JP2005144908A - Polyimide metal laminated plate - Google Patents

Polyimide metal laminated plate Download PDF

Info

Publication number
JP2005144908A
JP2005144908A JP2003387313A JP2003387313A JP2005144908A JP 2005144908 A JP2005144908 A JP 2005144908A JP 2003387313 A JP2003387313 A JP 2003387313A JP 2003387313 A JP2003387313 A JP 2003387313A JP 2005144908 A JP2005144908 A JP 2005144908A
Authority
JP
Japan
Prior art keywords
polyimide
layer
metal
wiring
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003387313A
Other languages
Japanese (ja)
Other versions
JP4763964B2 (en
Inventor
Masao Kawaguchi
将生 川口
Eiji Otsubo
英二 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003387313A priority Critical patent/JP4763964B2/en
Publication of JP2005144908A publication Critical patent/JP2005144908A/en
Application granted granted Critical
Publication of JP4763964B2 publication Critical patent/JP4763964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide metal laminated plate in which a wiring dislocation and an edge short circuit after the mounting of chips, and faults such as the sinking of metal wiring in a polyimide layer and the peeling of the wiring from the polyimide layer are prevented. <P>SOLUTION: The polyimide metal laminated plate is composed of the polyimide layers and a metal layer. In the laminated plate, at least one polyimide (PI) layer having a modulus of elasticity in a temperature area of at least 350°C of 1-30 GPa exists in the polyimide layers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フレキシブル配線基板などに広く使用されるポリイミド金属積層板に関するものである。   The present invention relates to a polyimide metal laminate widely used for flexible wiring boards and the like.

近年、電子機器の小型携帯化に伴い、回路基板材料として部品、素子の高密度実装が可能なポリイミド金属積層板の利用が増大している。さらなる小型化、高密度化に対応するために、COF(チップオンフィルム)と呼ばれる部品、素子を直接回路基板に実装する方式が主流となっている。従来から、COF用基材としては、主にポリイミド樹脂フィルムに金属をスパッタして得られるポリイミド金属積層板(特許文献1参照)や、圧延銅箔もしくは電解銅箔にキャスティングやラミネート方式によってポリイミド層を形成するものがある。   In recent years, with the downsizing and portability of electronic devices, the use of polyimide metal laminates capable of high-density mounting of components and elements as circuit board materials is increasing. In order to cope with further downsizing and higher density, a method of mounting components and elements called COF (chip on film) directly on a circuit board has become mainstream. Conventionally, as a base material for COF, a polyimide layer is mainly obtained by casting or laminating a polyimide metal laminated plate (see Patent Document 1) obtained by sputtering metal on a polyimide resin film, or rolled copper foil or electrolytic copper foil. There is something that forms.

圧延もしくは電解銅箔にポリイミド層を形成するポリイミド金属積層板は、金属箔層とポリイミド層間の密着力を高める為に、金属箔層とポリイミド層の間に熱可塑性ポリイミド層を形成するのが一般的である。   Polyimide metal laminates that form a polyimide layer on rolled or electrolytic copper foil generally have a thermoplastic polyimide layer formed between the metal foil layer and the polyimide layer in order to increase the adhesion between the metal foil layer and the polyimide layer. Is.

ところで、チップ実装は、ACF(Anisotropic Conductive Film)、NCP(Non Conductive Paste)、超音波接合など低温で実装する方式から、Au-Au接合、Au-Sn接合など高温で実装する方式があるが、TABラインでの実装方式や、チップと配線の接続信頼性の点から、Au-Au接合、Au-Sn接合が現在でも多く採用されている。   By the way, as for chip mounting, there are methods of mounting at low temperatures such as ACF (Anisotropic Conductive Film), NCP (Non Conductive Paste) and ultrasonic bonding, and mounting at high temperatures such as Au-Au bonding and Au-Sn bonding. From the viewpoint of the mounting method using the TAB line and the connection reliability between the chip and the wiring, Au-Au bonding and Au-Sn bonding are still widely used.

これらの金属積層板にAu-Sn接合によるチップ実装を行なう場合、ポリイミドに配線およびチップのバンプが沈み込む、配線がずれる等の不具合が発生する場合がある。配線の過度の沈み込みは、チップとポリイミド層の隙間が狭くなることから、アンダーフィルが入らない、エッジショートが発生するという問題が発生してしまう。また、配線ずれに関しては隣接する銅配線に接触し、ショートを起こす問題が発生した。これらの不具合が発生しないためには、配線ずれが無く、沈み込み量が小さいものが望まれていた。
特開2003-188495号公報
When chip mounting is performed on these metal laminates by Au—Sn bonding, there are cases where defects such as wiring and chip bumps sink into polyimide or wiring is shifted. Excessive sinking of the wiring causes a problem that an underfill does not enter and an edge short occurs because the gap between the chip and the polyimide layer becomes narrow. In addition, with respect to the wiring displacement, there was a problem that it contacted the adjacent copper wiring and caused a short circuit. In order to prevent these problems from occurring, it has been desired to have a wiring displacement and a small sinking amount.
JP 2003-188495 A

本発明の目的は、ポリイミド金属積層板において、チップ実装後に配線ずれやエッジショート、金属配線がポリイミド層に沈み込むという不具合や、配線がポリイミド層から剥れる等の不具合が発生しないポリイミド金属積層板を提供することである。更にはAu-Au接合あるいはAu-Sn接合によるチップ実装時でも配線ずれ不良が無く、アンダーフィル充填が可能となるポリイミド金属箔積層板を提供することである。   The object of the present invention is a polyimide metal laminate that does not suffer from problems such as wiring misalignment, edge shorting, metal wiring sinking into the polyimide layer after wiring, and peeling of the wiring from the polyimide layer. Is to provide. Furthermore, it is to provide a polyimide metal foil laminate that can be filled with underfill without causing any wiring misalignment even during chip mounting by Au-Au bonding or Au-Sn bonding.

本発明者らは検討の結果、ポリイミド層中に、少なくとも1層以上、350℃以上の高温域での弾性率が1GPa以上30GPa以下のポリイミド(PI)層を存在させることにより得られるポリイミド金属積層板が上記課題を解決できることを見出し本発明に到達した。   As a result of investigations, the present inventors have studied that a polyimide metal laminate obtained by allowing a polyimide (PI) layer having an elastic modulus of 1 GPa or more and 30 GPa or less in a high temperature range of 350 ° C. or more to exist in the polyimide layer. The present inventors have found that a board can solve the above-mentioned problems and have reached the present invention.

