JP2005144202A - Advanced freeze/concentration apparatus - Google Patents

Advanced freeze/concentration apparatus Download PDF

Info

Publication number
JP2005144202A
JP2005144202A JP2003380611A JP2003380611A JP2005144202A JP 2005144202 A JP2005144202 A JP 2005144202A JP 2003380611 A JP2003380611 A JP 2003380611A JP 2003380611 A JP2003380611 A JP 2003380611A JP 2005144202 A JP2005144202 A JP 2005144202A
Authority
JP
Japan
Prior art keywords
concentrated
liquid
ball valve
flow path
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380611A
Other languages
Japanese (ja)
Other versions
JP4380299B2 (en
Inventor
Kazuo Kagitani
和生 鍵谷
Yoshio Hayakawa
喜郎 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagome Co Ltd
Original Assignee
Kagome Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagome Co Ltd filed Critical Kagome Co Ltd
Priority to JP2003380611A priority Critical patent/JP4380299B2/en
Publication of JP2005144202A publication Critical patent/JP2005144202A/en
Application granted granted Critical
Publication of JP4380299B2 publication Critical patent/JP4380299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an advanced freeze/concentration apparatus in which cylindrical ice, which is formed by freezing/concentrating the liquid to be concentrated and grown on the wall surface of a multiple pipe on the side of a flow passage of the liquid to be concentrated, can easily be discharged surely in safety from the multiple pipe while saving a discharge space. <P>SOLUTION: This advanced freeze/concentration apparatus is constituted so that the liquid to be concentrated is frozen/concentrated by forming/growing ice crystals successively on the wall surface of the multiple pipe on the side of the flow passage of the liquid to be concentrated by circulating the liquid to be concentrated through the flow passage of the liquid to be concentrated of the multiple pipe and circulating a cooling medium through a cooling medium flow passage of the multiple pipe. A ball valve having a valve element the opening of which has the diameter equal to or larger than the maximum diameter of the flow passage of the liquid to be concentrated is connected to the lower part of each of the multiple pipes and communicated with the flow passage of the liquid to be concentrated. A controller for controlling the opening/closing of the ball valve is arranged so that the ice grown on the wall surface of each of the multiple pipes on the side of the flow passage of the liquid to be concentrated is discharged through the ball valve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は前進凍結濃縮装置に関する。食品や医薬品等の被濃縮液を濃縮する方法として、優れた品質の濃縮物を得ることができる凍結濃縮法が注目されている。凍結濃縮法には懸濁結晶法と前進凍結濃縮法とが知られているが、これらのうちで本発明は、前進凍結濃縮法に使用される装置の改良に関し、特に被濃縮液及び冷媒を循環させつつ該被濃縮液を前進凍結濃縮する装置の改良に関する。   The present invention relates to a forward freeze concentration apparatus. As a method of concentrating liquids to be concentrated such as foods and pharmaceuticals, a freeze concentration method that can obtain an excellent quality concentrate has attracted attention. The suspension crystallization method and the forward freeze concentration method are known as the freeze concentration method. Among these, the present invention relates to the improvement of the apparatus used for the forward freeze concentration method, and in particular, the liquid to be concentrated and the refrigerant are used. The present invention relates to an improvement in an apparatus for forward freezing and concentrating the liquid to be concentrated while circulating.

従来、前記のような前進凍結濃縮装置として、立設された1本又は2本以上の多重管を有する凍結濃縮器を備え、被濃縮液を該多重管の被濃縮液流路に循環させつつ、冷媒を該多重管の冷媒流路に循環させて、該多重管の被濃縮液流路を形成する壁面に氷結晶を順次形成して成長させることにより、該被濃縮液を凍結濃縮するようにしたものが知られている(例えば特許文献1及び2並びに非特許文献1参照)。   2. Description of the Related Art Conventionally, as a forward freeze concentration apparatus as described above, a freeze concentrator having one or more multiple tubes installed upright is provided, and a concentrated solution is circulated through a concentrated solution flow path of the multiple tubes. The refrigerant is circulated through the refrigerant flow path of the multiple pipe, and ice crystals are sequentially formed and grown on the wall surface forming the liquid concentrate flow path of the multiple pipe so that the liquid to be concentrated is freeze-concentrated. (See, for example, Patent Documents 1 and 2 and Non-Patent Document 1).

