JP2005154858A - Aluminum surface treated material for forming - Google Patents

Aluminum surface treated material for forming Download PDF

Info

Publication number
JP2005154858A
JP2005154858A JP2003396837A JP2003396837A JP2005154858A JP 2005154858 A JP2005154858 A JP 2005154858A JP 2003396837 A JP2003396837 A JP 2003396837A JP 2003396837 A JP2003396837 A JP 2003396837A JP 2005154858 A JP2005154858 A JP 2005154858A
Authority
JP
Japan
Prior art keywords
aluminum
lubricant
forming
film
nonporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396837A
Other languages
Japanese (ja)
Inventor
Keitaro Yamaguchi
恵太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2003396837A priority Critical patent/JP2005154858A/en
Publication of JP2005154858A publication Critical patent/JP2005154858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an aluminum surface treated material for forming having satisfactory corrosion resistance, and to which surface treatment has been performed before forming, and forming can be satisfactory performed. <P>SOLUTION: The aluminum surface treated material is obtained by forming a nonporous anodized coating 2 having a porosity of ≤5% and a film thickness of 30 to 300 nm on the upper layer of an aluminum base material 1, and forming a lubricant layer 3 on the upper layer of the nonporous anodized coating 2. Desirably, the quantity of the lubricant is 0.01 to 10 g/m<SP>2</SP>, and a solid lubricant is used. By the nonporous anodized coating 2 having a porosity of ≤5%, the surface of the aluminum material 10 is provided with dense and hard properties, and the thickness of the lubricant layer 3 may be the minimum required one. The nonporous anodized coating performs protective function for the aluminum material, and prevents the galling and seizure between a die and the aluminum material. The damage to the nonporous anodized coating at the time of forming is reduced, and the characteristics of the coating can be maintained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、良好な耐食性が求められる筺体、容器、電子部品などの加工用素材として利用することができる成形加工用アルミニウム表面処理材に関するものである。   The present invention relates to an aluminum surface treatment material for forming that can be used as a material for processing a casing, a container, an electronic component or the like that requires good corrosion resistance.

従来からアルミニウム材を板材にし、これを成形加工して筐体、容器、電子部品などの加工品にすることが広く行われている。また上記加工品の多くでは耐食性が要求されるため、一般には加工後にクロメート処理や塗装が行われている。しかし、加工後の表面処理は、一品毎におこなう必要がありコスト高になる。そこでコストを抑制するために、加工前のアルミニウム材のコイルにクロメート処理やアルマイト処理(多孔質)を行う方法も採用されている。
ところで、アルミニウム材料の表面は比較的軟らかいために、成形時に金型に焼き付いたり、かじりにより所定の形状が成形できない場合がある。また、その際に発生するアルミニウム粉が金型に付着し表面傷や成形品に汚れとして付着する問題もある。加工前に前記皮膜処理を行った場合でも、この処理によって形成される皮膜は脆弱なために、加工時のかじりなどを抑制することは期待できない。また、加工時に前記皮膜がダメージを受け、耐食性が低下してしまうという問題もある。これらの問題回避のためには、成形加工に際しては十分な量の加工油をスプレーなどによってアルミニウム材に塗布して加工に供している。
2. Description of the Related Art Conventionally, it has been widely practiced to use an aluminum material as a plate material and form it into a processed product such as a housing, a container, or an electronic component. Further, since many of the processed products require corrosion resistance, in general, chromate treatment and coating are performed after processing. However, the surface treatment after processing needs to be performed for each product, which increases costs. Therefore, in order to reduce costs, a method of performing chromate treatment or alumite treatment (porous) on a coil of an aluminum material before processing is also employed.
By the way, since the surface of the aluminum material is relatively soft, there are cases where a predetermined shape cannot be formed due to seizure or galling in the mold during molding. In addition, there is a problem that the aluminum powder generated at that time adheres to the mold and adheres to the surface scratch or the molded product as dirt. Even when the film treatment is performed before processing, the film formed by this treatment is fragile, so it cannot be expected to suppress galling during processing. In addition, there is a problem that the film is damaged during processing and the corrosion resistance is lowered. In order to avoid these problems, a sufficient amount of processing oil is applied to the aluminum material by spraying or the like during the forming process.

しかし、過剰な加工油はプレス成形機や金型に付着し、プレス成形金型の汚染などにつながる。さらに、過剰な加工油の塗布は加工後に加工油を除去するための脱脂工程の負担を大きくし、脱脂によって加工油の除去が十分に行われない場合も生じてくる。
一方、加工油の使用を抑えると、部分的に加工油の塗布が不足した領域ができるなどしてかじりなどが発生するおそれがある。また、上記したクロメート皮膜やアルマイト皮膜では、十分な加工油を用いた成形加工においてもダメージを受けることがあり、製品歩留まりが悪いという問題がある。
However, excessive processing oil adheres to the press molding machine and mold, leading to contamination of the press mold. Furthermore, application of excessive processing oil increases the burden of a degreasing process for removing the processing oil after processing, and there are cases where the processing oil is not sufficiently removed by degreasing.
On the other hand, if the use of the processing oil is suppressed, there is a possibility that a galling or the like may occur due to, for example, an area where the processing oil is not sufficiently applied. In addition, the above-described chromate film and anodized film may be damaged even in a molding process using a sufficient processing oil, resulting in a problem that the product yield is poor.

