JP2005159019A - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP2005159019A
JP2005159019A JP2003395650A JP2003395650A JP2005159019A JP 2005159019 A JP2005159019 A JP 2005159019A JP 2003395650 A JP2003395650 A JP 2003395650A JP 2003395650 A JP2003395650 A JP 2003395650A JP 2005159019 A JP2005159019 A JP 2005159019A
Authority
JP
Japan
Prior art keywords
type
thermoelectric element
type thermoelectric
thermoelectric
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395650A
Other languages
Japanese (ja)
Inventor
Kenichi Tajima
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003395650A priority Critical patent/JP2005159019A/en
Priority to CNB200410089674XA priority patent/CN100397671C/en
Priority to CN200710305713A priority patent/CN100595941C/en
Priority to US11/150,707 priority patent/US20050241690A1/en
Publication of JP2005159019A publication Critical patent/JP2005159019A/en
Priority to US12/399,728 priority patent/US20090188542A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric module improved in temperature difference characteristics and heat absorbing characteristics. <P>SOLUTION: In the thermoelectric module equipped with a supporting substrate, the same number of n-type and p-type thermoelectric elements arrayed on the supporting substrate, wiring conductors for electrically connecting a plurality of the thermoelectric elements and external connecting terminals connected electrically to the wiring conductors, the specific resistance of the n-type thermoelectric element and that of the p-type thermoelectric element are specified so as to be different from each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体レーザー等の発熱体の温度調整あるいは冷蔵庫等に使用される熱電モジュールに関する。   The present invention relates to a thermoelectric module used for temperature adjustment of a heating element such as a semiconductor laser or a refrigerator.

従来より、ペルチェ効果を利用した熱電モジュールは、電流を流すことにより温度差が発生し、一端が発熱するとともに他端が吸熱するため、冷却用として用いられている。特に、レーザーダイオードの温度制御、持ち運び可能な冷蔵庫、恒温槽、光検出素子、半導体製造装置等への幅広い利用が期待されている。特に、フロンレス、無振動、無騒音であるために家庭用冷蔵庫、空調機等への展開が期待されている。   Conventionally, a thermoelectric module using the Peltier effect has been used for cooling because a temperature difference is generated by passing an electric current, and one end generates heat and the other end absorbs heat. In particular, it is expected to be widely used for temperature control of laser diodes, portable refrigerators, thermostats, photodetectors, semiconductor manufacturing devices, and the like. In particular, since it is freon-free, vibration-free, and noise-free, it is expected to be used in household refrigerators and air conditioners.

この室温付近で使用される冷却用熱電モジュールは、同数のP型及びN型熱電素子を対にしたものを複数直列に電気的接続が行なわれた構成を有し、そこで使用される熱電素子としては、冷却特性が優れるという観点からA型結晶(AはBi及び/又はSb、BはTe及び/又はSe)が一般的に用いられている。 This cooling thermoelectric module used near room temperature has a configuration in which a plurality of pairs of the same number of P-type and N-type thermoelectric elements are electrically connected in series, and the thermoelectric elements used there In general, A 2 B 3 type crystals (A is Bi and / or Sb, B is Te and / or Se) are generally used from the viewpoint of excellent cooling characteristics.

P型熱電素子としてはBiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体が、N型熱電素子としてはBiTeとBiSe(セレン化ビスマス)との固溶体が特に優れた性能を示すことから、これらのA型結晶(AはBi及び/又はSb、BはTe及び/又はSe)が熱電素子として広く用いられている。 A solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride) is used as a P-type thermoelectric element, and Bi 2 Te 3 and Bi 2 Se 3 (bismuth selenide) are used as N-type thermoelectric elements. Therefore, these A 2 B 3 type crystals (A is Bi and / or Sb, B is Te and / or Se) are widely used as thermoelectric elements.

これら熱電素子は熱電結晶材料から形成され、その熱電特性は性能指数で表される。ここで性能指数Zとは、ゼーベック係数をS、抵抗率をρ、熱伝導率をkとしたとき、Z=S/ρkで定義されるもので、熱電結晶材料を熱電素子として用いる場合の性能及び効率を示すものである。すなわちN型熱電素子およびP型熱電素子に性能指数が高い材料を用いるほど冷却性能、効率に優れる熱電モジュールが得られる。 These thermoelectric elements are formed from a thermoelectric crystal material, and their thermoelectric characteristics are expressed by a figure of merit. Here, the figure of merit Z is defined as Z = S 2 / ρk, where the Seebeck coefficient is S, the resistivity is ρ, and the thermal conductivity is k, and when the thermoelectric crystal material is used as a thermoelectric element. It shows performance and efficiency. In other words, a thermoelectric module that is more excellent in cooling performance and efficiency is obtained as a material having a higher performance index is used for the N-type thermoelectric element and the P-type thermoelectric element.

性能指数が高い熱電材料として、ブリッジマン法、引き上げ(CZ)法、ゾーンメルト法など公知の単結晶製造技術をベースにした一方向凝固技術によって結晶の方位がそろったインゴットあるいは単結晶に近い結晶体からなる溶製材料が提案されている(非特許文献1参照)。   As a thermoelectric material with a high figure of merit, an ingot or crystal close to a single crystal with the crystal orientation aligned by a unidirectional solidification technique based on a known single crystal manufacturing technique such as the Bridgeman method, the pulling (CZ) method, or the zone melt method A melted material made of a body has been proposed (see Non-Patent Document 1).

また、溶製材料は、欠けやすいという問題があるため、熱電モジュールの作製時の加工歩留まりを高める観点から、Bi、Sb、Te、Se等の混合粉末を溶融、凝固させた溶融合金を粉砕して合金粉末を得、該合金粉末をホットプレス等によって加圧焼結させた焼結材料が提案されている(特許文献2、3参照)。   In addition, since the melted material has a problem of being easily chipped, a molten alloy obtained by melting and solidifying a mixed powder of Bi, Sb, Te, Se, etc. is pulverized from the viewpoint of increasing the processing yield when manufacturing the thermoelectric module. There has been proposed a sintered material obtained by obtaining an alloy powder and pressurizing and sintering the alloy powder by hot pressing or the like (see Patent Documents 2 and 3).

