟持されたもので、ゼーベック効果を利用して独立した電源又は補助電源として、あるいはペルチェ効果を利用して、各種機器や光通信用レーザの温度制御用として用いられている。このような熱電半導体モジュールは、組み立ての際の半導体素子と電極の接合工程や、モジュールの機器への実装工程などで、はんだを用いて接合されることが多い。   The thermoelectric semiconductor module is configured such that p and n elements are electrically connected in series via electrodes provided on opposite surfaces of a pair of substrates of a p-type semiconductor element and an n-type semiconductor element that are thermoelectric materials. It is sandwiched between substrates and used as an independent power source or auxiliary power source using the Seebeck effect, or for temperature control of various devices and lasers for optical communication using the Peltier effect. Such a thermoelectric semiconductor module is often joined using solder in a process of joining a semiconductor element and an electrode during assembly, a process of mounting the module on a device, or the like.

使用するはんだとしては、例えば、共晶温度が183 ℃であるPb−Sn共晶合金が一般的である。しかし、最近ではPbの環境汚染の問題から、Pb−Sn共晶合金のような鉛含有合金ではなく、鉛フリーの合金を用いることが要望されている。このようなはんだは、Pb−Sn共晶合金と比べると、共晶温度または固相線温度が高い。   As a solder to be used, for example, a Pb—Sn eutectic alloy having a eutectic temperature of 183 ° C. is generally used. However, recently, due to the problem of environmental pollution of Pb, it is desired to use a lead-free alloy instead of a lead-containing alloy such as a Pb-Sn eutectic alloy. Such solder has a higher eutectic temperature or solidus temperature than a Pb—Sn eutectic alloy.

またさらに、熱電変換モジュールを実装する際のはんだについても、鉛フリーはんだとする要請があることから、共晶温度または固相線温度の高いものが選択される結果、実装温度も高くなる。つまり、モジュール本体は、 例えば240 ℃以上といった実装温度以上の耐熱性があることが必要となる。なお、実装温度は、共晶温度または固相線温度から20〜30℃高い範囲内で設定することが多い。ところが、上記したPb−Sn共晶合金を用いたモジュールを、かかる鉛フリーはんだを用いて高温で実装した場合、実装時にモジュールのはんだ接合部が融解する。接合部が再溶融すると、はんだが基板等と反応して金属間化合物を生成して脆くなり、接合部の信頼性が低下したり、溶融時に半導体素子が移動してショートするなどの問題があった。   Furthermore, since there is a demand for a lead-free solder for mounting the thermoelectric conversion module, a solder having a high eutectic temperature or solidus temperature is selected, resulting in an increase in mounting temperature. That is, the module body needs to have heat resistance equal to or higher than the mounting temperature, for example, 240 ° C. or higher. The mounting temperature is often set within a range of 20 to 30 ° C. higher than the eutectic temperature or the solidus temperature. However, when the module using the Pb—Sn eutectic alloy described above is mounted at a high temperature using such lead-free solder, the solder joint portion of the module is melted at the time of mounting. When the joint is remelted, the solder reacts with the substrate and the like to generate an intermetallic compound and becomes brittle, which reduces the reliability of the joint and causes a short circuit due to movement of the semiconductor element during melting. It was.

また、例えば、光通信装置などに使用する半導体レーザモジュール内には、温度制御用としてぺルチェモジュールが組み込まれている。半導体レーザモジュールにおいては、半導体レーザ素子とレンズ等をパッケージ内に一体的に収容して光ファイバーに結合するようになされている。半導体レーザはその雰囲気温度が変化すると波長が変化するため、半導体レーザモジュール内にぺルチェモジュールを備えて半導体レーザ素子の温度を制御している。   Further, for example, a Peltier module is incorporated for temperature control in a semiconductor laser module used for an optical communication device or the like. In a semiconductor laser module, a semiconductor laser element, a lens, and the like are integrally housed in a package and coupled to an optical fiber. Since the wavelength of the semiconductor laser changes when the ambient temperature changes, a Peltier module is provided in the semiconductor laser module to control the temperature of the semiconductor laser element.

ぺルチェモジュールは、一般に、放熱側基板となる一方の基板を電子装置の底蓋に接合し、冷却側基板となる他方の基板の上に、半導体レーザ素子を接合することにより搭載される。ぺルチェモジュール本体に用いられるはんだは、レーザモジュールの電子装置への実装時に融けないように、ぺルチェモジュールと電子装置を接合する接合材の実装温度より高い共晶温度もしくは固相線温度を有するはんだを用いる必要がある。例えば、特許文献1には、ぺルチェモジュールの電子装置への搭載をPb-Sn合金(融点183 ℃)を220 〜230 ℃程度に加熱して接合すること、およびぺルチェモジュール内の半導体素子とセラミック基板との接続に、これよりも融点の高い、Sn-Sb系はんだ(融点235 〜240 ℃)を使用することが従来技術として紹介されている。これらぺルチェモジュールとパッケージの実装に用いられるPb-Sn系合金の代替として有力な鉛フリーはんだである、Sn−Ag−Cuはんだは共晶温度が217 ℃、Sn−Agはんだは共晶温度が221 ℃である。これらはんだの実装温度は約250℃となるため、上記したSn−Sb系はんだでは実装中に再溶解する。したがって、ぺルチェモジュール本体に用いられるはんだは、これらより高い共晶温度もしくは固相線温度を持つものとする必要がある。   The Peltier module is generally mounted by bonding one substrate serving as a heat dissipation side substrate to the bottom lid of the electronic device and bonding a semiconductor laser element on the other substrate serving as a cooling side substrate. Solder used for the Peltier module main body has a eutectic temperature or a solidus temperature higher than the mounting temperature of the bonding material for joining the Peltier module and the electronic device so as not to melt when the laser module is mounted on the electronic device. It is necessary to use solder. For example, Patent Document 1 discloses that a Peltier module mounted on an electronic device is bonded by heating a Pb—Sn alloy (melting point: 183 ° C.) to about 220 to 230 ° C., and a semiconductor element in the Peltier module. The use of Sn—Sb solder (melting point: 235 to 240 ° C.) having a higher melting point than that for connection to a ceramic substrate has been introduced as a prior art. As an alternative to Pb-Sn alloys used to mount these Peltier modules and packages, Sn-Ag-Cu solder has an eutectic temperature of 217 ° C, and Sn-Ag solder has an eutectic temperature. 221 ° C. Since the mounting temperature of these solders is about 250 ° C., the above-described Sn—Sb solder remelts during mounting. Therefore, the solder used for the Peltier module body needs to have a higher eutectic temperature or solidus temperature than these.