即ち本発明は、以下に関するものである。
(1)ポリイミド層と、金属層からなるポリイミド金属積層板であって、350℃以上の温度領域での弾性率が1GPa以上30GPa以下のポリイミド(PI)層が、少なくとも1層以上、ポリイミド層中に存在することを特徴とするポリイミド金属積層板。
(2)350℃以上の温度領域での弾性率が1GPa以上30GPa以下のポリイミド(PI)層が、ジアミンとテトラカルボン酸二無水物から合成されるものであり、原料となるジアミン成分全体の70モル%以上がo-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミンから選ばれる一種又は二種以上であり、テトラカルボン酸二無水物成分全体の90モル%以上がピロメリット酸二無水物、3,3’,4,4’―ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物から選ばれる一種又は二種以上の化合物である(1)記載のポリイミド金属積層板。(3)金属と接する側のポリイミド層が、熱可塑性ポリイミド(TPI)である(1)又は(2)記載のポリイミド金属積層板。
(4)熱可塑性ポリイミド(TPI)のガラス転位点(Tg)が、250℃以上375℃以下であり、さらにガラス転移点以上での弾性率が、10MPa以上1GPa以下である(3)記載のポリイミド金属積層板。
That is, the present invention relates to the following.
(1) A polyimide metal laminate comprising a polyimide layer and a metal layer, wherein at least one polyimide (PI) layer having a modulus of elasticity of 1 GPa or more and 30 GPa or less in a temperature region of 350 ° C. or higher is in the polyimide layer A polyimide metal laminate, characterized by being present in
(2) A polyimide (PI) layer having a modulus of elasticity of 1 GPa or more and 30 GPa or less in a temperature range of 350 ° C. or higher is synthesized from diamine and tetracarboxylic dianhydride. Mol% or more is one or more selected from o-phenylenediamine, p-phenylenediamine, and m-phenylenediamine, and 90 mol% or more of the total tetracarboxylic dianhydride component is pyromellitic dianhydride, One or more compounds selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (1) The polyimide metal laminate as described. (3) The polyimide metal laminate according to (1) or (2), wherein the polyimide layer in contact with the metal is thermoplastic polyimide (TPI).
(4) The polyimide according to (3), wherein the glass transition point (Tg) of the thermoplastic polyimide (TPI) is 250 ° C. or more and 375 ° C. or less, and the elastic modulus at the glass transition point or more is 10 MPa or more and 1 GPa or less. Metal laminate.

本発明により提供されるポリイミド金属積層板は、Au-Au接合あるいはAu-Sn接合など、高温でのチップ実装時に配線ずれやエッジショート、金属配線がポリイミド層に沈み込むという現象や、配線がポリイミド層から剥れる等の問題が発生せず、アンダーフィル充填が可能となる。   The polyimide metal laminate provided by the present invention has a phenomenon in which wiring displacement, edge short, metal wiring sinks into the polyimide layer, such as Au-Au bonding or Au-Sn bonding, and wiring is polyimide. Underfill filling is possible without causing problems such as peeling from the layer.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のポリイミド金属積層板の具体的構成について例を挙げると、350℃以上の高温域での弾性率が1GPa以上30GPa以下のポリイミド(PI)フィルム層の片面もしくは両面に、乾式成膜法やめっき法によって、直接金属層を形成して得られるポリイミド金属積層板(A)、該ポリイミド(PI)フィルム層の片面もしくは両面に、熱可塑性ポリイミド(TPI)層を形成し、金属箔層を加熱圧着して得られるポリイミド金属積層板(B)、金属箔層に熱可塑性ポリイミド(TPI)層を形成し、該ポリイミド(PI)フィルム層を加熱圧着して得られるポリイミド金属積層板(C)、さらには、金属箔層に形成された熱可塑性ポリイミド(TPI)層の表面に、該ポリイミド(PI)を塗布・乾燥・キュアにより形成して得られるポリイミド金属積層板(D)等が挙げられる。   As an example of the specific configuration of the polyimide metal laminate of the present invention, a dry film-forming method or the like may be applied to one or both sides of a polyimide (PI) film layer having an elastic modulus of 1 GPa or more and 30 GPa or less in a high temperature range of 350 ° C. or higher. A polyimide metal laminate (A) obtained by directly forming a metal layer by plating, a thermoplastic polyimide (TPI) layer is formed on one or both sides of the polyimide (PI) film layer, and the metal foil layer is heated. Polyimide metal laminate (B) obtained by pressure bonding, polyimide metal laminate (C) obtained by forming a thermoplastic polyimide (TPI) layer on the metal foil layer, and thermocompression bonding the polyimide (PI) film layer, Furthermore, the polyimide (PI) is obtained by applying, drying and curing the surface of the thermoplastic polyimide (TPI) layer formed on the metal foil layer. Polyimide-metal laminate (D), and the like.

ポリイミド金属積層板(A)において、乾式成膜法やめっき法は、抵抗加熱蒸着、イオンプレーティング蒸着、スパッタリング蒸着、電解液中における無電解めっき方法等によって、ポリイミド(PI)フィルム層表面に金属層を形成する方法が好ましく、形成した金属層を電解めっき方法等によって厚くする方法がより好ましい。乾式成膜法やめっき法によって、形成される金属層の材質としては、Cu,Fe,Ni,Mo,Ta,Ti,V,Cr,Co等の金属、あるいは、それらの合金からなる群から選ばれた少なくとも一種の金属が好ましく、また、それらの酸化物等が積層されていても良い。   In the polyimide metal laminate (A), the dry film forming method and the plating method are performed on the surface of the polyimide (PI) film layer by resistance heating vapor deposition, ion plating vapor deposition, sputtering vapor deposition, electroless plating method in an electrolytic solution, or the like. A method of forming a layer is preferable, and a method of thickening the formed metal layer by an electrolytic plating method or the like is more preferable. The material of the metal layer to be formed by the dry film formation method or plating method is selected from the group consisting of metals such as Cu, Fe, Ni, Mo, Ta, Ti, V, Cr, Co, or alloys thereof. At least one kind of metal is preferable, and oxides or the like thereof may be laminated.

ポリイミド金属積層板(B)、(C)、(D)において、熱可塑性ポリイミド層と接する金属箔としては、Cu、Fe,Ni,Co,Cr,Zn,Alおよびそれらの合金からなる群から選ばれた少なくとも一種の金属が好ましく、更に好ましくは、銅及び銅合金、ステンレス鋼などの鉄合金、ニッケル及びニッケル合金(42合金も含む)、アルミニウム及びアルミニウム合金等が挙げられる。より好ましくは銅及び銅合金である。   In the polyimide metal laminate (B), (C), (D), the metal foil in contact with the thermoplastic polyimide layer is selected from the group consisting of Cu, Fe, Ni, Co, Cr, Zn, Al and alloys thereof. At least one kind of metal is preferable, and more preferable examples include copper and copper alloys, iron alloys such as stainless steel, nickel and nickel alloys (including 42 alloys), aluminum and aluminum alloys, and the like. More preferred are copper and copper alloys.

本発明のポリイミド金属積層板にて形成される金属層の厚みは、テープ状に利用できる厚みであれば制限はないが、2〜150μmが好ましく利用できる。   The thickness of the metal layer formed by the polyimide metal laminate of the present invention is not limited as long as it can be used in a tape shape, but preferably 2 to 150 μm.