また、これらの焼結材料、溶製材料を用いて作製された熱電素子によって熱電モジュールが作製されるが、性能指数を高め、加工歩留まり、あるいは熱電モジュールの信頼性を高める観点から、溶製材料と焼結材料を組み合わせた熱電モジュールも提案されている(特許文献4、5参照)。   In addition, thermoelectric modules are manufactured by thermoelectric elements manufactured using these sintered materials and smelting materials. From the viewpoint of increasing the figure of merit, processing yield, or improving the reliability of thermoelectric modules, smelting materials A thermoelectric module in which a sintered material is combined has also been proposed (see Patent Documents 4 and 5).

さらに、N型熱電素子に単結晶材料、P型熱電素子に焼結材料を用いて、これらの熱電素子の比抵抗を実質的に同一にすることで熱電モジュールの性能がさらに高まることが報告されている(特許文献6参照)。
熱電半導体とその応用(日刊工業新聞社 p.149) 特公平8−32588号公報 特開平1−106478号公報 特開平8−148725号公報 特開平11−26818号公報 米国特許番号5448109B1号公報
Furthermore, it has been reported that the performance of the thermoelectric module is further enhanced by using a single crystal material for the N-type thermoelectric element and a sintered material for the P-type thermoelectric element, and making the specific resistance of these thermoelectric elements substantially the same. (See Patent Document 6).
Thermoelectric semiconductors and their applications (Nikkan Kogyo Shimbun, p. 149) Japanese Patent Publication No. 8-32588 JP-A-1-106478 JP-A-8-148725 JP-A-11-26818 US Patent No. 5448109B1

しかしながら、熱電モジュールの性能向上に対する要求はさらに高まっており、特に要求特性が多様化してきている。例えば、冷蔵庫用途等では、熱電モジュールに通電したときの上下面での温度差よりも、吸熱量すなわち吸熱特性が特に重要視されており、また一方、レーザーダイオード温調などでは、温度を一定に保つ必要があるために、吸熱特性よりもより高い温度差が要求されているなどがある。   However, demands for improving the performance of thermoelectric modules are further increasing, and in particular, the required characteristics are diversifying. For example, in refrigerator applications, the amount of heat absorbed, that is, the heat absorption characteristics, is more important than the temperature difference between the upper and lower surfaces when a thermoelectric module is energized. For example, a temperature difference higher than the endothermic characteristic is required because it is necessary to maintain the temperature.

しかし、これらの要求に対しては、非特許文献1および特許文献2から6に記載の方法では、性能の向上には限界があり、また、吸熱特性と最大温度差はともに性能指数に従って大きくなるために、要求特性ごとに特徴を持たせたモジュール設計は未だ不十分である。   However, with respect to these requirements, the methods described in Non-Patent Document 1 and Patent Documents 2 to 6 have limitations in improving performance, and both the endothermic characteristics and the maximum temperature difference increase according to the performance index. For this reason, module design with features for each required characteristic is still insufficient.

そこで、本発明はこれらの要求に対して、吸熱特性または温度差特性のいずれかを高めた熱電モジュールを提供することを目的とする。   Accordingly, an object of the present invention is to provide a thermoelectric module in which either endothermic characteristics or temperature difference characteristics are enhanced in response to these requirements.

本発明は、様々な方法で作製された異なる熱電特性を有するN型熱電素子およびP型熱電素子をあらかじめ準備し、様々な組み合わせで熱電モジュールを作製し、その吸熱特性および温度差特性を調べた結果、N型、P型熱電素子の比抵抗を異なる組み合わせにすることによって、熱電モジュールの吸熱特性、または温度差特性のいずれかが向上するという知見に基づくものである。   In the present invention, N-type thermoelectric elements and P-type thermoelectric elements having different thermoelectric characteristics manufactured by various methods are prepared in advance, thermoelectric modules are manufactured in various combinations, and the endothermic characteristics and temperature difference characteristics are examined. As a result, it is based on the knowledge that either the endothermic characteristic or the temperature difference characteristic of the thermoelectric module is improved by combining different specific resistances of the N-type and P-type thermoelectric elements.

即ち、本発明の熱電モジュールは、支持基板と、該支持基板上に同数で配列されたN型およびP型熱電素子と、該複数の熱電素子間を電気的に直列に接続する配線導体と、前記支持基板上に設けられ、該配線導体と電気的に連結された外部接続端子とを具備する熱電モジュールにおいて、前記N型熱電素子とP型熱電素子の比抵抗が異なることを特徴とするものである。   That is, the thermoelectric module of the present invention includes a support substrate, N-type and P-type thermoelectric elements arranged in the same number on the support substrate, a wiring conductor that electrically connects the plurality of thermoelectric elements in series, A thermoelectric module comprising an external connection terminal provided on the support substrate and electrically connected to the wiring conductor, wherein the N-type thermoelectric element and the P-type thermoelectric element have different specific resistances It is.

前記N型熱電素子が溶製材料からなり、P型熱電素子が焼結材料からなることを特徴とするものである。   The N-type thermoelectric element is made of a melted material, and the P-type thermoelectric element is made of a sintered material.

前記P型熱電素子とP型熱電素子の出力因子((ゼーベック係数)/比抵抗)が4×10−3W/mK2以上であることを特徴とするものである。 The output factor ((Seebeck coefficient) 2 / specific resistance) of the P-type thermoelectric element and the P-type thermoelectric element is 4 × 10 −3 W / mK 2 or more.

前記N型熱電素子とP型熱電素子の比抵抗の比(N型/P型)が0.7以上0.95以下であることを特徴とするものである。   The specific resistance ratio (N-type / P-type) of the N-type thermoelectric element and the P-type thermoelectric element is 0.7 or more and 0.95 or less.

前記N型熱電素子とP型熱電素子の比抵抗の比(N型/P型)が1.05以上1.30以下であることを特徴とするものである。   The specific resistance ratio (N-type / P-type) of the N-type thermoelectric element and the P-type thermoelectric element is 1.05 or more and 1.30 or less.

前記N型素子が一方向凝固により作製された棒状結晶体であることを特徴とするものである。   The N-type element is a rod-like crystal produced by unidirectional solidification.

前記P型素子が粒径50μm以下の焼結体であることを特徴とするものである。   The P-type element is a sintered body having a particle size of 50 μm or less.

これらにより、熱電モジュールの性能をさらに高め、同時にモジュール強度を高め、同時に信頼性を高めることが可能になる。   As a result, it is possible to further improve the performance of the thermoelectric module, simultaneously increase the module strength, and at the same time increase the reliability.