ところで、かかる前進凍結濃縮装置を用いて被濃縮液を凍結濃縮する場合、該被濃縮液の凍結濃縮後に、多重管の被濃縮液流路を形成する壁面に成長した筒状の氷を該多重管から排出しなければならない。このため特許文献1では、被濃縮液流路を形成する多重管の下部にドア方式の開閉扉を設け、これを手動開閉することにより、筒状の氷を多重管から排出するようになっている。しかし、かかる従来の排出機構では、開閉扉の手動による開閉操作が厄介であるだけでなく、該開閉扉を閉じたときの密閉不良による被濃縮液の漏出を起こし易く、また該開閉扉を開いたときに筒状の氷の塊が自重落下してくるため作業者に安全上の危惧があり、更に自重落下した筒状の氷の塊の取扱いが厄介であって、しかも該開閉扉を開閉するために余分なスペースも必要である。
特開2003−28546号公報 特開2003−265150号公報 日本食品工学会第1回(2000年度)年次大会講演要旨集(85頁)
By the way, when the concentrated solution is freeze-concentrated using such a forward freeze concentrating device, after the concentrated solution is freeze-concentrated, the cylindrical ice grown on the wall surface forming the concentrated solution flow path of the multiple tube is added to the multiplexed ice. Must be drained from the tube. For this reason, in Patent Document 1, a door-type opening / closing door is provided at the lower part of the multiple pipe forming the concentrated liquid flow path, and the cylindrical ice is discharged from the multiple pipe by manually opening and closing the door. Yes. However, in such a conventional discharge mechanism, not only is the manual opening / closing operation of the opening / closing door difficult, but also the liquid to be concentrated is likely to leak due to poor sealing when the opening / closing door is closed, and the opening / closing door is opened. The cylinder ice block falls by its own weight when it falls, and there is a safety concern for the operator. Furthermore, handling the cylinder ice block that has fallen by its own weight is troublesome, and the door is opened and closed. Extra space is also required to do this.
JP 2003-28546 A JP 2003-265150 A Abstracts of the 1st Annual Meeting of the Japan Food Engineering Society (FY2000) (page 85)

本発明が解決しようとする課題は、被濃縮液の凍結濃縮後に、多重管の被濃縮液流路を形成する壁面に成長した筒状の氷を該多重管から簡便且つ安全確実に小スペースで排出できる前進凍結濃縮装置を提供する処にある。   The problem to be solved by the present invention is that, after freezing and concentrating the liquid to be concentrated, the cylindrical ice that has grown on the wall surface that forms the liquid channel to be concentrated in the multi-tube can be easily and safely and securely removed from the multi-tube in a small space. It is a place to provide a forward freeze concentration device that can be discharged.

前記の課題を解決する本発明は、立設された1本又は2本以上の多重管を有する凍結濃縮器を備え、被濃縮液を該多重管の被濃縮液流路に循環させつつ、冷媒を該多重管の冷媒流路に循環させて、該多重管の被濃縮液流路を形成する壁面に氷結晶を順次形成して成長させることにより、該被濃縮液を凍結濃縮するようにした前進凍結濃縮装置において、各多重管毎でその下部に被濃縮液流路と連通して弁体の開口径が該被濃縮液流路の最大径と同等か又はそれよりも大きいボールバルブを接続すると共に、該ボールバルブの開閉を制御する制御装置を設け、各多重管毎の被濃縮液流路を形成する壁面に成長した氷を該ボールバルブを介して排出するようにして成ることを特徴とする前進凍結濃縮装置に係る。   The present invention that solves the above-mentioned problems includes a freeze-concentrator having one or more multi-tubes installed upright, and a refrigerant while circulating the concentrate to be concentrated in the multi-tube flow path of the multi-tube. Is circulated through the refrigerant flow path of the multiple pipe, and ice crystals are sequentially formed and grown on the wall surface forming the concentrated liquid flow path of the multiple pipe, so that the concentrated liquid is freeze-concentrated. In the forward freeze concentrator, a ball valve having an opening diameter of the valve body that is equal to or larger than the maximum diameter of the concentrated liquid flow path is connected to the lower part of each multi-tube and communicated with the concentrated liquid flow path. And a control device for controlling the opening and closing of the ball valve is provided to discharge ice grown on the wall surface forming the liquid flow path to be concentrated for each of the multiple tubes through the ball valve. It relates to the forward freeze concentration apparatus.