熱電変換モジュールの実装に、このような比較的実装温度(共晶温度もしくは固相線温度)の高い鉛フリーはんだを使用すると、先の工程で接合される別の部位では、このはんだより高い共晶温度もしくは固相線温度のはんだを使用せざるを得ない。このような共晶温度もしくは固相線温度が高いはんだとしては、Pb−5Sn合金(固相線温度:310 ℃)、Au−20Sn合金(固相線温度:280 ℃)(非特許文献1参照)がある。これらはんだは、240 ℃でも融解することはなく、実装温度の上昇には有効である。
特開2003-110154 号公報 溶接学会編:第2版 溶接・接合便覧、平成15年2月25日発行、丸善株式会社、第416 頁〜第423 頁
If such a lead-free solder having a relatively high mounting temperature (eutectic temperature or solidus temperature) is used for mounting the thermoelectric conversion module, the other parts to be joined in the previous process have higher temperatures than this solder. It is necessary to use solder at crystal temperature or solidus temperature. As such a solder having a high eutectic temperature or solidus temperature, Pb-5Sn alloy (solidus temperature: 310 ° C.), Au-20Sn alloy (solidus temperature: 280 ° C.) (see Non-Patent Document 1) ) These solders do not melt even at 240 ° C and are effective in increasing the mounting temperature.
JP 2003-110154 A Japan Welding Society: Second Edition, Welding and Joining Handbook, published on February 25, 2003, Maruzen Co., Ltd., pages 416-423

しかしながら、Pb−5Sn 合金は鉛含有合金であり、またAu−20Sn合金は延性が低い。このため、熱電変換モジュールのような温度差の大きい環境下では、接合部に大きな熱応力が負荷されるため、はんだ接合部の延性が不足して、素子自体の信頼性、耐久性が不足するという問題があった。   However, Pb-5Sn alloy is a lead-containing alloy, and Au-20Sn alloy has low ductility. For this reason, in an environment with a large temperature difference such as a thermoelectric conversion module, since a large thermal stress is applied to the joint, the ductility of the solder joint is insufficient, and the reliability and durability of the element itself are insufficient. There was a problem.

本発明は、上記したような従来技術の問題を解決し、熱電変換モジュールにおける接合材として好適な、はんだおよびその製造方法を提供することを目的とする。 なお、本発明でいう「熱電変換モジュール」とは、冷却・ 発熱作用を有するペルチェモジュール、熱発電作用のある熱発電モジュールを包含するものとする。   An object of the present invention is to solve the above-described problems of the prior art and provide a solder suitable for a bonding material in a thermoelectric conversion module and a method for manufacturing the solder. The “thermoelectric conversion module” in the present invention includes a Peltier module having a cooling / heating action and a thermoelectric generation module having a thermoelectric generation action.

本発明者らは、熱電変換モジュールの接合部の信頼性を向上させるため、高温強度、耐クリープ性、耐熱サイクル性に及ぼす各種要因の影響について検討した。その結果、接合材として、固相線温度がマトリックス相より高い第2相を分散させたはんだを用いて、接合部を接合することにより、接合部の高温強度、耐クリープ性が向上し、また基板とはんだとの界面に化合物相の生成がなく、接合部の信頼性が顕著に向上することを見出した。   In order to improve the reliability of the joint portion of the thermoelectric conversion module, the present inventors examined the influence of various factors on high temperature strength, creep resistance, and heat cycle resistance. As a result, by using a solder in which a second phase having a solidus temperature higher than the matrix phase is dispersed as a bonding material, the high temperature strength and creep resistance of the bonded portion are improved, It has been found that the compound phase is not generated at the interface between the substrate and the solder, and the reliability of the joint is remarkably improved.

本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)マトリックス相中に1種以上の分散相を分散させた組織を有し、該分散相が前記マトリックス相の固相線温度より高い固相線温度を有することを特徴とするはんだ。
(2)(1)において、前記マトリックス相の固相線温度が240 ℃以上であることを特徴とするはんだ。
(3)(1)または(2)において、前記分散相が球形であることを特徴とするはんだ。(4)(1)ないし(3)のいずれかにおいて、前記分散相が、平均粒径で5μm 以下の微細相であることを特徴とするはんだ。
(5)(1)ないし(4)のいずれかにおいて、前記分散相の体積分率が40%以下となる組成を有する合金からなることを特徴とするはんだ。
(6)(5)において、前記合金が、Bi−Cu−X基合金またはBi−Zn−X基合金であることを特徴とするはんだ。
(7)(6)において、前記Bi−Cu−X基合金が、質量%で、Cu:1〜40%を含み、Xとして、Zn:2〜30%、Al:0.5〜8%、Sn:10〜20%、Sb:3〜35%のうちから選ばれた1種または2種以上を含有することを特徴とするはんだ。
(8)(6)において、前記Bi−Zn−X基合金が、質量%で、Zn:1〜60%を含み、Xとして、Ag:3〜30%、Al:1〜20%、Sb:6〜18%のうちから選ばれた1種または2種以上を含有することを特徴とするはんだ。
(9)(1)ないし(8)のいずれかにおいて、前記はんだが、液体急冷して得られた前記分散相を分散させた組織を有する粉体または薄帯であることを特徴とするはんだ。
(10)分散相の体積分率が40%以下となる組成を有する合金の溶湯を、液体急冷し、マトリックス相中に該マトリックス相の固相線温度より高い固相線温度を有する1種以上の分散相を分散させた組織を有するはんだとすることを特徴とするはんだの製造方法。
(11)(10)において、前記合金が、Bi−Cu−X基合金またはBi−Zn−X基合金であることを特徴とするはんだの製造方法。
(12)(11)において、前記Bi−Cu−X基合金が、質量%で、Cu:1〜40%を含み、Xとして、Zn:2〜30%、Al:0.5〜8%、Sn:10〜20%、Sb:3〜35%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項11に記載のはんだの製造方法。
(13)(11)において、前記Bi−Zn−X基合金が、質量%で、Zn:1〜60%を含み、Xとして、Ag:3〜30%、Al:1〜20%、Sb:6〜18%のうちから選ばれた1種または2種以上を含有することを特徴とするはんだの製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A solder having a structure in which one or more kinds of dispersed phases are dispersed in a matrix phase, and the dispersed phase has a solidus temperature higher than the solidus temperature of the matrix phase.
(2) The solder according to (1), wherein the matrix phase has a solidus temperature of 240 ° C. or higher.
(3) The solder according to (1) or (2), wherein the dispersed phase is spherical. (4) The solder according to any one of (1) to (3), wherein the dispersed phase is a fine phase having an average particle diameter of 5 μm or less.
(5) The solder according to any one of (1) to (4), comprising an alloy having a composition in which the volume fraction of the dispersed phase is 40% or less.
(6) The solder according to (5), wherein the alloy is a Bi—Cu—X based alloy or a Bi—Zn—X based alloy.
(7) In (6), the Bi-Cu-X-based alloy contains Cu: 1-40% in mass%, and X is Zn: 2-30%, Al: 0.5-8%, Sn: Solder characterized by containing one or more selected from 10 to 20% and Sb: 3 to 35%.
(8) In (6), the Bi-Zn-X base alloy contains Zn: 1-60% by mass, and X is Ag: 3-30%, Al: 1-20%, Sb: A solder comprising one or more selected from 6 to 18%.
(9) The solder according to any one of (1) to (8), wherein the solder is a powder or a ribbon having a structure in which the dispersed phase obtained by liquid quenching is dispersed.
(10) One or more types of alloys having a composition in which the volume fraction of the dispersed phase is 40% or less are rapidly quenched and the matrix phase has a solidus temperature higher than the solidus temperature of the matrix phase in the matrix phase. A method for producing a solder, characterized in that a solder having a structure in which a dispersed phase is dispersed.
(11) The method for producing solder according to (10), wherein the alloy is a Bi—Cu—X based alloy or a Bi—Zn—X based alloy.
(12) In (11), the Bi—Cu—X-based alloy contains Cu: 1 to 40% by mass, and X is Zn: 2 to 30%, Al: 0.5 to 8%, Sn: The method for producing solder according to claim 11, comprising one or more selected from 10 to 20% and Sb: 3 to 35%.
(13) In (11), the Bi-Zn-X base alloy contains, in mass%, Zn: 1 to 60%, and X is Ag: 3 to 30%, Al: 1 to 20%, Sb: A method for producing solder, comprising one or more selected from 6 to 18%.

本発明によれば、熱電変換モジュール接合部の高温強度、耐クリープ性が向上し、デバイスの実装温度が高温の場合や、また使用環境が厳しい場合でも、熱電変換モジュールの信頼性、耐久性を高く維持でき、産業上格段の効果を奏する。   According to the present invention, the high-temperature strength and creep resistance of the thermoelectric conversion module joint are improved, and the reliability and durability of the thermoelectric conversion module can be improved even when the device mounting temperature is high or the usage environment is severe. It can be maintained at a high level and has a remarkable industrial effect.

図5に熱電変換モジュール10の一例を示す。熱電変換モジュール10は、p型半導体素子1bとn型半導体素子1aからなる少なくとも一対、好ましくは複数対の熱電材料10aと、片面に電極パターンを有する一対の基板2a,2b とを備え、この一対の基板に形成された電極パターン3a,3b に、p型半導体素子1bとn型半導体素子1aとを交互に電気的に直列になるように配置し、はんだにより接合した接合部(層)4a,4b を有してなる構成のモジュールである。すなわち、各熱電材料の接合端と電極パターンとの間には、はんだからなる接合部(層)4a、4bが存在する。なお、端部のp型半導体素子、n型半導体素子を接合した電極には、電源供給用(あるいは電力取出し用)リード線(図示せず)が接続されることはいうまでもない。なお、熱電材料(半導体素子)とはんだとの接合層には、Ni、Au等などのはんだ成分の拡散防止層を設けてもよい。   FIG. 5 shows an example of the thermoelectric conversion module 10. The thermoelectric conversion module 10 includes at least a pair, preferably a plurality of pairs of thermoelectric materials 10a each including a p-type semiconductor element 1b and an n-type semiconductor element 1a, and a pair of substrates 2a and 2b having electrode patterns on one side. The p-type semiconductor element 1b and the n-type semiconductor element 1a are alternately arranged in series on the electrode patterns 3a and 3b formed on the substrate, and joined portions (layers) 4a, 4b is a module having a configuration. That is, joints (layers) 4a and 4b made of solder exist between the joint ends of the thermoelectric materials and the electrode patterns. Needless to say, a power supply (or power take-out) lead wire (not shown) is connected to the electrode where the p-type semiconductor element and the n-type semiconductor element at the end are joined. Note that a diffusion preventing layer of a solder component such as Ni or Au may be provided in the bonding layer between the thermoelectric material (semiconductor element) and the solder.

使用する熱電材料は、熱電変換モジュールの用途によって異なるが、ペルチェ素子として熱電冷却・熱電加熱に利用する場合や300 ℃以下の熱電発電に利用する場合には、キャリア制御してp型、n型とした、BiおよびSbのうちの少なくとも1種とTeおよびSeののうちの少なくとも1種とからなる組成を有する材料とすることが好ましい。このような材料としては、例えば、Bi2Te3系化合物、Sb2Te3系化合物が存在し、Bi1.9Sb0.1Te2.7Se0.3、Bi0.4Sb1.6Te3 等の組成が例示される。また、300 ℃を超える温度での熱電発電に利用する材料としては、例えば、FeSi2 系化合物、Na−Co−O系化合物、CoSb3が例示できる。   The thermoelectric material used varies depending on the application of the thermoelectric conversion module. However, when using it as a Peltier element for thermoelectric cooling / thermoelectric heating, or when using it for thermoelectric power generation below 300 ° C, the carrier is controlled to be p-type or n-type It is preferable to use a material having a composition comprising at least one of Bi and Sb and at least one of Te and Se. Examples of such materials include Bi2Te3 compounds and Sb2Te3 compounds, and examples include compositions such as Bi1.9Sb0.1Te2.7Se0.3 and Bi0.4Sb1.6Te3. Examples of materials used for thermoelectric power generation at temperatures exceeding 300 ° C. include FeSi2 compounds, Na—Co—O compounds, and CoSb3.

また、基板は、アルミナ(Al2O3 )、窒化アルミ(AlN )、炭化珪素(SiC )等のセラミック材、あるいはAl等の金属材料の表面に絶縁膜を設けたものとすることが好ましい。基板上には、好ましくは銅めっきとエッチングにより、所望形状の電極パターンが形成されている。この形成された電極パターンに、熱電材料である複数のp型半導体素子とn型半導体素子とを、交互に電気的に直列になるように、はんだにより接合する。なお、電極には、接合性向上のために銅めっきの表面にNiめっきまたはAuめっきを施すことが好ましい。   The substrate is preferably provided with an insulating film on the surface of a ceramic material such as alumina (Al2O3), aluminum nitride (AlN), silicon carbide (SiC), or a metal material such as Al. An electrode pattern having a desired shape is formed on the substrate, preferably by copper plating and etching. A plurality of p-type semiconductor elements and n-type semiconductor elements, which are thermoelectric materials, are joined to the formed electrode pattern by solder so that they are alternately electrically in series. The electrode is preferably subjected to Ni plating or Au plating on the surface of copper plating in order to improve bondability.

熱電変換モジュール接合に好適な本発明のはんだは、マトリックス相中に1種以上の分散相を分散させた組織を有するはんだとする。このはんだは、分散相がマトリックス相と異なる1種以上の組成を有し、かつマトリックス相の固相線温度より高い固相線温度を有する。さらに、分散相は球形で、好ましくは平均粒径5μm 以下の微細相とすることが好ましい。これにより、実装後の接合部にもマトリックス相中にマトリックス相より高い固相線温度を有する微細な分散相が分布した組織となり、接合部の高温強度を高強度化でき、しかも耐クリープ特性が顕著に向上し、接合部の信頼性が向上する。   The solder of the present invention suitable for joining a thermoelectric conversion module is a solder having a structure in which one or more dispersed phases are dispersed in a matrix phase. This solder has one or more compositions in which the dispersed phase is different from the matrix phase, and has a solidus temperature higher than the solidus temperature of the matrix phase. Further, the dispersed phase is spherical and preferably a fine phase having an average particle size of 5 μm or less. As a result, a fine dispersed phase having a solidus temperature higher than that of the matrix phase is distributed in the matrix phase in the joint after mounting, and the high temperature strength of the joint can be increased and the creep resistance can be improved. This significantly improves the reliability of the joint.

図1に、Bi−Cu−Sb系合金(70質量%Bi−10質量%Cu−20質量%Sb)における、試験温度:100 ℃でのクリープ特性(負荷応力と破断時間の関係)に及ぼすマトリックス相中に分散する分散相の平均粒径の影響を示す。なお、Sn−5Sb 合金(固相線温度:232 ℃)のクリープ特性も併記する。図1から、Sn−5Sb 合金(固相線温度:232 ℃)以上の耐クリープ特性を確保するためには、分散相の大きさを平均粒径で5μm 以下とすることが好ましいことがわかる。   Fig. 1 shows the matrix that affects the creep characteristics (relationship between load stress and rupture time) at a test temperature of 100 ° C in a Bi-Cu-Sb alloy (70 mass% Bi-10 mass% Cu-20 mass% Sb). The influence of the average particle size of the dispersed phase dispersed in the phase is shown. The creep characteristics of the Sn-5Sb alloy (solidus temperature: 232 ° C) are also shown. From FIG. 1, it can be seen that the size of the dispersed phase is preferably 5 μm or less in terms of average particle size in order to ensure the creep resistance of Sn-5Sb alloy (solidus temperature: 232 ° C.) or higher.

また、熱電変換モジュール接合用として好適な本発明はんだのマトリックス相は、240 ℃以上の固相線温度を有することが好ましい。使用するはんだのマトリックス相固相線温度が240 ℃以上とすることにより、熱電変換モジュールの実装に、鉛フリーはんだであるSn−5Sb 合金(固相線温度:232 ℃)が使用できる。   The matrix phase of the solder of the present invention suitable for joining a thermoelectric conversion module preferably has a solidus temperature of 240 ° C. or higher. By setting the matrix phase solidus temperature of the solder to be used to 240 ° C. or higher, Sn-5Sb alloy (solidus temperature: 232 ° C.), which is a lead-free solder, can be used for mounting the thermoelectric conversion module.

また、本発明はんだは、分散相の体積分率が40%以下となる組成を有する合金とすることが好ましい。このような組成を有する合金であれば、マトリックス相と1種以上の分散相からなる組織を容易に形成でき、しかも分散相をマトリックス相固相線温度より高い固相線温度を有する相とすることができる。このような合金としては、Bi−Cu−X基合金、Bi−Zn−X基合金等が挙げられる。   Further, the solder of the present invention is preferably an alloy having a composition in which the volume fraction of the dispersed phase is 40% or less. With an alloy having such a composition, a structure composed of a matrix phase and one or more dispersed phases can be easily formed, and the dispersed phase is a phase having a solidus temperature higher than the matrix phase solidus temperature. be able to. Examples of such alloys include Bi—Cu—X based alloys and Bi—Zn—X based alloys.

なかでも、Bi−Cu−X基合金は、第三元素Xとして、所定量の、Zn、Al、Sn、Sbのうちから選ばれた1種または2種以上を含有することにより、広範囲に、高融点相が分散した組織が得られるようになる。Bi−Cu−X基合金では、質量%で、Cu:1〜40%を含み、第三元素Xとして、質量%で、Zn:2〜30%、Al:0.5〜8%、Sn:10〜20%、Sb:3〜35%のうちから選ばれた1種または2種以上を含有する組成とすることが好ましい。また、Bi−Zn−X基合金では、質量%で、Zn:1〜60%を含み、第三元素Xとして、質量%で、Ag:3〜30%、Al:1〜20%、Sb:6〜18%のうちから選ばれた1種または2種以上を含有する組成とすることが好ましい。   Among them, the Bi-Cu-X-based alloy contains a predetermined amount of one or more selected from Zn, Al, Sn, and Sb as the third element X, so that it can be widely used. A structure in which the high melting point phase is dispersed can be obtained. In the Bi-Cu-X base alloy, Cu: 1 to 40% by mass, and as the third element X, by mass%, Zn: 2 to 30%, Al: 0.5 to 8%, Sn: 10 to Preferably, the composition contains one or more selected from 20% and Sb: 3 to 35%. Moreover, in a Bi-Zn-X base alloy, the mass element contains Zn: 1-60%, and as the third element X, the mass element is Ag: 3-30%, Al: 1-20%, Sb: A composition containing one or more selected from 6 to 18% is preferred.

なお、Bi−Cu−X基合金、Bi−Zn−X基合金では、第三元素Xがそれぞれ上記した範囲を外れると、マトリックス相とマトリックス相の固相線温度より高い固相線温度を有する1種以上の分散相を分散させた組織を形成できなくなる。  In addition, in the Bi-Cu-X base alloy and the Bi-Zn-X base alloy, when the third element X is out of the above-described range, it has a solidus temperature higher than the solidus temperature of the matrix phase and the matrix phase. A structure in which one or more kinds of dispersed phases are dispersed cannot be formed.

本発明はんだの組織写真の一例を図2、図3に示す。図2に示す例は、単ロール液体急冷法により作製されたBi−Cu−Sb系合金(70質量%Bi−10質量%Cu−20質量%Sb)薄帯の場合である。図3に示す例は、ガスアトマイズ法で作製されたBi−Cu−Zn系合金(70質量%Bi−20質量%Cu−10質量%Zn)粉末の場合である。   An example of a structure photograph of the solder of the present invention is shown in FIGS. The example shown in FIG. 2 is a case of a Bi—Cu—Sb alloy (70 mass% Bi-10 mass% Cu-20 mass% Sb) ribbon produced by a single roll liquid quenching method. The example shown in FIG. 3 is a case of Bi—Cu—Zn alloy (70 mass% Bi-20 mass% Cu-10 mass% Zn) powder produced by the gas atomization method.