本発明の熱電モジュールは、N型熱電素子とP型熱電素子の比抵抗に差を持たせることで、熱電モジュールの吸熱特性または温度差のいずれかの特性のみを高めることが可能となる。   In the thermoelectric module of the present invention, it is possible to improve only the heat absorption characteristic or temperature difference characteristic of the thermoelectric module by providing a difference in specific resistance between the N-type thermoelectric element and the P-type thermoelectric element.

また、溶製材料からなるN型熱電素子からなり、焼結材料からなるP型熱電素子を組み合わせにすることで前述した効果を大幅に高めることができる。   Moreover, it consists of N type thermoelectric elements which consist of melting materials, and the effect mentioned above can be improved significantly by combining the P type thermoelectric element which consists of sintered materials.

また、出力因子を一定値以上にすることで、実用的な冷却特性が発現できる。   Moreover, a practical cooling characteristic can be expressed by making an output factor a certain value or more.

また、N型熱電素子の比抵抗をP型熱電素子よりも小さくなるように制御することで、熱電モジュールの最大温度差を大きくできる。   Further, the maximum temperature difference of the thermoelectric module can be increased by controlling the specific resistance of the N-type thermoelectric element to be smaller than that of the P-type thermoelectric element.

また、N型熱電素子の比抵抗をP型熱電素子よりも大きくなるように制御することで、熱電モジュールの吸熱量を大きくできる。   Further, by controlling the specific resistance of the N-type thermoelectric element to be larger than that of the P-type thermoelectric element, the heat absorption amount of the thermoelectric module can be increased.

さらにまた、N型熱電素子に棒状の結晶体を用いることで、熱電モジュールの性能をさらに高め、同時に低コスト化できる。   Furthermore, by using a rod-like crystal for the N-type thermoelectric element, the performance of the thermoelectric module can be further enhanced and at the same time the cost can be reduced.

さらにまた、P型熱電素子に微細な焼結材料からなる熱電素子を用いることによって冷却性能の中で吸熱特性または温度差特性に特に優れた熱電モジュールが得られる。   Furthermore, by using a thermoelectric element made of a fine sintered material for the P-type thermoelectric element, a thermoelectric module having particularly excellent endothermic characteristics or temperature difference characteristics in the cooling performance can be obtained.

以下、本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail.

図1に示すように本発明は、N型熱電素子5aとP型熱電素子5bの比抵抗が異なる熱電モジュールに関する。   As shown in FIG. 1, the present invention relates to a thermoelectric module in which specific resistances of an N-type thermoelectric element 5a and a P-type thermoelectric element 5b are different.

本発明の熱電モジュールは、アルミナ等のセラミックスまたは絶縁性の樹脂等からなる支持基板1,2と、該支持基板1,2上に同数で配列されたN型熱電素子5aおよびP型熱電素子5bと、該複数の熱電素子間を電気的に直列接続する配線導体3,4と、前記支持基板1,2上に設けられ、該配線導体3,4と電気的に連結された外部接続端子6とを具備する公知の熱電モジュールにおいて、前記N型熱電素子5aとP型熱電素子5bの比抵抗が異なることを特徴としている。   The thermoelectric module of the present invention includes support substrates 1 and 2 made of ceramics such as alumina or insulating resin, and N-type thermoelectric elements 5a and P-type thermoelectric elements 5b arranged in the same number on the support substrates 1 and 2. Wiring conductors 3 and 4 for electrically connecting the plurality of thermoelectric elements in series, and external connection terminals 6 provided on the support substrates 1 and 2 and electrically connected to the wiring conductors 3 and 4 In the known thermoelectric module, the specific resistances of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b are different.

本発明によれば、熱電素子は、公知の方法で作製できる。   According to the present invention, the thermoelectric element can be produced by a known method.

例えば、熱電材料を熱電モジュールに挟み込む方向の厚さにスライスし、半田接合性を高めるためにNiさらにはAu等のめっきを施した後、所望の形状に切断して得られる。   For example, it is obtained by slicing a thermoelectric material into a thickness in a direction in which it is sandwiched between thermoelectric modules, plating with Ni or Au in order to improve solderability, and then cutting into a desired shape.

本発明によれば、比抵抗が異なる熱電素子を作製する方法として、素子作製時に加圧するあるいは単結晶化させ結晶配向性を変化させる、あるいはN型熱電素子5aの場合は、ヨウ素、臭素等のハロゲン元素を、P型熱電素子5bの場合はTe、Se等の元素の添加率を変化させることで比抵抗の調整ができる。   According to the present invention, as a method for producing thermoelectric elements having different specific resistances, pressure is applied during element production or single crystallization is performed to change the crystal orientation, or in the case of the N-type thermoelectric element 5a, iodine, bromine, etc. In the case of the P-type thermoelectric element 5b, the specific resistance can be adjusted by changing the addition rate of elements such as Te and Se.

N型熱電素子5aとP型熱電素子5bの比抵抗を同等でなくすることで、同等の場合と比べて熱電モジュールの吸熱量あるいは温度差のいずれかを向上できる。   By making the specific resistances of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b not equal, either the heat absorption amount or the temperature difference of the thermoelectric module can be improved as compared with the equivalent case.

ここで、比抵抗が異なるとは、熱電材料の比抵抗を四端子法などで測定した値が測定機器の精度以上に十分な差がある場合を指し、本発明によればN型熱電素子5aとP型熱電素子5bの比抵抗の差が5%以上ある場合を指す。   Here, the specific resistance is different from the case where the specific resistance of the thermoelectric material measured by the four probe method is sufficiently different from the accuracy of the measuring instrument. According to the present invention, the N-type thermoelectric element 5a And the difference in specific resistance between the P-type thermoelectric element 5b is 5% or more.

このように比抵抗に差を与えることで熱電モジュールの吸熱量あるいは温度差のいずれかを向上できる要因に関しては、明確ではないが次のように考えられる。   A factor that can improve either the heat absorption amount or the temperature difference of the thermoelectric module by giving a difference in specific resistance in this way is not clear but is considered as follows.

熱電半導体の熱を伝えるキャリアは、N型熱電素子5aが電子でP型熱電素子5bはホールである。   As for the carrier for transferring the heat of the thermoelectric semiconductor, the N-type thermoelectric element 5a is an electron and the P-type thermoelectric element 5b is a hole.

ここでホール移動は見かけの移動であり、実質、P型熱電素子5bでは熱の移動とは逆の向きに電子が移動している。   Here, the hole movement is an apparent movement, and in the P-type thermoelectric element 5b, electrons move in the direction opposite to the heat movement.

よって、熱電モジュールに通電した時の熱の移動は、N型熱電素子5aでは電子の向きと同じ向きに行われるものの、P型熱電素子5bでは電子の向きとは逆に行われる。電子自体は熱のキャリアとして働くために、熱電モジュールにおける実質的な性質である熱を移動させる働きに関しては、N型熱電素子5a自身の熱の移動が律速すると考えられる。   Therefore, the movement of heat when the thermoelectric module is energized is performed in the same direction as the direction of electrons in the N-type thermoelectric element 5a, but reverse to the direction of electrons in the P-type thermoelectric element 5b. Since the electrons themselves act as heat carriers, it is considered that the heat transfer of the N-type thermoelectric element 5a itself is rate-limiting with respect to the action of transferring heat, which is a substantial property of the thermoelectric module.

このとき、N型熱電素子5aの比抵抗がP型熱電素子5bの比抵抗よりも大きい、すなわちP型熱電素子5bの電気伝導率がN型熱電素子5aよりも大きい場合は、P型熱電素子5bに比べてN型熱電素子5a自身のキャリア濃度が小さいと考えられ、熱起電力すなわちゼーベック係数が大きいN型熱電素子5aになると考えられる。   At this time, if the specific resistance of the N-type thermoelectric element 5a is larger than the specific resistance of the P-type thermoelectric element 5b, that is, if the electric conductivity of the P-type thermoelectric element 5b is larger than that of the N-type thermoelectric element 5a, the P-type thermoelectric element It is considered that the carrier concentration of the N-type thermoelectric element 5a itself is smaller than that of 5b, and the N-type thermoelectric element 5a has a large thermoelectromotive force, that is, a Seebeck coefficient.

熱電モジュールの吸熱量は、ゼーベック係数が支配するためにこの場合は、P型熱電素子5bとN型熱電素子5aの比抵抗が同等の場合と比べて吸熱量を高められる。   Since the Seebeck coefficient dominates the heat absorption amount of the thermoelectric module, in this case, the heat absorption amount can be increased as compared with the case where the specific resistances of the P-type thermoelectric element 5b and the N-type thermoelectric element 5a are equivalent.

同様に、N型熱電素子5aの比抵抗が、P型熱電素子5bよりも小さい場合、N型熱電素子5aのキャリア濃度が大きいと考えられ、N型熱電素子5a自身のジュール発熱を抑えられることより、P型熱電素子5bとN型熱電素子5aの比抵抗が同等な場合と比べて温度差を大きくできると考えられる。   Similarly, when the specific resistance of the N-type thermoelectric element 5a is smaller than that of the P-type thermoelectric element 5b, it is considered that the carrier concentration of the N-type thermoelectric element 5a is large, and Joule heating of the N-type thermoelectric element 5a itself can be suppressed. Therefore, it is considered that the temperature difference can be increased as compared with the case where the specific resistances of the P-type thermoelectric element 5b and the N-type thermoelectric element 5a are equivalent.

また、本発明によれば、このとき、N型熱電素子5aとP型熱電素子5bの数が同数であり、かつ直列に接合されていることが必要である。熱電モジュールはN型熱電素子5aとP型熱電素子5bが対となって作動するために同数でない場合は、冷却に寄与しない素子が残り、ジュール発熱を大きくし、冷却性能を低下させる。   In addition, according to the present invention, at this time, the number of N-type thermoelectric elements 5a and P-type thermoelectric elements 5b must be the same and joined in series. In the thermoelectric module, since the N-type thermoelectric element 5a and the P-type thermoelectric element 5b operate in pairs, if the number is not the same, elements that do not contribute to cooling remain, increasing Joule heat generation and reducing cooling performance.

また、直列でない場合は接合のための配線が大きく複雑になるためにこちらもジュール発熱を大きくし好ましくない。   Further, when not in series, the wiring for joining becomes large and complicated, and this also increases the Joule heat generation, which is not preferable.

熱電素子の大きさは、所望とする冷却性能、大きさによって千差万別であるが、一般的な冷却用途では、長さと幅が0.4〜2.0mm、高さが0.3〜3.0mmが適当であり、電極サイズは素子の長さの1.5〜2.0倍が性能を高める上で好ましい。   The size of the thermoelectric element varies depending on the desired cooling performance and size, but in general cooling applications, the length and width are 0.4 to 2.0 mm, and the height is 0.3 to 3.0 mm is appropriate, and the electrode size is preferably 1.5 to 2.0 times the length of the element in order to improve the performance.

また、本発明によれば、溶製材料からなるN型および焼結材料からなるP型熱電素子5bを用いた熱電モジュールにおいて、N型熱電素子5aとP型熱電素子5bの比抵抗が異なることが特に好ましい。   Further, according to the present invention, in the thermoelectric module using the N-type made of the melted material and the P-type thermoelectric element 5b made of the sintered material, the specific resistances of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b are different. Is particularly preferred.

このようにN型熱電素子5aを溶製材料にすることによって、N型熱電素子5bは粒界による電子伝導の散乱の影響が小さくなるために、前述した効果が大きくなる。   By using the N-type thermoelectric element 5a as a melting material in this way, the N-type thermoelectric element 5b is less affected by scattering of electron conduction due to grain boundaries, and thus the above-described effects are increased.

本発明によれば、溶製材料とは合金を溶融して冷却過程で固化させる材料全般を指し、一方向凝固材料等の単結晶材料も当然含まれる。   According to the present invention, the melting material refers to all materials that melt and solidify the alloy in the cooling process, and naturally includes single crystal materials such as unidirectionally solidified materials.

また、焼結材料とは、溶製材料を一度粉砕あるいは冷却過程で粉末状にした後に、ホットプレス等で加圧焼結させた多結晶材料全般を指す。   Further, the sintered material refers to all the polycrystalline materials obtained by pulverizing the melted material once or by pulverizing it in a cooling process, followed by pressure sintering with a hot press or the like.

また、本発明によれば、N型熱電素子5aとP型熱電素子5bの出力因子((ゼーベック係数)/比抵抗)が4×10−3W/mK2以上であることが好ましい。出力因子は高いほど、性能指数も大きくなる傾向にあり、出力因子が4以上あることによって、本発明の効果が大きくなる。 Further, according to the present invention, the output factor ((Seebeck coefficient) 2 / specific resistance) of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b is preferably 4 × 10 −3 W / mK 2 or more. As the output factor is higher, the figure of merit tends to be larger. When the output factor is 4 or more, the effect of the present invention is enhanced.

また、出力因子が4未満の素子では熱電モジュールの性能が大幅に低下するが実用上問題ない。   Moreover, although the performance of a thermoelectric module falls significantly in the element whose output factor is less than 4, there is no practical problem.

さらに、本発明によれば、最大温度差を大きくするために、前述したN型熱電素子5aとP型熱電素子5bの比抵抗の比(N型/P型)が0.7以上かつ0.95以下であることが好ましい。   Furthermore, according to the present invention, in order to increase the maximum temperature difference, the above-mentioned specific resistance ratio (N-type / P-type) between the N-type thermoelectric element 5a and the P-type thermoelectric element 5b is 0.7 or more and 0. It is preferable that it is 95 or less.

このような範囲であれば前述したN型熱電素子5aのキャリア濃度を高められ、熱電モジュールの温度差を大きくできる。特には0.90以下、さらには0.85以下が温度差を向上する上で好ましい。   Within such a range, the carrier concentration of the N-type thermoelectric element 5a described above can be increased, and the temperature difference of the thermoelectric module can be increased. In particular, 0.90 or less, further 0.85 or less is preferable for improving the temperature difference.

このとき比抵抗の比が0.7未満では比抵抗の差が大きすぎるために、前述した効果が発揮できない。0.95よりも大きいと温度差を向上させる効果が小さくなるため好ましくない。   At this time, if the specific resistance ratio is less than 0.7, the difference in specific resistance is too large, so that the above-described effects cannot be exhibited. If it is larger than 0.95, the effect of improving the temperature difference is reduced, which is not preferable.

ここで、温度差とは、熱電モジュールの放熱面を一定の温度にしながら通電したときの冷却面と放熱面の温度差を指し、本発明によれば、この温度差をN型熱電素子5aとP型熱電素子5bの比抵抗を同等にしたときと比べて、0.1℃以上大きくすることができる。   Here, the temperature difference refers to a temperature difference between the cooling surface and the heat radiating surface when the heat radiating surface of the thermoelectric module is energized at a constant temperature. According to the present invention, this temperature difference is expressed with the N-type thermoelectric element 5a. Compared with the case where the specific resistance of the P-type thermoelectric element 5b is made equal, it can be increased by 0.1 ° C. or more.

同様に、本発明によれば、吸熱量を大きくするために、N型熱電素子5aとP型熱電素子5bの比抵抗の比(N型/P型)が1.05以上かつ1.30以下にすることが好ましい。このような範囲であれば前述したN型熱電素子5aのキャリア濃度を低下でき、熱電モジュールの吸熱量を大きくできる。特には1.10以上、さらには1.15以上が吸熱量を大きくする上で好ましい。   Similarly, according to the present invention, in order to increase the amount of heat absorption, the specific resistance ratio (N-type / P-type) of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b is 1.05 or more and 1.30 or less. It is preferable to make it. Within such a range, the carrier concentration of the N-type thermoelectric element 5a described above can be reduced, and the heat absorption amount of the thermoelectric module can be increased. In particular, 1.10 or more, and further 1.15 or more are preferable for increasing the endothermic amount.

このとき比抵抗の比が1.30よりも大きいと比抵抗の差が大きすぎるために、前述した効果が発揮できない。1.05未満では、吸熱量を大きくする効果が小さいために好ましくない。   At this time, if the specific resistance ratio is larger than 1.30, the specific resistance difference is too large, and thus the above-described effects cannot be exhibited. If it is less than 1.05, the effect of increasing the endothermic amount is small, which is not preferable.

ここで、吸熱量とは、前述した温度差特性と同等に放熱面を一定の温度にしながら冷却面との温度差が最大になるように通電した後に、冷却面を加熱させ、冷却面と放熱面の温度が一定になるときの冷却面における加熱量をさし、冷却面と同じ形状のヒーター等を使用して測定できる。本発明によれば、同じ形状のモジュールにおいて比抵抗が同等の場合と比較して、吸熱量を5%以上向上することができる。   Here, the endothermic amount is the same as the temperature difference characteristic described above, while energizing the heat dissipation surface to a maximum temperature while keeping the heat dissipation surface at a constant temperature, heating the cooling surface, and heat dissipation from the cooling surface. The amount of heating on the cooling surface when the temperature of the surface becomes constant can be measured using a heater or the like having the same shape as the cooling surface. According to the present invention, the endothermic amount can be improved by 5% or more as compared with the case where the specific resistance is equal in the modules having the same shape.

また、本発明によれば、N型熱電材料は溶製材料の中でも一方向凝固により作製された棒状結晶体から作製されることが特に好ましい。   In addition, according to the present invention, the N-type thermoelectric material is particularly preferably produced from a rod-like crystal produced by unidirectional solidification among the melted materials.

N型熱電素子5aを性能の高い一方向凝固により作製されることで熱電モジュールの性能を極限に高めることが可能となり、同時に前述した熱電モジュールの冷却性能を高める効果を大きくできる。   By producing the N-type thermoelectric element 5a by high-performance unidirectional solidification, it is possible to enhance the performance of the thermoelectric module to the limit, and at the same time, the effect of enhancing the cooling performance of the thermoelectric module described above can be increased.

さらに棒状結晶体にすることで切断加工工数を大幅に減らし、溶製材料の欠点である加工歩留まりの低下を抑えることが可能となる。   Furthermore, by using a rod-shaped crystal body, it is possible to greatly reduce the number of man-hours for cutting and to suppress a reduction in processing yield, which is a defect of the melted material.

また、本発明によれば、P型熱電素子5bが粒径50μm以下の焼結体から作製されることが望ましい。   Moreover, according to the present invention, it is desirable that the P-type thermoelectric element 5b is made of a sintered body having a particle size of 50 μm or less.

粒径が50μm以下の場合は、熱伝導率が急激に小さくなる。熱伝導率が小さいP型焼結体は、N型溶製材料と組み合わせたときに熱伝導率の違いによって、電子伝導の違いをより大きくでき、比抵抗の差による効果をより大きくすることができる。   When the particle size is 50 μm or less, the thermal conductivity decreases rapidly. A P-type sintered body having a low thermal conductivity can increase the difference in electronic conductivity and increase the effect of the difference in specific resistance due to the difference in thermal conductivity when combined with an N-type melted material. it can.

P型焼結材料の粒径は特に30μm以下が好ましい。   The particle size of the P-type sintered material is particularly preferably 30 μm or less.

また、このような粒径が小さい焼結体は強度が高く、熱電モジュールの信頼性を高めることができる。   In addition, such a sintered body having a small particle size has high strength and can improve the reliability of the thermoelectric module.

このようにして、N型熱電素子5aとP型熱電素子5bの比抵抗が異なる熱電モジュールは、同等な場合の熱電モジュールと比較して、冷却性能の中で、温度差特性または吸熱特性いずれかを高めることができる。   In this way, the thermoelectric module in which the specific resistance of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b is different from the thermoelectric module in the equivalent case, either the temperature difference characteristic or the endothermic characteristic in the cooling performance. Can be increased.

その結果、本発明品による熱電モジュールは、高い温度調整が要求されるレーザーダイオード冷却用、半導体ウェハー冷却プレートに、または高い吸熱特性が要求される家庭用冷蔵庫、クーラー等への応用が期待される。   As a result, the thermoelectric module according to the present invention is expected to be applied to laser diode cooling, semiconductor wafer cooling plates that require high temperature control, or household refrigerators, coolers, etc. that require high heat absorption characteristics. .

次いで、本発明の実施例を説明する。   Next, examples of the present invention will be described.

先ず、種々のN型およびP型熱電材料を作製した。作製方法は純度99.99%以上のBi、Te、Sb、Se金属粉末及びN型熱電素子用ドーパントとしてSbI粉末およびSbBr粉末を準備した。N型用熱電材料としては、BiTe2.85Se0.15組成を基本にし、比抵抗を調整するためにドーパントの量を調整した。 First, various N-type and P-type thermoelectric materials were produced. The production method prepared Bi, Te, Sb, Se metal powder with a purity of 99.99% or more, and SbI 3 powder and SbBr 3 powder as dopants for N-type thermoelectric elements. The N-type thermoelectric material was based on the Bi 2 Te 2.85 Se 0.15 composition, and the amount of dopant was adjusted in order to adjust the specific resistance.

また、P型用熱電材料はBiSb2−xTeを基本としxを0.3から0.7に変化させることで比抵抗を調整した。 The P-type thermoelectric material was based on Bi x Sb 2-x Te 3 and the specific resistance was adjusted by changing x from 0.3 to 0.7.

原料を所望とする組成に秤量したのち、カーボン製のるつぼに充填し、蓋によって密閉した。石英管に入れ真空置換を行いアルゴン雰囲気中で800℃、5時間で溶融合金を作製した。   The raw materials were weighed to the desired composition, filled into a carbon crucible, and sealed with a lid. The molten alloy was produced by placing in a quartz tube and performing vacuum substitution in an argon atmosphere at 800 ° C. for 5 hours.

溶融合金をグローブボックス中、スタンプミルで粉砕し、2mmの目開きのふるいを通した後、窒化ケイ素をボールとした小振動ミルにて1〜12時間粉砕し、この合金粉末を450℃で1時間、水素気流中で加熱し、還元処理を行い微粉末合金の粉末を得た。   The molten alloy was pulverized with a stamp mill in a glove box, passed through a sieve with 2 mm openings, and then pulverized with a small vibration mill using silicon nitride as a ball for 1 to 12 hours. The mixture was heated in a hydrogen stream for a period of time and subjected to reduction treatment to obtain a fine powder alloy powder.

粉末は、20mm径−10mmtのカーボンダイスを用いてホットプレスを行い、焼結体を得た。   The powder was hot-pressed using a carbon die having a diameter of 20 mm to 10 mm to obtain a sintered body.

焼結体は、一部を加圧方向と垂直な方向が長手方向になるように2x3x15mmの直方体を切り出し、市販のゼーベック係数測定装置(真空理工製ZEM装置)にて長手方向のゼーベック係数(S)および比抵抗(ρ)を測定し、出力因子(S/ρ)を算出した。 For the sintered body, a 2 × 3 × 15 mm rectangular parallelepiped is cut out so that the direction perpendicular to the pressing direction is the longitudinal direction, and the longitudinal Seebeck coefficient (S) is obtained using a commercially available Seebeck coefficient measuring device (ZEM device manufactured by Vacuum Riko). ) And specific resistance (ρ) were measured, and the output factor (S 2 / ρ) was calculated.

焼結体の残りを同様に加圧方向が厚さ方向となるように、厚さ0.9mmでスライスし、Ni無電界メッキおよびAuメッキを施した後、□0.65mmの形状にダイシング加工を行い、熱電素子を得た。   Similarly, slice the remainder of the sintered body at a thickness of 0.9 mm so that the pressing direction is the thickness direction, and after applying Ni electroless plating and Au plating, dicing into a shape of □ 0.65 mm The thermoelectric element was obtained.

また、溶製材料として一方向凝固材料の作製について下記に述べる。   The production of a unidirectionally solidified material as a melting material will be described below.

作製された合金粉末を、正方形形状で断面形状□0.65で長さ100mmの円柱状の空隙を有するカーボン鋳型の型枠の上部に配置し、縦型の石英管を炉芯管とする単結晶育成装置(ブリッジマン法)にて700℃で溶融させ、空隙の中に融液を充填した後、ブリッジマン法の原理で型枠を移動させながら冷却し、凝固点(約600℃)付近で2〜3mm/Hの速度で結晶成長させ、N型熱電素子5a及びP型熱電素子5bの一方向凝固熱電結晶材料からなる長尺体を作製した。   The produced alloy powder is placed on top of a carbon mold mold having a square shape and a cross-sectional shape of □ 0.65 and a cylindrical gap of 100 mm in length, and a vertical quartz tube is used as a furnace core tube. After melting at 700 ° C with a crystal growth device (Bridgeman method), filling the gap with the melt, cooling while moving the mold on the principle of the Bridgeman method, near the freezing point (about 600 ° C) Crystal growth was performed at a rate of 2 to 3 mm / H, and a long body made of a unidirectionally solidified thermoelectric crystal material of an N-type thermoelectric element 5a and a P-type thermoelectric element 5b was produced.

得られた棒状の一方向凝固熱電結晶材料を長手方向に15mmに切断し、同様にゼーベック係数(S)および比抵抗(ρ)を測定し、出力因子(S/ρ)を算出した。 The obtained rod-shaped unidirectionally solidified thermoelectric crystal material was cut into 15 mm in the longitudinal direction, and the Seebeck coefficient (S) and specific resistance (ρ) were measured in the same manner to calculate the output factor (S 2 / ρ).

さらにこの棒状の一方向凝固熱電結晶材料を用いて熱電素子を作製した。   Furthermore, a thermoelectric element was produced using this rod-shaped unidirectionally solidified thermoelectric crystal material.

まず、一方向凝固熱電材料の側面を市販のメッキレジスト(アクリル系樹脂)でコーティングした後、ダイシングソーで長さ0.9mmに切断して直方体素子を作製した。   First, the side surface of the unidirectionally solidified thermoelectric material was coated with a commercially available plating resist (acrylic resin), and then cut into a length of 0.9 mm with a dicing saw to produce a rectangular parallelepiped element.

得られた素子に無電解メッキを施し、厚みが5〜10μmとなるようにNiメッキ層を形成した後、厚さ0.1μmのAuメッキを施し、その後アルカリ溶液中に入れ、超音波洗浄によって素子の側面のメッキレジスト上に付着したメッキ層を除去し、切断面のみにメッキ層を形成し、熱電素子を作製した。   Electroless plating is performed on the obtained element, a Ni plating layer is formed so as to have a thickness of 5 to 10 μm, then Au plating with a thickness of 0.1 μm is applied, and then placed in an alkaline solution, and ultrasonic cleaning is performed. The plating layer adhering to the plating resist on the side surface of the element was removed, and a plating layer was formed only on the cut surface, thereby producing a thermoelectric element.

また、別の溶製材料の作製方法としては、赤外線イメージ炉を用いてゾーンメルト法にてφ30のインゴットを結晶成長させた。インゴットは成長方向と垂直にスライスし、焼結体の場合と同様に熱電素子を作製し、また熱電特性を算出した。   As another method for producing the melted material, an ingot having a diameter of 30 was grown by a zone melt method using an infrared image furnace. The ingot was sliced perpendicular to the growth direction, a thermoelectric element was produced in the same manner as the sintered body, and thermoelectric characteristics were calculated.

以上の製法により得られたN型およびP型の熱電素子を各23個ずつ使用して、6x8mmの銅配線されたアルミナセラミック基板上にSnSb(95対5)半田ペーストを用いて格子状の配列ジグを用いて配列し、セラミックスヒーターで250〜280℃に加熱して接合し、熱電モジュールを得た。   Using 23 each of the N-type and P-type thermoelectric elements obtained by the above manufacturing method, a grid-like arrangement using SnSb (95 to 5) solder paste on an alumina ceramic substrate with 6 × 8 mm copper wiring A thermoelectric module was obtained by arranging using jigs and heating and bonding to 250 to 280 ° C. with a ceramic heater.

熱電モジュールは、冷却面を27℃に温調されたヒートシンク上に熱伝導グリースを介して接合し、通電させ、冷却面上部の温度を0.1mm径のK型熱電対で測温し、27℃と冷却面温度との差が最大となる温度を最大温度差とした。   In the thermoelectric module, the cooling surface is joined to a heat sink whose temperature is adjusted to 27 ° C. via heat conductive grease, energized, and the temperature at the top of the cooling surface is measured with a 0.1 mm diameter K-type thermocouple. The temperature at which the difference between ° C. and the cooling surface temperature was the maximum was taken as the maximum temperature difference.

さらに、最大温度差が得られた条件で通電した状態で、冷却面基板と同じ形状のセラミックヒーターを用いて冷却面を加熱し、冷却面温度が27℃になったときのセラミックヒーターの出力を吸熱量として求めた。   Furthermore, in a state where power is supplied under the condition where the maximum temperature difference is obtained, the cooling surface is heated using a ceramic heater having the same shape as the cooling surface substrate, and the output of the ceramic heater when the cooling surface temperature reaches 27 ° C. The endothermic amount was obtained.

さらに、得られた熱電素子は破断面をSEMにて観察し、約300個の粒子よりラインインターセプト法にて平均粒径を求めた。   Further, the obtained thermoelectric element was observed by a SEM for a fracture surface, and an average particle diameter was determined from about 300 particles by a line intercept method.

結果を併せて表1に示す。

Figure 2005159019
The results are also shown in Table 1.
Figure 2005159019

表1から明らかなように、本発明の範囲外であるN型熱電素子5aとP型熱電素子5bの比抵抗が同等である比較例No.8から11および28、33、42、45では、最大温度差が73.2〜73.8℃、吸熱量が3.01〜3.06Wであるのに対して、本発明の範囲内であるN型熱電素子5aとP型熱電素子5bの比抵抗が異なる実施例No.1から7、13から27、29から32、34から41、および43、44、46では、いずれも最大温度差で74.3℃以上、あるいは吸熱量で3.10W以上有しており、熱電モジュールの最大温度差、吸熱量いずれかが向上していた。   As is apparent from Table 1, the comparative examples No. 1 and No. 5 of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b, which are outside the scope of the present invention, are equivalent. 8 to 11 and 28, 33, 42 and 45, the maximum temperature difference is 73.2 to 73.8 ° C. and the endothermic amount is 3.01 to 3.06 W, which is within the scope of the present invention. Example No. 5 in which the specific resistances of the N-type thermoelectric element 5a and the P-type thermoelectric element 5b are different. 1 to 7, 13 to 27, 29 to 32, 34 to 41, and 43, 44, 46 all have a maximum temperature difference of 74.3 ° C. or higher, or an endothermic amount of 3.10 W or higher. Either the maximum temperature difference or the endothermic amount of the module was improved.

また、試料No.6と29、16と27は比抵抗の比が同等であるが、モジュール特性はN型熱電素子が焼結ではなく、溶製である方が好ましいことがわかる。   Sample No. 6 and 29 and 16 and 27 have the same specific resistance ratio, but the module characteristics indicate that the N-type thermoelectric element is preferably not melted but melted.

また、ゼーベック係数が4以上が好ましいことは試料No.21−26よりわかる。   In addition, it is preferable that the Seebeck coefficient is 4 or more in Sample No. 21-26.

また、比抵抗の比が0.7以上0.95以下であること及び比抵抗の比が1.05以上1.30以下であることが好ましいことは試料No.1―20よりわかる。   Further, it is preferable that the specific resistance ratio is 0.7 or more and 0.95 or less and that the specific resistance ratio is 1.05 or more and 1.30 or less. I understand from 1-20.

また、N型素子が一方向凝固により作製された棒状結晶体であることが好ましいことは、
試料No.27と30よりわかる。
Further, it is preferable that the N-type element is a rod-shaped crystal produced by unidirectional solidification.
Sample No. It can be seen from 27 and 30.

また、P型素子が粒径50μm以下の焼結体であることが好ましいことは、試料No.38―39よりわかる。   Further, it is preferable that the P-type element is a sintered body having a particle size of 50 μm or less. I understand from 38-39.

本発明の熱電モジュールの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the thermoelectric module of this invention.

符号の説明Explanation of symbols

1、2・・・支持基板
3、4・・・配線導体
5a・・・・N型熱電素子
5b・・・・P型熱電素子
6・・・・・外部接続端子
DESCRIPTION OF SYMBOLS 1, 2 ... Support substrate 3, 4 ... Wiring conductor 5a ... N type thermoelectric element 5b ... P type thermoelectric element 6 ... External connection terminal

Claims (7)

支持基板と、該支持基板上に同数で配列されたN型およびP型熱電素子と、該複数の熱電素子間を電気的に直列に接続する配線導体と、前記支持基板上に設けられ、該配線導体と電気的に連結された外部接続端子とを具備する熱電モジュールにおいて、前記N型熱電素子とP型熱電素子の比抵抗が異なることを特徴とする熱電モジュール。 A support substrate, N-type and P-type thermoelectric elements arranged in the same number on the support substrate, a wiring conductor that electrically connects the plurality of thermoelectric elements in series, and provided on the support substrate; A thermoelectric module comprising an external connection terminal electrically connected to a wiring conductor, wherein the N-type thermoelectric element and the P-type thermoelectric element have different specific resistances. 前記N型熱電素子が溶製材料からなり、P型熱電素子が焼結材料からなることを特徴とする請求項1記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the N-type thermoelectric element is made of a melted material, and the P-type thermoelectric element is made of a sintered material. 前記P型熱電素子とP型熱電素子の出力因子((ゼーベック係数)/比抵抗)が4×10−3W/mK2以上であることを特徴とする請求項1または2記載の熱電モジュール。 3. The thermoelectric module according to claim 1, wherein an output factor ((Seebeck coefficient) 2 / specific resistance) of the P-type thermoelectric element and the P-type thermoelectric element is 4 × 10 −3 W / mK 2 or more. . 前記N型熱電素子とP型熱電素子の比抵抗の比(N型/P型)が0.7以上0.95以下であることを特徴とする請求項1乃至3いずれかに記載の熱電モジュール。 4. The thermoelectric module according to claim 1, wherein a ratio of specific resistance between the N-type thermoelectric element and the P-type thermoelectric element (N-type / P-type) is 0.7 or more and 0.95 or less. 5. . 前記N型熱電素子とP型熱電素子の比抵抗の比(N型/P型)が1.05以上1.30以下であることを特徴とする請求項1乃至3いずれかに記載の熱電モジュール。 4. The thermoelectric module according to claim 1, wherein a ratio of specific resistance between the N-type thermoelectric element and the P-type thermoelectric element (N-type / P-type) is 1.05 or more and 1.30 or less. 5. . 前記N型素子が一方向凝固により作製された棒状結晶体であることを特徴とする請求項1乃至5いずれかに記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the N-type element is a rod-like crystal produced by unidirectional solidification. 前記P型素子が粒径50μm以下の焼結体であることを特徴とする請求項1乃至6いずれかに記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the P-type element is a sintered body having a particle size of 50 μm or less.
JP2003395650A 2003-10-29 2003-11-26 Thermoelectric module Pending JP2005159019A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003395650A JP2005159019A (en) 2003-11-26 2003-11-26 Thermoelectric module
CNB200410089674XA CN100397671C (en) 2003-10-29 2004-10-29 Thermoelectric inverting model
CN200710305713A CN100595941C (en) 2003-10-29 2004-10-29 Thermoelectric module and package thereof
US11/150,707 US20050241690A1 (en) 2003-10-29 2005-06-09 Thermoelectric Module
US12/399,728 US20090188542A1 (en) 2003-10-29 2009-03-06 Thermoelectric Module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395650A JP2005159019A (en) 2003-11-26 2003-11-26 Thermoelectric module

Publications (1)

Publication Number Publication Date
JP2005159019A true JP2005159019A (en) 2005-06-16

Family

ID=34721365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395650A Pending JP2005159019A (en) 2003-10-29 2003-11-26 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP2005159019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022698A1 (en) * 2007-08-13 2009-02-19 National Institute Of Advanced Industrial Science And Technology Process for producing fine thermoelectric element, the fine thermoelectric element, and product employing the fine thermoelectric element
JP2018190953A (en) * 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 Zintl phase thermoelectric conversion material
JP2020034198A (en) * 2018-08-28 2020-03-05 日本碍子株式会社 Heat pump, heating system and cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022698A1 (en) * 2007-08-13 2009-02-19 National Institute Of Advanced Industrial Science And Technology Process for producing fine thermoelectric element, the fine thermoelectric element, and product employing the fine thermoelectric element
JP2009049050A (en) * 2007-08-13 2009-03-05 National Institute Of Advanced Industrial & Technology Manufacturing method of fine thermoelectric element, fine thermoelectric element and product using the same
JP2018190953A (en) * 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 Zintl phase thermoelectric conversion material
JP7209167B2 (en) 2017-05-08 2023-01-20 パナソニックIpマネジメント株式会社 Jintle phase thermoelectric conversion material
JP2020034198A (en) * 2018-08-28 2020-03-05 日本碍子株式会社 Heat pump, heating system and cooling system

Similar Documents

Publication Publication Date Title
US8519256B2 (en) Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
US5448109A (en) Thermoelectric module
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP2007013000A (en) Thermoelectric conversion material
JP2007165463A (en) Thermoelectric converting element and power generating module
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
KR20180089850A (en) Thermo electric sintered body and thermo electric element
JP2005159019A (en) Thermoelectric module
JP2004349566A (en) Unidirectional coagulation thermoelectric crystal material and its manufacturing method, thermoelectric component using the same and its manufatcuring method, and thermoelectric module
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
JP2013012571A (en) Thermoelectric conversion module and manufacturing method thereof
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP3548560B2 (en) Thermoelectric module
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
WO2008020480A1 (en) High-performance thermoelectric conversion material and thermoelectric conversion module for power generation
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof
JP2002327223A (en) Method for manufacturing intermetallic compound, and thermoelectric element and thermoelectric module manufactured therewith
JP2000138399A (en) Thermoelectric semiconductor material, thermoelectric device, manufacture of them, and manufacturing apparatus of the thermoelectric semiconductor material
JP2004211125A (en) Thermoelectric material and its producing method
JP3278140B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP2004303872A (en) Thermoelectric conversion module
JP3500374B2 (en) Thermoelectric element and thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006