本発明に係る前進凍結濃縮装置は、立設された1本又は2本以上の多重管を有する凍結濃縮器を備え、被濃縮液を該多重管の被濃縮液流路に循環させつつ、冷媒を該多重管の冷媒流路に循環させて、該多重管の被濃縮液流路を形成する壁面に氷結晶を順次形成して成長させることにより、該被濃縮液を凍結濃縮するようになっている。   A forward freeze concentrating apparatus according to the present invention includes a freeze concentrator having one or two or more multi-tubes installed upright, and a refrigerant to be condensed while circulating the liquid to be concentrated in a multi-condensate flow path of the multi-tube. Is circulated through the refrigerant flow path of the multiple pipe, and ice crystals are successively formed and grown on the wall surface forming the concentrated liquid flow path of the multiple pipe, so that the concentrated liquid is freeze-concentrated. ing.

多重管は2重管又は3重管以上のもので、例えば2重管の場合には通常、内側を被濃縮液が流れ、外側を冷媒が流れるようになっており、また例えば3重管の場合には通常、中側を被濃縮液が流れ、最内側及び最外側を冷媒が流れるようになっている。かかる多重管は上下方向、通常は鉛直方向へ立設されており、それが2本以上の場合には並設されていて、横断面が全体として円形や方形等を呈している。多重管が2本以上の場合、各多重管の被濃縮液流路は直列又は並列に接続されており、各多重管の冷媒流路も直列又は並列に接続されていて、多重管が1本の場合も含め、被濃縮液は該多重管の被濃縮液流路を循環し、冷媒は該多重管の冷媒流路を循環するようになっている。   The multiple pipe is a double pipe or a triple pipe or more. For example, in the case of a double pipe, normally, the liquid to be concentrated flows inside and the refrigerant flows outside. In some cases, the liquid to be concentrated flows through the inner side, and the refrigerant flows through the innermost side and the outermost side. Such multiple tubes are erected in the vertical direction, usually in the vertical direction, and are arranged side by side when there are two or more, and the cross section as a whole has a circular shape, a rectangular shape, or the like. When there are two or more multiplex pipes, the concentrated liquid flow paths of each multiplex pipe are connected in series or in parallel, and the refrigerant flow paths of each multiplex pipe are also connected in series or in parallel, with one multiplex pipe. In this case, the concentrated liquid circulates in the concentrated liquid flow path of the multi-pipe, and the refrigerant circulates in the multi-pipe refrigerant flow path.

一般に、多重管の被濃縮液流路を接続する循環系には被濃縮液の供給タンクが接続され、被濃縮液用ポンプ及び流量計が介装されており、また該多重管の冷媒流路を接続する循環系には冷媒の冷却機が接続され、冷媒用ポンプ及び温度計が介装されていて、更に制御装置が装備されている。流量計の測定値を受ける制御装置からの信号により被濃縮液用ポンプの回転数を調節して、多重管の被濃縮液流路における被濃縮液の流量を制御し、また温度計の測定値を受ける該制御装置からの信号により冷却ユニットの作動や冷媒用ポンプの回転数を調節して、該多重管の冷媒流路における冷媒の温度や流量を制御するようになっているのである。   In general, a supply tank for a concentrated liquid is connected to a circulation system connecting a concentrated liquid flow path of a multiple pipe, a concentrated liquid pump and a flow meter are interposed, and a refrigerant flow path of the multiple pipe The refrigerant system is connected to a refrigerant cooler, a refrigerant pump and a thermometer are interposed, and a control device is further provided. The flow rate of the concentrated liquid in the concentrated liquid flow path of the multi-tube is controlled by adjusting the number of revolutions of the concentrated liquid pump according to the signal from the control device that receives the measured value of the flow meter, and the measured value of the thermometer The temperature and flow rate of the refrigerant in the refrigerant flow path of the multiple pipe are controlled by adjusting the operation of the cooling unit and the rotation speed of the refrigerant pump in accordance with a signal from the control device.

本発明に係る前進凍結濃縮装置では、多重管が1本の場合も含め、各多重管毎でその下部に被濃縮液流路と連通して弁体の開口径が該被濃縮液流路の最大径と同等か又はそれよりも大きいボールバルブを接続すると共に、該ボールバルブの開閉を制御する制御装置を設け、該多重管毎の被濃縮液流路を形成する壁面に成長した氷を該ボールバルブを介して排出するようになっている。   In the forward freeze concentration apparatus according to the present invention, including the case where there is a single multi-pipe, each multi-pipe is communicated with the concentrated liquid flow path at the lower part thereof, and the opening diameter of the valve body is the concentration of the concentrated liquid flow path. A ball valve that is equal to or larger than the maximum diameter is connected, and a control device that controls the opening and closing of the ball valve is provided, and the ice that has grown on the wall surface that forms the concentrate flow path for each of the multiple tubes is It discharges through a ball valve.

各多重管毎で、被濃縮液流路を形成する管が下方へ延長されており、その下端部にボールバルブが取付けられていて、該ボールバルブの弁体は被濃縮液流路を形成する管の最大内径と同等又はそれよりも大きい開口径を有している。制御装置からの信号によりボールバルブの弁体を開き、多重管の被濃縮液流路を形成する壁面に成長した筒状の氷を自重落下させるとき、該筒状の氷が該ボールバルブの弁体に引っ掛かることなく、円滑に自重落下して排出されるようになっているのである。かかるボールバルブの弁体の開閉を制御する制御装置は、被濃縮液の流量、冷媒の温度や流量を制御するための前記した制御装置に組み込んで共用することもできる。   In each of the multiple pipes, a tube forming the concentrated liquid flow path is extended downward, and a ball valve is attached to the lower end portion thereof, and the valve body of the ball valve forms the concentrated liquid flow path. It has an opening diameter equal to or larger than the maximum inner diameter of the tube. When the valve body of the ball valve is opened by a signal from the control device, and the cylindrical ice grown on the wall surface forming the concentrated liquid flow path of the multiple pipe is dropped by its own weight, the cylindrical ice becomes the valve of the ball valve. Without being caught in the body, it is smoothly dropped by its own weight and discharged. Such a control device for controlling the opening and closing of the valve body of the ball valve can be shared by being incorporated in the control device for controlling the flow rate of the liquid to be concentrated, the temperature and the flow rate of the refrigerant.

前記のようにボールバルブを用いると、その弁体の自動開閉を簡便に行なうことができるだけでなく、弁体を閉じたときに密閉を確保できるため被濃縮液の漏出を確実に防止でき、また作業者の安全を確保でき、更に省スペース化を図ることができる。   When the ball valve is used as described above, not only can the valve body be automatically opened / closed, but also the valve body can be sealed to ensure the sealing, so that leakage of the liquid to be concentrated can be reliably prevented. Worker safety can be ensured and further space saving can be achieved.

本発明に係る前進凍結濃縮装置において、凍結濃縮器は2本以上の多重管を有するものが好ましく、各多重管の被濃縮液流路は直列に接続されたものが好ましい。また多重管は2重円筒管が好ましい。更にボールバルブは、その弁体を制御装置からの信号により例えば間欠的に開閉させ、かかる開閉によって該ボールバルブを介して排出する筒状の氷を破砕するようにしたものが好ましい。更にまたボールバルブの下方に受器を設け、該受器に該ボールバルブを介して排出した氷を破砕又は溶解する手段を設けたものが好ましい。この場合、破砕それ自体は公知の機械的手段で行なうことができ、また溶解はこれもそれ自体は公知の加熱手段で行なうことができる。いずれも、被濃縮液の前進凍結濃縮を効率的に行なうと共に、該被濃縮液の凍結濃縮後に、多重管の被濃縮液流路を形成する壁面に成長した筒状の氷を該多重管からより簡便且つ安全確実に、しかも取扱いに便利な形態で排出するためである。   In the forward freeze concentration apparatus according to the present invention, the freeze concentrator preferably has two or more multiple tubes, and the concentrated liquid flow paths of the multiple tubes are preferably connected in series. The multiple tube is preferably a double cylindrical tube. Further, the ball valve is preferably one in which the valve element is opened and closed intermittently by a signal from the control device, and the cylindrical ice discharged through the ball valve is crushed by such opening and closing. Furthermore, it is preferable that a receiver is provided below the ball valve, and the receiver is provided with means for crushing or melting the ice discharged through the ball valve. In this case, the crushing itself can be performed by a known mechanical means, and the dissolution can also be performed by a known heating means. In any case, the forward freeze concentration of the liquid to be concentrated is efficiently performed, and after freezing and concentration of the liquid to be concentrated, the cylindrical ice that has grown on the wall surface that forms the liquid flow path to be concentrated in the multiple pipe is removed from the multiple pipe. It is for discharging in a simpler, safer and more reliable manner.

本発明に係る前進凍結濃縮装置によると、被濃縮液の凍結濃縮後に、多重管の被濃縮液流路を形成する壁面に成長した筒状の氷を該多重管から簡便且つ安全確実に小スペースで排出できる。   According to the forward freeze concentration apparatus according to the present invention, after freezing and concentrating the concentrated liquid, the cylindrical ice grown on the wall surface forming the concentrated liquid flow path of the multiple pipe can be easily and safely and securely small-spaced from the multiple pipe. Can be discharged.

図1は本発明に係る前進凍結濃縮装置を一部縦断面で例示する全体図である。図1に例示した前進凍結濃縮装置は、並んで立設された2本の2重円筒管11,12を有する凍結濃縮器13を備えている。2重円筒管11,12は同軸の内側円筒管11a,12aと外側円筒管11b,12bを有し、内側円筒管11a,12a内に被濃縮液流路21,22が形成されており、内側円筒管11a,12aと外側円筒管11b,12bの間に冷媒流路31,32が形成されている。内側円筒管11aと内側円筒管12aは、その上部が循環系41で接続されており、その下部が連通されていて、したがって被濃縮液流路21,22は直列に接続された一つの循環流路を形成している。また外側円筒管11bと外側円筒管12bは、その上部が連通されており、その下部も連通されていて、外側円筒管12bの上部と下部は循環系51で接続され、したがって冷媒流路31,32は並列に接続された一つの循環流路を形成している。   FIG. 1 is an overall view illustrating a part of a forward freeze concentration apparatus according to the present invention in a longitudinal section. The forward freeze concentrator illustrated in FIG. 1 includes a freeze concentrator 13 having two double cylindrical tubes 11 and 12 erected side by side. The double cylindrical tubes 11 and 12 have coaxial inner cylindrical tubes 11a and 12a and outer cylindrical tubes 11b and 12b. Concentrated liquid channels 21 and 22 are formed in the inner cylindrical tubes 11a and 12a. Refrigerant flow paths 31, 32 are formed between the cylindrical tubes 11a, 12a and the outer cylindrical tubes 11b, 12b. The upper part of the inner cylindrical pipe 11a and the inner cylindrical pipe 12a is connected by a circulation system 41, and the lower part thereof is communicated. Therefore, the liquid flow channels 21 and 22 to be concentrated are one circulation flow connected in series. Forming a road. Further, the outer cylindrical tube 11b and the outer cylindrical tube 12b are connected at the upper portion thereof, and the lower portion thereof is also communicated, and the upper portion and the lower portion of the outer cylindrical tube 12b are connected by the circulation system 51. 32 forms one circulation flow path connected in parallel.

2重円筒管11,12の上方には被濃縮液供給タンク42が配置されており、被濃縮液供給タンク42は循環系41に接続されている。被濃縮液供給タンク42と内側円筒管11aの間における循環系41には被濃縮液用ポンプ43が介装されており、被濃縮液供給タンク42と内側円筒管12aの間における循環系41には流量計44が介装されていて、被濃縮液用ポンプ43及び流量計44は制御装置61に接続されている。外側円筒管12bの上部と下部を接続する循環系51には、冷却機52、冷媒用ポンプ53及び温度計54が介装されており、冷却機52及び温度計54は制御装置61に接続されている。   A concentrated liquid supply tank 42 is disposed above the double cylindrical tubes 11 and 12, and the concentrated liquid supply tank 42 is connected to a circulation system 41. A concentrated liquid pump 43 is interposed in the circulation system 41 between the concentrated liquid supply tank 42 and the inner cylindrical pipe 11a, and the circulating system 41 between the concentrated liquid supply tank 42 and the inner cylindrical pipe 12a is provided in the circulating system 41. A flow meter 44 is interposed, and the liquid concentrate pump 43 and the flow meter 44 are connected to a control device 61. The circulation system 51 connecting the upper part and the lower part of the outer cylindrical tube 12b is provided with a cooler 52, a refrigerant pump 53, and a thermometer 54. The cooler 52 and the thermometer 54 are connected to the controller 61. ing.

図1に例示した前進凍結濃縮装置では、流量計44で測定される被濃縮液の流量実測値が制御装置61に予め設定されている設定値となるよう、双方の差に基づいて制御装置61から発せられる信号により被濃縮液用ポンプ43の回転数を制御し、また温度計54で測定される冷媒の温度実測値が制御装置61に予め設定されている設定値となるよう、双方の差に基づいて制御装置61から発せられる信号により冷却機52の作動を制御している。   In the forward freeze concentration apparatus illustrated in FIG. 1, the control device 61 is based on the difference between the two so that the actual flow rate value of the liquid to be concentrated measured by the flow meter 44 becomes a preset value set in the control device 61. The rotational speed of the liquid concentrate pump 43 is controlled by a signal emitted from the control unit 61, and the difference between the two is set so that the actual measured value of the refrigerant measured by the thermometer 54 becomes a preset value set in the control device 61. The operation of the cooler 52 is controlled by a signal generated from the control device 61 based on the above.

2本の2重円筒管11,12の内側円筒管11a,12aは外側円筒管11b,12bよりも下方へ延長されており、延長された内側円筒管11a,12aの下端部にはボールバルブ71,72が取付けられていて、ボールバルブ71,72の更に下方に受器81が配置され、受器81は台車91に載置されている。ボールバルブ71は、図1では図示を省略するが、2重円筒管11の被濃縮液流路21の最大径と同等の開口径を有する弁体、図1の場合には被濃縮液流路21を形成するのが内側円筒管11aであるため、内側円筒管11aの内径と同等の開口径を有する弁体を備えており、ボールバルブ72も同様の開口径を有する弁体を備えている。これらの弁体は制御装置61に接続されており、ボールバルブ71,72の開閉、具体的にはこれらの弁体の開閉作動は制御装置61から発せられる信号により制御されている。   The inner cylindrical tubes 11a and 12a of the two double cylindrical tubes 11 and 12 are extended downward from the outer cylindrical tubes 11b and 12b, and a ball valve 71 is provided at the lower ends of the extended inner cylindrical tubes 11a and 12a. , 72 is mounted, and a receiver 81 is disposed further below the ball valves 71, 72, and the receiver 81 is placed on a carriage 91. Although not shown in FIG. 1, the ball valve 71 has a valve body having an opening diameter equivalent to the maximum diameter of the concentrated liquid passage 21 of the double cylindrical tube 11, and in the case of FIG. 21 is formed by the inner cylindrical tube 11a, and therefore, a valve body having an opening diameter equivalent to the inner diameter of the inner cylindrical tube 11a is provided, and the ball valve 72 is also provided with a valve body having the same opening diameter. . These valve bodies are connected to the control device 61, and the opening and closing of the ball valves 71 and 72, specifically, the opening and closing operations of these valve bodies are controlled by signals sent from the control device 61.