図2、図3に示す組織では、いずれも白いマトリックス相がBiリッチ相であり、固相線温度が240℃以上、マトリックス相内に分散する黒い微細粒が高い固相線温度を有する分散相であり、図2の場合はCu−Sb系化合物、図3の場合は、Cu−Zn系化合物であることが電子線マイクロアナライザー(EPMA)による分析で明らかとなっている。   In the structures shown in FIGS. 2 and 3, the white matrix phase is a Bi-rich phase, the solidus temperature is 240 ° C. or higher, and the black fine particles dispersed in the matrix phase have a high solidus temperature. In the case of FIG. 2, it is clear from the analysis by an electron beam microanalyzer (EPMA) that it is a Cu—Sb compound, and in the case of FIG. 3, it is a Cu—Zn compound.

つぎに、図4に示差熱分析結果を示す。図4に示す例は、Bi−Cu−Sb系合金(55質量%Bi−15質量%Cu−30質量%Sb)粉末の場合である。昇温過程における最初の変態ピークは305℃付近にあり、これがマトリックス相の固相線温度である。さらに昇温を続けると560℃付近に次のピークがあり、これが分散相の固相線温度を示している。   Next, FIG. 4 shows the results of differential thermal analysis. The example shown in FIG. 4 is a case of Bi—Cu—Sb based alloy (55 mass% Bi-15 mass% Cu-30 mass% Sb) powder. The first transformation peak in the temperature rising process is around 305 ° C., which is the solidus temperature of the matrix phase. When the temperature was further increased, the next peak was observed at around 560 ° C., indicating the solidus temperature of the dispersed phase.

本発明はんだは、上記した組織を有し、粉末時平均粒径が100μm 以下の略球形の粉末とすることが好ましい。粉末時平均粒径が100μm を超えて大きくなると、マトリックス相中に分散する分散相が粗大化し、5μm 以下の微細な分散相とならず、接合部(層)の高温強度、耐クリープ特性が低下する。なお、分散相の大きさは、好ましくは1μm 以下である。はんだが粉末の場合には、はんだ粉末に、フラックス、増粘材、溶媒を添加してはんだペーストとして用いることが好ましい。   The solder of the present invention is preferably a substantially spherical powder having the above-described structure and an average particle size when powder of 100 μm or less. When the average particle size when powder exceeds 100μm, the dispersed phase dispersed in the matrix phase becomes coarser and does not become a fine dispersed phase of 5μm or less, and the high-temperature strength and creep resistance of the joint (layer) decrease. To do. The size of the dispersed phase is preferably 1 μm or less. When the solder is a powder, it is preferable to use the solder powder as a solder paste by adding a flux, a thickener, and a solvent.

また、本発明はんだは、上記した組織を有し、平均膜厚500μm以下の薄帯とすることが好ましい。平均膜厚が500μmを超えて厚くなると、マトリックス相中に分散する分散相が粗大化し、5μm 以下の微細な分散相とならない。   The solder of the present invention preferably has a structure as described above, and is a ribbon having an average film thickness of 500 μm or less. When the average film thickness exceeds 500 μm, the dispersed phase dispersed in the matrix phase becomes coarse and does not become a fine dispersed phase of 5 μm or less.

このようなはんだを製造するには、まず上記した組成を満足する合金の溶湯を、溶製する。溶製方法は、公知の方法がいずれも適用できる。ついで、この合金溶湯を、液体急冷法により、急冷する。これにより、マトリックス相中に微細な分散相が分散した組織を有するはんだが得られる。   In order to manufacture such a solder, first, a molten alloy satisfying the above composition is melted. Any known method can be applied to the melting method. Next, the molten alloy is rapidly cooled by a liquid quenching method. Thereby, a solder having a structure in which a fine dispersed phase is dispersed in the matrix phase is obtained.

液体急冷法としては、アトマイズ法があり、合金溶湯を高圧の流体で噴霧・急冷して微細粉末とする。アトマイズ法では、水アトマイズ法、ガスアトマイズ法、真空アトマイズ等があるが、いずれも本発明のはんだ粉末の製造には好適である。アトマイズ法以外の液体急冷法としては、単ロール液体急冷法、双ロール液体急冷法、回転ディスク法等があり、いずれも本発明のはんだ薄帯の製造に適用できる。各急冷法を図6(a)〜図6(d)に模式的に示す。(a)はアトマイズ法、(b)は単ロール液体急冷法、(c)は双ロール液体急冷法、(d)は回転ディスク法である。   As the liquid quenching method, there is an atomizing method, in which molten alloy is sprayed and quenched with a high-pressure fluid to obtain a fine powder. Examples of the atomizing method include a water atomizing method, a gas atomizing method, and a vacuum atomizing method, all of which are suitable for producing the solder powder of the present invention. Liquid quenching methods other than the atomizing method include a single roll liquid quenching method, a twin roll liquid quenching method, a rotating disk method, and the like, all of which can be applied to the production of the solder ribbon of the present invention. Each quenching method is schematically shown in FIGS. 6 (a) to 6 (d). (A) is an atomizing method, (b) is a single-roll liquid quenching method, (c) is a twin-roll liquid quenching method, and (d) is a rotating disk method.

以下、実施例に基づいて、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

表1に示す組成のBi−Cu−X系合金、Bi−Zn−X系合金、Sn−Sb系合金、Au−Sn系合金を高周波コイルで溶解し、ガスアトマイズ法あるいは単ロール液体急冷法で、噴霧条件を表1に示す条件に調整して粉末(粉体)または薄帯とした。なお、マトリックス相と組成の異なる第二相(分散相)の体積分率は、実験状態図や計算状態図から求め、表1に併記して示す。   Bi-Cu-X alloy, Bi-Zn-X alloy, Sn-Sb alloy, and Au-Sn alloy having the composition shown in Table 1 are melted by a high frequency coil, and gas atomization method or single roll liquid quenching method is used. The spraying conditions were adjusted to the conditions shown in Table 1 to obtain powder (powder) or ribbon. The volume fraction of the second phase (dispersed phase) having a composition different from that of the matrix phase is obtained from an experimental state diagram and a calculated state diagram, and is shown together in Table 1.

得られた粉末または薄帯について、断面組織を観察し、分散相の形成状況(分散相の平均粒径)を測定するとともに、マトリックス相と分散相の固相線温度を測定した。マトリックス相と分散相の固相線温度の測定は、示差熱分析法により行った。得られた結果を表1に併記した。   With respect to the obtained powder or ribbon, the cross-sectional structure was observed, the formation state of the dispersed phase (average particle diameter of the dispersed phase) was measured, and the solidus temperature of the matrix phase and the dispersed phase was measured. The solidus temperature of the matrix phase and the dispersed phase was measured by differential thermal analysis. The obtained results are also shown in Table 1.

得られた粉末を、 篩により粒径100μm 以下の粉体に分級し、これら粉末に溶媒と、フラックス、増粘剤を添加してはんだペーストとした。また、得られた薄帯を、電極パターンサイズに切断した。   The obtained powder was classified into powder having a particle size of 100 μm or less with a sieve, and a solvent, a flux and a thickener were added to these powders to obtain a solder paste. Further, the obtained ribbon was cut into an electrode pattern size.

ついで、片面に銅めっき(厚さ:100 μm )したのち、不要な部分をエッチングにより削除して所定の電極パターンを形成した基板(アルミナ)を一対、用意した。さらに、熱電材料として、p型:Bi0.4Sb1.6Te3、n型:Bi1.9Sb0.1Te2.7Se0.3からなるp型、n型のBi2Te3系化合物半導体素子を15対用意した。なお、熱電材料の接合端にはNiめっきおよびAuめっきが施されている。 Then, after copper plating (thickness: 100 μm) on one side, a pair of substrates (alumina) on which a predetermined electrode pattern was formed by removing unnecessary portions by etching was prepared. Furthermore, 15 pairs of p-type and n-type Bi2Te3-based compound semiconductor elements made of p-type: Bi 0.4 Sb 1.6 Te 3 and n-type: Bi 1.9 Sb 0.1 Te 2.7 Se 0.3 were prepared as thermoelectric materials. Note that Ni plating and Au plating are applied to the joint ends of the thermoelectric material.

ついで、基板の電極パターンにディスペンサを用いて、表1に示す各合金のはんだペーストを塗布するはんだ塗布工程、またはフラックスを塗布したのち、電極パターンサイズに切断したはんだ薄帯を電極上に載せるはんだ塗布工程を施した。ついで、はんだペーストが塗布された電極パターンまたははんだ薄帯が載せられた電極パターンの所定の位置に、p型半導体素子、n型半導体素子を交互にかつ電気的に直列に接続されるように、実装したのち、これら半導体素子(熱電材料)を挟むように、かつ半導体素子(熱電材料)の他方の接合端と電極パターンの所定の箇所が接するように、一対の基板のうちの他方を配置し、成形品とする成形工程を施した。   Next, using a dispenser for the electrode pattern of the substrate, a solder application process for applying a solder paste of each alloy shown in Table 1, or a solder for applying a solder strip cut to an electrode pattern size on the electrode after applying a flux The coating process was performed. Next, p-type semiconductor elements and n-type semiconductor elements are alternately and electrically connected in series at predetermined positions of the electrode pattern to which the solder paste is applied or the electrode pattern on which the solder ribbon is placed. After mounting, the other of the pair of substrates is placed so that the semiconductor element (thermoelectric material) is sandwiched and the other junction end of the semiconductor element (thermoelectric material) is in contact with a predetermined portion of the electrode pattern. Then, a molding process for forming a molded product was performed.

ついで、これら成形品をリフロー炉に装入し、接合部の実装を行い、組立品とするリフロー工程を施した。なお、リフロー温度は、表2に示す温度(固相線温度+30℃)に設定した。リフロー工程後、電源供給用電極を実装し、製品(熱電変換モジュール)とした。   Subsequently, these molded products were charged into a reflow furnace, the joints were mounted, and a reflow process for making an assembly was performed. The reflow temperature was set to the temperature shown in Table 2 (solidus temperature + 30 ° C.). After the reflow process, a power supply electrode was mounted to obtain a product (thermoelectric conversion module).

得られた熱電変換モジュールを用いて、熱冷サイクル試験を実施した。また、熱冷サイクル試験後にモジュール特性評価を行った。熱冷サイクル試験は次の通りとした。
(1)熱冷サイクル試験
各熱電変換モジュールに、最高温度を85℃とし、最低温度を−40℃とするサイクルを5000回負荷し、負荷後熱電変換モジュールの交流抵抗ACRの変化率を求め、熱電変換モジュールの信頼性を評価した。
(2)モジュールの耐熱温度
モジュールの耐熱温度を、完成したモジュールから一対の基板、電極、はんだ、半導体素子を有する部位を切り出し、示差熱分析にて、溶融温度を測定して求めた。
(3)モジュール特性評価
サイクル試験後熱電変換モジュールについて、最大温度差測定と熱発電変換効率測定を実施した。最大温度差測定は、モジュールの高温端を100℃とした際の両基板間の最大付与温度差を測定した。
Using the obtained thermoelectric conversion module, a thermal cooling cycle test was performed. In addition, module characteristics were evaluated after the thermal cooling cycle test. The thermal cooling cycle test was as follows.
(1) Thermo-cooling cycle test Each thermoelectric conversion module was loaded 5000 times with a maximum temperature of 85 ° C. and a minimum temperature of −40 ° C., and the rate of change in AC resistance ACR of the thermoelectric conversion module after loading was determined. The reliability of the thermoelectric conversion module was evaluated.
(2) Heat-resistant temperature of the module The heat-resistant temperature of the module was obtained by cutting out a part having a pair of substrates, electrodes, solder, and semiconductor elements from the completed module and measuring the melting temperature by differential thermal analysis.
(3) Module characteristic evaluation About the thermoelectric conversion module after a cycle test, the maximum temperature difference measurement and the thermoelectric conversion efficiency measurement were implemented. The maximum temperature difference measurement was performed by measuring the maximum applied temperature difference between the two substrates when the high temperature end of the module was set to 100 ° C.

熱発電変換効率測定はモジュールの高温端を220℃、低温端を50℃とした際の投入熱量Qに対する熱発電力Pの比率を熱発電変換効率η=P/(Q+P)として測定した。   In the thermoelectric conversion efficiency measurement, the ratio of the heat generation power P to the input heat quantity Q when the high temperature end of the module was 220 ° C. and the low temperature end was 50 ° C. was measured as the thermoelectric conversion efficiency η = P / (Q + P).

得られた結果を表2に示す。   The obtained results are shown in Table 2.

本発明例のはんだを用いた熱電変換モジュールはいずれも、耐熱温度も高く、熱冷サイクル試験後のACRの変化率も少ない。これに対し、本発明の範囲を外れるはんだNo.34を用いて接合した熱電変換モジュールは、耐熱温度が215℃と低く、熱冷サイクル試験後のACRの変化率が大きいことがわかる。また、はんだNo.34を用いて接合した熱電変換モジュールは、熱発電変換効率測定では高温端温度がモジュール耐熱温度を上回ったため測定不能となった。また、本発明の範囲を外れるはんだNo.35を用いて接合した熱電変換モジュールはACR変化率が5%を上回り、かつ熱電変換効率測定にて4.2%と他に比較し悪いことから熱電変換モジュールが劣化していることがわかる。   Each thermoelectric conversion module using the solder of the example of the present invention has a high heat-resistant temperature and a small change rate of ACR after the thermal cooling cycle test. On the other hand, the thermoelectric conversion module joined using the solder No. 34 outside the scope of the present invention has a low heat resistant temperature of 215 ° C., and the ACR change rate after the thermal cooling cycle test is large. In addition, the thermoelectric conversion module joined using solder No. 34 was not able to be measured in the thermoelectric conversion efficiency measurement because the high temperature end temperature exceeded the module heat resistance temperature. In addition, the thermoelectric conversion module joined using the solder No. 35 that is out of the scope of the present invention has an ACR change rate exceeding 5%, and the thermoelectric conversion efficiency measurement is 4.2%, which is poor compared to others. It can be seen that has deteriorated.

本発明は、半導体製造工程の機器や光通信用レーザの精密温度制御用の熱電変換モジュールの接合以外にも、無線通信素子の冷却、微小電力発電用などの熱電変換モジュールの接合用にも利用できる   The present invention can be used for bonding of thermoelectric conversion modules for cooling of wireless communication elements, micro-power generation, etc. in addition to bonding of devices in semiconductor manufacturing processes and thermoelectric conversion modules for precise temperature control of lasers for optical communication. it can

はんだのクリープ特性に及ぼす分散相の大きさの影響を示すグラフである。It is a graph which shows the influence of the magnitude | size of a disperse phase on the creep characteristic of solder. 本発明ではんだとして使用する薄帯の断面組織の一例を示す組織写真である。It is a structure | tissue photograph which shows an example of the cross-sectional structure | tissue of a ribbon used as a solder in this invention. 本発明ではんだとして使用する粉末の断面組織の一例を示す組織写真である。It is a structure | tissue photograph which shows an example of the cross-sectional structure | tissue of the powder used as a solder by this invention. 本発明ではんだとして使用する粉末の示差熱分析により得られた、変態ピークを示すグラフである。It is a graph which shows the transformation peak obtained by the differential thermal analysis of the powder used as a solder by this invention. 熱電変換モジュールの一例を模式的に示す説明図である。It is explanatory drawing which shows an example of a thermoelectric conversion module typically. (a)はアトマイズ法、(b)単ロール液体急冷法、(c)双ロール液体急冷法、(d)回転ディスク法をそれぞれ模式的に示す説明図である。(A) is explanatory drawing which shows typically the atomizing method, (b) single roll liquid quenching method, (c) twin roll liquid quenching method, and (d) rotating disk method, respectively.

符号の説明Explanation of symbols

1a n型半導体素子(熱電材料)
1b p型半導体素子(熱電材料)
2a, 2b 基板
3a,3b 電極パターン
4a,4b 接合部(層)
10 熱電変換モジュール
1 真空チャンバー
2 排気ポンプ
3 雰囲気ライン導入ライン
4 射出ノズル
5 高周波加熱コイル
6 射出ガス導入ライン
1a n-type semiconductor element (thermoelectric material)
1b p-type semiconductor element (thermoelectric material)
2a, 2b Substrate 3a, 3b Electrode pattern 4a, 4b Junction (layer)
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion module 1 Vacuum chamber 2 Exhaust pump 3 Atmosphere line introduction line 4 Injection nozzle 5 High frequency heating coil 6 Injection gas introduction line

Claims (13)

マトリックス相中に1種以上の分散相を分散させた組織を有し、該分散相が前記マトリックス相の固相線温度より高い固相線温度を有することを特徴とするはんだ。   A solder having a structure in which one or more dispersed phases are dispersed in a matrix phase, and the dispersed phase has a solidus temperature higher than the solidus temperature of the matrix phase. 前記マトリックス相の固相線温度が240 ℃以上であることを特徴とする請求項1に記載のはんだ。   The solder according to claim 1, wherein the solidus temperature of the matrix phase is 240 ° C or higher. 前記分散相が球形であることを特徴とする請求項1または2に記載のはんだ。   The solder according to claim 1, wherein the dispersed phase is spherical. 前記分散相が、平均粒径で5μm 以下の微細相であることを特徴とする請求項1ないし3のいずれかに記載のはんだ。   The solder according to any one of claims 1 to 3, wherein the dispersed phase is a fine phase having an average particle size of 5 µm or less. 前記分散相の体積分率が40%以下となる組成を有する合金からなることを特徴とする請求項1ないし4のいずれかに記載のはんだ。   The solder according to any one of claims 1 to 4, wherein the solder is made of an alloy having a composition in which the volume fraction of the dispersed phase is 40% or less. 前記合金が、Bi−Cu−X基合金またはBi−Zn−X基合金であることを特徴とする請求項5に記載のはんだ。   The solder according to claim 5, wherein the alloy is a Bi—Cu—X based alloy or a Bi—Zn—X based alloy. 前記Bi−Cu−X基合金が、質量%で、Cu:1〜40%を含み、Xとして、Zn:2〜30%、Al:0.5〜8%、Sn:10〜20%、Sb:3〜35%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6に記載のはんだ。   The Bi-Cu-X-based alloy contains Cu: 1-40% by mass, and X is Zn: 2-30%, Al: 0.5-8%, Sn: 10-20%, Sb: 3 The solder according to claim 6, comprising one or more selected from ˜35%. 前記Bi−Zn−X基合金が、質量%で、Zn:1〜60%を含み、Xとして、Ag:3〜30%、Al:1〜20%、Sb:6〜18%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6に記載のはんだ。   The Bi—Zn—X-based alloy contains, in mass%, Zn: 1 to 60%, and X is selected from Ag: 3 to 30%, Al: 1 to 20%, Sb: 6 to 18% The solder according to claim 6, comprising one or more selected ones. 前記はんだが、液体急冷して得られた前記分散相を分散させた組織を有する粉体または薄帯であることを特徴とする請求項1ないし8のいずれかに記載のはんだ。   9. The solder according to claim 1, wherein the solder is a powder or a ribbon having a structure in which the dispersed phase obtained by liquid quenching is dispersed. 分散相の体積分率が40%以下となる組成を有する合金の溶湯を、液体急冷し、マトリックス相中に該マトリックス相の固相線温度より高い固相線温度を有する1種以上の分散相を分散させた組織を有するはんだとすることを特徴とするはんだの製造方法。   One or more dispersed phases having a solidus temperature higher than the solidus temperature of the matrix phase in the matrix phase by liquid quenching of the molten alloy having a composition in which the volume fraction of the dispersed phase is 40% or less A method for producing a solder, characterized in that the solder has a structure in which is dispersed. 前記合金が、Bi−Cu−X基合金またはBi−Zn−X基合金であることを特徴とする請求項10に記載のはんだの製造方法。   The method for producing solder according to claim 10, wherein the alloy is a Bi—Cu—X based alloy or a Bi—Zn—X based alloy. 前記Bi−Cu−X基合金が、質量%で、Cu:1〜40%を含み、Xとして、Zn:2〜30%、Al:0.5〜8%、Sn:10〜20%、Sb:3〜35%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項11に記載のはんだの製造方法。   The Bi-Cu-X-based alloy contains Cu: 1-40% by mass, and X is Zn: 2-30%, Al: 0.5-8%, Sn: 10-20%, Sb: 3 The method for producing solder according to claim 11, comprising one or more selected from ˜35%. 前記Bi−Zn−X基合金が、質量%で、Zn:1〜60%を含み、Xとして、Ag:3〜30%、Al:1〜20%、Sb:6〜18%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項11に記載のはんだの製造方法。   The Bi—Zn—X-based alloy contains, in mass%, Zn: 1 to 60%, and X is selected from Ag: 3 to 30%, Al: 1 to 20%, Sb: 6 to 18% The method for producing a solder according to claim 11, comprising one or more of the above.
JP2004193356A 2004-06-30 2004-06-30 Solder and its manufacturing method Pending JP2005161397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193356A JP2005161397A (en) 2004-06-30 2004-06-30 Solder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193356A JP2005161397A (en) 2004-06-30 2004-06-30 Solder and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003399574A Division JP4401754B2 (en) 2003-11-28 2003-11-28 Method for manufacturing thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2005161397A true JP2005161397A (en) 2005-06-23

Family

ID=34737355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193356A Pending JP2005161397A (en) 2004-06-30 2004-06-30 Solder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005161397A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194410A (en) * 2010-03-17 2011-10-06 Sumitomo Metal Mining Co Ltd COATED Pb-FREE Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME
WO2011158668A1 (en) * 2010-06-16 2011-12-22 住友金属鉱山株式会社 Bi-Al-Zn-BASED Pb-FREE SOLDER ALLOY
WO2012002147A1 (en) * 2010-06-28 2012-01-05 住友金属鉱山株式会社 Pb-FREE SOLDER ALLOY
JP2012000641A (en) * 2010-06-17 2012-01-05 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY EXCELLENT IN STRESS RELAXATION PROPERTY
US20140361070A1 (en) * 2013-06-05 2014-12-11 The Research Foundation For The State University Of New York Solder alloys

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194410A (en) * 2010-03-17 2011-10-06 Sumitomo Metal Mining Co Ltd COATED Pb-FREE Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME
CN103068518A (en) * 2010-06-16 2013-04-24 住友金属矿山股份有限公司 Bi-al-zn-based pb-free solder alloy
WO2011158668A1 (en) * 2010-06-16 2011-12-22 住友金属鉱山株式会社 Bi-Al-Zn-BASED Pb-FREE SOLDER ALLOY
GB2494831A (en) * 2010-06-16 2013-03-20 Sumitomo Metal Mining Co Bi-Al-Zn-based Pb-free solder alloy
JP5212573B2 (en) * 2010-06-16 2013-06-19 住友金属鉱山株式会社 Bi-Al-Zn Pb-free solder alloy
US9211614B2 (en) 2010-06-16 2015-12-15 Sumitomo Metal Mining Co., Ltd. Bi—Al—Zn—based Pb-free solder alloy
GB2494831B (en) * 2010-06-16 2014-03-12 Sumitomo Metal Mining Co Bi-Al-Zn-based Pb-free solder alloy
JP2012000641A (en) * 2010-06-17 2012-01-05 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY EXCELLENT IN STRESS RELAXATION PROPERTY
US20130094991A1 (en) * 2010-06-28 2013-04-18 Sumitomo Metal Mining Co., Ltd. Pb-FREE SOLDER ALLOY
GB2494847A (en) * 2010-06-28 2013-03-20 Sumitomo Metal Mining Co Pb-Free solder alloy
GB2494847B (en) * 2010-06-28 2013-06-26 Sumitomo Metal Mining Co Pb-free solder alloy
TWI401132B (en) * 2010-06-28 2013-07-11 Sumitomo Metal Mining Co Pb-free solder alloy
WO2012002147A1 (en) * 2010-06-28 2012-01-05 住友金属鉱山株式会社 Pb-FREE SOLDER ALLOY
CN103038020B (en) * 2010-06-28 2014-05-14 住友金属矿山股份有限公司 Pb-free solder alloy and electronic circuit board using same
US9199339B2 (en) 2010-06-28 2015-12-01 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
CN103038020A (en) * 2010-06-28 2013-04-10 住友金属矿山股份有限公司 Pb-free solder alloy
US20140361070A1 (en) * 2013-06-05 2014-12-11 The Research Foundation For The State University Of New York Solder alloys

Similar Documents

Publication Publication Date Title
JP4401754B2 (en) Method for manufacturing thermoelectric conversion module
TWI650426B (en) Advanced solder alloy and soldering method for electronic interconnection
JP3226213B2 (en) Solder material and electronic component using the same
JP4964009B2 (en) Power semiconductor module
KR102489307B1 (en) Solder alloys, solder pastes, solder preforms and solder joints
JP4635715B2 (en) Solder alloy and semiconductor device using the same
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JPH1133776A (en) Soldering material and electronic part using thereof
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JP2005161397A (en) Solder and its manufacturing method
JP2003338641A (en) Thermoelectric element
JP6529632B1 (en) Semiconductor device using solder alloy, solder paste, molded solder, and solder alloy
JP6690124B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP6887183B1 (en) Solder alloys and molded solders
JP6984568B2 (en) Solder alloys, solder pastes, and electronic component modules
US10189119B2 (en) Solder alloy for die bonding
JP2008034721A (en) Thermoelectric power generation element, and its manufacturing method
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JP2014147966A (en) Joining material, joining method, joining structure, and semiconductor device
CN111132794B (en) Solder alloy
TWI647316B (en) Solder alloy
JP2016052687A (en) Solder adhesion body
JPS63178535A (en) Au alloy brazing material for assembling semiconductor device
JP2005138174A (en) Brazing filler metal, semiconductor equipment manufacturing method using the same, and semiconductor equipment
JP2020069517A (en) Solder alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609