JP2005152942A - Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill - Google Patents

Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill Download PDF

Info

Publication number
JP2005152942A
JP2005152942A JP2003394934A JP2003394934A JP2005152942A JP 2005152942 A JP2005152942 A JP 2005152942A JP 2003394934 A JP2003394934 A JP 2003394934A JP 2003394934 A JP2003394934 A JP 2003394934A JP 2005152942 A JP2005152942 A JP 2005152942A
Authority
JP
Japan
Prior art keywords
shape
plate
sheet
rolled material
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003394934A
Other languages
Japanese (ja)
Inventor
Yasuo Ashida
靖生 芦田
Osamu Uchihata
治 内畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003394934A priority Critical patent/JP2005152942A/en
Publication of JP2005152942A publication Critical patent/JP2005152942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a precise sheet shape by correcting a shape detection signal in a sheet edge portion during cold-rolling of a flat sheet, and to control the shape from the sheet shape detection data so as to manufacture the rolled sheet of the target shape in a superior shape precision and in a high productivity. <P>SOLUTION: When each segment 21 of a shape detection roll 20 detects a load received from a rolling sheet and detects the shape of the rolled sheet by treating the detection signal, the detection signal, from a sensor corresponding to the segment 21 whose entire face is not covered by the rolled sheet, is treated correcting the signal using a sheet covering ratio (A/B) of the segment and thus the sheet shape under rolling is detected. The detected shape is compared with the target shape and a sheet shape control means is adjusted so that the sheet shape approximates to the target shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として厚みが1mm以下の薄板を対象として多段圧延機により冷間圧延する際、板形状を正確に検知し、圧延後に目標とする形状になるように自動的に制御する方法に関する。   The present invention relates to a method of accurately detecting a plate shape accurately and controlling automatically so as to obtain a target shape after rolling when cold rolling is performed mainly on a thin plate having a thickness of 1 mm or less by a multi-stage rolling mill.

圧延材の品質及び生産効率を向上させることは、コスト削減の上で重要なファクターとなる。そのため、圧延機を多段化するとともに種々の圧延制御方法が開発されてきた。多段圧延機の一つとして、20段センジミア圧延機が広く知られている。
20段センジミア圧延機10は、例えば図1に示すように、相対向する一対のワークロール11u,11d、それぞれのワークロール11u,11dに接する合計4本の第1中間ロール12u,12d、第1中間ロール12u,12dに接する合計6本の第2中間ロール13u,13d及び第2中間ロール13u,13dに接する合計8本のバックアップロール14u,14d,15u,15dで構成される。8本のバックアップロール14u,14d,15u,15dのうち、片側中央部に位置する2本のバックアップロール15uはクラウン調整機構を備えている。第1中間ロール12u,12dは、ロールの片側エッジ部にテーパを切っており、圧延材Mの板幅方向に移動可能になっている。バックアップロール15uのクラウン調整機構及び第1中間ロール12u,12dのシフト量を調整することにより、圧延材Mの形状が制御される。
Improving the quality and production efficiency of the rolled material is an important factor for cost reduction. Therefore, various rolling control methods have been developed while increasing the number of rolling mills. As one of the multi-stage rolling mills, a 20-stage Sendier mill is widely known.
For example, as shown in FIG. 1, the 20-stage Sendia mill 10 includes a pair of opposed work rolls 11u and 11d, a total of four first intermediate rolls 12u and 12d that are in contact with the respective work rolls 11u and 11d, and a first A total of six second intermediate rolls 13u, 13d in contact with the intermediate rolls 12u, 12d and a total of eight backup rolls 14u, 14d, 15u, 15d in contact with the second intermediate rolls 13u, 13d. Of the eight backup rolls 14u, 14d, 15u, and 15d, the two backup rolls 15u located at the center of one side have a crown adjusting mechanism. The first intermediate rolls 12u and 12d are tapered at one edge portion of the roll, and are movable in the plate width direction of the rolled material M. By adjusting the crown adjustment mechanism of the backup roll 15u and the shift amount of the first intermediate rolls 12u and 12d, the shape of the rolled material M is controlled.

そして、圧延材Mの形状を制御するための、バックアップロール15uのクラウンの調整機構、及び第1中間ロール12u,12dのシフト量の調整方法に関して種々の方法が提案されている。
本出願人も、板形状を制御するための方法として、特許文献1,2,3,4で、バックアップロールのクラウン調整量及び中間ロールシフト位置を設定ないし補正する方法を提案した。
Various methods have been proposed regarding a mechanism for adjusting the crown of the backup roll 15 u and a method for adjusting the shift amount of the first intermediate rolls 12 u and 12 d for controlling the shape of the rolled material M.
The present applicant also proposed a method for setting or correcting the crown adjustment amount and the intermediate roll shift position of the backup roll in Patent Documents 1, 2, 3, and 4 as a method for controlling the plate shape.

ところで、上記のような制御方法を採用するとしても、まず、板形状をより正確に知る必要がある。圧延材の形状を検知する方法としても各種方法が提案されている。例えば、特許文献5では、回転方向に所定角度ずらし、且つ軸方向に所定間隔を有して配置された複数のセンサーを備えた形状検出ロールを、圧延材に接触させ、且つ該圧延材の速度と同調して回転させて、前記各センサーが前記圧延材から受ける荷重を検出し、該検出信号を処理して前記圧延材の形状を検知する際に、検出ロールのユラギやドリフト、又は圧延材の張力を補正して、より正確な形状を検出しようとする方法が提案されている。また、特許文献6では、同じく、各センサーが前記圧延材から受ける荷重を検出し、該検出信号を処理して前記圧延材の形状を検知する際に、前記形状検出ロールを通過する圧延材の板幅方向のズレを求め、該ズレに基づき、前記形状を補正して、より正確な形状を検出しようとする方法が提案されている。   By the way, even if the above-described control method is adopted, first, it is necessary to know the plate shape more accurately. Various methods have been proposed as a method for detecting the shape of the rolled material. For example, in Patent Document 5, a shape detection roll having a plurality of sensors that are shifted by a predetermined angle in the rotational direction and arranged at a predetermined interval in the axial direction is brought into contact with the rolled material, and the speed of the rolled material Rotating in synchronization with each other, detecting the load received by each sensor from the rolled material, and processing the detection signal to detect the shape of the rolled material, There has been proposed a method for correcting the tension of the material and detecting a more accurate shape. Moreover, in patent document 6, when detecting the load which each sensor receives from the said rolling material, and processing this detection signal and detecting the shape of the said rolling material, of the rolling material which passes the said shape detection roll There has been proposed a method of obtaining a displacement in the plate width direction and correcting the shape based on the displacement to detect a more accurate shape.

特開2001−137925号公報JP 2001-137925 A 特開2001−269706号公報JP 2001-269706 A 特開2003−48008号公報JP 2003-48008 A 特開2003−48009号公報JP 2003-48009 A 特開平11−201745号公報Japanese Patent Laid-Open No. 11-201745 特開2001−317932号公報JP 2001-317932 A

しかしながら、特許文献5,6に記載の方法等により板形状を正確に検知し、特許文献1〜4で提案された方法等を適用して板形状制御を行おうとしても、必ずしも精度良く制御を行うことはできない。
実際の冷延時には、被圧延材の通板位置のズレや板幅変動により、あるいはロール軸の通板方向に対する微妙なズレ、板素材の表面硬度や表面粗度の微妙な差から発生する横滑りや蛇行により、板端位置が変動するために、実際の板形状と検出形状が一致しなくなることがある。このため、特許文献1〜4で提案したような形状制御方法を適用しても、精度のよい形状制御が行えなくなる。
However, even if the plate shape is accurately detected by the methods described in Patent Documents 5 and 6 and the plate shape control is performed by applying the methods proposed in Patent Documents 1 to 4, the control is not necessarily performed with high accuracy. Can't do it.
During actual cold rolling, slippage occurs due to deviations in the sheet passing position of the material to be rolled, fluctuations in the sheet width, or from slight deviations in the sheet passing direction of the roll shaft, and from the slight differences in the surface hardness and surface roughness of the sheet material. Since the plate edge position fluctuates due to or meandering, the actual plate shape may not match the detected shape. For this reason, even if the shape control method proposed in Patent Documents 1 to 4 is applied, accurate shape control cannot be performed.

殊に、板厚が1mm以下の薄板を冷延しようとするとき、板破断防止のため耳板形状に作り込む必要がある。しかし、耳板形状の程度又は左右のバランスによっては、破断を起こしたり絞込みを起こしたりして、圧延トラブルを発生する場合がある。このため、圧延形状の自動制御が難しくなっている。
本発明は、このような問題を解消すべく案出されたものであり、薄板材を冷延する際にあっても、エッジ補正を行うことにより正確な板形状を検知し、当該板形状検知データに基づいて目標とする形状の圧延材を形状精度よく、高生産性で製造できる制御方法を提供することを目的とする。
In particular, when a thin plate having a thickness of 1 mm or less is to be cold rolled, it is necessary to make it into an ear plate shape to prevent the plate from breaking. However, depending on the degree of the shape of the ear plate or the balance between the left and right, there may be a case where a rolling trouble occurs due to breakage or narrowing. For this reason, it is difficult to automatically control the rolling shape.
The present invention has been devised to solve such problems. Even when a thin plate material is cold-rolled, an accurate plate shape is detected by edge correction, and the plate shape detection is performed. An object of the present invention is to provide a control method capable of manufacturing a rolled material having a target shape based on data with high shape accuracy and high productivity.

本発明の冷延板材の形状検知方法は、その目的を達成するため、それぞれセンサーを備えた複数のセグメントが、センサーの回転方向に所定角度ずらし且つ軸方向に所定間隔を有して配置された形状検出ロールを、圧延材に接触させ、且つ該圧延材の速度と同調して回転させて、前記各センサーが前記圧延材から受ける荷重を検出し、該検出信号を処理して前記圧延材の形状を検知する際に、圧延材が前記セグメント全面を被覆していないセンサーの検出信号を、セグメントの鋼板被覆率で補正して処理することを特徴とする。
また、本発明の多段圧延機における形状制御方法は、上記方法により得られた板形状を、目標形状と対比し、板形状が目標形状に近似するように板形状制御手段を調整することを特徴とする。
In order to achieve the object of the method for detecting the shape of a cold-rolled sheet material of the present invention, a plurality of segments each provided with a sensor are arranged with a predetermined angle shift in the rotation direction of the sensor and a predetermined interval in the axial direction. The shape detection roll is brought into contact with the rolled material and rotated in synchronization with the speed of the rolled material, the load received by each sensor from the rolled material is detected, the detection signal is processed, and the rolling material When detecting the shape, the detection signal of the sensor in which the rolled material does not cover the entire surface of the segment is corrected by the steel plate coverage of the segment and processed.
The shape control method in the multi-high rolling mill of the present invention is characterized in that the plate shape obtained by the above method is compared with the target shape, and the plate shape control means is adjusted so that the plate shape approximates the target shape. And

本発明により、板端の形状補正が行われているので、従来、板端部の荷重が反映されずに端部形状の検知が不正確な形状検出と比べて、著しく精度の向上した冷延板材の形状検知方法を提供することができる。
この形状検知方法を採用することにより、目標とする板形状と対比しつつ、通常の板形状制御手段を適用して所望部位の伸び率を調整し、板形状を目標形状に調整することができる。
According to the present invention, the shape of the edge of the plate is corrected, so that conventionally, cold rolling with significantly improved accuracy compared to the shape detection in which the edge shape detection is not reflected without reflecting the load at the edge of the plate. A shape detection method for a plate material can be provided.
By adopting this shape detection method, the plate shape can be adjusted to the target shape by applying the normal plate shape control means and adjusting the elongation of the desired part while contrasting with the target plate shape. .

形状検出ロールとしては、一般に、それぞれ荷重センサーを備えた複数のセグメントが、回転方向に所定角度ずらし、且つ軸方向に所定間隔で一軸上に組み込まれて構成されている。そして、各セグメントを圧延材に接触させつつ圧延材の速度と同調して回転させて、各セグメントのセンサーが前記圧延材から受ける荷重を検出し、その検出信号を処理して前記圧延材の形状を検知しようとするものである。例えば、有効測定幅が1300mmの検出ロールにあっては、52mm幅のセグメントが25個軸方向に組み合わされた形態となっている。さらに、圧延材から受ける荷重は、圧延材が特定セグメントの幅方向全域、すなわち前記52mm幅の全域に接触しているときにのみ表示されるように設定されている。このため、従来の検出方法では、最大52mmの幅で不感帯が生じることになる。すなわち、被圧延材の両側端は、特定のセグメント全幅に接触しないので、エッジの形状は正しく認識されない。   In general, the shape detection roll is configured such that a plurality of segments each having a load sensor are incorporated on one axis at predetermined intervals in the axial direction and shifted by a predetermined angle in the rotational direction. And each segment is rotated in synchronization with the speed of the rolled material while contacting the rolled material, the load received from the rolled material by the sensor of each segment is detected, the detection signal is processed, and the shape of the rolled material Is intended to detect. For example, in a detection roll having an effective measurement width of 1300 mm, 25 segments each having a width of 52 mm are combined in the axial direction. Furthermore, the load received from the rolled material is set so as to be displayed only when the rolled material is in contact with the entire width direction of the specific segment, that is, the entire width of the 52 mm width. For this reason, in the conventional detection method, a dead zone occurs with a maximum width of 52 mm. That is, since the both ends of the material to be rolled do not contact the full width of the specific segment, the shape of the edge is not recognized correctly.

そこで、本発明では、不感帯を最小化するために、板端部が接触するセグメントも検出対象セグメントとし、且つ当該セグメントの鋼板被覆量によりエッジ補正を導入することとした。
部分的にしか鋼板が接触していない板端部のセグメント検出値に、別途算出した鋼板被覆率を乗じた数値をもとに、板端の伸び率(形状)を算出しようとするものである。
なお、本明細書での「鋼板被覆量」とは、冷延される鋼板が図2に示すような検出ロール20の特定セグメント21と接触する幅を意味している。したがって、「鋼板被覆率」はセグメント幅に対する鋼板が接触する幅の比率で、鋼板被覆量(A)とセグメント幅(B)を図2に示すように表記すると、鋼板被覆率(%)は(A/B)×100で表わされる。
Therefore, in the present invention, in order to minimize the dead zone, the segment in contact with the end of the plate is also set as the detection target segment, and edge correction is introduced based on the steel plate coverage of the segment.
It is intended to calculate the elongation (shape) of the plate edge based on the value obtained by multiplying the segment detection value of the plate edge where the steel plate is only partially in contact with the separately calculated steel plate coverage. .
The “steel sheet coating amount” in this specification means a width in which a cold-rolled steel sheet contacts a specific segment 21 of the detection roll 20 as shown in FIG. Therefore, the “steel plate coverage” is the ratio of the width of the steel plate in contact with the segment width. When the steel plate coverage (A) and the segment width (B) are expressed as shown in FIG. 2, the steel plate coverage (%) is ( A / B) × 100.

例えば、幅1000mmのコイルを圧延するとき、コイルが圧延機及び形状検出ロールのセンターにセットされて走行していると、52mm幅のセグメントが25個組み合わされた幅1300mmの形状検出器では、19個の荷重検出セグメント上を走行することになり、コイル両端は52mm幅のセグメントのそれぞれ6mmずつ接触していることになる。(6/52)×100がこの際の鋼板被覆率となり、コイル端部が接触しているセグメントで検出された荷重検出値と合わせて板端形状も認識できることになる。   For example, when rolling a coil with a width of 1000 mm, if the coil is set and running at the center of a rolling mill and a shape detection roll, the shape detector with a width of 1300 mm, in which 25 segments with a width of 52 mm are combined, 19 It will run on each load detection segment, and both ends of the coil are in contact with each of 6 mm of 52 mm wide segments. (6/52) × 100 is the steel plate coverage at this time, and the plate end shape can be recognized together with the load detection value detected in the segment in contact with the coil end.

ところで、実際のコイル両端部の板形状を、上記鋼板被覆率を考慮して補正しようとするとき、鋼板被覆量が少ないとセグメントの荷重検出値の精度が低くなる。鋼板のクラウンや板幅変動、板ズレの影響を受けやすいために、荷重検出値の精度が落ちるものと推測される。そこで、上記52mm幅のセグメントを用いた形状検出器でのコイル端形状補正にあっては、20mm以上の鋼板被覆量、すなわち38%以上の鋼板被覆率の場合に、当該エッジ補正を導入することが好ましい。
つまり、コイル両板端セグメントの鋼板被覆量又は鋼板被覆率を計算し、この鋼板被覆量又は鋼板被覆率が20mm以上又は38%以上の場合には、板端セグメントの荷重検出値を鋼板被覆率に応じて換算し、板端部の荷重値を求めて他のセグメントの荷重検出値との差から伸び率の差を換算し、さらに板端形状を補正することになる。
By the way, when it is going to correct | amend the plate | board shape of the both ends of an actual coil in consideration of the said steel plate coverage, if the amount of steel plate coverage is small, the accuracy of the load detection value of a segment will become low. It is presumed that the accuracy of the load detection value falls because it is easily affected by the crown of the steel plate, fluctuation of the plate width, and plate displacement. Therefore, in the coil end shape correction in the shape detector using the 52 mm width segment, the edge correction is introduced when the steel sheet covering amount is 20 mm or more, that is, the steel sheet covering ratio is 38% or more. Is preferred.
That is, the steel plate coverage or the steel plate coverage of the coil both plate end segments is calculated, and when the steel plate coverage or the steel plate coverage is 20 mm or more or 38% or more, the load detection value of the plate end segment is determined as the steel plate coverage. Accordingly, the load value at the plate end is obtained, the difference in elongation is converted from the difference from the load detection value of the other segment, and the plate end shape is further corrected.

具体的に説明すると次のようになる。すなわち、冷延後、図3(a)に示すような被圧延材Mが形状検出ロール20上に乗ると、各セグメント21で荷重値が検出される。各セグメント21の検出値に上記板端の形状補正項を加味して全体の荷重分布値を表示すると、図3(b)に示されるようになる。この荷重分布から、通常の手法で伸び率の差を換算し、各部位の伸び率の偏差で形状表示を行うと図3(c)のようになる。   Specifically, it is as follows. That is, when the material M to be rolled as shown in FIG. 3A is placed on the shape detection roll 20 after cold rolling, the load value is detected at each segment 21. When the overall load distribution value is displayed by adding the shape correction term of the plate edge to the detected value of each segment 21, it is as shown in FIG. From this load distribution, when the difference in elongation rate is converted by a normal method and the shape is displayed by the deviation of the elongation rate at each part, the shape is displayed as shown in FIG.

このような手法でより正確な板形状を検知した後に、所望の板形状になるように冷間圧延機の制御を行うことになる。
鋼の特性や板厚、使用態様によって、あるいは圧延機の特性によって圧延される板の目標形状が変わってくる。必ずしも、フラットな形状が好ましいわけではない。その後の使用態様等によって、中伸び,耳波,ふち伸びが好ましい場合もある。例えば、前記したような高炭素の硬質材を板厚1.0mm以下に冷延しようとする場合、被圧延材のエッジ部に割れが生じ易く、その部分から板割れが発生して圧延トラブルを起こし易い。このため、図4に示すような形状のいわゆるふち伸び形状の板を得ることが好ましいことになる。
After detecting a more accurate plate shape by such a method, the cold rolling mill is controlled so as to obtain a desired plate shape.
The target shape of the rolled sheet varies depending on the characteristics and thickness of the steel, the usage mode, or the characteristics of the rolling mill. A flat shape is not necessarily preferable. Depending on the mode of use thereafter, medium elongation, ear waves, and edge elongation may be preferable. For example, when trying to cold-roll a high carbon hard material as described above to a plate thickness of 1.0 mm or less, the edge portion of the material to be rolled is likely to be cracked, and the plate crack is generated from that portion, thereby causing a rolling trouble. Easy to wake up. For this reason, it is preferable to obtain a so-called edge-shaped plate having a shape as shown in FIG.

例えば、前記したように図3(c)に示されるような形状が得られる圧延条件から、図4に示すようなふち伸び形状の板を得るためには、両形状を比較し、図5に示すような中間ロール30のシフト量制御や、図示していない分割バックアップロール圧下装置の制御等、形状アクチュエータの制御により、両形状が極力近似するように各部位の伸び率を調整する。この調整方法そのものには公知の方法が採用される。なお、図5中、Mは圧延材であり、32はワークロールである。   For example, as described above, in order to obtain a plate having an elongated shape as shown in FIG. 4 from the rolling conditions that can obtain the shape as shown in FIG. The elongation rate of each part is adjusted so that both shapes are approximated as much as possible by controlling the shape actuator such as the control of the shift amount of the intermediate roll 30 as shown and the control of the split backup roll reduction device (not shown). A known method is adopted as the adjustment method itself. In FIG. 5, M is a rolled material and 32 is a work roll.

以上に説明しているように、従来の方法では、板端が乗っている板形状検出器のセグメントの検出荷重は考慮されず、すなわち端部の形状が除外された形で形状表示がなされ、その形状表示に基づいて形状の制御が行われている。これに対して、本発明では、板端が乗っている検出器のセグメントの検出荷重も補正されて板形状の計測に活用されているので、板端形状が正確に把握されて、精度の良い板形状が検知・表示できる。
本発明の多段圧延機における形状制御方法では、端部の形状も考慮されている。したがって、被圧延材の通板位置のズレや板幅変動、あるいは横滑りや蛇行等によって、板端位置が多少変動したとしても、板端形状が考慮されていない従来法と比べて、板形状の制御は精度良く行える。さらに、高硬度材の薄板を冷延しようとする際にも、板破断等の圧延トラブルを発生させることなく、円滑な冷間圧延を行うことができる。
As described above, in the conventional method, the detection load of the segment of the plate shape detector on which the plate end is placed is not taken into consideration, that is, the shape is displayed in a form excluding the shape of the end, The shape is controlled based on the shape display. On the other hand, in the present invention, since the detection load of the segment of the detector on which the plate end is placed is also corrected and utilized for measurement of the plate shape, the plate end shape is accurately grasped and the accuracy is high. The plate shape can be detected and displayed.
In the shape control method in the multi-high rolling mill of the present invention, the shape of the end portion is also taken into consideration. Therefore, even if the plate end position varies somewhat due to deviations in the plate passing position of the material to be rolled, fluctuations in the plate width, side slip or meandering, the plate shape is less than the conventional method in which the plate end shape is not considered. Control can be performed with high accuracy. Furthermore, when trying to cold-roll a thin plate of a high hardness material, smooth cold rolling can be performed without causing rolling troubles such as plate breakage.

SK5材を供試材として使用し、厚さ2.0mmで幅932mmの冷延焼鈍板を、20段センジミア圧延機を用いて仕上げ厚0.52mmまで9パスで仕上げ冷延した。
このときの板形状を、52mm幅の検出セグメントが25個組み合わされた検出器を用いて測定した。冷延板が被覆する検出セグメント数は932/52≒17.92であり、完全に被覆しているセグメント数は17である。25個のセグメントの内、中央の17個のセグメントが完全に被覆されており、その両側のセグメントは{(932−52×17)/2}/52×100=46%の被覆率で鋼板が被覆していることになる。
The SK5 material was used as a test material, and a cold-rolled annealed plate having a thickness of 2.0 mm and a width of 932 mm was finished and cold-rolled in 9 passes to a finished thickness of 0.52 mm using a 20-stage Sendier mill.
The plate shape at this time was measured using a detector in which 25 detection segments with a width of 52 mm were combined. The number of detected segments covered by the cold-rolled plate is 932 / 52≈17.92, and the number of segments completely covered is 17. Of the 25 segments, the central 17 segments are completely covered, and the segments on both sides are covered with {(932-52 × 17) / 2} / 52 × 100 = 46%. It will be covered.

図6に、17個のセグメントにより検出した安定部の検出形状を示す。図6には、市販の平坦度計を用いて測定した実の測定形状を併せて表示している。
なお、この実の測定形状は、同一の圧延材について長手方向位置の検出形状と同じ長手方向位置のサンプルをとり、当該鋼板サンプルを平坦なテーブル上に載置し、その上をX−Yの二次元方向にレーザーを移動させ、測定したものである。この実の測定形状は、常法に従って、前記手法でまず鋼板のうねり(耳波)高さ等の変化を測定して、この測定値を急峻度に換算し、さらに幅方向偏差(I−Unit)に換算表示したものである。
FIG. 6 shows the detected shape of the stable portion detected by 17 segments. In FIG. 6, the actual measurement shape measured using a commercially available flatness meter is also displayed.
In addition, this actual measurement shape takes the sample of the same longitudinal direction position as the detection shape of a longitudinal direction position about the same rolling material, and mounts the said steel plate sample on a flat table, on it, it is XY. It is measured by moving the laser in a two-dimensional direction. According to a conventional method, the actual measurement shape is obtained by measuring changes in the swell (ear wave) height and the like of the steel plate by the above-described method, converting this measurement value into a steepness, and further, generating a width direction deviation (I-Unit). ).

圧延材は同じであっても、長手方向での測定箇所が異なるために、検出形状と実の測定形状は僅かに異なっているが、全体的なプロフィールは良く合っていることがわかる。
さらに、17個セグメントの両側のセグメントはそれぞれ被覆率が46%であるから、No.4及び22のセグメントで検出された荷重に被覆率に基づく補正を加えて幅方向偏差(I−Unit)に換算したエッジ補正値が、図6中両側の▲表示のものである。実の測定形状に極めて近似していることがわかる。
Even if the rolled material is the same, the measurement location in the longitudinal direction is different, so the detected shape and the actual measurement shape are slightly different, but the overall profile is well matched.
Furthermore, the segments on both sides of the 17 segments each have a coverage of 46%. Edge correction values converted to width direction deviations (I-Units) by applying a correction based on the coverage to the loads detected in the segments 4 and 22 are indicated by ▲ on both sides in FIG. It can be seen that it is very close to the actual measured shape.

上記仕上げ冷延材について、後述の実施例2で行ったような形状制御を行った後、エッジ補正がoff,onの状態での検出形状を別々に、図7,図8として表示した。図8中、各セグメントでの検出値に基づく形状値が棒グラフで示されており、両端の棒の一つずつが検出値をエッジ補正した形状値である。エッジ補正がoffのときには、図8の両端の棒の一つずつが検出されていない。しかし、実際の圧延形状はその幅方向位置から板エッジに向かって耳波形状となっており、この部分がエッジ補正offでは検出できず、いわゆる不感帯となっている。図7,図8を対比すると、エッジ補正を導入することにより検出精度が著しく向上することがよくわかる。   About the said finish cold-rolled material, after performing shape control like Example 2 mentioned later, the detected shape in the state of edge correction | amendment off and on was separately displayed as FIG. 7, FIG. In FIG. 8, the shape value based on the detection value in each segment is shown as a bar graph, and each bar at both ends is a shape value obtained by edge-correcting the detection value. When the edge correction is off, one of the bars at both ends in FIG. 8 is not detected. However, the actual rolling shape is an ear wave shape from the position in the width direction toward the plate edge, and this portion cannot be detected by the edge correction off, and is a so-called dead zone. When comparing FIG. 7 and FIG. 8, it can be seen that the detection accuracy is remarkably improved by introducing the edge correction.

実施例1で使用したものと同じ供試材を、同様に形状制御を行わないで仕上げ圧延しているときの、特定時点でのエッジ補正on状態での検出形状値を図9に示す。目標形状も併せて示す。
両者を対比すると、この時点では、Ws側の検出形状が目標形状に対して所望の伸びが得られていないことがわかる。
検出形状と目標形状の形状偏差はWs側の伸び不足がほとんどであるから、この場合の自動形状制御は、Wsの板端部を伸び形状になるように第1中間ロールをWs側にシフトするように判断・指令される。
そして、上記の自動形状制御により形状修正を行って圧延を行ったときの検出形状を図10に示す。
エッジ補正をonの状態で自動形状制御を行って形状修正すると、目標に近い圧延形状が得られることがわかる。
FIG. 9 shows detected shape values in the edge correction on state at a specific time when the same specimen as used in Example 1 is finish-rolled without performing shape control in the same manner. The target shape is also shown.
Comparing the two, it can be seen that, at this point, the detected shape on the Ws side has not obtained a desired elongation with respect to the target shape.
Since the shape deviation between the detected shape and the target shape is mostly insufficient on the Ws side, the automatic shape control in this case shifts the first intermediate roll to the Ws side so that the end of the Ws plate becomes the extended shape. It is judged and commanded as follows.
FIG. 10 shows the detected shape when rolling is performed by correcting the shape by the automatic shape control described above.
It can be seen that when the shape is corrected by performing automatic shape control with the edge correction turned on, a rolled shape close to the target can be obtained.

20段センジミア圧延機の概略図Schematic diagram of 20-stage Sendier rolling mill 本発明の「被覆量」及び「被覆率」を説明する図The figure explaining “the amount of covering” and “the covering ratio” of the present invention 形状検出ロールで板形状を検知する態様を説明する図The figure explaining the aspect which detects plate shape with a shape detection roll 板の、目標とするふち伸び形状を説明する図Diagram explaining the target edge stretch shape of the plate 被圧延材及びワークロールに対して中間ロールをシフトする状況を説明する図The figure explaining the situation which shifts an intermediate roll with respect to a material to be rolled and a work roll 実施例での検出形状と実の測定形状の違いを説明する図The figure explaining the difference between the detected shape and the actual measured shape in the example エッジ補正を行っていないときの検出形状を説明する図Diagram explaining the detected shape when edge correction is not performed エッジ補正を行ったときの検出形状と目標形状の関係を説明する図A diagram for explaining the relationship between the detected shape and the target shape when edge correction is performed エッジ補正に基づく形状制御を行っていないときの検出形状の実施例Example of detected shape when shape control based on edge correction is not performed エッジ補正に基づく形状制御を行ったときの検出形状と目標形状の関係を説明する図A diagram for explaining the relationship between a detected shape and a target shape when shape control based on edge correction is performed

Claims (2)

それぞれセンサーを備えた複数のセグメントが、センサーの回転方向に所定角度ずらし且つ軸方向に所定間隔を有して配置された形状検出ロールを、圧延材に接触させ、且つ該圧延材の速度と同調して回転させて、前記各センサーが前記圧延材から受ける荷重を検出し、該検出信号を処理して前記圧延材の形状を検知する際に、圧延材が前記セグメント全面を被覆していないセンサーの検出信号を、セグメントの鋼板被覆率で補正して処理することを特徴とする冷延板材の形状検知方法。   A plurality of segments each having a sensor are shifted in the rotation direction of the sensor by a predetermined angle and a shape detection roll arranged at a predetermined interval in the axial direction is brought into contact with the rolled material and synchronized with the speed of the rolled material. When the sensor receives the load received from the rolled material by each sensor and processes the detection signal to detect the shape of the rolled material, the rolled material does not cover the entire surface of the segment. The shape detection method of the cold-rolled board | plate material characterized by correct | amending this detection signal with the steel plate coverage of a segment, and processing it. それぞれセンサーを備えた複数のセグメントが、センサーの回転方向に所定角度ずらし且つ軸方向に所定間隔を有して配置された形状検出ロールを、圧延材に接触させ、且つ該圧延材の速度と同調して回転させて、前記各センサーが前記圧延材から受ける荷重を検出し、該検出信号を処理して前記圧延材の形状を検知する際に、圧延材が前記セグメント全面を被覆していないセンサーの検出信号を、セグメントの鋼板被覆率で補正して処理することにより圧延中の板形状を検知し、当該検知形状を目標形状と対比して、板形状が目標形状に近似するように板形状制御手段を調整することを特徴とする多段圧延機における形状制御方法。   A plurality of segments each having a sensor are shifted by a predetermined angle in the rotation direction of the sensor and a shape detection roll arranged at a predetermined interval in the axial direction is brought into contact with the rolled material and is synchronized with the speed of the rolled material. When the sensor receives the load received from the rolled material by each sensor and processes the detection signal to detect the shape of the rolled material, the rolled material does not cover the entire surface of the segment. The detection signal is corrected with the steel plate coverage of the segment and processed to detect the plate shape during rolling, and the detected shape is compared with the target shape so that the plate shape approximates the target shape. A shape control method in a multi-high rolling mill characterized by adjusting a control means.
JP2003394934A 2003-11-26 2003-11-26 Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill Pending JP2005152942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394934A JP2005152942A (en) 2003-11-26 2003-11-26 Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394934A JP2005152942A (en) 2003-11-26 2003-11-26 Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill

Publications (1)

Publication Number Publication Date
JP2005152942A true JP2005152942A (en) 2005-06-16

Family

ID=34720820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394934A Pending JP2005152942A (en) 2003-11-26 2003-11-26 Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill

Country Status (1)

Country Link
JP (1) JP2005152942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032946A (en) * 2015-07-27 2015-11-11 攀钢集团攀枝花钢钒有限公司 Roll-shifting operation method of temper mill
JP2016093815A (en) * 2014-11-12 2016-05-26 Jfeスチール株式会社 Shape detector
WO2017020603A1 (en) * 2015-07-31 2017-02-09 燕山大学 Signal processor for shape meter of cold-rolled strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093815A (en) * 2014-11-12 2016-05-26 Jfeスチール株式会社 Shape detector
CN105032946A (en) * 2015-07-27 2015-11-11 攀钢集团攀枝花钢钒有限公司 Roll-shifting operation method of temper mill
WO2017020603A1 (en) * 2015-07-31 2017-02-09 燕山大学 Signal processor for shape meter of cold-rolled strip

Similar Documents

Publication Publication Date Title
CA2428377C (en) Method of and apparatus for measuring planarity of strip, especially metal strip
KR101299946B1 (en) Method for calibrating two interacting working rollers in a rolling stand
CN111482465A (en) Plate shape control method and device for plate and strip
CN109807184B (en) Shape control device for multi-roll rolling mill
JP5490701B2 (en) Rolling mill and its operating method
JP2005152942A (en) Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill
JP2010540250A5 (en)
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
JPS5852724B2 (en) Metal rolling machine and setting method
JP2003048009A (en) Method for controlling shape in multi roll mill
JP4671555B2 (en) Shape control method in multi-high mill
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JP2006110588A (en) Method for controlling thickness and shape
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JPH11179414A (en) Method for estimating amount of uneven elongation in cold rolling mill and method for controlling shape
JP2001137926A (en) Method for controlling shape in multi roll mill
CA2620000A1 (en) Method for thickness regulation during a hot-rolling process
JP2002210512A (en) Method for setting screw-down location in sheet rolling
JPH0890030A (en) Method for controlling width of rolling stock
JP3142188B2 (en) Operation method of plate rolling mill
JPH10263658A (en) Flatness control method of rolled stock in hot finishing mill
JP2009183969A (en) Method for predicting rolling load in cold rolling
JPH0642950A (en) Device for measuring shape of hot-rolled plate
JPH11267729A (en) Method for cold rolling of hot rolled band-shaped sheet before pickling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310