本発明は、上記事情を背景としてなされたものであり、成形加工前の表面処理が可能であり、かつ、過剰の加工油の使用を必要としないでアルミニウム材のかじりや表面処理皮膜のダメージを起こすことなく成形加工が可能な成形加工用アルミニウム表面処理材を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and can be subjected to surface treatment before molding processing, and can eliminate galling of aluminum materials and damage to the surface treatment film without requiring the use of excessive processing oil. It is an object of the present invention to provide an aluminum surface treatment material for forming that can be formed without raising.

上記課題を解決するため、本発明の成形加工用アルミニウム表面材のうち、請求項1記載の発明は、アルミニウム基材の上層に有孔率が5%以下で、膜厚が30〜300nmの無孔質陽極酸化皮膜が形成され、該無孔質陽極酸化皮膜の上層に潤滑剤層が形成されていることを特徴とする。   In order to solve the above problems, among the aluminum surface materials for forming according to the present invention, the invention according to claim 1 is characterized in that the porosity of the upper layer of the aluminum substrate is 5% or less and the film thickness is 30 to 300 nm. A porous anodized film is formed, and a lubricant layer is formed on the nonporous anodized film.

請求項2記載の成形加工用アルミニウム表面処理材の発明は、請求項1記載の発明において、前記潤滑剤量が0.01〜10g/mであることを特徴とする。 The invention for an aluminum surface treatment material for forming according to claim 2 is characterized in that, in the invention according to claim 1, the amount of the lubricant is 0.01 to 10 g / m 2 .

請求項3記載の成形加工用アルミニウム表面処理材の発明は、請求項1または2に記載の発明において、前記潤滑剤が固形潤滑剤であることを特徴とする。   The invention of the aluminum surface treatment material for forming according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the lubricant is a solid lubricant.

すなわち、本発明によれば、有孔率が5%以下の無孔質陽極酸化皮膜が形成されていることにより、アルミニウム材の表面は緻密で硬い性状を有している。このため、アルミニウム材の表面に形成する潤滑剤層も必要最低限のもので足り、従来のように必要以上に加工油を塗布することは必要ない。この優れた潤滑性によって複雑な形状や加工速度の高い成形にも対応できる。また、前記無孔質陽極酸化皮膜は、自身の硬い性状と潤滑剤層の存在とによってアルミニウム材の保護機能を果たし、加工時のアルミニウム材と金型とのかじりや焼き付きが抑制され、アルミニウム粉の付着による汚れも抑制される。また、成形時における無孔質陽極酸化皮膜のダメージも少なく、該皮膜の良好な特性(例えば耐食性)が維持される。なお、無孔質陽極酸化皮膜は、アルミニウム基材の片面、両面のいずれに形成するものであってもよく、これにしたがって、潤滑剤層が片面または両面表面に形成されるものであってもよい。   That is, according to the present invention, the surface of the aluminum material has a dense and hard property because the nonporous anodic oxide film having a porosity of 5% or less is formed. For this reason, the lubricant layer formed on the surface of the aluminum material is sufficient, and it is not necessary to apply processing oil more than necessary as in the prior art. With this excellent lubricity, it is possible to cope with complex shapes and high molding speeds. Further, the nonporous anodic oxide film serves to protect the aluminum material by its own hard properties and the presence of the lubricant layer, suppresses galling and seizure between the aluminum material and the mold during processing, Contamination due to adhesion is also suppressed. Further, the nonporous anodic oxide film is hardly damaged during molding, and good characteristics (for example, corrosion resistance) of the film are maintained. The nonporous anodic oxide film may be formed on one side or both sides of the aluminum substrate, and according to this, the lubricant layer may be formed on one side or both sides. Good.

上記無孔質陽極酸化皮膜では、上記した作用を得るために、膜厚を30nm以上とすることが必要であり、30nm以上の厚さにより加工による皮膜割れが少なく、耐食性も十分になる。特に、無孔質皮膜であるため、一般のアルマイトのような多孔質な皮膜と比較して、腐食物質の進入を抑制する作用が強い。30nm未満では金型とのかじりが増大し、耐食性も不十分なものとなる。一方、300nmを越える膜厚とすると、成形加工の際に該皮膜にクラックが生じやすくなり、耐食性が低下する。したがって、前記無孔質陽極酸化皮膜の膜厚は、30〜300nmの範囲内にする必要がある。なお、上記と同様の理由で、下限を80nm、上限を200nmとするのが望ましい。   In the nonporous anodic oxide film, it is necessary to make the film thickness 30 nm or more in order to obtain the above-described action, and the film thickness of 30 nm or more causes less film cracking due to processing, and also provides sufficient corrosion resistance. In particular, since it is a non-porous film, it has a stronger action of suppressing the entry of corrosive substances than a porous film such as general alumite. If it is less than 30 nm, the galling with the mold increases and the corrosion resistance becomes insufficient. On the other hand, if the film thickness exceeds 300 nm, cracks are likely to occur in the film during the molding process, and the corrosion resistance decreases. Therefore, the film thickness of the nonporous anodic oxide film needs to be in the range of 30 to 300 nm. For the same reason as described above, it is desirable that the lower limit is 80 nm and the upper limit is 200 nm.

また、無孔質陽極酸化皮膜は、完全に無孔質であることが要求されるものではなく、5%以下の有孔率であればよい。この有孔率が5%を越えると皮膜が脆弱になり、加工性が低下するとともに耐食性が不十分なものとなる。なお、有孔率は3%以下であるのが一層望ましく、無孔が最も望ましい。   In addition, the nonporous anodic oxide film is not required to be completely nonporous, and may have a porosity of 5% or less. If this porosity exceeds 5%, the film becomes brittle, the workability is lowered and the corrosion resistance is insufficient. The porosity is more preferably 3% or less, and most preferably non-porous.

なお、有孔率の測定方法としては、陽極酸化皮膜の表面を電子顕微鏡の50,000倍(最低2.0nm×2.0nmの視野面積)で任意の10箇所を観察し、孔の面積率を平均値として求める方法がある。但し、金属間化合物などが存在して表面状態が変化しているイレギュラーな場所は除外する。また他の測定方法として、皮膜の断面を切断して、透過電子顕微鏡で同様の倍率と測定個所の観察を行い、陽極酸化皮膜の最表面の孔と孔でない部位の比率から求めることができる。なお、これら測定方法では、深さが3nm以上で、大きさが円相当径で3nm以上の凹みを孔とみなす。これらのうちのいずれかの方法によって有孔率が5%以下と測定されれば本発明の有孔率の条件を満たしているといえる。   In addition, as a method for measuring the porosity, the surface of the anodized film was observed at 10 arbitrary positions at 50,000 times (minimum viewing area of 2.0 nm × 2.0 nm) of the electron microscope, and the area ratio of the holes Is obtained as an average value. However, irregular places where the surface state is changed due to the presence of intermetallic compounds are excluded. As another measurement method, the cross-section of the film is cut, the same magnification and measurement location are observed with a transmission electron microscope, and the ratio can be obtained from the ratio of the hole on the outermost surface of the anodized film to the part that is not a hole. In these measurement methods, a recess having a depth of 3 nm or more and a size of a circle equivalent diameter of 3 nm or more is regarded as a hole. If the porosity is measured to be 5% or less by any of these methods, it can be said that the porosity condition of the present invention is satisfied.

また、前記潤滑剤層では、 潤滑剤としては、鉱物油、食用油、ポリオキシエチレン系、ポリグリセリンエステル系などを用いることができ、ポリオキシエチレン系、ポリグリセリンエステル系が最適である。
なお、潤滑剤層では、固形潤滑剤(塗布後に固化するものを含む)を用いるのが望ましい。固形潤滑剤は、アルミニウム材表面に形成後に、揮発によって塗布量が変化してしまうことがなく、潤滑性を安定的に維持することができる。したがって、固形潤滑剤としては、少なくとも室温(好適にはそれ以上の温度)で固形状態となるものであればよい。
ポリオキシエチレン系、ポリグリセリンエステル系をより具体的に示すと、ポリオキシエチレン・アルキルエーテル[C1225−O−(CH−CHO)n−H]、デカグリセリンモノラウリル酸エステル RO−(CH−CH(OH)CHO)n−R(Rは水素原子または脂肪酸残基)が好ましい。これらの潤滑剤は室温で固形であり、コイル状の板材に塗布した場合に揮発して塗布量が変化してしまうことがない。さらに、固形潤滑剤であれば金型へ材料を送る自動送り機や加工後の成形体を移送するラインの汚染も少なく、ラインの汚れが加工品に再付着することを防ぐこともできる。より好ましくは、ポリグリセリンエステル系である。
In the lubricant layer, mineral oil, edible oil, polyoxyethylene-based, polyglycerin ester-based, etc. can be used as the lubricant, and polyoxyethylene-based, polyglycerin ester-based are most suitable.
In the lubricant layer, it is desirable to use a solid lubricant (including one that solidifies after application). After the solid lubricant is formed on the surface of the aluminum material, the coating amount does not change due to volatilization, and the lubricity can be stably maintained. Accordingly, any solid lubricant may be used as long as it is in a solid state at least at room temperature (preferably higher temperature).
Polyoxyethylene, indicating polyglycerol ester more specifically, polyoxyethylene alkyl ether [C 12 H 25 -O- (CH 2 -CH 2 O) n-H], decaglycerol monolauryl ester RO- (CH 2 -CH (OH) CH 2 O) n-R (R is a hydrogen atom or a fatty acid residue) is preferred. These lubricants are solid at room temperature, and do not volatilize and change the coating amount when applied to a coiled plate. Furthermore, if it is a solid lubricant, the automatic feeder for feeding the material to the mold and the line for transferring the processed molded body are less contaminated, and the dirt on the line can be prevented from reattaching to the processed product. More preferably, it is a polyglycerol ester type.

なお、潤滑剤量は、本発明としては特定のものに限定されないが、アルミニウム材表面積当たりで0.01〜10g/mが望ましい。0.01g/m未満であると、潤滑性能が不十分であり、成形加工時に金型とのかじりが増す。また、10g/mを越えても潤滑性能は飽和し、金型に潤滑剤が剥離して蓄積し、加工品の表面に付着して汚れが増すなどの問題が生じる。したがって、潤滑剤量として0.01〜10g/mが望ましいといえる。なお、上記と同様の理由によって潤滑剤量の下限を0.1g/m、上限を5g/mとするのが望ましい。 The amount of lubricant is not limited to a specific one in the present invention, but is preferably 0.01 to 10 g / m 2 per surface area of the aluminum material. If it is less than 0.01 g / m 2 , the lubrication performance is insufficient, and galling with the mold increases during the molding process. Further, even if it exceeds 10 g / m 2 , the lubrication performance is saturated, the lubricant is peeled off and accumulated on the mold, and there arises a problem that it adheres to the surface of the processed product and increases dirt. Therefore, it can be said that 0.01 to 10 g / m 2 is desirable as the amount of lubricant. For the same reason as described above, it is desirable that the lower limit of the lubricant amount is 0.1 g / m 2 and the upper limit is 5 g / m 2 .

以上のように、本発明の成形加工用アルミニウム表面処理材によれば、アルミニウム基材の上層に有孔率が5%以下で、膜厚が30〜300nmの無孔質陽極酸化皮膜が形成され、該無孔質陽極酸化皮膜の上層に潤滑剤層が形成されているので、成形加工前に表面処理を行っておくことができ、加工後に一品毎に表面処理を行う必要がなく製造効率を大幅に向上させて製造コストを低減することができる。また、成形加工に際し過剰の加工油を必要とすることなく、金型へのかじりなどの発生を防止して良好に成形加工することができ、上記皮膜のダメージを招くこともない。また、過剰の加工油を必要としないので、成形加工に際し金型へ材料を送る自動送り機やラインの汚染を極力回避でき、特に潤滑剤として固形潤滑剤を採用することで該汚染の発生を確実に防止できる。
加工後のアルミニウム表面処理材は、表面傷や汚れの発生がなく、良好な成形品が得られる。また、無孔質陽極酸化皮膜は成形加工によるダメージが殆どなく、優れた耐食性などの所期の特性が確実に得られる。
As described above, according to the aluminum surface treatment material for molding of the present invention, a nonporous anodic oxide film having a porosity of 5% or less and a film thickness of 30 to 300 nm is formed on the upper layer of the aluminum substrate. Since the lubricant layer is formed on the nonporous anodic oxide film, the surface treatment can be performed before the molding process, and it is not necessary to perform the surface treatment for each product after the processing. The manufacturing cost can be reduced by greatly improving the manufacturing cost. In addition, without excessive processing oil being required for the molding process, the mold can be satisfactorily molded by preventing the occurrence of galling and the like, and the film is not damaged. In addition, since excessive processing oil is not required, contamination of automatic feeders and lines that send materials to the mold during molding can be avoided as much as possible, especially by adopting solid lubricant as a lubricant. It can be surely prevented.
The processed aluminum surface-treated material is free from surface scratches and dirt, and a good molded product can be obtained. In addition, the nonporous anodic oxide film is hardly damaged by molding, and the desired characteristics such as excellent corrosion resistance can be surely obtained.

以下に、本発明の一実施形態を説明する。図1は、本発明の一例である成形加工用アルミニウム表面処理材10を示す拡大断面図である。
該アルミニウム材10の素材となるアルミニウム基材1は、純アルミニウム板または適宜組成のアルミニウム合金板からなり、常法により溶製、鋳造、圧延などを経て製造することができ、本発明としては特定の製造工程に限定されるものではない。
上記アルミニウム基材は、純アルミニウム、アルミニウム合金のいずれであってもよく、アルミニウム合金にあっては適宜の組成とすることができ、本発明として特に組成が限定されるものではない。例えば、JIS 1000番台の純アルミニウムやJIS 5000番台、7000番台等のアルミニウム合金を用いることができる。
Hereinafter, an embodiment of the present invention will be described. FIG. 1 is an enlarged cross-sectional view showing an aluminum surface treatment material 10 for forming which is an example of the present invention.
The aluminum base material 1 as a material of the aluminum material 10 is made of a pure aluminum plate or an aluminum alloy plate having an appropriate composition, and can be manufactured by melting, casting, rolling, etc. by a conventional method. It is not limited to the manufacturing process.
The aluminum substrate may be either pure aluminum or an aluminum alloy. The aluminum alloy can have an appropriate composition, and the composition is not particularly limited in the present invention. For example, JIS 1000 series pure aluminum and JIS 5000 series and 7000 series aluminum alloys can be used.

該アルミニウム基材1の上層には、陽極酸化処理によって無孔質陽極酸化皮膜2を形成する。該無孔質陽極酸化皮膜2の形成に際しては、所望により前処理を施しても良い。前処理としては、脱脂、洗浄などが挙げられる。
次いで、上記アルミニウム基材1を電解浴中で電解する陽極酸化処理を施すことにより、アルミニウム基材1の表裏上層に無孔質皮膜2を形成する。電解浴としては、生成する無孔質皮膜2を溶解しにくく、かつ無孔質の皮膜2を生成する電解質である硼酸、硼酸塩、リン酸塩、アジピン酸塩、フタル酸塩、安息香酸塩、酒石酸塩、クエン酸塩、ケイ酸塩などの群から選ばれる1種または2種以上を溶解した電解質水溶液を用いることができる。これらの電解質のなかでもホウ酸、アジピン酸塩、フタル酸塩が酸化皮膜の性状、コストなどの点で好ましい。電解質水溶液中の電解質濃度は2質量%からその電解質の飽和濃度の範囲が例示される。電解浴の浴温は20℃〜90℃の範囲が例示される。
A nonporous anodized film 2 is formed on the upper layer of the aluminum substrate 1 by anodizing treatment. In forming the nonporous anodic oxide film 2, a pretreatment may be performed if desired. Examples of the pretreatment include degreasing and washing.
Subsequently, the nonporous film 2 is formed on the upper and lower layers of the aluminum base 1 by subjecting the aluminum base 1 to an anodic oxidation treatment in an electrolytic bath. As an electrolytic bath, boric acid, borate, phosphate, adipate, phthalate, benzoate, which are electrolytes that are difficult to dissolve the produced nonporous film 2 and that produce the nonporous film 2, are used. An aqueous electrolyte solution in which one or more selected from the group consisting of tartrate, citrate, silicate and the like is dissolved can be used. Of these electrolytes, boric acid, adipate, and phthalate are preferable in terms of the properties of the oxide film, cost, and the like. Examples of the electrolyte concentration in the aqueous electrolyte solution range from 2% by mass to the saturation concentration of the electrolyte. The bath temperature of the electrolytic bath is exemplified by a range of 20 ° C to 90 ° C.

この電解浴中で、アルミニウム基材1は、連続あるいは断続であっても陽極となるように電源に接続されて電解される。陰極には不溶性の導電材料が用いられる。電解電流は、直流電流が用いられ、直流電解では例えば直流密度1〜30A/dm、電解時間数秒〜3分で電解が行われる。
印加電圧は、直流電流では、電圧1Vに対して形成される酸化皮膜厚さが約14Åとなる関係があることから21〜215V、好ましくは57〜142Vの範囲とされる。このような陽極酸化処理によって厚さが均一な無孔質皮膜2が形成される。無孔質陽極皮膜2の膜厚は、前記したように30〜300nmとする。
このようにして得られた無孔質陽極酸化皮膜2は有孔率が5%以下で、通常は2%以下となっている。また、無孔質陽極酸化皮膜2の含水量は1〜5質量%、通常は1〜3質量%と極めて低い値を示す。
In this electrolytic bath, the aluminum substrate 1 is electrolyzed by being connected to a power source so as to be an anode even if it is continuous or intermittent. An insoluble conductive material is used for the cathode. As the electrolytic current, a direct current is used. In direct current electrolysis, for example, electrolysis is performed at a direct current density of 1 to 30 A / dm 2 and an electrolysis time of several seconds to 3 minutes.
The applied voltage is in the range of 21 to 215 V, preferably 57 to 142 V, because the thickness of the oxide film formed with respect to the voltage of 1 V is about 14 mm in the case of direct current. By such anodizing treatment, a nonporous film 2 having a uniform thickness is formed. The film thickness of the nonporous anode film 2 is 30 to 300 nm as described above.
The thus obtained nonporous anodic oxide film 2 has a porosity of 5% or less, and usually 2% or less. Moreover, the water content of the nonporous anodic oxide film 2 is 1 to 5% by mass, usually 1 to 3% by mass, which is a very low value.

上記のようにして無孔質陽極酸化皮膜2が形成されたアルミニウム基材1では、表裏の表面層に潤滑剤層3を形成する。潤滑剤層3を形成する材料には、例えば、ポリオキシエチレン系、ポリグリセリンエステル系の固形潤滑剤を用いる。潤滑剤量は、アルミニウム材表面積当たりで0.01〜10g/m、より好適には0.1〜5g/mとする。
潤滑剤層は、潤滑剤を、アルミニウム材に塗布することにより形成することができる。該塗布は、スプレー法、グラビア印刷、フローコート、ロールコート、バーコート、浸漬後ロール絞りなどの手段を利用することができる。ただし、本発明としては、塗布方法が特定の方法に限定されるものではない。なお、水溶性の固形潤滑剤を塗布する際には、水などを溶剤として用いることができる。これら溶剤に揮発性を有するものを使用すれば、アルミニウム材への塗布後、容易に揮発、除去される。
In the aluminum substrate 1 on which the nonporous anodic oxide film 2 is formed as described above, the lubricant layer 3 is formed on the front and back surface layers. As a material for forming the lubricant layer 3, for example, a polyoxyethylene-based or polyglycerol ester-based solid lubricant is used. Lubricant amount, 0.01 to 10 g / m 2 per aluminum material surface area, and more preferably to 0.1-5 g / m 2.
The lubricant layer can be formed by applying a lubricant to an aluminum material. For the application, means such as spraying, gravure printing, flow coating, roll coating, bar coating, and post-immersion roll drawing can be used. However, in the present invention, the coating method is not limited to a specific method. In addition, when applying a water-soluble solid lubricant, water or the like can be used as a solvent. If these solvents are volatile, they are easily volatilized and removed after application to an aluminum material.

上記のようにしてアルミニウム基材1上に無孔質陽極酸化皮膜2、さらにその上層に潤滑剤層3を形成したアルミニウム表面処理材10は、プレスなどの成形加工に供される。該成形加工に際しては、特別な配慮をすることなく金型への焼き付きやかじりが発生することなく良好に成形を行うことができ、所望の形状を有する成形品を得ることができる。   The aluminum surface treatment material 10 in which the nonporous anodized film 2 is formed on the aluminum substrate 1 and the lubricant layer 3 is formed thereon as described above is subjected to a molding process such as pressing. In the molding process, molding can be performed satisfactorily without causing special seizure and without galling or galling on the mold, and a molded product having a desired shape can be obtained.

得られた成形品は、その後、所望により潤滑剤層の除去処理を行うことができる。該成形品は、硬質で緻密な無孔質陽極酸化皮膜2が形成されており、良好な耐食性などの所期の特性が得られている。   The resulting molded article can then be subjected to a lubricant layer removal treatment if desired. The molded article is formed with a hard and dense nonporous anodic oxide film 2, and desired characteristics such as good corrosion resistance are obtained.

以下に本発明の実施例について比較例と比較しつつ説明する
(材料の製作)
厚さ0.1mmのJIS3004アルミニウム合金板を用意し、50℃の10%NaOH溶液によって10秒間脱脂し、10秒間水洗後、室温の5%HNO溶液で中和し、10秒間水洗した。次いで、該試料をプラス側に接続し、対極をカーボン板として陽極酸化処理した。電解液には、アルカリ金属の塩、珪酸塩、ホウ酸塩、酒石酸塩、リン酸塩等を用いた。また、表1に示すように、電解液の濃度、電解時間、電解温度等を調整して、膜厚と有孔率を調整した。陽極酸化処理した試料は、10秒間水洗後、80℃で乾燥した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples (production of materials).
A JIS3004 aluminum alloy plate having a thickness of 0.1 mm was prepared, degreased with a 10% NaOH solution at 50 ° C. for 10 seconds, washed with water for 10 seconds, neutralized with a 5% HNO 3 solution at room temperature, and washed with water for 10 seconds. Next, the sample was connected to the plus side and anodized with the counter electrode as a carbon plate. As the electrolytic solution, an alkali metal salt, silicate, borate, tartrate, phosphate, or the like was used. Further, as shown in Table 1, the film thickness and the porosity were adjusted by adjusting the concentration of the electrolytic solution, electrolysis time, electrolysis temperature, and the like. The anodized sample was washed with water for 10 seconds and then dried at 80 ° C.

また、比較材として、上記と同様にアルミニウム合金板にクロメート処理またはアルマイト処理をしたものをそれぞれ用意した。クロメート処理は、クロム付着量が15mg/mとなるように常法によりリン酸クロメート処理した。アルマイト処理は、上記と同様に脱脂した材料を15%硫酸中に浸漬し、試料をプラス側に接続し、対極をカーボン板として陽極酸化処理した。 Moreover, the thing which chromated or anodized the aluminum alloy plate as described above was prepared as a comparative material. In the chromate treatment, phosphoric acid chromate treatment was carried out by a conventional method so that the chromium adhesion amount was 15 mg / m 2 . In the alumite treatment, the material degreased in the same manner as above was immersed in 15% sulfuric acid, the sample was connected to the positive side, and the anodizing treatment was performed using the counter electrode as a carbon plate.

各供試材には、潤滑剤を塗布して潤滑剤層を形成した。潤滑剤の種別は、A:ポリグリセリンエステル系(デカグリセリンモノラウリル酸エステル)、B:ポリオキシエチレン系(ポリオキシエチレン・アルキルエーテル)、C:鉱物油、D:食用油とした。潤滑剤量は表1に示した。   A lubricant was applied to each sample material to form a lubricant layer. The types of lubricants were A: polyglycerin ester (decaglycerin monolaurate), B: polyoxyethylene (polyoxyethylene alkyl ether), C: mineral oil, and D: edible oil. The amount of lubricant is shown in Table 1.

得られた各供試材について、有孔率、潤滑性、加工性、耐食性の測定又は評価を行った。なお、各試験における測定方法および評価方法は以下の通りである。   About each obtained test material, the porosity, lubricity, workability, and corrosion resistance were measured or evaluated. In addition, the measuring method and evaluation method in each test are as follows.

(有孔率)
陽極酸化皮膜の表面を電子顕微鏡の50,000倍(最低2.0nm×2.0nmの視野面積)で任意の10箇所を観察し、孔の面積率を平均値として求めた。
(Porosity)
The surface of the anodized film was observed at an arbitrary 10 points with an electron microscope of 50,000 times (minimum viewing area of 2.0 nm × 2.0 nm), and the area ratio of the holes was determined as an average value.

(潤滑性)
バウデン摩擦試験機に試料(供試材)を設置し、鋼球径7mm、加重200g、走査速度4mm/sで摩擦係数を測定した。
(Lubricity)
A sample (test material) was placed on a Bowden friction tester, and the friction coefficient was measured at a steel ball diameter of 7 mm, a load of 200 g, and a scanning speed of 4 mm / s.

(加工性)
試料(供試材)をブランキング、ドローイング、ワイプダウン、カーリングし、直径200mm、深さ50mmのカップに加工した。1000個加工して、汚れの付着及び加工による割れを観察した。全く問題ない場合を◎、汚れのみが局部的に付着する場合を○、汚れが数ヶ所観察されるものを△、割れが発生するものを×とし評価した。
(Processability)
The sample (test material) was blanked, drawn, wiped down, and curled and processed into a cup having a diameter of 200 mm and a depth of 50 mm. 1000 pieces were processed, and adhesion of dirt and cracks due to processing were observed. The case where there was no problem at all was evaluated as ◎, the case where only dirt was locally attached, ○, the case where several spots were observed as Δ, and the case where cracks occurred as x.

(耐食性)
JIS規定に基づき塩水噴霧試験を10日間行い、上記加工品表面の腐食状態を観察した。腐食無しを◎、軽度の変色を○、面積5%未満の局部腐食を△、5%を超える腐食を×として評価した。
(Corrosion resistance)
A salt spray test was conducted for 10 days based on JIS regulations, and the corrosion state of the surface of the processed product was observed. No evaluation was evaluated as 腐 食, mild discoloration as ○, local corrosion of less than 5% area was evaluated as Δ, and corrosion exceeding 5% was evaluated as ×.

各試験による測定結果および評価結果を表1に示した。表に示すように本発明材では、陽極酸化皮膜の有孔率が5%以下であって、潤滑性、加工性、耐食性のいずれにおいても良好な結果が得られた。なお、潤滑剤として鉱物油、食用油を用いたものよりも、ポリオキシエチレン系、ポリグリセリンエステル系を用いたものの方が潤滑性に優れていた。また、発明材のうちで、潤滑剤量が好適な範囲を外れるものでは、加工性にやや難があった。
一方、有孔率が5%を越えるか膜厚が不適切である陽極酸化皮膜を有する供試材や、クロメート処理、アルマイト処理を行った供試材では、潤滑性、加工性、耐食性のいずれかにおいて明らかに劣っていた。
Table 1 shows the measurement results and evaluation results of each test. As shown in the table, in the material of the present invention, the porosity of the anodized film was 5% or less, and good results were obtained in any of lubricity, workability, and corrosion resistance. In addition, the thing using the polyoxyethylene type | system | group and the polyglycerin ester type | system | group was excellent in lubricity rather than the thing using mineral oil and edible oil as a lubricant. In addition, among the inventive materials, if the amount of the lubricant is outside the preferred range, there is some difficulty in workability.
On the other hand, in specimens having an anodized film with a porosity exceeding 5% or an inappropriate film thickness, or specimens subjected to chromate treatment or alumite treatment, any of lubricity, workability, and corrosion resistance It was clearly inferior.

Figure 2005154858
Figure 2005154858

本発明の一実施形態のアルミニウム表面処理材を示す拡大断面図である。It is an expanded sectional view showing the aluminum surface treatment material of one embodiment of the present invention.

符号の説明Explanation of symbols

1 アルミニウム基材
2 無孔質陽極酸化皮膜
3 潤滑剤層
1 Aluminum base material 2 Nonporous anodized film 3 Lubricant layer

Claims (3)

アルミニウム基材の上層に有孔率が5%以下で、膜厚が30〜300nmの無孔質陽極酸化皮膜が形成され、該無孔質陽極酸化皮膜の上層に潤滑剤層が形成されていることを特徴とする成形加工用アルミニウム表面処理材。   A nonporous anodic oxide film having a porosity of 5% or less and a film thickness of 30 to 300 nm is formed on the upper layer of the aluminum substrate, and a lubricant layer is formed on the upper layer of the nonporous anodic oxide film. An aluminum surface treatment material for molding processing characterized by the above. 前記潤滑剤量が0.01〜10g/mであることを特徴とする請求項1記載の成形加工用アルミニウム表面処理材。 Claim 1 molding an aluminum surface treatment material, wherein the lubricant amount is 0.01 to 10 g / m 2. 前記潤滑材が固形潤滑剤であることを特徴とする請求項1または2に記載の成形加工用アルミニウム表面処理材。   The aluminum surface treatment material for forming according to claim 1 or 2, wherein the lubricant is a solid lubricant.
JP2003396837A 2003-11-27 2003-11-27 Aluminum surface treated material for forming Pending JP2005154858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396837A JP2005154858A (en) 2003-11-27 2003-11-27 Aluminum surface treated material for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396837A JP2005154858A (en) 2003-11-27 2003-11-27 Aluminum surface treated material for forming

Publications (1)

Publication Number Publication Date
JP2005154858A true JP2005154858A (en) 2005-06-16

Family

ID=34722159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396837A Pending JP2005154858A (en) 2003-11-27 2003-11-27 Aluminum surface treated material for forming

Country Status (1)

Country Link
JP (1) JP2005154858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163432A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing surface-treated aluminum material, and production device for surface-treated aluminum material
CN103966641A (en) * 2014-04-29 2014-08-06 中国科学院海洋研究所 Method for preventing metal atmospheric corrosion by utilizing ultra-smooth surface of artificial imitation nepenthe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163432A (en) * 2006-12-28 2008-07-17 Mitsubishi Alum Co Ltd Method for producing surface-treated aluminum material, and production device for surface-treated aluminum material
CN103966641A (en) * 2014-04-29 2014-08-06 中国科学院海洋研究所 Method for preventing metal atmospheric corrosion by utilizing ultra-smooth surface of artificial imitation nepenthe
CN103966641B (en) * 2014-04-29 2016-08-17 中国科学院海洋研究所 A kind of method utilizing artificial imitative common nepenthes superslide surface to prevent metal atmospheric corrosion

Similar Documents

Publication Publication Date Title
JP5570078B2 (en) Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet
TWI421380B (en) Corrosion resistance of aluminum or aluminum alloys
US5486283A (en) Method for anodizing aluminum and product produced
JP4709575B2 (en) Copper foil roughening treatment method and roughening treatment liquid
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
KR20000010849A (en) Battery case and surface treated steel sheet for battery case
KR102316967B1 (en) Sn plating material and manufacturing method thereof
JP5692799B2 (en) Sn plating material and method for producing the same
JP2007517135A (en) Surface treatment with hydroxysulfate
KR101696796B1 (en) A method for plating copper alloy with tin
CA1132087A (en) Plating on aluminum alloys
JP4603394B2 (en) Copper or copper alloy strip for press working
JP4756195B2 (en) Cu-Ni-Sn-P copper alloy
US2078868A (en) Electroplating process
JP2005154858A (en) Aluminum surface treated material for forming
KR101790975B1 (en) Surface treatment method of aluminium material
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP5602013B2 (en) Microporous layers for reducing friction in metal forming processes
JP2010270366A (en) Method for forming lubricating film used in warm forging
KR101696082B1 (en) Surface-treated substrate containing magnesium, and method of surface treatment thereof
JPH10199651A (en) Manufacture of signal connector
JP4231936B2 (en) Method for producing Sn-coated copper
KR20170129652A (en) Surface treatment method of aluminium material
JP2013076122A (en) Sn-plated material and method for manufacturing the same
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060929

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080424

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080513

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080711

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A02