本発明の金属積層板は、ポリイミド層中の少なくとも一層に350℃以上の高温域での弾性率が1GPa以上30GPa以下のポリイミド(PI)層を含むことを特徴とし、好ましくは、1GPa以上10GPa以下のポリイミド(PI)層である。このポリイミド(PI)層をポリイミド金属積層板のポリイミド層に少なくとも1層以上用いることによって、チップ実装時、金属配線がポリイミド層に沈み込むという不具合や、配線ずれ、エッジショート、配線がポリイミド層から剥れる等の不具合が発生しなくなり好ましい。   The metal laminate of the present invention is characterized in that at least one of the polyimide layers includes a polyimide (PI) layer having an elastic modulus of 1 GPa or more and 30 GPa or less in a high temperature range of 350 ° C. or more, preferably 1 GPa or more and 10 GPa or less. The polyimide (PI) layer. By using at least one polyimide (PI) layer for the polyimide layer of the polyimide metal laminate, there is a problem that the metal wiring sinks into the polyimide layer during chip mounting, wiring misalignment, edge shorting, and wiring from the polyimide layer. It is preferable that problems such as peeling do not occur.

尚、弾性率の測定温度としては、ポリイミドの分解温度以下、具体的には350℃以上500℃以下の範囲にて測定するのが好ましく、TMA(Thermomechanical Analysys)や粘弾性測定機等、従来用いられている装置が使用可能であり、本発明においては、この測定温度範囲において少なくとも一点でも上記範囲の弾性率を有するものであれば、適用することができる。   The elastic modulus is measured at a temperature lower than the decomposition temperature of polyimide, specifically in the range of 350 ° C. to 500 ° C., and is conventionally used such as TMA (Thermomechanical Analysys) and viscoelasticity measuring machine. In the present invention, any apparatus having at least one elastic modulus in the above range can be applied in the present measurement temperature range.

本発明のポリイミド金属積層板におけるポリイミド(PI)としては、原料となるジアミン成分全体の70モル%以上が、o-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミンから選ばれた少なくとも一種又は二種以上のジアミンであることが好ましく、より好ましくは80モル%以上、さらに好ましくは90%モル以上これらのジアミンからなるものである。また、テトラカルボン酸二無水物成分全体の90モル%以上が、ピロメリット酸二無水物、3,3’,4,4’―ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物から選ばれた少なくとも一種又は二種以上のテトラカルボン酸二無水物であることが好ましく、より好ましくは95モル%以上、さらに好ましくは97モル%以上これらの酸二無水物からなるものである。   As the polyimide (PI) in the polyimide metal laminate of the present invention, 70 mol% or more of the total diamine component as a raw material is at least one or two selected from o-phenylenediamine, p-phenylenediamine, and m-phenylenediamine. It is preferable to be a diamine of at least species, more preferably 80 mol% or more, and still more preferably 90% mol or more of these diamines. Further, 90 mol% or more of the total tetracarboxylic dianhydride component is pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4. It is preferably at least one or two or more tetracarboxylic dianhydrides selected from '-benzophenone tetracarboxylic dianhydride, more preferably 95 mol% or more, still more preferably 97 mol% or more. It consists of a dianhydride.

ポリイミド(PI)層厚は、本発明のポリイミド金属積層板におけるポリイミド層全体厚の50%以上の厚さを有することが好ましく、より好ましくは60%以上、さらに好ましくは70%以上である。具体的には、3〜200μm程度が可能であり、好ましくは7〜150μm、さらに好ましくは10〜50μm程度である。線膨張係数はポリイミド(PI)において、5〜40ppm/℃が好ましく、さらに好ましくは、10〜30ppm/℃である。   The polyimide (PI) layer thickness preferably has a thickness of 50% or more of the total polyimide layer thickness in the polyimide metal laminate of the present invention, more preferably 60% or more, and even more preferably 70% or more. Specifically, it can be about 3 to 200 μm, preferably 7 to 150 μm, and more preferably about 10 to 50 μm. In the polyimide (PI), the linear expansion coefficient is preferably 5 to 40 ppm / ° C, and more preferably 10 to 30 ppm / ° C.

ポリイミド金属積層板(A)、(B)、(C)において、ポリイミド(PI)層は、あらかじめ単層フィルム状態に成形されるものであり、ポリイミド(PI)及び/又はポリイミド(PI)前駆体を含むワニスを、支持体表面に塗布・乾燥・イミド化してポリイミド(PI)フィルムとする方法が可能である。   In the polyimide metal laminates (A), (B), and (C), the polyimide (PI) layer is previously formed into a single-layer film state, and polyimide (PI) and / or polyimide (PI) precursor. It is possible to apply a varnish containing a polyimide (PI) film by coating, drying and imidizing on the surface of the support.

ワニス中には有機溶媒が含まれ、ポリイミド(PI)前駆体がポリアミド酸の場合には閉環触媒および脱水剤を含有させることも好ましく、塗布・乾燥・イミド化を一部進行させてゲル状態のフィルムとし、回転ロールにより走行させ、延伸させて、成形する方法も好ましい。   When the varnish contains an organic solvent and the polyimide (PI) precursor is a polyamic acid, it is also preferable to contain a ring-closing catalyst and a dehydrating agent. A method of forming a film, running with a rotating roll, stretching and forming is also preferable.

また、ポリイミド(PI)フィルムとしては、市販のものも使用可能であり、例えば、ユーピレックス(登録商標)S、ユーピレックス(登録商標)SGA、ユーピレックス(登録商標)SN(宇部興産株式会社製、商品名)等が挙げられる。さらに、ポリイミド(PI)フィルムの表面はプラズマ処理、コロナ放電処理等を施してもよい。   Commercially available polyimide (PI) films can also be used. For example, Upilex (registered trademark) S, Upilex (registered trademark) SGA, Upilex (registered trademark) SN (manufactured by Ube Industries, Ltd., trade name) ) And the like. Further, the surface of the polyimide (PI) film may be subjected to plasma treatment, corona discharge treatment or the like.

ポリイミド金属積層板(D)においては、金属箔層表面に塗布・乾燥・イミド化してなる熱可塑性ポリイミド(TPI)層表面に、該ポリイミド(PI)ワニスを塗布・乾燥・イミド化して、ポリイミド(PI)層を形成するものであり、さらにTg以上の高温域での弾性率が500MPa以下である熱可塑性ポリイミド(TPIL)をポリイミド(PI)層表面に形成して、該ポリイミド(PI)フィルムと加熱圧着することも好ましい。   In the polyimide metal laminate (D), the polyimide (PI) varnish is applied, dried and imidized on the surface of the thermoplastic polyimide (TPI) layer applied, dried and imidized on the surface of the metal foil layer, and then the polyimide ( PI) layer is formed, and a thermoplastic polyimide (TPIL) having an elastic modulus of 500 MPa or less in a high temperature region of Tg or higher is formed on the surface of the polyimide (PI) layer, and the polyimide (PI) film It is also preferable to perform thermocompression bonding.

ポリイミド金属積層板(B)、(C)、(D)において、金属層と接する熱可塑性ポリイミド(TPI)としては、ガラス転位点(Tg)が、250℃以上375℃以下であることが好ましく、より好ましくは250℃以上350℃以下である。350℃を超えると金属積層板とした場合、金属箔との接着力が発現しにくくなる為、より好ましくは260℃以上340℃以下である。   In the polyimide metal laminate (B), (C), (D), as the thermoplastic polyimide (TPI) in contact with the metal layer, the glass transition point (Tg) is preferably 250 ° C. or higher and 375 ° C. or lower. More preferably, it is 250 degreeC or more and 350 degrees C or less. When it exceeds 350 ° C., when it is a metal laminate, the adhesive strength with the metal foil is less likely to be exhibited, and therefore it is preferably 260 ° C. or higher and 340 ° C. or lower.

さらに、Tg以上の高温域の弾性率が10MPa以上1GPa以下であることが好ましく、弾性率が10MPa未満である場合は、チップ接合時に熱可塑性ポリイミドが変形し、金属配線がポリイミド層に沈み込み易くなり、熱可塑性ポリイミドとチップが接触する、金属配線がポリイミド層から剥れやすくなるという問題点が発生する可能性がある。また、弾性率が1GPa以上の場合には金属箔と接着強度が発現しにくい場合がある。その為、弾性率は上記範囲内であることが好ましく、今後の微細配線用途には信頼性の観点から金属箔との接着の指標であるピール強度や半田耐熱性などを向上させるために、弾性率の範囲が好ましくは40MPa以上1GPa以下、より好ましくは100MPa以上1GPa以下、更に好ましくは100MPa以上700MPa以下である。尚、弾性率およびTgの測定は、粘弾性測定機により150℃以上500℃以下の範囲にて測定するのとが好ましく、単層の熱可塑性ポリイミド(TPI)試料の弾性率(貯蔵弾性率 E’)と、Tgとなる損失弾性率(E’’)のピーク温度を求め、弾性率およびTgとすることが好ましい。   Furthermore, it is preferable that the elastic modulus in a high temperature region of Tg or more is 10 MPa or more and 1 GPa or less, and when the elastic modulus is less than 10 MPa, the thermoplastic polyimide is deformed at the time of chip bonding, and the metal wiring easily sinks into the polyimide layer. Therefore, there is a possibility that the thermoplastic polyimide and the chip come into contact with each other, and that the metal wiring is likely to be peeled off from the polyimide layer. In addition, when the elastic modulus is 1 GPa or more, the metal foil and the adhesive strength may be difficult to express. Therefore, the elastic modulus is preferably within the above range, and for future fine wiring applications, in order to improve the peel strength and solder heat resistance, which are indicators of adhesion to the metal foil, from the viewpoint of reliability, The rate range is preferably 40 MPa to 1 GPa, more preferably 100 MPa to 1 GPa, and still more preferably 100 MPa to 700 MPa. The elastic modulus and Tg are preferably measured with a viscoelasticity measuring instrument in the range of 150 ° C. or higher and 500 ° C. or lower. The elastic modulus (storage elastic modulus E) of a single-layer thermoplastic polyimide (TPI) sample is preferably measured. ') And the peak temperature of the loss elastic modulus (E' ') that becomes Tg are preferably obtained as the elastic modulus and Tg.

使用可能な熱可塑性ポリイミド(TPI)の例として、特に限定はされないが、原料のジアミンが、1,3−ビス(3−アミノフェノキシ)ベンゼン(以下、APBと略す)、4,4−ビス(3−アミノフェノキシ)ビフェニル(以下、m-BPと略す)及び、3,3’−ジアミノベンゾフェノン(以下、DABPと略す)、p−フェニレンジアミン(pPD)、4,4’−ジアミノジフェニルエーテル(ODA)から選ばれた少なくとも一種のジアミンを用いたものが好ましい。   Examples of usable thermoplastic polyimide (TPI) include, but are not limited to, 1,3-bis (3-aminophenoxy) benzene (hereinafter abbreviated as APB), 4,4-bis ( 3-aminophenoxy) biphenyl (hereinafter abbreviated as m-BP), 3,3′-diaminobenzophenone (hereinafter abbreviated as DABP), p-phenylenediamine (pPD), 4,4′-diaminodiphenyl ether (ODA) Those using at least one diamine selected from the above are preferred.

酸二無水物としては特に限定はなく、公知の酸二無水物が使用可能であるが、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAと略す)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)を用いることが好ましい。   The acid dianhydride is not particularly limited, and a known acid dianhydride can be used, but 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter abbreviated as BTDA), pyro It is preferable to use merit acid dianhydride (PMDA) or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA).

熱可塑性ポリイミド(TPI)層は、通常0.1〜20μm程度であり、好ましくは0.2〜10μm、さらに好ましくは0.3〜5μm、より好ましくは0.4〜3μm程度である。   The thermoplastic polyimide (TPI) layer is usually about 0.1 to 20 μm, preferably 0.2 to 10 μm, more preferably 0.3 to 5 μm, and more preferably about 0.4 to 3 μm.

本発明における、ポリイミドの前駆体であるポリアミック酸を含むワニス及び/又はポリイミドを含むワニスについて、ジアミン成分とテトラカルボン酸二無水物の反応モル比は、通常、0.75〜1.25の範囲であるが、好ましくは、ジアミン成分を1とすると、テトラカルボン酸二無水物は0.8〜1.0の範囲である。   In the present invention, for the varnish containing polyamic acid which is a precursor of polyimide and / or the varnish containing polyimide, the reaction molar ratio of the diamine component and tetracarboxylic dianhydride is usually in the range of 0.75 to 1.25, Preferably, when the diamine component is 1, the tetracarboxylic dianhydride is in the range of 0.8 to 1.0.

さらに、2種類以上のワニスを混合してなるワニス、ビスマレイミド化合物を配合してなるワニスを、塗布・乾燥・イミド化してなるポリイミド(PI)、熱可塑性ポリイミド(TPI)、熱可塑性ポリイミド(TPIL)、さらには、ポリイミド(PI)層、熱可塑性ポリイミド(TPI)層、熱可塑性ポリイミド(TPIL)層も本発明のポリイミド金属積層板に使用されるポリイミドの範囲に含まれるものであり、耐熱性、耐発泡性等を向上させる為に、該ビスマレイミド化合物を配合させる事は有効である。   Furthermore, varnish formed by mixing two or more varnishes, varnish formed by blending bismaleimide compound, polyimide (PI), thermoplastic polyimide (TPI), thermoplastic polyimide (TPIL) formed by coating, drying and imidization ), Polyimide (PI) layer, thermoplastic polyimide (TPI) layer, thermoplastic polyimide (TPIL) layer is also included in the range of polyimide used in the polyimide metal laminate of the present invention, and is heat resistant. In order to improve foaming resistance and the like, it is effective to add the bismaleimide compound.

ポリイミドの前駆体であるポリアミック酸を含むワニス、または、ポリイミドを含むワニスを塗布する方法としては、ダイコーター、コンマコーター、ロールコーター、グラビアコーター、カーテンコーター、スプレーコーター等の公知の方法が採用できる。塗布する厚み、ワニスの粘度等に応じて適宜利用する。   As a method of applying a varnish containing polyamic acid, which is a polyimide precursor, or a varnish containing polyimide, a known method such as a die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, etc. can be adopted. . It is appropriately used depending on the thickness to be applied, the viscosity of the varnish, and the like.

熱可塑性ポリイミド(TPI)層および熱可塑性ポリイミド(TPIL)層を、ポリイミド(PI)フィルム層および金属箔層へ、加熱圧着する方法については、熱可塑性ポリイミド(TPI)および熱可塑性ポリイミド(TPIL)のガラス転移点温度以上に保ちながら加圧することが可能な、加熱プレス法及び/又は熱ラミネート法が代表例として挙げられる。ラミネート方法としては、特に制限は無いが、ロールとロール間に挟み込み、張り合わせを行なう方法が好ましい。   For the method of thermocompression bonding the thermoplastic polyimide (TPI) layer and the thermoplastic polyimide (TPIL) layer to the polyimide (PI) film layer and the metal foil layer, thermoplastic polyimide (TPI) and thermoplastic polyimide (TPIL) A representative example is a hot press method and / or a heat laminating method that can be pressurized while maintaining the glass transition temperature or higher. Although there is no restriction | limiting in particular as a laminating method, The method of pinching and sticking between a roll and a roll is preferable.

ラミネート後、もしくは、ラミネートを行いながら、このポリイミド金属張積層板を更に150〜500℃に加熱保持することより、熱可塑性ポリイミド(TPI)層および熱可塑性ポリイミド(TPIL)層と、ポリイミド(PI)フィルム層および金属箔層との密着力が優れた、ポリイミド金属積層板を得る。加熱装置として、通常の加熱炉、オートクレーブ等が利用できる。加熱雰囲気として、空気、イナートガス(窒素、アルゴン)等が利用できる。加熱方法としては、連続的に加熱する方法またはポリイミド金属積層板をコアに巻いた状態で加熱炉に放置する方法のどちらの方法も好ましい。加熱方式としては、伝導加熱方式、輻射加熱方式、及び、これらの併用方式等が好ましい。加熱時間は、0.05〜5000分の時間範囲が好ましい。   This polyimide metal-clad laminate is further heated and held at 150 to 500 ° C. after lamination or while laminating, so that a thermoplastic polyimide (TPI) layer, a thermoplastic polyimide (TPIL) layer, and a polyimide (PI) A polyimide metal laminate having excellent adhesion to the film layer and the metal foil layer is obtained. As a heating device, a normal heating furnace, an autoclave, or the like can be used. As a heating atmosphere, air, inert gas (nitrogen, argon), or the like can be used. As a heating method, either a method of continuously heating or a method of leaving a polyimide metal laminate sheet in a heating furnace while being wound around a core is preferable. As the heating method, a conductive heating method, a radiant heating method, a combination method thereof, and the like are preferable. The heating time is preferably in the time range of 0.05 to 5000 minutes.

以下実施例により本発明を説明するが、本発明はこれらの実施例に限定されない。なお、実施例に示した熱可塑性フィルムの弾性率及びガラス転移点(Tg)、チップ搭載時の配線沈み込み量測定・配線剥離、ピール強度、ボイドについては下記の方法により測定した。
(1)熱可塑性ポリイミド弾性率及びガラス転移点(Tg)
レオメトリックス社製RSAIIにより単層の熱可塑性ポリイミド試料を引張りモードにて窒素中、1Hz、3℃/minで、25℃から500℃まで昇温し、弾性率(貯蔵弾性率 E’)測定を行ない、同時に、損失弾性率(E’’)のピークをTgとして求めた。
(2)配線沈み込み量測定・配線剥離
回路加工・チップ搭載メーカにてチップ搭載を行なった後、試料を樹脂包理後、研磨し、バンプと配線接合部断面を日本光学製金属顕微鏡で観察を行なった。チップ搭載個所と搭載していない個所の金属配線とポリイミド層界面の差を測定し、配線沈み込み量とした。配線沈み込み量は、5μm以下が好ましいと判断する。また、金属配線が熱可塑性ポリイミド層より剥離しているか否かを確認した。
(3)ピール強度(kN/m)
長さ50mm、幅2mmの導体を、金属箔をエッチングすることにより形成し、JIS C-6471に規定される方法に従い、短辺の端から金属導体側をポリイミド層から剥離し、その応力を測定する。剥離角度を90°、剥離速度を50mm/minとした。ピール強度は、0.60kN/m以上が好ましいと判断する。
(4)ボイド
ポリイミド金属積層板のポリイミド面より、光学顕微鏡にて、銅箔層とポリイミド層の界面を、500〜1500倍にて観測をして、ボイドの発生状況を確認した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In addition, the elastic modulus and glass transition point (Tg) of the thermoplastic film shown in the Examples, wiring sinking amount measurement / wiring peeling at the time of chip mounting, peel strength, and void were measured by the following methods.
(1) Thermoplastic polyimide elastic modulus and glass transition point (Tg)
Rheometrics RSAII is used to measure the elastic modulus (storage elastic modulus E ') of a single-layer thermoplastic polyimide sample in nitrogen at 1Hz at 3 ° C / min from 25 ° C to 500 ° C in tension mode. At the same time, the peak of loss elastic modulus (E ″) was determined as Tg.
(2) Wiring subsidence measurement / wiring separation After mounting the chip at the circuit processing / chip mounting manufacturer, the sample is encapsulated with resin and polished, and the bump and wiring joint cross section is observed with a metal microscope made by Nippon Optical Co., Ltd. Was done. The difference between the metal wiring and the polyimide layer interface between the chip mounting location and the non-mounting location was measured and used as the amount of wiring sinking. It is determined that the wiring sink amount is preferably 5 μm or less. Further, it was confirmed whether or not the metal wiring was peeled off from the thermoplastic polyimide layer.
(3) Peel strength (kN / m)
A conductor with a length of 50 mm and a width of 2 mm is formed by etching a metal foil. According to the method specified in JIS C-6471, the metal conductor side is peeled from the polyimide layer from the end of the short side, and the stress is measured. To do. The peeling angle was 90 ° and the peeling speed was 50 mm / min. It is judged that the peel strength is preferably 0.60 kN / m or more.
(4) Void From the polyimide surface of the polyimide metal laminate, the interface between the copper foil layer and the polyimide layer was observed 500 to 1500 times with an optical microscope to confirm the occurrence of voids.

また、実施例に用いた溶剤、酸二無水物、ジアミンの略称は以下の通りである。
DMAc:N,N−ジメチルアセトアミド
pPD:p−フェニレンジアミン
ODA:4,4’−ジアミノジフェニルエーテル
APB:1,3−ビス(3−アミノフェノキシ)ベンゼン
m−BP:4,4’−ビス(3−アミノフェノキシ)ビフェニル
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
APB−BMI:1,3−ビス(3−マレイドフェノキシ)ベンゼン
Abbreviations for the solvents, acid dianhydrides, and diamines used in the examples are as follows.
DMAc: N, N-dimethylacetamide pPD: p-phenylenediamine ODA: 4,4′-diaminodiphenyl ether APB: 1,3-bis (3-aminophenoxy) benzene m-BP: 4,4′-bis (3- Aminophenoxy) biphenyl BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PMDA: pyromellitic dianhydride APB-BMI: 1,3-bis (3-maleidophenoxy) benzene

合成例1
<ポリイミド(PI)樹脂の前駆体の合成(PI−ワニス)>
撹拌機及び窒素導入管を備えた容器に、溶媒としてDMAc196.1gを加え、これにpPD15.0gを加え、溶解するまで室温にて撹拌を行った。その後、ジアミン成分に対して、酸無水物が0.975の比率となるように、BTDA43.6gを加え、60℃において撹拌を行い、ポリアミック酸の含有率が23重量%であるポリアミック酸溶液、PI−1ワニスを表1に示す通りに得た。
Synthesis example 1
<Synthesis of polyimide (PI) resin precursor (PI-varnish)>
To a container equipped with a stirrer and a nitrogen introduction tube, 196.1 g of DMAc was added as a solvent, and 15.0 g of pPD was added thereto, and the mixture was stirred at room temperature until dissolved. Thereafter, 43.6 g of BTDA is added so that the acid anhydride has a ratio of 0.975 with respect to the diamine component, stirring is performed at 60 ° C., and a polyamic acid solution having a polyamic acid content of 23% by weight, PI-1 varnish was obtained as shown in Table 1.

合成例2〜7
ジアミン、酸無水物の種類・比率、ポリアミック酸の含有率、APB−BMI添加率を、表1に示す様に変えた事以外は合成例1と同様にポリイミド(PI)、熱可塑性ポリイミド(TPI)、熱可塑性ポリイミド(TPIL)用ワニス(表1)を得た。APB−BMIは、ポリアミック酸溶液を得た後、ポリアミック酸の10%重量が含有率となるように、ポリアミック酸中へ加え、室温中で攪拌を行い添加した。合成例1〜7において合成した、ポリイミドのワニスについて、Tgおよび弾性率を測定した(表1)。合成例1,2における、PI−1、PI−2ワニスにおいて、Tgは確認されなかった。
Synthesis Examples 2-7
Polyimide (PI) and thermoplastic polyimide (TPI) as in Synthesis Example 1 except that the types and ratios of diamine, acid anhydride, polyamic acid content, and APB-BMI addition rate were changed as shown in Table 1. ), A varnish for thermoplastic polyimide (TPIL) (Table 1) was obtained. APB-BMI was added to the polyamic acid so that the content of 10% by weight of the polyamic acid was obtained after obtaining the polyamic acid solution, and the mixture was added by stirring at room temperature. About the polyimide varnish synthesize | combined in the synthesis examples 1-7, Tg and the elasticity modulus were measured (Table 1). Tg was not confirmed in PI-1 and PI-2 varnishes in Synthesis Examples 1 and 2.

Figure 2005144908
Figure 2005144908

各ポリイミド(PI)ワニスについて、成膜後の厚さが、25μmおよび38μmとなるように、ガラス基板上に塗布し、窒素雰囲気下のイナートオーブンにて、50℃から270℃まで7℃/分にて昇温乾燥させた後、さらに430℃にて2分間熱処理を行い成膜してガラス基板から剥離して、各ポリイミド(PI)フィルムを得た。   About each polyimide (PI) varnish, it apply | coated on the glass substrate so that the thickness after film-forming might be 25 micrometers and 38 micrometers, and 7 degreeC / min from 50 degreeC to 270 degreeC in inert oven of nitrogen atmosphere After heating at 430.degree. C., heat treatment was further performed at 430.degree. C. for 2 minutes to form a film and peeled from the glass substrate to obtain each polyimide (PI) film.

実施例1
市販の銅箔(古河サーキットフォイル(株)製、商品名:F0−WS(厚み9μm))を用い、ポリイミド積層面に合成例4のTPI−1ワニスをロールコーターにより乾燥後の厚さが1μmになるように塗布後、100℃で2分乾燥して、熱可塑性ポリイミド(TPI−1)層を形成し、この熱可塑性ポリイミド(TPI−1)層表面に、合成例1のPI−1ワニスをコンマコーターにより乾燥後の厚さが9μmになるように塗布後、115℃で2分乾燥してポリイミド(PI−1)層を形成した。さらに、このポリイミド(PI−1)層表面に、合成例7のTPILワニスをロールコーターにより乾燥後の厚さが2μmになるように塗布後、100℃で2分乾燥して、熱可塑性ポリイミド(TPIL)層を形成した。その後、180℃で1.6分キュア乾燥し、さらに、窒素雰囲気下で、380℃、2分さらに、430℃、2分キュア・イミド化し、ポリイミド層の金属層と接しない面が熱可塑性ポリイミド(TPIL)層であるポリイミド金属積層体を得た。その後、あらかじめ作成していた、25μm厚のポリイミド(PI−1)フィルム表面と、ポリイミド金属積層体の熱可塑性ポリイミド(TPIL)層表面とを、ロールラミネーターにより、260℃で圧力1.5MPaの条件で加熱圧着し張り合わせ、その後、バッチ式のオートクレーブにて温度350℃、4時間窒素雰囲気下でアニールを行い、フレキシブル金属積層板を図1に示す通りに得た。
Example 1
Using commercially available copper foil (Furukawa Circuit Foil Co., Ltd., trade name: F0-WS (thickness 9 μm)), the thickness after drying the TPI-1 varnish of Synthesis Example 4 on a polyimide laminate surface with a roll coater is 1 μm. After being applied, and dried at 100 ° C. for 2 minutes, a thermoplastic polyimide (TPI-1) layer is formed, and the PI-1 varnish of Synthesis Example 1 is formed on the surface of the thermoplastic polyimide (TPI-1) layer. Was applied with a comma coater so that the thickness after drying was 9 μm, and then dried at 115 ° C. for 2 minutes to form a polyimide (PI-1) layer. Furthermore, after applying the TPIL varnish of Synthesis Example 7 on the surface of the polyimide (PI-1) layer with a roll coater so that the thickness after drying becomes 2 μm, it is dried at 100 ° C. for 2 minutes to obtain a thermoplastic polyimide ( TPIL) layer was formed. After that, it was cured and dried at 180 ° C. for 1.6 minutes, and further cured and imidized at 380 ° C. for 2 minutes and further at 430 ° C. for 2 minutes in a nitrogen atmosphere, and the surface of the polyimide layer that did not contact the metal layer was thermoplastic polyimide. A polyimide metal laminate as a (TPIL) layer was obtained. Thereafter, the surface of the polyimide (PI-1) film having a thickness of 25 μm and the surface of the thermoplastic polyimide (TPIL) layer of the polyimide metal laminate were prepared at 260 ° C. and a pressure of 1.5 MPa using a roll laminator. Then, annealing was performed in a batch type autoclave at 350 ° C. for 4 hours in a nitrogen atmosphere, and a flexible metal laminate was obtained as shown in FIG.

得られたフレキシブル金属積層板について、チップ搭載時の配線沈み込み量・配線剥離、ピール強度、反り、ボイドを測定・確認した。
結果は、
チップ搭載結果:配線沈込み0.5μm、配線剥れ無し
ピール強度:0.65kN/m
ボイド:無しであった(表2)。
About the obtained flexible metal laminated board, the amount of wiring subsidence, wiring peeling, peel strength, warpage, and void at the time of chip mounting were measured and confirmed.
Result is,
Chip mounting result: Wiring sinking 0.5 μm, no wiring peeling Peel strength: 0.65 kN / m
Void: None (Table 2).

実施例―2,3
熱可塑性ポリイミド(TPI)層および、ポリイミド(PI)層、ポリイミド(PI)フィルム層を形成するワニスを図1に示す様に変えた以外は実施例―1と同様に、実施例―2,3を行い、それぞれのフレキシブル金属積層板を図1に示す通りに得た。
Examples-2, 3
Examples-2 and 3 are the same as Example-1 except that the varnish for forming the thermoplastic polyimide (TPI) layer, the polyimide (PI) layer, and the polyimide (PI) film layer was changed as shown in FIG. Each flexible metal laminate was obtained as shown in FIG.

実施例―4
あらかじめ作成していた、38μm厚のポリイミド(PI−1)フィルムを用い、ポリイミド積層面に合成例5のTPI−2ワニスをロールコーターにより乾燥後の厚さが1μmになるように塗布し、100℃で2分乾燥した後、180℃で1.6分キュア乾燥し、さらに、窒素雰囲気下で、380℃、2分さらに、430℃、2分キュア・イミド化して、ポリイミド積層面が熱可塑性ポリイミド(TPI−2)層である絶縁フィルムを得た。その後、熱可塑性ポリイミド(TPI−2)層表面と、市販の銅箔(古河サーキットフォイル(株)製、商品名:F0−WS(厚み9μm))を、プレス機にて、350℃で圧力1.5MPaの条件で加熱圧着し張り合わせ、その後、バッチ式のオートクレーブにて温度350℃、4時間窒素雰囲気下でアニールを行い、フレキシブル金属積層板を図1に示す通りに得た。
Example-4
Using a 38 μm-thick polyimide (PI-1) film prepared in advance, the TPI-2 varnish of Synthesis Example 5 was applied to the polyimide laminate surface with a roll coater so that the thickness after drying was 1 μm. After drying at 180 ° C. for 2 minutes, it is cured at 180 ° C. for 1.6 minutes and further cured and imidized at 380 ° C. for 2 minutes, further at 430 ° C. for 2 minutes in a nitrogen atmosphere, and the polyimide laminate surface is thermoplastic. The insulating film which is a polyimide (TPI-2) layer was obtained. Thereafter, the surface of the thermoplastic polyimide (TPI-2) layer and a commercially available copper foil (manufactured by Furukawa Circuit Foil Co., Ltd., trade name: F0-WS (thickness 9 μm)) were pressed at 350 ° C. under a pressure of 1 Then, thermocompression bonding was performed under the condition of 0.5 MPa, and then annealing was performed in a batch-type autoclave at a temperature of 350 ° C. for 4 hours in a nitrogen atmosphere to obtain a flexible metal laminate as shown in FIG.

実施例―5
ポリイミド(PI)フィルム層を形成するワニスを図1に示す様に変えた以外は実施例―4と同様に、実施例―5を行い、フレキシブル金属積層板を図1に示す通りに得た。
実施例―1, 2,3,4,5にて得られた、フレキシブル金属積層板について、チップ搭載時の配線沈み込み量・配線剥離、ピール強度、ボイドを測定・確認した。結果を表2に示す。
Example-5
Example 5 was carried out in the same manner as in Example 4 except that the varnish for forming the polyimide (PI) film layer was changed as shown in FIG. 1, and a flexible metal laminate was obtained as shown in FIG.
With respect to the flexible metal laminates obtained in Examples-1, 2, 3, 4, and 5, the amount of wiring subsidence, wiring peeling, peel strength, and void when mounted on the chip were measured and confirmed. The results are shown in Table 2.

比較例―1,2
熱可塑性ポリイミド(TPI)層および、ポリイミド(PI)層、ポリイミド(PI)フィルム層を形成するワニスを図1に示す様に変えた以外は実施例―1と同様に、比較例―1,2を行い、それぞれのフレキシブル金属積層板を図1に示す通りに得た。
Comparative example 1, 2
Comparative Example-1, 2 as in Example-1, except that the varnish for forming the thermoplastic polyimide (TPI) layer, the polyimide (PI) layer, and the polyimide (PI) film layer was changed as shown in FIG. Each flexible metal laminate was obtained as shown in FIG.

比較例―3,4
熱可塑性ポリイミド(TPI)層、ポリイミド(PI)フィルム層を形成するワニスを図1に示す様に変えた以外は実施例―4と同様に、比較例―3,4を行い、フレキシブル金属積層板を図1に示す通りに得た。
Comparative Example-3, 4
A flexible metal laminate is produced in the same manner as in Example-4 except that the varnish for forming the thermoplastic polyimide (TPI) layer and the polyimide (PI) film layer is changed as shown in FIG. Was obtained as shown in FIG.

Figure 2005144908
Figure 2005144908

比較例―1, 2,3,4にて得られた、フレキシブル金属積層板について、チップ搭載時の配線沈み込み量・配線剥離、ピール強度、ボイドを測定・確認した。結果を表2に示す。   The flexible metal laminates obtained in Comparative Examples-1, 2, 3, and 4 were measured and confirmed for the amount of wiring sinking, wiring peeling, peel strength, and void when the chip was mounted. The results are shown in Table 2.

ポリイミド金属積層板へのチップ実装後に配線ずれやエッジショート、金属配線がポリイミド層に沈み込むという現象や、配線がポリイミド層から剥れる等の問題が起こらないポリイミド金属積層板が得られ、フレキシブル配線基板などに広く適用される。   A polyimide wiring laminate is obtained that does not cause problems such as wiring displacement, edge shorting, metal wiring sinking into the polyimide layer after chip mounting on the polyimide metal stack, and problems such as wiring peeling off from the polyimide layer. Widely applied to substrates.

実施例1〜5、比較例1〜4で製造されたポリイミド金属積層板の構成を示したものである。The structure of the polyimide metal laminated board manufactured in Examples 1-5 and Comparative Examples 1-4 is shown.

Claims (4)

ポリイミド層と、金属層からなるポリイミド金属積層板であって、350℃以上の温度領域での弾性率が1GPa以上30GPa以下のポリイミド(PI)層が、少なくとも1層以上、ポリイミド層中に存在することを特徴とするポリイミド金属積層板。 A polyimide metal laminate comprising a polyimide layer and a metal layer, wherein at least one or more polyimide (PI) layers having an elastic modulus of 1 GPa or more and 30 GPa or less in a temperature region of 350 ° C. or more are present in the polyimide layer. A polyimide metal laminate characterized by that. 350℃以上の温度領域での弾性率が1GPa以上30GPa以下のポリイミド(PI)層が、ジアミンとテトラカルボン酸二無水物から合成されるものであり、原料となるジアミン成分全体の70モル%以上がo-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミンから選ばれる一種又は二種以上であり、テトラカルボン酸二無水物成分全体の90モル%以上がピロメリット酸二無水物、3,3’,4,4’―ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物から選ばれる一種又は二種以上の化合物である請求項1記載のポリイミド金属積層板。 A polyimide (PI) layer having a modulus of elasticity of 1 GPa or more and 30 GPa or less in a temperature range of 350 ° C. or higher is synthesized from diamine and tetracarboxylic dianhydride, and is 70 mol% or more of the total diamine component as a raw material. Is one or more selected from o-phenylenediamine, p-phenylenediamine, and m-phenylenediamine, and 90 mol% or more of the total tetracarboxylic dianhydride component is pyromellitic dianhydride, 3, 3 2. The polyimide according to claim 1, which is one or more compounds selected from ', 4,4'-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride. Metal laminate. 金属と接する側のポリイミド層が、熱可塑性ポリイミド(TPI)である請求項1又は請求項2記載のポリイミド金属積層板。 The polyimide metal laminate according to claim 1, wherein the polyimide layer in contact with the metal is thermoplastic polyimide (TPI). 熱可塑性ポリイミド(TPI)のガラス転位点(Tg)が、250℃以上375℃以下であり、さらに、ガラス転移点以上での弾性率が、10MPa以上1GPa以下である請求項3記載のポリイミド金属積層板。 4. The polyimide metal laminate according to claim 3, wherein the glass transition point (Tg) of the thermoplastic polyimide (TPI) is 250 ° C. or more and 375 ° C. or less, and the elastic modulus at the glass transition point or more is 10 MPa or more and 1 GPa or less. Board.
JP2003387313A 2003-11-18 2003-11-18 Method for producing polyimide metal laminate Expired - Fee Related JP4763964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387313A JP4763964B2 (en) 2003-11-18 2003-11-18 Method for producing polyimide metal laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387313A JP4763964B2 (en) 2003-11-18 2003-11-18 Method for producing polyimide metal laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008278508A Division JP5055244B2 (en) 2008-10-29 2008-10-29 Polyimide metal laminate

Publications (2)

Publication Number Publication Date
JP2005144908A true JP2005144908A (en) 2005-06-09
JP4763964B2 JP4763964B2 (en) 2011-08-31

Family

ID=34694693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387313A Expired - Fee Related JP4763964B2 (en) 2003-11-18 2003-11-18 Method for producing polyimide metal laminate

Country Status (1)

Country Link
JP (1) JP4763964B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272683A (en) * 2005-03-29 2006-10-12 Tomoegawa Paper Co Ltd Flexible metal laminate and flexible printed circuit board
JP2007035869A (en) * 2005-07-26 2007-02-08 Nitto Denko Corp Tape carrier for tab
JP2007201441A (en) * 2005-12-27 2007-08-09 Du Pont Toray Co Ltd Chip-on film
JP2009061783A (en) * 2008-10-29 2009-03-26 Mitsui Chemicals Inc Polyimide metal laminated plate
KR101301759B1 (en) 2005-12-27 2013-08-30 듀폰 도레이 컴파니, 리미티드 Chip on film
JP2020104340A (en) * 2018-12-26 2020-07-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186591A (en) * 1990-09-07 1993-07-27 Mitsui Toatsu Chem Inc New polyimide and its production
JPH06145638A (en) * 1992-11-04 1994-05-27 Mitsui Toatsu Chem Inc Heat-resistant adhesive
JPH07331069A (en) * 1994-06-09 1995-12-19 Toyobo Co Ltd Heat-resistant resin composition
JP2000103010A (en) * 1998-09-29 2000-04-11 Ube Ind Ltd Flexible metallic foil laminate
JP2001288362A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Heat-resistant resin composition and method for producing the same
JP2002096437A (en) * 2000-09-21 2002-04-02 Ube Ind Ltd Multi-layer polyimide film and laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186591A (en) * 1990-09-07 1993-07-27 Mitsui Toatsu Chem Inc New polyimide and its production
JPH06145638A (en) * 1992-11-04 1994-05-27 Mitsui Toatsu Chem Inc Heat-resistant adhesive
JPH07331069A (en) * 1994-06-09 1995-12-19 Toyobo Co Ltd Heat-resistant resin composition
JP2000103010A (en) * 1998-09-29 2000-04-11 Ube Ind Ltd Flexible metallic foil laminate
JP2001288362A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Heat-resistant resin composition and method for producing the same
JP2002096437A (en) * 2000-09-21 2002-04-02 Ube Ind Ltd Multi-layer polyimide film and laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272683A (en) * 2005-03-29 2006-10-12 Tomoegawa Paper Co Ltd Flexible metal laminate and flexible printed circuit board
JP2007035869A (en) * 2005-07-26 2007-02-08 Nitto Denko Corp Tape carrier for tab
JP2007201441A (en) * 2005-12-27 2007-08-09 Du Pont Toray Co Ltd Chip-on film
KR101301759B1 (en) 2005-12-27 2013-08-30 듀폰 도레이 컴파니, 리미티드 Chip on film
JP2009061783A (en) * 2008-10-29 2009-03-26 Mitsui Chemicals Inc Polyimide metal laminated plate
JP2020104340A (en) * 2018-12-26 2020-07-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
JP7212515B2 (en) 2018-12-26 2023-01-25 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Also Published As

Publication number Publication date
JP4763964B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US8426029B2 (en) Metallic laminate and method for preparing the same
TWI278471B (en) Adhesive polyimide resin and adhesive laminate
TWI400268B (en) Thermosetting resin composition and use thereof
JP4619860B2 (en) Flexible laminate and method for manufacturing the same
JP5251508B2 (en) Heat-resistant film metal foil laminate and method for producing the same
JP2011514266A (en) High adhesion polyimide copper clad laminate and method for producing the same
TW200810649A (en) Copper clad laminate for chip on film
KR100955552B1 (en) Polyimide film, polyimide metal laminate and process for producing the same
JP4642479B2 (en) COF laminate and COF film carrier tape
JP4504602B2 (en) Polyimide copper clad laminate and method for producing the same
JP5000310B2 (en) COF laminate, COF film carrier tape, and electronic device
TW200819000A (en) Laminate for wiring board
JP4763964B2 (en) Method for producing polyimide metal laminate
JP5055244B2 (en) Polyimide metal laminate
JP4510506B2 (en) Method for producing polyimide metal laminate
TWI397136B (en) Laminate for cof and cof film carrier tape,and electronic device
JP4409024B2 (en) Adhesive conductor-polyimide laminate
JP4328138B2 (en) Polyimide metal laminate
JP4721657B2 (en) Polyimide benzoxazole film
JP4409898B2 (en) Polyimide metal laminate
JP4841100B2 (en) Polyimide metal laminate
JP4923678B2 (en) Flexible substrate with metal foil and flexible printed wiring board
JP2007296847A (en) Laminated film with metal layer, its manufacturing process, wiring substrate using this, and semiconductor device
JP4722169B2 (en) Polyimide metal laminate
JP4067388B2 (en) Adhesive base material for fixing lead frame with heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees