JP2009100548A - Electric vehicle control unit - Google Patents

Electric vehicle control unit Download PDF

Info

Publication number
JP2009100548A
JP2009100548A JP2007269402A JP2007269402A JP2009100548A JP 2009100548 A JP2009100548 A JP 2009100548A JP 2007269402 A JP2007269402 A JP 2007269402A JP 2007269402 A JP2007269402 A JP 2007269402A JP 2009100548 A JP2009100548 A JP 2009100548A
Authority
JP
Japan
Prior art keywords
control mode
pulse
inverter
electric vehicle
pulse control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007269402A
Other languages
Japanese (ja)
Other versions
JP4958718B2 (en
Inventor
Makoto Yamada
誠 山田
Hiroshi Ogawara
洋 大河原
Takeshi Ando
安藤  武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007269402A priority Critical patent/JP4958718B2/en
Publication of JP2009100548A publication Critical patent/JP2009100548A/en
Application granted granted Critical
Publication of JP4958718B2 publication Critical patent/JP4958718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric vehicle control unit for reducing inverter harmonic current in a specified signal frequency band, by changing a synchronous single-pulse control mode into a multiple-pulse control mode, when the synchronous single-pulse control mode is operated at a high-speed region. <P>SOLUTION: The electric vehicle control unit is provided with an inverter 2 for control driving an electromotor converting DC power 5 into AC power and driving the electric vehicle with power. The control unit selects the multiple-pulse PWM control mode or the synchronous single-pulse control mode as a switching control mode of the inverter 2; the unit has a means 42 for switching the synchronous single-pulse control mode to the multiple-pulse control mode, when an inverter frequency at the synchronous single-pulse control mode is within the specified frequency band. When the inverter frequency lies within the specified frequency band and the electromotor is drive-controlled in the multiple-pulse control mode, current commands are increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気車制御装置に関し、特に直流電力を交流電力に変換しその電力で電気車を駆動する電動機を駆動制御するインバータのスイッチング制御モードとして、低速域ではPWM制御モードを、それより高速域では同期1パルス制御モードを選択する電気車制御装置において、前記同期1パルス制御モードにおける特定周波数帯域の高調波電流を低減する技術に関する。   The present invention relates to an electric vehicle control device, and in particular, as a switching control mode of an inverter that drives and controls an electric motor that converts DC power into AC power and drives the electric vehicle with the electric power, a PWM control mode is used in a low speed region, and a higher speed than that. The present invention relates to a technique for reducing a harmonic current in a specific frequency band in the synchronous one-pulse control mode in an electric vehicle control device that selects a synchronous one-pulse control mode.

従来、車輪軸に結合された電動機をインバータで駆動制御する電気車において、前記電気車を低速で制御する場合は一例として非同期パルス制御モードおよび同期多パルス制御モード、高速で制御する場合においては電圧を最大限利用するため同期1パルス制御モードを用いたPWM制御を行っている。低速制御時における同期多パルス制御モードは、最大スイッチング周波数を上回らない範囲内で安定した電動機制御を行うという点で設定している。高速域における同期1パルス制御モードでの駆動制御を行うインバータにおいてインバータ周波数の6倍、12倍、…といった整数倍の高調波が電源に流れるため、軌道回路や車上子・地上子に用いる微弱な電気信号がインバータ周波数自身およびその高調波成分と干渉した場合には、踏切等の列車検知装置や自動列車停止装置などの誤動作を招く恐れがあった。   Conventionally, in an electric vehicle in which an electric motor coupled to a wheel shaft is driven and controlled by an inverter, when the electric vehicle is controlled at a low speed, as an example, an asynchronous pulse control mode and a synchronous multi-pulse control mode; PWM control using the synchronous 1 pulse control mode is performed. The synchronous multi-pulse control mode during low-speed control is set in that stable motor control is performed within a range that does not exceed the maximum switching frequency. In an inverter that performs drive control in the synchronous 1-pulse control mode in the high-speed range, harmonics that are integral multiples such as 6 times, 12 times, etc. of the inverter frequency flow to the power supply. When a simple electrical signal interferes with the inverter frequency itself and its harmonic components, there is a risk of malfunction of train detection devices such as railroad crossings and automatic train stop devices.

そこで従来ではインバータのスイッチング周波数による信号機器への干渉を防ぐために、スイッチング周波数のうち信号機器の使用周波数と干渉する成分を除去するフィルタ回路を設けることや、特許文献1に記載されるように、インバータのスイッチング周波数を信号機器に使用される周波数の整数倍または整数分の1以外の周波数に設定することにより対策をとっていた。
特開平7−39005号公報
Therefore, conventionally, in order to prevent interference with the signal equipment due to the switching frequency of the inverter, a filter circuit for removing a component that interferes with the use frequency of the signal equipment out of the switching frequency, or as described in Patent Document 1, Measures have been taken by setting the switching frequency of the inverter to a frequency other than an integer multiple or a fraction of an integer used for signal equipment.
JP 7-39005 A

特許文献1によれば、信号機器の信号伝送に使用される周波数に応じてインバータのスイッチング周波数を切り替えることにより、低速域におけるPWM制御モードに対しては効果が得られるものと考える。しかしながら、特許文献1には高速域における同期1パルス制御モードにおいて強制的に多パルス制御モードに切り替えることについての記載は一切されておらずその示唆もない。そのため、高速域における同期1パルス制御モードで運転時には、インバータ周波数の整数倍の高調波電流が軌道回路に流れ、インバータから出力される高調波電流が信号機器の信号周波数と一致する場合には信号機器からの信号に干渉する恐れがある。仮に、特許文献1の構成をそのまま高速域におけるパルス制御モード切換に用いた場合には、高速域における同期多パルス制御モードへの切換のために起きる変調率の低下に伴い、モータ電圧によるモータトルクが低下するという課題がある。   According to Patent Document 1, it is considered that an effect can be obtained for the PWM control mode in the low speed region by switching the switching frequency of the inverter according to the frequency used for signal transmission of the signal device. However, Patent Document 1 does not describe or suggest any forced switching to the multi-pulse control mode in the synchronous one-pulse control mode in the high-speed region. Therefore, when operating in the synchronous one-pulse control mode in the high-speed range, a harmonic current that is an integral multiple of the inverter frequency flows through the track circuit, and the harmonic current output from the inverter matches the signal frequency of the signal equipment. There is a risk of interference with the signal from the device. If the configuration of Patent Document 1 is used for switching the pulse control mode in the high speed region as it is, the motor torque due to the motor voltage is reduced due to a decrease in the modulation factor that occurs for switching to the synchronous multi-pulse control mode in the high speed region. There is a problem that decreases.

本発明の目的は、高速域における同期1パルス制御モードで運転時に、同期1パルス制御モードから多パルス制御モードに変更することにより、特定の信号周波数帯におけるインバータ高調波電流の低減を図ることができる電気車制御装置を提供することにある。   An object of the present invention is to reduce the inverter harmonic current in a specific signal frequency band by changing from the synchronous 1-pulse control mode to the multi-pulse control mode during operation in the synchronous 1-pulse control mode in the high speed range. An object of the present invention is to provide an electric vehicle control device that can be used.

上記目的を達成するために、本発明は従来の低速域における同期パルス制御モードの選定方法に加えて、高速域における同期1パルス制御モードでの運転時にスイッチング周波数およびその整数倍の周波数成分が信号機器の信号周波数に干渉しない多パルス制御モードへ変更する。また、高速域における同期1パルス制御モードから多パルス制御モードへの切換に伴うモータトルクの低下防止のために、多パルス制御モード時には電流指令を増加させ、さらに信号機器の周波数に干渉しない領域では同期1パルス制御モードを保つ。   In order to achieve the above object, in addition to the conventional method for selecting the synchronous pulse control mode in the low speed region, the present invention provides the switching frequency and an integral multiple of the frequency component when operating in the synchronous single pulse control mode in the high speed region. Change to the multi-pulse control mode that does not interfere with the signal frequency of the device. Also, in order to prevent the motor torque from being lowered due to switching from the synchronous 1-pulse control mode to the multi-pulse control mode in the high-speed region, the current command is increased in the multi-pulse control mode, and further, in the region that does not interfere with the frequency of the signal equipment. Keep synchronous 1 pulse control mode.

すなわち、本発明は、直流電力を交流電力に変換しその電力で電気車を駆動する電動機を駆動制御するインバータを備え、前記インバータのスイッチング制御モードとして、多パルスPWM制御モード、又は同期1パルス制御モードを選択する電気車制御装置において、前記同期1パルス制御モードにおけるインバータ周波数が特定周波数帯域内にあるときに、前記同期1パルス制御モードから多パルス制御モードに切り替える手段を有する電気車制御装置である。   That is, the present invention includes an inverter that controls driving of an electric motor that converts DC power into AC power and drives an electric vehicle using the power, and the switching control mode of the inverter is a multi-pulse PWM control mode or a synchronous one-pulse control. In the electric vehicle control device for selecting a mode, the electric vehicle control device having means for switching from the synchronous one-pulse control mode to the multi-pulse control mode when the inverter frequency in the synchronous one-pulse control mode is within a specific frequency band. is there.

また、本発明は、インバータ周波数が前記特定周波数帯域内にあり多パルス制御モードにて駆動制御する時に電流指令を増やす電気車制御装置である。   In addition, the present invention is an electric vehicle control device that increases a current command when the inverter frequency is within the specific frequency band and drive control is performed in a multi-pulse control mode.

本発明によれば、高速域におけるPWMインバータ制御時のパルス制御モード設定によりインバータ周波数の整数倍高調波電流の低減を図ることができ、その結果、特定の周波数における高調波電流を低減でき、他の信号機器への干渉を防ぐことができる電気車制御装置を提供することができる。   According to the present invention, it is possible to reduce the harmonic current at an integer multiple of the inverter frequency by setting the pulse control mode at the time of PWM inverter control in the high-speed region, and as a result, the harmonic current at a specific frequency can be reduced. It is possible to provide an electric vehicle control apparatus that can prevent interference with other signal equipment.

本発明を実施するための最良の形態を説明する。
本発明の電気車制御装置の実施例について、図面を参照し詳細に説明する。
The best mode for carrying out the present invention will be described.
An embodiment of an electric vehicle control device of the present invention will be described in detail with reference to the drawings.

実施例1を説明する。図1は本発明の第一の実施例である電気車の駆動システムの構成図、図2はPWM制御モードの切換周波数帯およびパルスパターンの例を示すものである。図1で示す電気車の駆動システムの概要は、直流電源5から可変電流可変周波数の交流に変換するVVVFインバータ2に接続され、該インバータ2の出力は電気車を駆動する誘導電動機3に接続される。インバータ2の直流側両端にはフィルタコンデンサ1が接続される。インバータ2はパルスモード演算部4から出力されるゲートパルスに基づき誘導電動機3を動作させる。   Example 1 will be described. FIG. 1 is a configuration diagram of an electric vehicle drive system according to a first embodiment of the present invention, and FIG. 2 shows an example of a switching frequency band and a pulse pattern in a PWM control mode. The outline of the electric vehicle drive system shown in FIG. 1 is connected from a DC power source 5 to a VVVF inverter 2 that converts variable current to variable frequency AC, and the output of the inverter 2 is connected to an induction motor 3 that drives the electric vehicle. The A filter capacitor 1 is connected to both ends of the inverter 2 on the DC side. The inverter 2 operates the induction motor 3 based on the gate pulse output from the pulse mode calculation unit 4.

次に本実施例におけるパルスモード演算部4の構成について説明する。パルスモード演算部4は、電気車制御装置の一部で、インバータ周波数演算部41、パルスモード切替制御部42、ゲートパルス発生部43から構成され、フィルタコンデンサ1の電圧Ecfが信号として与えられる。該パルスモード演算部4では、インバータ周波数発生部41によって運転台からのノッチ指令、モータの回転速度などを元としてインバータ周波数finvが生成される。前記フィルタコンデンサ電圧Ecfおよびインバータ周波数finvはパルスモード切替制御部42に入力され切り替えのタイミングが演算される。そしてパルスモード切替制御部42にてパルス制御モードおよびモータの電圧指令に相当する変調率をゲートパルス発生部43へと出力し、ゲートパルス発生部43はインバータのオンオフパターンデータを発生しVVVFインバータ2に誘導電動機3を動作させるためのゲートパルスを出力する。   Next, the configuration of the pulse mode calculation unit 4 in this embodiment will be described. The pulse mode calculation unit 4 is a part of the electric vehicle control device, and includes an inverter frequency calculation unit 41, a pulse mode switching control unit 42, and a gate pulse generation unit 43. The voltage Ecf of the filter capacitor 1 is given as a signal. In the pulse mode calculation unit 4, the inverter frequency generation unit 41 generates an inverter frequency finv based on a notch command from the cab, the rotation speed of the motor, and the like. The filter capacitor voltage Ecf and the inverter frequency finv are input to the pulse mode switching control unit 42, and the switching timing is calculated. The pulse mode switching control unit 42 outputs a modulation rate corresponding to the pulse control mode and the motor voltage command to the gate pulse generation unit 43. The gate pulse generation unit 43 generates on / off pattern data of the inverter to generate the VVVF inverter 2 A gate pulse for operating the induction motor 3 is output.

インバータ周波数finvに対するパルス制御モードの選択システムの一例を図2に示す。低速域における非同期パルス領域(1)、低速域における同期パルス領域(2)、高速域における同期1パルス領域(3)および高速域における多パルス領域(4)から構成される。この例では、パルスモード切替制御部42により、インバータ周波数f1(Hz)以下では(1)低速域非同期多パルス制御モード、f1以上f2以下では(2)低速域同期多パルス制御モード、f2以上f3以下では(3)高速域同期1パルス制御モード、f3以上f4以下では(4)高速域同期多パルス制御モード、f4以上では(3)高速域同期1パルス制御モードが選択される。また図2の関係に基づき、変調率が出力される。   An example of a pulse control mode selection system for the inverter frequency finv is shown in FIG. An asynchronous pulse region (1) in the low speed region, a synchronous pulse region (2) in the low speed region, a synchronous one pulse region (3) in the high speed region, and a multi-pulse region (4) in the high speed region. In this example, the pulse mode switching control unit 42 causes the inverter frequency f1 (Hz) or less to be (1) the low-speed asynchronous multi-pulse control mode, and f1 to f2 (2) the low-speed synchronous multipulse control mode, f2 to f3. In the following, (3) the high-speed region synchronization single pulse control mode is selected, in the range from f3 to f4, the (4) high-speed region synchronization multi-pulse control mode is selected. Further, the modulation rate is output based on the relationship of FIG.

低速域における非同期パルス領域(1)では、バイポーラスイッチングにより0Hzからf1(Hz)まで(1)低速非同期多パルス制御モードで動作させる。   In the asynchronous pulse region (1) in the low speed region, (1) the low speed asynchronous multi-pulse control mode is operated from 0 Hz to f1 (Hz) by bipolar switching.

高速域の信号機器の信号周波数と一致する周波数領域(4)において、インバータ2から出力される高調波電流が信号機器の信号周波数に干渉しないように(4)高速域多パルス制御モードを選択する。高速域同期多パルス領域(4)としては例えば同期3パルス、同期5パルス、非同期過変調などが用いられる。これらのパルス制御モードを選択することによって、高速域同期1パルス制御モードで発生する6倍、12倍といった周波数成分の電流を低減させることができる。例えば、信号機器が周波数360Hz〜420Hzの信号を利用している場合、インバータ周波数finvが60〜70Hzで高速域同期1パルス制御モードとなる時、360〜420Hzの6倍高調波成分が発生する。この時、f3=60Hzまたはそれより若干低い周波数からf4=70Hzまたはそれより若干高い周波数まで同期5パルス制御モードとすることにより、同期1パルスを用いる場合に比べ6倍高調波成分をおよそ70%低減することができる。   (4) Select the high-speed multi-pulse control mode so that the harmonic current output from the inverter 2 does not interfere with the signal frequency of the signal device in the frequency region (4) that matches the signal frequency of the high-speed signal device. . As the high speed region synchronous multi-pulse region (4), for example, three synchronous pulses, five synchronous pulses, asynchronous overmodulation, or the like is used. By selecting these pulse control modes, it is possible to reduce the current of frequency components such as 6 times and 12 times generated in the high-speed region synchronization 1 pulse control mode. For example, when the signal device uses a signal having a frequency of 360 Hz to 420 Hz, a 6th harmonic component of 360 to 420 Hz is generated when the inverter frequency finv is 60 to 70 Hz and the high frequency region synchronous single pulse control mode is set. At this time, by setting the synchronous 5-pulse control mode from f3 = 60 Hz or slightly lower frequency to f4 = 70 Hz or slightly higher frequency, the 6th harmonic component is approximately 70% compared to the case where one synchronous pulse is used. Can be reduced.

実施例2を説明する。本実施例は、高速域同期多パルス領域(4)において、同期1パルス制御から多パルス制御への移行に伴いモータ電圧の低下となりパワーダウンとなるため、高速域における同期多パルス制御モードにおいては電流指令を増加させることによりパワーダウンとなることを回避させる。図3に変調率(電圧指令)に対する電流指令の例を示す。   A second embodiment will be described. In this embodiment, in the high-speed synchronous multi-pulse control mode (4), the motor voltage is lowered and the power is reduced with the shift from the synchronous single-pulse control to the multi-pulse control. The power down is avoided by increasing the current command. FIG. 3 shows an example of a current command with respect to the modulation rate (voltage command).

図4に高速域同期多パルス制御時において電流指令を増やす実施例2の電気車制御装置の構成を示す。図4で示す電気車の駆動システムは、直流電源5が可変電流可変周波数の交流に変換するVVVFインバータ2に接続され、該インバータ2の出力は電気車を駆動する誘導電動機3に接続される。VVVFインバータ2の直流側両端にはフィルタコンデンサ1が接続され、該フィルタコンデンサ1の電圧Ecfはパルスモード演算部4においてパルス制御モードの演算に用いられる。VVVFインバータ2はパルスモード演算部4から出力されるゲートパルスに基づき誘導電動機3を動作させる。   FIG. 4 shows the configuration of the electric vehicle control apparatus according to the second embodiment that increases the current command during the high-speed synchronous multi-pulse control. The electric vehicle drive system shown in FIG. 4 is connected to a VVVF inverter 2 in which a direct current power source 5 converts it into alternating current of variable current and variable frequency, and the output of the inverter 2 is connected to an induction motor 3 that drives the electric vehicle. A filter capacitor 1 is connected to both ends of the DC side of the VVVF inverter 2, and the voltage Ecf of the filter capacitor 1 is used in the pulse control mode calculation in the pulse mode calculation unit 4. The VVVF inverter 2 operates the induction motor 3 based on the gate pulse output from the pulse mode calculation unit 4.

パルスモード演算部4は、電気車におけるインバータ制御装置の一部で、インバータ周波数演算部41、パルスモード切替制御部42、ゲートパルス発生部43、電流指令演算部44、電流指令切替制御部45から構成され、フィルタコンデンサ1の電圧Ecfが入力として与えられることを特徴としている。 該パルスモード演算部4では、インバータ周波数発生部41によって運転台からのノッチ指令、モータの回転速度などを元としてインバータ周波数finvが演算される。前記フィルタコンデンサ電圧Ecfおよびインバータ周波数finvはパルスモード切替制御部42に入力されパルス制御モードの切り替えのタイミングが演算される。また、電流指令演算部44にて演算された電流指令値およびパルスモード切替制御部42にて演算されたパルス制御モードの切替タイミングを元に、電流指令切替制御部45は最終的な電流指令値を決定する。そしてパルスモード切替制御部42からはパルス制御モードおよびモータの電圧指令に相当する変調率をゲートパルス発生部43へ出力し、電流指令切替制御部45からは電流指令値をゲートパルス発生部43へ出力する。ゲートパルス発生部43はインバータのオンオフパターンデータを発生しVVVFインバータ2に誘導電動機3を動作させるためのゲートパルスを出力する。   The pulse mode calculation unit 4 is a part of an inverter control device in an electric vehicle, and includes an inverter frequency calculation unit 41, a pulse mode switching control unit 42, a gate pulse generation unit 43, a current command calculation unit 44, and a current command switching control unit 45. The voltage Ecf of the filter capacitor 1 is provided as an input. In the pulse mode calculation unit 4, the inverter frequency generation unit 41 calculates the inverter frequency finv based on the notch command from the cab, the rotation speed of the motor, and the like. The filter capacitor voltage Ecf and the inverter frequency finv are input to the pulse mode switching control unit 42, and the timing for switching the pulse control mode is calculated. Further, based on the current command value calculated by the current command calculation unit 44 and the switching timing of the pulse control mode calculated by the pulse mode switching control unit 42, the current command switching control unit 45 determines the final current command value. To decide. The pulse mode switching control unit 42 outputs a modulation rate corresponding to the pulse control mode and the motor voltage command to the gate pulse generating unit 43, and the current command switching control unit 45 sends the current command value to the gate pulse generating unit 43. Output. The gate pulse generator 43 generates inverter on / off pattern data and outputs a gate pulse for operating the induction motor 3 to the VVVF inverter 2.

実施例1の電気車制御装置を示す構成図。1 is a configuration diagram showing an electric vehicle control device of Embodiment 1. FIG. 実施例1におけるパルス制御モード・変調率切換図。FIG. 3 is a pulse control mode / modulation rate switching diagram according to the first embodiment. 実施例2における電流指令値増加制御のパルス制御モード・変調率切替図。FIG. 6 is a pulse control mode / modulation rate switching diagram of current command value increase control in the second embodiment. 実施例2の電気車制御装置を示す構成図。The block diagram which shows the electric vehicle control apparatus of Example 2. FIG.

符号の説明Explanation of symbols

1・・・フィルタコンデンサ
2・・・VVVFインバータ
3・・・誘導電動機、
4・・・パルスパターン制御部
5・・・直流電源
DESCRIPTION OF SYMBOLS 1 ... Filter capacitor 2 ... VVVF inverter 3 ... Induction motor,
4 ... Pulse pattern controller 5 ... DC power supply

Claims (2)

直流電力を交流電力に変換しその電力で電気車を駆動する電動機を駆動制御するインバータを備え、前記インバータのスイッチング制御モードとして、多パルスPWM制御モード、又は同期1パルス制御モードを選択する電気車制御装置において、
前記同期1パルス制御モードにおけるインバータ周波数が特定周波数帯域内にあるときに、前記同期1パルス制御モードから多パルス制御モードに切り替える手段を有することを特徴とする電気車制御装置。
An electric vehicle that includes an inverter that drives and controls an electric motor that converts DC power into AC power and drives the electric vehicle using the electric power, and selects a multi-pulse PWM control mode or a synchronous one-pulse control mode as a switching control mode of the inverter In the control device,
An electric vehicle control device comprising means for switching from the synchronous one-pulse control mode to the multi-pulse control mode when the inverter frequency in the synchronous one-pulse control mode is within a specific frequency band.
請求項1記載の電気車制御装置において、
インバータ周波数が前記特定周波数帯域内にあり多パルス制御モードにて駆動制御する時に電流指令を増やすことを特徴とする電気車制御装置。
The electric vehicle control device according to claim 1,
An electric vehicle control device characterized in that the current command is increased when the inverter frequency is within the specific frequency band and drive control is performed in the multi-pulse control mode.
JP2007269402A 2007-10-16 2007-10-16 Electric vehicle control device Active JP4958718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269402A JP4958718B2 (en) 2007-10-16 2007-10-16 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269402A JP4958718B2 (en) 2007-10-16 2007-10-16 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2009100548A true JP2009100548A (en) 2009-05-07
JP4958718B2 JP4958718B2 (en) 2012-06-20

Family

ID=40703052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269402A Active JP4958718B2 (en) 2007-10-16 2007-10-16 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP4958718B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148582A (en) * 2010-02-10 2011-08-10 株式会社日立制作所 Electric power converting means
JP2011200103A (en) * 2010-02-10 2011-10-06 Hitachi Ltd Power converter
WO2012124107A1 (en) * 2011-03-17 2012-09-20 トヨタ自動車株式会社 Vehicle having obstacle detection device
CN111572363A (en) * 2019-02-18 2020-08-25 本田技研工业株式会社 Control system, vehicle system, and control method
US11325478B2 (en) 2019-09-25 2022-05-10 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
US11349428B2 (en) 2019-09-25 2022-05-31 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
WO2022209315A1 (en) * 2021-03-30 2022-10-06 株式会社アイシン Rotating electrical machine control device
US11674459B2 (en) 2019-09-25 2023-06-13 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
US11774268B2 (en) 2019-09-25 2023-10-03 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053605A (en) * 1991-06-24 1993-01-08 Toyo Electric Mfg Co Ltd Controller for electric vehicle
JP2002271906A (en) * 2001-03-08 2002-09-20 Toshiba Transport Eng Inc Driving controller for ac electric vehicle
JP2007181400A (en) * 2003-09-03 2007-07-12 Toshiba Corp Electric vehicle controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053605A (en) * 1991-06-24 1993-01-08 Toyo Electric Mfg Co Ltd Controller for electric vehicle
JP2002271906A (en) * 2001-03-08 2002-09-20 Toshiba Transport Eng Inc Driving controller for ac electric vehicle
JP2007181400A (en) * 2003-09-03 2007-07-12 Toshiba Corp Electric vehicle controller

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148582A (en) * 2010-02-10 2011-08-10 株式会社日立制作所 Electric power converting means
US20110193509A1 (en) * 2010-02-10 2011-08-11 Hitachi, Ltd. Power Conversion Device
WO2011099122A1 (en) * 2010-02-10 2011-08-18 株式会社 日立製作所 Power conversion device
JP2011200103A (en) * 2010-02-10 2011-10-06 Hitachi Ltd Power converter
CN103560688A (en) * 2010-02-10 2014-02-05 株式会社日立制作所 Power conversion device
WO2012124107A1 (en) * 2011-03-17 2012-09-20 トヨタ自動車株式会社 Vehicle having obstacle detection device
JP5494886B2 (en) * 2011-03-17 2014-05-21 トヨタ自動車株式会社 Vehicle having obstacle detection device
US9037332B2 (en) 2011-03-17 2015-05-19 Toyota Jidosha Kabushiki Kaisha Vehicle having obstacle detection device
CN111572363A (en) * 2019-02-18 2020-08-25 本田技研工业株式会社 Control system, vehicle system, and control method
US11190125B2 (en) 2019-02-18 2021-11-30 Honda Motor Co., Ltd. Control system, vehicle system, and control method
CN111572363B (en) * 2019-02-18 2023-09-19 本田技研工业株式会社 Control system, vehicle system and control method
US11325478B2 (en) 2019-09-25 2022-05-10 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
US11349428B2 (en) 2019-09-25 2022-05-31 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
US11674459B2 (en) 2019-09-25 2023-06-13 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
US11774268B2 (en) 2019-09-25 2023-10-03 Honda Motor Co., Ltd. Control apparatus, vehicle system, and control method
WO2022209315A1 (en) * 2021-03-30 2022-10-06 株式会社アイシン Rotating electrical machine control device
JP2022154622A (en) * 2021-03-30 2022-10-13 株式会社アイシン Rotating electric machine control device
JP7317064B2 (en) 2021-03-30 2023-07-28 株式会社アイシン Rotating electric machine controller

Also Published As

Publication number Publication date
JP4958718B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958718B2 (en) Electric vehicle control device
JP4545226B1 (en) Power converter
JP3716534B2 (en) Motor control device and electric vehicle
JP5551833B2 (en) Power conversion control device, power conversion control method, electric motor, and vehicle drive system
US9246428B2 (en) Vector control device for an electric motor that controls an electric power converter that converts DC power to AC power, electric motor, vehicle drive system, and vector control method for electric motor
JP2010119216A (en) Power converter
JP5121200B2 (en) Control device for permanent magnet motor
JP5325561B2 (en) Three-phase AC motor control device and control method thereof
JP2006136066A (en) Controller for electric motor
JP2011200103A5 (en)
JP3697988B2 (en) Power supply device and electric motor or compressor drive system using the same
WO2020044890A1 (en) Inverter device
JP7068871B2 (en) Power converter
JP2007074810A (en) Power converter for vehicle using alternating current power
KR101489981B1 (en) Beatless Control Method of Propulsion Control Device for High Speed Train
JP2001224191A (en) Control unit of induction motor
JP2006246667A (en) Motor driving device
JP5717902B2 (en) Power conversion control device, electric motor, and vehicle drive system
KR101181495B1 (en) PWM control method
JP2023109080A (en) Motor control device
JP2010206983A (en) Railway-vehicle drive controller
JP2007252084A (en) Electric vehicle control unit
JP2004080855A (en) Power converter
JP6450507B2 (en) Electric brake unit
JP2005261161A (en) Motor drive controlling method and drive controlling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150