JP2005151641A - Method of starting generator - Google Patents

Method of starting generator Download PDF

Info

Publication number
JP2005151641A
JP2005151641A JP2003382512A JP2003382512A JP2005151641A JP 2005151641 A JP2005151641 A JP 2005151641A JP 2003382512 A JP2003382512 A JP 2003382512A JP 2003382512 A JP2003382512 A JP 2003382512A JP 2005151641 A JP2005151641 A JP 2005151641A
Authority
JP
Japan
Prior art keywords
generator
torque
compensation amount
speed
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003382512A
Other languages
Japanese (ja)
Other versions
JP4501104B2 (en
JP2005151641A5 (en
Inventor
Shinya Morimoto
進也 森本
Shunkyu Kyo
俊求 姜
Saemitsu Hayashi
賛恵光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003382512A priority Critical patent/JP4501104B2/en
Publication of JP2005151641A publication Critical patent/JP2005151641A/en
Publication of JP2005151641A5 publication Critical patent/JP2005151641A5/ja
Application granted granted Critical
Publication of JP4501104B2 publication Critical patent/JP4501104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generator starting method which enables the start of a generator even in case that input is small without using a windmill, an input detector, and a control switching means which are superfluous. <P>SOLUTION: A generator system, which is connected to a power system where this invention is applied, is equipped with a prime mover, a generator which is connected with the prime mover, using a connection means such a gear or the like, so as to convert rotational energy into electric energy, a power converter which converts power generated by the generator into DC, and a generator control means which outputs a voltage command to the power converter so as to control the generator. In the generator starting method which controls the torque of the generator by getting a torque command from the relation between the speed ω and the torque T, where the output becomes maximum to the input of the prime mover, and the speed ω of the generator, a torque compensation amount calculating means sets torque, negating the mechanical friction among the generator, the prime mover, and the above connection means, as torque compensation amount, and inputs a signal, where the torque compensation amount is added to the torque command, to a torque control means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、風力や水力などのエネルギーを電気エネルギーに変換し、電力系統に接続あるいは蓄電手段をもつ発電装置における、低入力から始動することが可能な発電効率の高い発電装置の始動方法に関する。   The present invention relates to a method for starting a power generating device with high power generation efficiency that can be started from a low input in a power generating device that converts energy such as wind power or hydraulic power into electric energy and is connected to an electric power system or has power storage means.

一般的に、風車などの原動機の入力に対する発生トルクは、入力が一定の場合、図2のような特性を示す。つまり回転を停止している時は入力に対してトルクが小さいため、例え発電が可能な入力があっても始動トルクが機械的損失よりも大きくなるまで始動できないという問題点があった。
この問題に対して、風力発電では原動機に低入力でトルクを発生する始動用の風車を取り付け、始動開始入力を下げる工夫がされている(例えば、特許文献1参照)。また、風速計などの入力量検出手段を用いて発電が可能な入力があった場合に発電機をモータとして駆動して加速し、発電可能速度になると発電モードに切り替えて発電を開始するという方法がとられていた(例えば、特許文献2参照)。また、入力量検出手段がない場合に、発電機が停止中にある一定間隔で発電機をモータとして動作させることで強制的に回転させ、入力があれば発電するという方法も提案されている。また、ガスタービン発電装置では、発電可能な速度までタービンを加速する必要があるが、タービンを加速するために加速用の電力変換装置を別に準備するなどして、切り替え手段により加速モードと発電モードを切り替えて運転する方法がとられている(例えば、特許文献3参照)。
特開平11−201020号公報(第1図) 特開平8−322298号公報(第1図) 特開2002−89286号公報(第1図)
Generally, the generated torque with respect to the input of a prime mover such as a windmill exhibits characteristics as shown in FIG. 2 when the input is constant. That is, when the rotation is stopped, the torque is small with respect to the input, so that there is a problem that even if there is an input capable of generating power, the engine cannot be started until the starting torque becomes larger than the mechanical loss.
In response to this problem, wind power generation has been devised to attach a starter wind turbine that generates torque at a low input to the prime mover and lower the start input (for example, see Patent Document 1). In addition, when there is an input capable of generating power using an input amount detection means such as an anemometer, the generator is driven as a motor to accelerate, and when power generation is possible, the mode is switched to the power generation mode and power generation is started. (For example, refer to Patent Document 2). Further, there has been proposed a method in which when there is no input amount detection means, the generator is forcibly rotated by operating it as a motor at a certain interval while the generator is stopped, and power is generated if there is an input. Moreover, in a gas turbine power generation device, it is necessary to accelerate the turbine to a speed at which power can be generated. However, in order to accelerate the turbine, a separate power conversion device for acceleration is prepared. The method of driving by switching is taken (for example, see Patent Document 3).
JP-A-11-201020 (FIG. 1) JP-A-8-322298 (FIG. 1) JP 2002-89286 A (FIG. 1)

図7は風力発電における従来の制御ブロック図を示す。図7において、2は発電機トルク制御手段、3はPWM電圧演算手段、4は電力変換装置、5は発電機電流検出手段、6は発電機、7は発電機速度検出手段、8は電流変換手段、9は加算手段、30はトルク補償演算手段、32は最大出力速度演算手段、33は速度制御手段である。
次に動作を説明する。入力検出手段31により原動機への入力を検出し、速度指令演算手段32により入力検出手段31の入力した値に対して最大の効率になる速度指令を演算し、速度検出手段7により検出した発電機6の速度と比較して制御機33によりトルク指令を求める。トルク制御手段2は電流検出手段5により検出した発電機の電流が前記トルク指令どおりのトルクとなるように電圧指令を計算し、前記電圧指令を電圧出力手段3によりPWMに変換して電力変換装置4に与え、発電機6を制御するという手順がとられていた。また入力検出手段31を使わずに、発電機の発生電力と速度検出値とから入力の状態を予測してトルク指令を演算する方法もある。
原動機の入力−出力・速度の関係は図5のようになり、発電機が回転している場合は、速度と出力の関係から入力の大きさが推定できるため、最大出力となる速度を演算できる。発電機が回転していない場合は、出力は常に0であるため、入力検出手段が必要となる。入力検出手段31の具体例としては、風速計である。発電機が回転していない場合や発電機速度がゼロ近傍の低速度領域での発電機入力をこれにより推定することができる。
図5において、下段の図は各入力における発電機の回転速度ωに対する原動機の出力である。上段の図は各入力における発電機の回転速度ωに対する発電機のトルク指令である。 最大効率運転曲線は各入力における原動機の出力が最大となる点を結んだ曲線であり、トルク指令が前記曲線と一致するように制御することによって、原動機を最大効率で運転することが可能となる。従って、原動機入力をパラメータとして発電機回転数ωに対する最大効率運転曲線を事前に計算して記憶しておけば、発電機回転数ωに対する発電機のトルク指令を求めることができる。
FIG. 7 shows a conventional control block diagram in wind power generation. In FIG. 7, 2 is a generator torque control means, 3 is a PWM voltage calculation means, 4 is a power converter, 5 is a generator current detection means, 6 is a generator, 7 is a generator speed detection means, and 8 is a current conversion. Means 9, addition means, 30 torque compensation calculation means, 32 maximum output speed calculation means, and 33 speed control means.
Next, the operation will be described. An input to the prime mover is detected by the input detection means 31, a speed command that gives the maximum efficiency with respect to the value inputted by the input detection means 31 is calculated by the speed command calculation means 32, The torque command is obtained by the controller 33 in comparison with the speed 6. The torque control means 2 calculates a voltage command so that the generator current detected by the current detection means 5 becomes the torque according to the torque command, and converts the voltage command into PWM by the voltage output means 3 to convert the voltage command into a power converter. 4 and the procedure of controlling the generator 6 was taken. There is also a method of calculating the torque command by predicting the input state from the power generated by the generator and the detected speed value without using the input detection means 31.
The input / output / speed relationship of the prime mover is as shown in FIG. 5, and when the generator is rotating, the size of the input can be estimated from the relationship between the speed and the output, so the maximum output speed can be calculated. . When the generator is not rotating, the output is always 0, so input detection means is required. A specific example of the input detection means 31 is an anemometer. This makes it possible to estimate the generator input when the generator is not rotating or in the low speed region where the generator speed is near zero.
In FIG. 5, the lower diagram shows the output of the prime mover with respect to the rotational speed ω of the generator at each input. The upper diagram shows the generator torque command for the generator rotational speed ω at each input. The maximum efficiency operation curve is a curve connecting the points where the output of the prime mover at each input becomes the maximum, and it is possible to operate the prime mover at the maximum efficiency by controlling the torque command to match the curve. . Therefore, if the maximum efficiency operation curve with respect to the generator rotational speed ω is calculated and stored in advance using the prime mover input as a parameter, the generator torque command for the generator rotational speed ω can be obtained.

しかしながら、従来の発電機の始動方法では、始動用の風車を必要としたり、あるいは、始動時に発電機を電動機として使用する方法では、入力検出手段を必要としていた。一定間隔で電動機として回転させる方法では、入力がない場合でも電動機として回転させることにより電力を消費するため、発電効率を落とすという問題点があった。
またガスタービン発電機においては、制御や電力変換回路の切り替えを必要としていた。
本発明はこのような様々な問題点に鑑みてなされたものであり、余分な風車や入力検出器、制御切り替え手段を使用することなく、入力が小さい場合でも発電機の始動を可能とする発電機の始動方法を提供することを目的とする。
However, the conventional generator starting method requires a wind turbine for starting, or the method of using the generator as an electric motor at the time of starting requires input detection means. The method of rotating as a motor at a constant interval has a problem that power generation efficiency is lowered because power is consumed by rotating the motor as a motor even when there is no input.
Further, in the gas turbine generator, control and switching of the power conversion circuit are required.
The present invention has been made in view of such various problems, and can generate a generator that can start a generator even when the input is small, without using an extra windmill, input detector, or control switching means. It aims at providing the starting method of a machine.

上記問題を解決するため、本発明は、風力や水力などのエネルギーを回転エネルギーに変換する原動機と、原動機とギアなどの接続手段を用いて接続され回転エネルギーを電気エネルギーに変換する発電機と、前記発電機の発生する電力を直流に変換する電力変換装置と、前記電力変換装置に電圧指令を出力し前記発電機を制御する発電機制御手段と、前記原動機の入力に対して出力が最大となる速度ω−トルクTの関係と前記発電機の速度ωからトルク指令を求めて前記発電機のトルクを制御する発電機の始動方法において、
トルク補償量演算手段は、前記発電機と前記原動機と前記接続手段の機械的な摩擦を打ち消すトルクをトルク補償量として設定し、
前記トルク補償量を前記トルク指令に加算した信号をトルク制御手段へ入力することを特徴とするものである。
In order to solve the above problems, the present invention provides a prime mover that converts energy such as wind power and hydraulic power into rotational energy, and a generator that is connected using a connecting means such as the prime mover and a gear to convert rotational energy into electrical energy. A power converter that converts the electric power generated by the generator into direct current; generator control means that outputs a voltage command to the power converter and controls the generator; and a maximum output with respect to the input of the prime mover In the generator starting method for controlling the torque of the generator by obtaining a torque command from the relationship of the speed ω-torque T and the generator speed ω,
The torque compensation amount calculating means sets a torque that cancels mechanical friction of the generator, the prime mover, and the connecting means as a torque compensation amount,
A signal obtained by adding the torque compensation amount to the torque command is input to the torque control means.

また、請求項1記載の発明において、前記トルク補償量演算手段は、発電が可能となる速度ω0を設定し、前記発電機が停止中の時は前記トルク補償量をTc0、前記発電機の速度ωが設定された速度ω0のとき0となるように、
ω<ω0の時 Tc = Tc0 − (Tc0/ω0)× ω ・・・(1)
ω≧ω0の時 Tc = 0 ・・・(2)
によりトルク補償量Tcを演算するものである。
Further, in the invention according to claim 1, the torque compensation amount calculation means sets a speed ω0 at which power generation is possible, and when the generator is stopped, the torque compensation amount is Tc0, and the speed of the generator So that it becomes 0 when ω is the set speed ω0,
When ω <ω0 Tc = Tc0− (Tc0 / ω0) × ω (1)
When ω ≧ ω0 Tc = 0 (2)
Thus, the torque compensation amount Tc is calculated.

また、請求項2記載の発明において、前記トルク補償量演算手段は、前記発電機が回転し、設定した速度を超えた場合、前記発電機が停止するまで前記トルク補償量を0とするものである。このようになっているため、外部の入力検出機や切り替え手段を設けることなく微小な入力でも発電機を加速することができ、発電効率を上げることができる。
また、請求項2または3記載の発明において、前記トルク補償量演算手段は、運転指令入力手段をもち、前記トルク補償量として、前記原動機への入力が0でも前記発電機を加速する値を設定し、前記運転指令入力手段への入力があった場合に、強制的に発電可能な速度まで加速するものである。
また、請求項4記載の発明において、前記発電機をガスタービン発電機としたものでる。
Further, in the invention according to claim 2, the torque compensation amount calculation means sets the torque compensation amount to 0 until the generator stops when the generator rotates and exceeds a set speed. is there. Thus, the generator can be accelerated even with a minute input without providing an external input detector or switching means, and the power generation efficiency can be increased.
Further, in the invention according to claim 2 or 3, the torque compensation amount calculation means has an operation command input means, and sets a value for accelerating the generator even if the input to the prime mover is zero as the torque compensation amount. Then, when there is an input to the operation command input means, the speed is forcibly accelerated to a power generation rate.
According to a fourth aspect of the present invention, the generator is a gas turbine generator.

本発明の方法によれば、トルク指令により最大効率制御を行う発電装置において、発電機が停止している時に、機械的な損失を補償するトルク補償設定を設けることにより、始動用の風車などの付加的な原動機や入力量を検出するための検出器を設けることなく、微小な入力からの始動を可能とし、更に停止中は発電機が動作していないので発電機による消費電力は0となるため発電運転効率を上げることができるという効果がある。
また、請求項4に記載の方法によれば、ガスタービン発電などのように、始動時に加速が必要な発電用途で、余分な切り替え手段を設けることなく、スムーズな加速と発電への移行ができるという効果がある。
According to the method of the present invention, in a power generator that performs maximum efficiency control by a torque command, when a generator is stopped, a torque compensation setting that compensates for a mechanical loss is provided, so that a wind turbine for starting, etc. It is possible to start from a minute input without providing an additional prime mover or a detector for detecting the input amount. Further, since the generator is not operating during stoppage, the power consumption by the generator becomes zero. Therefore, the power generation operation efficiency can be increased.
Further, according to the method of claim 4, smooth acceleration and transition to power generation can be performed without providing an extra switching means in a power generation application that requires acceleration at start-up, such as gas turbine power generation. There is an effect.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は、本発明の方法を実施する発電機制御ブロック図である。図1において、1は最大出力トルク指令演算手段、2は発電機トルク制御手段、3はPWM電圧演算手段、4は電力変換装置、5は発電機電流検出手段、6は発電機、7は発電機速度検出手段、8は電流変換手段、9は加算手段、30はトルク補償演算手段である。
本発明の図1と従来技術の図7は、発電機トルク制御手段2、PWM電圧演算手段3、電力変換装置4、発電機電流検出手段5、発電機6、発電機速度検出手段7、電流変換手段8を備える点で共通する。本発明の図1が従来技術の図7と異なる部分は、最大出力トルク指令演算手段1とトルク補償演算手段30を備える点である。
次に図1の発電機制御ブロック図の入出力構成の説明をする。最大出力トルク指令演算手段1は、発電機速度検出手段7から出力される発電機の速度ωを入力し後で説明する演算をして加算手段9へトルク指令Tを出力する。加算手段9は、最大出力トルク指令演算手段1から出力されるトルク指令Tとトルク補償演算手段30から出力されるトルク補償値Tcとを加算したトルク信号T*(T*=T+Tc)をトルク制御手段2へ出力する。トルク制御手段2は、このトルク信号T*と電流変換手段8から出力される電流信号を入力してPWM電圧演算手段3へ電圧指令を出力する。PWM電圧演算手段3は、電圧指令に基づき電圧指令をPWM変調し電力変換装置4の図示しないゲート駆動回路へ出力する。電力変換装置4は、PWM電圧演算手段3から出力されたPWM変調信号に基づいて発電機6の端子電圧を制御する。
FIG. 1 is a block diagram of a generator control for implementing the method of the present invention. In FIG. 1, 1 is a maximum output torque command calculation means, 2 is a generator torque control means, 3 is a PWM voltage calculation means, 4 is a power converter, 5 is a generator current detection means, 6 is a generator, and 7 is a power generator. The machine speed detecting means, 8 is a current converting means, 9 is an adding means, and 30 is a torque compensation calculating means.
FIG. 1 of the present invention and FIG. 7 of the prior art show generator torque control means 2, PWM voltage calculation means 3, power converter 4, generator current detection means 5, generator 6, generator speed detection means 7, current This is common in that the conversion means 8 is provided. 1 of the present invention is different from FIG. 7 of the prior art in that a maximum output torque command calculation means 1 and a torque compensation calculation means 30 are provided.
Next, the input / output configuration of the generator control block diagram of FIG. 1 will be described. The maximum output torque command calculation means 1 inputs the generator speed ω output from the generator speed detection means 7, performs calculation described later, and outputs a torque command T to the addition means 9. The adding means 9 controls the torque signal T * (T * = T + Tc) obtained by adding the torque command T output from the maximum output torque command calculating means 1 and the torque compensation value Tc output from the torque compensation calculating means 30. Output to means 2. The torque control unit 2 inputs the torque signal T * and the current signal output from the current conversion unit 8 and outputs a voltage command to the PWM voltage calculation unit 3. The PWM voltage calculation means 3 performs PWM modulation on the voltage command based on the voltage command, and outputs it to a gate drive circuit (not shown) of the power converter 4. The power conversion device 4 controls the terminal voltage of the generator 6 based on the PWM modulation signal output from the PWM voltage calculation means 3.

次に図1の動作を説明する。最大出力トルク演算手段1は発電機速度検出手段7により検出した発電機6の速度から、発電機の発生電力が最大となるトルク指令Tを算出する。これにトルク補償値Tcを加えてトルク指令T*を求める。電流変換手段8は、電流検出手段5により検出した電流を制御に使用する電流に換算する。トルク制御手段2は電流変換手段により変換された発電機電流と前記トルク指令T*を用いて電圧指令を演算し、PWM変調手段3により電圧指令をPWM変調して、電力変換手段4により発電機6の端子電圧を制御する。最大出力トルク演算手段1は、図5に示した速度ω−トルクTの関係から、各入力における最大出力点を結んだ最大効率運転曲線に従って、検出した速度からトルク指令を求めることによって常に発電機を最大効率で運転できる。
図6は本発明の他の実施例のブロック図である。図6はトルク補償値を速度検出値によりトルク補償値を変化させるトルク補償演算手段30を設けている。トルク補償演算手段30は、トルク補償完了速度ω0とトルク補償初期値Tc0とから次のようにして演算する。
Next, the operation of FIG. 1 will be described. The maximum output torque calculation means 1 calculates a torque command T that maximizes the power generated by the generator from the speed of the generator 6 detected by the generator speed detection means 7. A torque compensation value Tc is added to this to obtain a torque command T *. The current conversion means 8 converts the current detected by the current detection means 5 into a current used for control. The torque control unit 2 calculates a voltage command using the generator current converted by the current conversion unit and the torque command T *, PWM modulates the voltage command by the PWM modulation unit 3, and the power conversion unit 4 generates the generator. 6 terminal voltage is controlled. The maximum output torque calculation means 1 always obtains a torque command from the detected speed according to the maximum efficiency operation curve connecting the maximum output points at each input from the relationship of the speed ω-torque T shown in FIG. Can be operated with maximum efficiency.
FIG. 6 is a block diagram of another embodiment of the present invention. FIG. 6 is provided with torque compensation calculation means 30 for changing the torque compensation value according to the speed detection value. The torque compensation computing means 30 computes from the torque compensation completion speed ω0 and the torque compensation initial value Tc0 as follows.

ω<ω0の時 Tc = Tc0 − (Tc0/ω0)× ω ・・・(1)
ω≧ω0の時 Tc = 0 ・・・(2)
ω0を発電が可能な最低限の入力が入ったときの最大効率速度に設定することにより、わずかの入力でスムーズに最大効率速度まで加速することを可能とする。
更に、発電機6の速度が一旦トルク補償完了速度ω0を超えると、前記トルク補償値を0とする。これにより、入力がなくなった場合にも発電機や原動機の減速による回生エネルギーまで回収でき、結果的に効率が向上する。
ガスタービン発電機の場合、発電開始時に一旦発電機を発電可能速度まで加速する必要がある。このような用途のために前記トルク補償演算手段を使うことにより加速と発電を自動的に切り替えて運転することができる。つまり、トルク補償初期値Tc0に加速に必要なトルクを設定しておきトルク補償完了速度に発電可能な速度を超える速度を設定することでスムーズに加速し、発電を開始した後は、トルク補償が0となるので通常の発電状態に移行する。ただし、トルク補償初期値Tc0が発電機を不用意に加速するのを防止するため、運転開始/停止入力機能を導入し、発電機始動時に運転開始指令を入力するようにする。
図3および図4は、本発明を適用する発電装置の構成を示す。図3は電力系統に接続されたものであり、図4は蓄電手段をもつ発電装置である。
図3に系統に接続された発電装置の構成例を示す。原動機11をギアなどの接続手段12を介して発電機13に接続し、電力変換装置14により発電機の発生した電力を直流量に変換する。発電機制御手段17は発電機13の速度を速度検出手段16により検出し、発電機電流検出手段15により発電機13に流れる電流を検出して発電機13に対するトルクが所望の値になるように電力変換装置14に電圧指令を与える。出力制御手段19は電力系統の電圧を出力電圧検出手段24により検出し、出力電圧を適切な電圧波形となるような電圧指令を出力して出力電力変換装置18により出力する。出力電力変換装置18の出力は出力フィルタ20により高調波を除去して系統連結手段21により電力系統22と接続される。また、系統連結手段21は、電力系統22からの電力と発電機の発生電力を用いて負荷装置23に対して電力を供給する。
図4は蓄電手段をもつ独立型発電装置の構成例を示す。電力変換装置14の出力部に蓄電制御手段25を介して蓄電手段26に接続される。また蓄電制御手段25と並列に出力電力変換装置18を接続し、出力電圧制御手段191により適切な電圧波形に変換して負荷装置231へ電力を供給する。蓄電制御手段25は発電機13が発電していない間は蓄電手段26を放電させて電力出力装置18を介して負荷231に電力を供給し、発電中は発電電力が負荷装置231が消費する電力よりも大きいときに電力の余剰分を蓄電手段26に蓄電するように制御する。
When ω <ω0 Tc = Tc0− (Tc0 / ω0) × ω (1)
When ω ≧ ω0 Tc = 0 (2)
By setting ω0 to the maximum efficiency speed when the minimum input capable of generating power is entered, it is possible to smoothly accelerate to the maximum efficiency speed with a few inputs.
Further, once the speed of the generator 6 exceeds the torque compensation completion speed ω0, the torque compensation value is set to zero. As a result, even when there is no input, it is possible to recover even regenerative energy due to the deceleration of the generator or prime mover, resulting in improved efficiency.
In the case of a gas turbine generator, it is necessary to once accelerate the generator to a power generation possible speed at the start of power generation. For such applications, the torque compensation calculation means can be used to automatically switch between acceleration and power generation. That is, by setting the torque necessary for acceleration to the torque compensation initial value Tc0 and setting the torque compensation completion speed at a speed that exceeds the speed at which power generation is possible, acceleration is smoothly performed. Since it becomes 0, it shifts to a normal power generation state. However, in order to prevent the torque compensation initial value Tc0 from inadvertently accelerating the generator, an operation start / stop input function is introduced so that an operation start command is input when the generator is started.
3 and 4 show the configuration of a power generator to which the present invention is applied. FIG. 3 is connected to a power system, and FIG. 4 is a power generation apparatus having power storage means.
FIG. 3 shows a configuration example of the power generator connected to the system. The prime mover 11 is connected to the generator 13 via a connecting means 12 such as a gear, and the power conversion device 14 converts the electric power generated by the generator into a direct current amount. The generator control means 17 detects the speed of the generator 13 by the speed detection means 16 and detects the current flowing through the generator 13 by the generator current detection means 15 so that the torque to the generator 13 becomes a desired value. A voltage command is given to the power converter 14. The output control means 19 detects the voltage of the power system by the output voltage detection means 24, outputs a voltage command that makes the output voltage an appropriate voltage waveform, and outputs it by the output power converter 18. The output of the output power converter 18 is connected to the power system 22 by the system connection means 21 after removing harmonics by the output filter 20. Further, the system connection means 21 supplies power to the load device 23 using the power from the power system 22 and the power generated by the generator.
FIG. 4 shows an example of the configuration of a stand-alone power generator having power storage means. The output unit of the power converter 14 is connected to the power storage unit 26 via the power storage control unit 25. Further, the output power conversion device 18 is connected in parallel with the power storage control means 25, converted into an appropriate voltage waveform by the output voltage control means 191, and supplied to the load device 231. The power storage control means 25 discharges the power storage means 26 while the generator 13 is not generating power and supplies power to the load 231 via the power output device 18, and the generated power is consumed by the load device 231 during power generation. Control is performed so that the surplus power is stored in the power storage means 26 when the power is larger.

本発明の実施例を示す制御ブロック図Control block diagram showing an embodiment of the present invention 本発明を適用する原動機の速度−トルク・出力特性を示す図The figure which shows the speed-torque-output characteristic of the motor | power_engine to which this invention is applied. 本発明を適用する電力系統に接続された発電装置を示す図The figure which shows the electric power generating apparatus connected to the electric power grid which applies this invention 本発明を適用する蓄電手段をもつ発電装置を示す図The figure which shows the electric power generating apparatus which has an electrical storage means to which this invention is applied. 原動機の速度−出力、および速度−トルク特性の例を示す図Diagram showing examples of prime mover speed-output and speed-torque characteristics 本発明の請求項2の実施例を示す制御ブロック図Control block diagram showing an embodiment of claim 2 of the present invention 従来の発電制御ブロック図Conventional power generation control block diagram

符号の説明Explanation of symbols

1 最大出力トルク指令演算手段
2 発電機トルク制御手段
3 PWM電圧演算手段
4、14 電力変換装置
5 発電機電流検出手段
6、13 発電機
7 発電機速度検出手段
8 電流変換手段
9 加算手段
11 原動機
12 接続手段
15 発電機電流検出手段
16 発電機速度検出手段
17 発電機制御手段
18 出力電力変換手段
19 出力制御手段
191 出力電圧制御手段
20 出力フィルタ
21 系統連結手段
22 電力系統(電源)
23、231 負荷装置
24 出力電圧検出手段
25 蓄電制御手段
26 蓄電手段
30 トルク補償演算手段
31 入力検出手段
32 最大出力速度演算手段
33 速度制御手段
DESCRIPTION OF SYMBOLS 1 Maximum output torque command calculating means 2 Generator torque control means 3 PWM voltage calculating means 4, 14 Power converter 5 Generator current detecting means 6, 13 Generator 7 Generator speed detecting means 8 Current converting means 9 Adding means 11 Motor 12 connection means 15 generator current detection means 16 generator speed detection means 17 generator control means 18 output power conversion means 19 output control means 191 output voltage control means 20 output filter 21 system connection means 22 power system (power supply)
23, 231 Load device 24 Output voltage detection means 25 Storage control means 26 Storage means 30 Torque compensation calculation means 31 Input detection means 32 Maximum output speed calculation means 33 Speed control means

Claims (5)

風力や水力などのエネルギーを回転エネルギーに変換する原動機と、原動機とギアなどの接続手段を用いて接続され回転エネルギーを電気エネルギーに変換する発電機と、前記発電機の発生する電力を直流に変換する電力変換装置と、前記電力変換装置に電圧指令を出力し前記発電機を制御する発電機制御手段と、前記原動機の入力に対して出力が最大となる速度ω−トルクTの関係と前記発電機の速度ωからトルク指令を求めて前記発電機のトルクを制御する発電機の始動方法において、
トルク補償量演算手段は、前記発電機と前記原動機と前記接続手段の機械的な摩擦を打ち消すトルクをトルク補償量として設定し、
前記トルク補償量を前記トルク指令に加算した信号をトルク制御手段へ入力することを特徴とする発電機の始動方法。
A prime mover that converts energy such as wind power or hydraulic power into rotational energy, a generator that is connected using a connection means such as a prime mover and gears, and that converts rotational energy into electrical energy, and converts the electric power generated by the generator into direct current The power converter, the generator control means for controlling the generator by outputting a voltage command to the power converter, the relationship between the speed ω-torque T at which the output is maximum with respect to the input of the prime mover and the power generation In the generator starting method for controlling the torque of the generator by obtaining a torque command from the machine speed ω,
The torque compensation amount calculating means sets a torque that cancels mechanical friction of the generator, the prime mover, and the connecting means as a torque compensation amount,
A generator starting method, wherein a signal obtained by adding the torque compensation amount to the torque command is input to a torque control means.
前記トルク補償量演算手段は、発電が可能となる速度ω0を設定し、前記発電機が停止中の時は前記トルク補償量をTc0、前記発電機の速度ωが設定された速度ω0のとき0となるように、
ω<ω0の時 Tc = Tc0 − (Tc0/ω0)× ω ・・・(1)
ω≧ω0の時 Tc = 0 ・・・(2)
によりトルク補償量Tcを演算する請求項1記載の発電機の始動方法。
The torque compensation amount calculation means sets a speed ω0 at which power generation is possible. When the generator is stopped, the torque compensation amount is Tc0, and when the generator speed ω is the set speed ω0, the torque compensation amount calculation means 0 So that
When ω <ω0 Tc = Tc0− (Tc0 / ω0) × ω (1)
When ω ≧ ω0 Tc = 0 (2)
The generator starting method according to claim 1, wherein the torque compensation amount Tc is calculated by:
前記トルク補償量演算手段は、前記発電機が回転し、設定した速度を超えた場合、前記発電機が停止するまで前記トルク補償量を0とすることを特徴とする請求項2記載の発電機の始動方法。   The generator according to claim 2, wherein the torque compensation amount calculation means sets the torque compensation amount to 0 until the generator stops when the generator rotates and exceeds a set speed. Starting method. 前記トルク補償量演算手段は、運転指令入力手段をもち、前記トルク補償量として、前記原動機への入力が0でも前記発電機を加速する値を設定し、前記運転指令入力手段への入力があった場合に、強制的に発電可能な速度まで加速することを特徴とする請求項2または3記載の発電機の始動方法。   The torque compensation amount calculation means has an operation command input means, and sets a value for accelerating the generator even if the input to the prime mover is 0 as the torque compensation amount, and there is an input to the operation command input means. 4. The method of starting a generator according to claim 2 or 3, wherein the generator is forcibly accelerated to a speed capable of generating power. 前記発電機がガスタービン発電機である請求項4記載の発電機の始動方法。   The generator starting method according to claim 4, wherein the generator is a gas turbine generator.
JP2003382512A 2003-11-12 2003-11-12 Generator starting method and generator Expired - Fee Related JP4501104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382512A JP4501104B2 (en) 2003-11-12 2003-11-12 Generator starting method and generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382512A JP4501104B2 (en) 2003-11-12 2003-11-12 Generator starting method and generator

Publications (3)

Publication Number Publication Date
JP2005151641A true JP2005151641A (en) 2005-06-09
JP2005151641A5 JP2005151641A5 (en) 2006-12-21
JP4501104B2 JP4501104B2 (en) 2010-07-14

Family

ID=34691564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382512A Expired - Fee Related JP4501104B2 (en) 2003-11-12 2003-11-12 Generator starting method and generator

Country Status (1)

Country Link
JP (1) JP4501104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373637B2 (en) 2019-09-03 2023-11-02 三菱重工業株式会社 Control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370830A (en) * 1989-08-10 1991-03-26 Mitsubishi Motors Corp Acceleration slip preventer of vehicle
JP2003134894A (en) * 2001-10-22 2003-05-09 Hitachi Unisia Automotive Ltd Controller for vehicle generator
JP2003259694A (en) * 2002-03-06 2003-09-12 Toyo Electric Mfg Co Ltd Method and apparatus for controlling pwm converter in wind power generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370830A (en) * 1989-08-10 1991-03-26 Mitsubishi Motors Corp Acceleration slip preventer of vehicle
JP2003134894A (en) * 2001-10-22 2003-05-09 Hitachi Unisia Automotive Ltd Controller for vehicle generator
JP2003259694A (en) * 2002-03-06 2003-09-12 Toyo Electric Mfg Co Ltd Method and apparatus for controlling pwm converter in wind power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373637B2 (en) 2019-09-03 2023-11-02 三菱重工業株式会社 Control device

Also Published As

Publication number Publication date
JP4501104B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4898230B2 (en) Wind power generation system operation control method and apparatus
JP2008206388A (en) System and method for controlling electric drive system technology
JP5469969B2 (en) Wind power generator
EP1343247A3 (en) Turbine generating apparatus
US9649953B2 (en) Method and device for operating an electric machine of a motor vehicle drive train
TW201305768A (en) Wind power excitation synchronous generation system and control method thereof
JP2017204934A (en) Power generator
JP2009100548A (en) Electric vehicle control unit
JP4571480B2 (en) Electric motor control device
JP2007143235A (en) Drive controller of ac motor
JPH08322298A (en) Wind power generating apparatus
EP2017953A2 (en) Variable speed drive system
KR20120102474A (en) Device for stopping induction motor
JP4501104B2 (en) Generator starting method and generator
JP2004040987A5 (en)
JP4920315B2 (en) Wind power generation control system and inverter device
JP2007028697A (en) Induction generator power generating unit
JP3764433B2 (en) Induction motor rotation speed detection apparatus and method
JP4398440B2 (en) Wind power generator
JP2003120504A (en) Wind power generation device
JP2014199055A (en) Power generator
JP2008161022A (en) Hydraulic power generator
JP2008005651A (en) Power supply device
JP2005080481A (en) Generator control method for power generation system
JP2003134890A (en) Wind-power generator using permanent magnet type of synchronous generator, and starting method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4501104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees