JP2005154327A - Reaction method for reactant - Google Patents

Reaction method for reactant Download PDF

Info

Publication number
JP2005154327A
JP2005154327A JP2003393789A JP2003393789A JP2005154327A JP 2005154327 A JP2005154327 A JP 2005154327A JP 2003393789 A JP2003393789 A JP 2003393789A JP 2003393789 A JP2003393789 A JP 2003393789A JP 2005154327 A JP2005154327 A JP 2005154327A
Authority
JP
Japan
Prior art keywords
molybdenum
cooling
reactor
cooling pipe
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393789A
Other languages
Japanese (ja)
Inventor
Hiroshi Kameo
広志 亀尾
Masashi Yamaguchi
正志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2003393789A priority Critical patent/JP2005154327A/en
Publication of JP2005154327A publication Critical patent/JP2005154327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out a long-term and stable continuous exothermic reaction at high temperatures using a molybdenum-containing catalyst while maximally suppressing molybdenum deposition on cooling pipings. <P>SOLUTION: The exothermic reaction is carried out at 200-500°C by charging the molybdenum-containing solid catalyst into a reactor with one or more cooling pipings of sensible heat utilization type installed throughout the inside and then introducing reactant(s) into the reactor. In this case, the flow direction of a cooling medium passed through the pipings is reversed at every prescribed time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、モリブデンを含有する触媒の存在下、流動層反応器内における気相酸化方法に関する。   The present invention relates to a gas phase oxidation method in a fluidized bed reactor in the presence of a catalyst containing molybdenum.

アクリロニトリルやメタクリロニトリル等の製造反応は、200〜500℃の高温下で行われる気相酸化反応であるが、発熱反応であり、反応の暴走を抑えるため、反応系を冷却する必要がある。この冷却方法としては、反応器内に冷却用配管を通し、ここに冷媒を通すことによって、除熱する方法が知られている。   The production reaction of acrylonitrile, methacrylonitrile and the like is a gas phase oxidation reaction performed at a high temperature of 200 to 500 ° C., but is an exothermic reaction, and it is necessary to cool the reaction system in order to suppress the runaway of the reaction. As this cooling method, a method of removing heat by passing a cooling pipe through a reactor and passing a refrigerant therethrough is known.

この除熱の方法としては、特許文献1に記載されているように、冷却管には冷媒の蒸発潜熱を利用して除熱する潜熱利用型と過熱蒸気等の顕熱を利用して除熱する顕熱利用型がある。多数の冷却管で除熱する場合、その冷却管の多くは、伝熱効率の高い潜熱利用型の冷却管が使われるのに対し、顕熱利用型の冷却管は、主に反応器内の温度調整用として1本または数本使用されるのみであるのが一般的である。   As described in Japanese Patent Application Laid-Open No. H10-28400, this heat removal method uses a latent heat utilization type that removes heat using latent heat of vaporization of the refrigerant and a heat removal using sensible heat such as superheated steam. There is a sensible heat utilization type. When removing heat with a large number of cooling pipes, most of the cooling pipes use latent heat utilization type cooling pipes with high heat transfer efficiency, whereas sensible heat utilization type cooling pipes mainly use the temperature inside the reactor. Generally, only one or several are used for adjustment.

ところで、上記の反応には固体触媒が一般的に用いられるが、この固体触媒の成分として、モリブデンを含む場合、高温下で反応を行うと、モリブデンの揮散が生じる。この揮散したモリブデンは、温度の低い上記の冷却用配管に付着する。この付着が生じると、固体触媒から冷却用媒体への伝熱効率が悪化し、除熱量の維持が困難となる傾向がある。   By the way, although a solid catalyst is generally used in the above reaction, when molybdenum is contained as a component of the solid catalyst, volatilization of molybdenum occurs when the reaction is performed at a high temperature. The volatilized molybdenum adheres to the cooling pipe having a low temperature. When this adhesion occurs, the heat transfer efficiency from the solid catalyst to the cooling medium deteriorates, and it tends to be difficult to maintain the heat removal amount.

これに対し、上記の伝熱効率が悪化したとき、冷却用媒体の流通を止め、冷却用
管の平均表面温度を上昇させることにより、上記の付着したモリブデンを剥離させる方法が特許文献2に記載されている。これに記載の方法を用いて、反応器内に複数ある冷却管のうち、一部の冷媒を止めて、冷媒を止める冷却管を順番に変えていくことにより、付着したモリブデンを順次剥がしながら、かつ除熱量一定の運転が可能であり、伝熱効率の低下を抑制することができる。
On the other hand, Patent Document 2 describes a method of peeling the adhering molybdenum by stopping the circulation of the cooling medium and increasing the average surface temperature of the cooling pipe when the heat transfer efficiency is deteriorated. ing. Using the method described in this, among the cooling pipes in the reactor, by stopping some of the refrigerant and sequentially changing the cooling pipes that stop the refrigerant, the attached molybdenum is sequentially peeled off, In addition, it is possible to operate with a constant heat removal amount, and to suppress a decrease in heat transfer efficiency.

WO95/21692号公報WO95 / 21692 特開平11−349545号公報JP 11-349545 A

しかしながら、冷媒を止める冷却管を切り替えながら運転する方法は、反応器内に多数の冷却管を有し、除熱能力にも余裕がある場合には有効であるが、1本又は本数の少ない顕熱利用型の冷却管については、切り替えができない、若しくは切り替えの頻度を上げられないことから、結果として付着したモリブデンが蓄積し伝熱効率の低下をもたらすこととなり、温度調整が困難になる場合もある。   However, the method of operating while switching the cooling pipes for stopping the refrigerant is effective when there are a large number of cooling pipes in the reactor and there is a sufficient heat removal capacity, but one or a small number of the cooling pipes are effective. For heat-utilized cooling pipes, switching cannot be performed or the frequency of switching cannot be increased, and as a result, adhered molybdenum accumulates, resulting in a decrease in heat transfer efficiency, and temperature adjustment may be difficult. .

そこで、この発明は、高温下での発熱反応において、モリブデンを含有する触媒を用いて反応をする際、顕熱利用型の冷却用配管へのモリブデンの付着をできるだけ抑制し、長期の安定的な連続反応を行うことを目的とする。   Therefore, the present invention suppresses the adhesion of molybdenum to the sensible heat utilization type cooling pipe as much as possible in the exothermic reaction at a high temperature when the reaction is performed using a catalyst containing molybdenum. The purpose is to carry out a continuous reaction.

この発明は、1本又は複数本の顕熱利用型の冷却用配管を内部に通した反応器に、モリブデンを含有する固体触媒を入れ、次いで、上記反応器に反応物を導入して、200〜500℃で発熱反応を行う際、上記冷却用配管内を通す冷却用媒体の流れ方向を所定時間毎に逆転させることにより、上記課題を解決したのである。   In the present invention, a solid catalyst containing molybdenum is put into a reactor in which one or a plurality of sensible heat utilization type cooling pipes are passed, and then a reactant is introduced into the reactor. When the exothermic reaction is performed at ˜500 ° C., the above problem is solved by reversing the flow direction of the cooling medium passing through the cooling pipe every predetermined time.

冷却用配管内を通す冷却用媒体の流れ方向を所定時間毎に逆転させるので、反応により生じる熱の除熱を連続的に行うと共に、モリブデンの冷却用配管の管壁への付着をできるだけ抑制することができる。   Since the flow direction of the cooling medium passing through the cooling pipe is reversed every predetermined time, the heat generated by the reaction is continuously removed, and the adhesion of molybdenum to the pipe wall of the cooling pipe is suppressed as much as possible. be able to.

この発明は、モリブデンを含有する触媒の存在下で、流動層反応器に反応物を導入して、200〜500℃で発熱反応を行う気相酸化方法に関する。
この発明にかかる気相酸化方法は、モリブデンを含有する固体触媒を用いての気相酸化反応による発熱反応に適用される。例えば、反応物としてプロパン、プロピレン、イソブチレン、t−ブチルアルコール等の有機化合物を用い、モリブデン−ビスマス系触媒で、アクリロニトリルやメタクリロニトリル等のニトリル化合物を製造するアンモ酸化反応等に適用することができる。
The present invention relates to a gas phase oxidation method in which a reactant is introduced into a fluidized bed reactor in the presence of a catalyst containing molybdenum and an exothermic reaction is performed at 200 to 500 ° C.
The gas phase oxidation method according to the present invention is applied to an exothermic reaction by a gas phase oxidation reaction using a solid catalyst containing molybdenum. For example, an organic compound such as propane, propylene, isobutylene, or t-butyl alcohol is used as a reactant, and it can be applied to an ammoxidation reaction for producing a nitrile compound such as acrylonitrile or methacrylonitrile using a molybdenum-bismuth catalyst. it can.

上記反応は、高温下の反応で、かつ、発熱反応なので、反応が暴走するのを抑制するために冷却する必要がある。このため、図1に示すように、1本又は複数本の顕熱利用型の冷却用配管2(図1では2本)を設け、この冷却用配管2と固体触媒3とを接触させるように上記の固体触媒3を入れた反応器1を用いることができる。この冷却用配管2に冷却用媒体を流通させることにより、上記反応器1を冷却することができる。この冷却用媒体としては、上記反応に必要な温度より低い温度を有する流動体であれば、特に限定されない。例えば、100〜160℃のスチーム等があげられる。   Since the above reaction is a reaction at a high temperature and an exothermic reaction, it is necessary to cool the reaction to prevent the reaction from running away. For this reason, as shown in FIG. 1, one or a plurality of sensible heat utilization type cooling pipes 2 (two in FIG. 1) are provided, and the cooling pipe 2 and the solid catalyst 3 are brought into contact with each other. The reactor 1 containing the above solid catalyst 3 can be used. The reactor 1 can be cooled by circulating the cooling medium through the cooling pipe 2. The cooling medium is not particularly limited as long as it is a fluid having a temperature lower than that required for the reaction. For example, 100-160 degreeC steam etc. are mention | raise | lifted.

上記の顕熱利用型の冷却用配管2とは、過熱蒸気等の顕熱を利用して除熱する冷却用配管2をいい、除熱量は潜熱利用型より小さいものの、冷媒の流量を変える等により微小な除熱量調整が可能であるため、反応器内の温度調整に利用できる。   The sensible heat utilization type cooling pipe 2 is a cooling pipe 2 that removes heat using sensible heat such as superheated steam. Although the amount of heat removal is smaller than the latent heat utilization type, the flow rate of the refrigerant is changed. Can be used for adjusting the temperature in the reactor.

上記冷却用媒体を上記顕熱利用型の冷却用配管2に流すと、冷却管表面温度がモリブデン化合物の露点より低いので、固体触媒から揮散したモリブデンが、この冷却用配管2の表面に付着する。しかし、反応器1内にある顕熱利用型の冷却用配管2の表面全体には、必ずしもモリブデンは付着しない。すなわち、上記反応器1内の上記冷却用配管2のうち、上記冷却用媒体の流れの上流部においては、上記冷却用媒体と触媒層の温度差が大きく、その部分の冷却用配管2の表面温度は低い。そして、上記冷却用媒体の流れの中流部から下流部に行くにしたがって、上記冷却用媒体と触媒層の温度差が小さくなり、上記冷却用配管2の表面温度は高くなる。このため、反応器1内において、上記冷却用媒体の上流部における冷却用配管2の表面には、モリブデンが付着し、そして、上記冷却用媒体の中流部から下流部にかけて、冷却用配管2の表面に付着するモリブデンの量が減少していく。そして、条件によっては上記冷却用媒体の下流部における冷却用配管2の表面には、モリブデンが付着していない場合がある。   When the cooling medium is passed through the cooling pipe 2 using the sensible heat, since the cooling pipe surface temperature is lower than the dew point of the molybdenum compound, molybdenum volatilized from the solid catalyst adheres to the surface of the cooling pipe 2. . However, molybdenum does not necessarily adhere to the entire surface of the sensible heat utilization type cooling pipe 2 in the reactor 1. That is, in the cooling pipe 2 in the reactor 1, in the upstream part of the flow of the cooling medium, the temperature difference between the cooling medium and the catalyst layer is large, and the surface of the cooling pipe 2 in that portion The temperature is low. As the cooling medium flows from the midstream portion to the downstream portion, the temperature difference between the cooling medium and the catalyst layer decreases, and the surface temperature of the cooling pipe 2 increases. Therefore, in the reactor 1, molybdenum adheres to the surface of the cooling pipe 2 in the upstream portion of the cooling medium, and the cooling pipe 2 extends from the midstream portion to the downstream portion of the cooling medium. The amount of molybdenum adhering to the surface decreases. Depending on conditions, molybdenum may not adhere to the surface of the cooling pipe 2 in the downstream portion of the cooling medium.

このため、上記冷却用配管2内を流れる冷却用媒体の流れ方向を所定時間毎に逆転させる。このようにすると、既にモリブデンが付着している冷却用配管の部分の表面温度が上昇していき、冷却用配管と直接接触しているモリブデンを揮散させることができ、これにより、冷却用配管に付着したモリブデンを剥離させることが可能となる。   For this reason, the flow direction of the cooling medium flowing in the cooling pipe 2 is reversed every predetermined time. In this way, the surface temperature of the portion of the cooling pipe to which molybdenum has already adhered increases, and the molybdenum that is in direct contact with the cooling pipe can be volatilized. It is possible to peel off the adhered molybdenum.

上記の冷却用媒体の流れ方向を逆転させてから、次に逆転させるまでの時間としては、上記冷却用配管2に付着したモリブデンを剥離させることのできる程度の時間であり、かつ、新たに付着するモリブデンの量が過大になり過ぎない程度の時間を選択するのが好ましい。   The time from when the flow direction of the cooling medium is reversed to when it is reversed next is a time that allows the molybdenum adhering to the cooling pipe 2 to be peeled off and newly adhered. It is preferable to select a time that does not cause the amount of molybdenum to be excessive.

なお、図1には、冷却用配管2に流す冷却用媒体の流れ方向を逆転させる手段については明示していないが、上記冷却用配管の出口に適切に配管及びバルブ等を設けることにより、冷却用配管2に流す冷却用媒体の流れ方向を逆転させることができる。   In FIG. 1, the means for reversing the flow direction of the cooling medium flowing through the cooling pipe 2 is not clearly shown. However, by appropriately providing a pipe and a valve at the outlet of the cooling pipe, The flow direction of the cooling medium flowing through the pipe 2 can be reversed.

次に、上記の反応器1を用いた反応方法の流れについて説明する。
まず、反応器1に固体触媒3を入れる。この反応器1に取り付けられる冷却用配管2の本数は、図1に示す2本に限られず、反応器1の容量に応じて、1本又は複数本とすることができる。また、上記固体触媒3は、反応器1に入れられる。具体的には、流動床型の反応器1に上記固体触媒を入れることができる。そして、反応器1を加熱して、目的の反応が適切に生じる温度に反応器1の内部を保持する。
Next, the flow of the reaction method using the reactor 1 will be described.
First, the solid catalyst 3 is put into the reactor 1. The number of cooling pipes 2 attached to the reactor 1 is not limited to the two shown in FIG. 1, and can be one or more depending on the capacity of the reactor 1. The solid catalyst 3 is put into the reactor 1. Specifically, the solid catalyst can be placed in the fluidized bed reactor 1. And the reactor 1 is heated and the inside of the reactor 1 is hold | maintained at the temperature which the target reaction produces appropriately.

次に、反応物を反応物導入配管4から反応器1内に導入すると共に、酸素等を必要とする場合、空気配管5から空気等を導入する。そして、冷却用配管2には、100〜160℃のスチーム等の冷却用媒体を流し、所定時間経過毎に、冷却用配管2に流す冷却用媒体の流れ方向を逆転させる。これにより、上記冷却用配管の表面に付着したモリブデンを剥離させる。
そして、反応によって生じた生成物を抜出し配管6から回収し、分離・精製工程にかける。
Next, the reactant is introduced into the reactor 1 from the reactant introduction pipe 4, and air or the like is introduced from the air pipe 5 when oxygen or the like is required. Then, a cooling medium such as steam of 100 to 160 ° C. is flowed through the cooling pipe 2, and the flow direction of the cooling medium flowing through the cooling pipe 2 is reversed every predetermined time. Thereby, the molybdenum adhering to the surface of the cooling pipe is peeled off.
The product produced by the reaction is extracted from the extraction pipe 6 and subjected to a separation / purification process.

ところで、顕熱利用型の冷却用配管2に流す冷却用媒体の流れ方向を逆転させても、モリブデンの剥離が不十分な場合、冷却用配管を複数設け、使用する冷却管を切り替えながら運転することにより、モリブデンの剥離をより確実に行うことができる。   By the way, even if the flow direction of the cooling medium flowing through the sensible heat utilization type cooling pipe 2 is reversed, if the peeling of the molybdenum is insufficient, a plurality of cooling pipes are provided and the operation is performed while switching the cooling pipe to be used. As a result, the molybdenum can be peeled off more reliably.

この発明の反応方法を採用すると、モリブデンが冷却用配管に付着するのを、可能な限り抑制することができる。また、たとえ、冷却用配管へのモリブデンの付着が残存しても、上記の方法をあわせて採用することにより、反応を止めることなく付着したモリブデンを剥離することができ、長期間にわたる反応を行うことが可能となる。   If the reaction method of this invention is employ | adopted, it can suppress that molybdenum adheres to piping for cooling as much as possible. In addition, even if molybdenum adheres to the cooling pipe, the adhering molybdenum can be peeled off without stopping the reaction by adopting the above method together, and the reaction takes place over a long period of time. It becomes possible.

(実施例1)
図1に示す反応器1を用いて、実験を行った。まず、0.8m3の反応器1に、モリブデンを含有する触媒(触媒組成:Mo:Bi:Fe:Ce:Cr:Ni:Mg:Co:K:Rb:O:SiO2=12:0.5:2:0.5:0.4:4:1.5:1:0.07:0.06:x:42、なお、xは、残分を示す。)として84kgを導入した。次いで、反応物として、プロピレン7.8kg/hr、アンモニア3.5kg/hrを反応物導入配管4から反応器1に供給すると共に、空気54kg/hrを空気配管5から反応器1に供給し、430〜440℃でアンモ酸化反応を行った。
一方、冷却用配管2に141℃のスチームを150kg/hで500時間流し、次いで、このスチームの流れ方向を逆転させて、さらに500時間流した。その結果、冷却用配管に付着したモリブデンの量は70gであった。また、最初にスチームを流した時における上流部側の冷却用配管2の表面には、モリブデンの付着は認められなかった。
(Example 1)
An experiment was conducted using the reactor 1 shown in FIG. First, the reactor 1 of 0.8 m 3, the catalyst (catalyst composition containing molybdenum: Mo: Bi: Fe: Ce : Cr: Ni: Mg: Co: K: Rb: O: SiO 2 = 12: 0.5: 2: 0.5: 0.4: 4: 1.5: 1: 0.07: 0.06: x: 42, where x represents the remainder.) 84 kg was introduced. Next, 7.8 kg / hr of propylene and 3.5 kg / hr of ammonia are supplied as reactants from the reactant introduction pipe 4 to the reactor 1, and 54 kg / hr of air is supplied from the air pipe 5 to the reactor 1. An ammoxidation reaction was performed at 430 to 440 ° C.
On the other hand, steam at 141 ° C. was flowed through the cooling pipe 2 at 150 kg / h for 500 hours, and then the flow direction of the steam was reversed to flow for another 500 hours. As a result, the amount of molybdenum adhering to the cooling pipe was 70 g. Further, no molybdenum was observed on the surface of the cooling pipe 2 on the upstream side when the steam was first flowed.

(比較例1)
冷却用配管2に141℃のスチームを150kg/hで、その流れ方向を逆転させることなく1000時間流した。その結果、スチームの上流部側の冷却用配管2の表面にモリブデンが140g付着していた。
(Comparative Example 1)
The steam at 141 ° C. was flowed through the cooling pipe 2 at 150 kg / h for 1000 hours without reversing the flow direction. As a result, 140 g of molybdenum adhered to the surface of the cooling pipe 2 on the upstream side of the steam.

この発明にかかる反応器の例を示す斜視図The perspective view which shows the example of the reactor concerning this invention

符号の説明Explanation of symbols

1 反応器
2 冷却用配管
3 固体触媒
4 反応物導入配管
5 空気配管
6 抜出し配管
DESCRIPTION OF SYMBOLS 1 Reactor 2 Cooling piping 3 Solid catalyst 4 Reactant introduction piping 5 Air piping 6 Extraction piping

Claims (1)

1本又は複数本の顕熱利用型の冷却用配管を内部に通した反応器に、モリブデンを含有する固体触媒を入れ、次いで、上記反応器に反応物を導入して、200〜500℃で発熱反応を行う際、上記冷却用配管内を通す冷却用媒体の流れ方向を所定時間毎に逆転させる、気相酸化方法。   A solid catalyst containing molybdenum is placed in a reactor through which one or a plurality of sensible heat utilization type cooling pipes are passed, and then the reactant is introduced into the reactor at 200 to 500 ° C. A gas phase oxidation method in which, when performing an exothermic reaction, the flow direction of the cooling medium passing through the cooling pipe is reversed every predetermined time.
JP2003393789A 2003-11-25 2003-11-25 Reaction method for reactant Pending JP2005154327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393789A JP2005154327A (en) 2003-11-25 2003-11-25 Reaction method for reactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393789A JP2005154327A (en) 2003-11-25 2003-11-25 Reaction method for reactant

Publications (1)

Publication Number Publication Date
JP2005154327A true JP2005154327A (en) 2005-06-16

Family

ID=34720051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393789A Pending JP2005154327A (en) 2003-11-25 2003-11-25 Reaction method for reactant

Country Status (1)

Country Link
JP (1) JP2005154327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095451A (en) * 2008-10-14 2010-04-30 Asahi Kasei Chemicals Corp Gas-phase exothermic reaction method
JP2012211126A (en) * 2011-03-22 2012-11-01 Mitsubishi Chemicals Corp Method for producing conjugated diene
JP2014181222A (en) * 2013-03-21 2014-09-29 Mitsubishi Chemicals Corp Method of producing conjugated diene
CN105268395A (en) * 2014-06-25 2016-01-27 安徽扬子化工有限公司 Chemical engineering reagent reaction kettle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095451A (en) * 2008-10-14 2010-04-30 Asahi Kasei Chemicals Corp Gas-phase exothermic reaction method
JP2012211126A (en) * 2011-03-22 2012-11-01 Mitsubishi Chemicals Corp Method for producing conjugated diene
JP2014181222A (en) * 2013-03-21 2014-09-29 Mitsubishi Chemicals Corp Method of producing conjugated diene
CN105268395A (en) * 2014-06-25 2016-01-27 安徽扬子化工有限公司 Chemical engineering reagent reaction kettle

Similar Documents

Publication Publication Date Title
US7067695B2 (en) Method of vapor phase catalytic oxidation using multitubular reactor
WO2005115608A1 (en) Heat exchange reactor
JP2000093784A (en) Catalytic gas phase oxidation method and multitubular reactor
JP2009013180A (en) Method and apparatus for plate-type catalytic reaction
JP2007515372A5 (en)
JP2012512302A5 (en)
JP2005154327A (en) Reaction method for reactant
JP2006247452A (en) Vapor phase reaction apparatus
RU2467799C1 (en) Controlled execution of thermocompressors for continuous catalyst regeneration
JP2007531626A (en) Actively cooled exothermic reactor
AU9504601A (en) Process for producing and cooling titanium dioxide
JP2005154332A (en) Gaseous phase oxidation method
JP2010095451A (en) Gas-phase exothermic reaction method
US9302261B2 (en) Continuous catalyst regeneration system including a blended cooling air stream
US20240075425A1 (en) Method and Apparatus for Improved Efficiency and Flue Gas Scrubbing in a Fired Heater Using a Condensing Convection Section
JP2005288441A (en) Heat exchange type reactor
JP5807017B2 (en) Vaporization and transport of alkali metal salts
JP5171031B2 (en) Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same
JP4103416B2 (en) How to start up the reactor
JP5606692B2 (en) Method for producing (meth) acrylic acid
JP2006212629A (en) Multi-tube type fixed bed reaction device
JP2004327893A (en) Phosphorus trap for semiconductor production system
KR20160021207A (en) Method and system for carrying out an exothermic gas phase reaction on a heterogeneous particulate catalyst
JP4261137B2 (en) Carbon fiber manufacturing method
JPH0994584A (en) Treatment of waste water