図1に例示した前進凍結濃縮装置では、被濃縮液供給タンク42から供給した被濃縮液を、前記したような流量制御下に、循環系41を介して被濃縮液流路21,22に循環させつつ、冷媒を、前記したような温度制御下に、循環系51を介して冷媒流路31,32に循環させて、被濃縮液流路21,22を形成する内側円筒管11a,12aの内壁面に氷結晶を順次形成して成長させることにより、被濃縮液を凍結濃縮した後、凍結濃縮した濃縮液を内側円筒管11a,12aの下部における連通部から回収する。そして通常は、冷媒を図示しないヒータで少し加温して、内側円筒管31,32の内壁面に成長した筒状の氷を該内壁面から剥離した後、制御装置61からの信号によりボールバルブ71,72の図示しない弁体を開き、剥離した筒状の氷をボールバルブ71,72を介して受器81へと自重落下させて排出する。   In the forward freeze concentration apparatus illustrated in FIG. 1, the concentrated liquid supplied from the concentrated liquid supply tank 42 is circulated to the concentrated liquid channels 21 and 22 through the circulation system 41 under the flow rate control as described above. Of the inner cylindrical tubes 11a and 12a forming the concentrated liquid flow channels 21 and 22 by circulating the refrigerant to the refrigerant flow channels 31 and 32 through the circulation system 51 under the temperature control as described above. The ice crystals are sequentially formed and grown on the inner wall surface to freeze and concentrate the liquid to be concentrated, and then the frozen and concentrated liquid is recovered from the communicating portion at the lower part of the inner cylindrical tubes 11a and 12a. Usually, the refrigerant is heated a little by a heater (not shown), and the cylindrical ice grown on the inner wall surfaces of the inner cylindrical tubes 31 and 32 is peeled off from the inner wall surface. The valve bodies (not shown) of 71 and 72 are opened, and the peeled cylindrical ice is dropped by its own weight onto the receiver 81 through the ball valves 71 and 72 and discharged.

図2〜図4は前記のような筒状の氷の排出状況を略示する拡大縦断面図である。下方に延長された内側円筒管11aの下端部に取付けられたボールバルブ71は、球状の内周面を有するケーシング71a、ケーシング71aの内周面を摺動する球状の外周面を有する弁体71b及び弁体71bに貫通された開口部71cを備えており、開口部71cの開口径は内側円筒管11aの内径と同等になっている。図2に略示するように、制御装置61からの信号により、弁体71bを開くと、すなわち開口部71cを内側円筒管11aの内壁面に直線的に連通させた全開状態にすると、筒状の氷Aの下端部は開口部71c内へ自重落下する。この状態で図3に略示するように、制御装置61からの信号により、弁体71bをやや閉じると、すなわち半開状態にすると、開口部71c内へ自重落下した筒状の氷Aの下端部は折れて、元の筒状の氷Aから切り離される。更にこの状態で図4に示すように、制御装置61からの信号により、再び弁体71bを開くと、すなわち図2と同じ全開状態にすると、開口部71cにおける筒状の氷Aの折れた下端部は受器81へと自重落下し、再び筒状の氷Aの下端部が開口部71c内へ自重落下する。以下はこの繰り返しであり、説明を省略する内側円筒管12aとボールバルブ72との関係も同様になっている。図1〜図4について以上説明した前進凍結濃縮装置では、制御装置61からの信号によりボールバルブ71,72を間欠的に開閉すると、すなわちこれらの弁体を間欠的に開閉作動させると、被濃縮液流路21,22を形成する内側円筒管11a,12aの内壁面に成長した筒状の氷Aをボールバルブ71,72を介して排出すると同時にボールバルブ71,72で破砕するようになっているのである。   2 to 4 are enlarged longitudinal sectional views schematically showing the discharge state of the cylindrical ice as described above. A ball valve 71 attached to the lower end portion of the inner cylindrical pipe 11a extending downward includes a casing 71a having a spherical inner peripheral surface, and a valve body 71b having a spherical outer peripheral surface that slides on the inner peripheral surface of the casing 71a. And the opening part 71c penetrated by the valve body 71b is provided, and the opening diameter of the opening part 71c is equivalent to the inner diameter of the inner cylindrical tube 11a. As schematically shown in FIG. 2, when the valve body 71b is opened by a signal from the control device 61, that is, when the opening portion 71c is linearly communicated with the inner wall surface of the inner cylindrical tube 11a, a cylindrical shape is obtained. The lower end of the ice A falls by its own weight into the opening 71c. In this state, as schematically shown in FIG. 3, when the valve body 71 b is slightly closed by a signal from the control device 61, that is, in a half-open state, the lower end portion of the cylindrical ice A that has fallen under its own weight into the opening 71 c. Is broken and separated from the original cylindrical ice A. Further, in this state, as shown in FIG. 4, when the valve body 71b is opened again by a signal from the control device 61, that is, when the valve body 71b is fully opened as in FIG. 2, the lower end of the cylindrical ice A broken in the opening 71c. The part falls by its own weight onto the receiver 81, and the lower end of the cylindrical ice A falls again by its own weight into the opening 71c. The following is repeated, and the relationship between the inner cylindrical tube 12a and the ball valve 72, which will not be described, is also the same. In the forward freeze concentration apparatus described above with reference to FIGS. 1 to 4, when the ball valves 71 and 72 are opened and closed intermittently by a signal from the control device 61, that is, when these valve bodies are opened and closed intermittently, The cylindrical ice A grown on the inner wall surfaces of the inner cylindrical tubes 11a and 12a forming the liquid flow paths 21 and 22 is discharged through the ball valves 71 and 72 and simultaneously crushed by the ball valves 71 and 72. It is.

図5は本発明に係る他の前進凍結濃縮装置を例示する部分縦断面図である。図示及び説明を省略する他の構成は図1〜図4について前述した前進凍結濃縮装置と同様になっているが、図5に例示した前進凍結濃縮装置は、並んで立設された合計4本の2重円筒管14〜17を有する凍結濃縮器18を備えている。2重円筒管14〜17の内側には被濃縮液流路23〜26が形成されており、2重円筒管14〜17の外側には冷媒流路33〜36が形成されている。被濃縮液流路23〜26は図示しない循環系を介して直列に接続された一つの循環流路を形成しており、冷媒流路33〜36は図示しない循環系を介して並列に接続された一つの循環流路を形成している。   FIG. 5 is a partial longitudinal sectional view illustrating another forward freeze concentration apparatus according to the present invention. Other configurations that are not shown and described are the same as those of the forward freeze concentration apparatus described above with reference to FIGS. 1 to 4, but the forward freeze concentration apparatus illustrated in FIG. A freeze concentrator 18 having double cylindrical tubes 14 to 17 is provided. Concentrated liquid channels 23 to 26 are formed inside the double cylindrical tubes 14 to 17, and refrigerant channels 33 to 36 are formed outside the double cylindrical tubes 14 to 17. The liquid concentrate channels 23 to 26 form one circulation channel connected in series via a circulation system (not shown), and the refrigerant channels 33 to 36 are connected in parallel via a circulation system (not shown). A single circulation channel is formed.

合計4本の2重円筒管14〜17の内側円筒管14a〜17aは外側円筒管14b〜17bよりも下方へ延長されており、延長された内側円筒管14a〜17aの下端部にはボールバルブ73〜76が取付けられていて、ボールバルブ73〜76の更に下方に受器82が配置され、受器82には回転刃92を有する破砕機93が装備されている。ボールバルブ73〜76は図1のボールバルブ71と同様の構成になっており、これらの図示しない弁体は図示しない制御装置に接続されていて、ボールバルブ73〜76の開閉、具体的にはこれらの弁体の開閉作動は制御装置から発せられる信号により制御されている。   The inner cylindrical tubes 14a to 17a of the four double cylindrical tubes 14 to 17 are extended downward from the outer cylindrical tubes 14b to 17b, and a ball valve is provided at the lower ends of the extended inner cylindrical tubes 14a to 17a. 73 to 76 are attached, and a receiver 82 is disposed further below the ball valves 73 to 76, and the receiver 82 is equipped with a crusher 93 having a rotary blade 92. The ball valves 73 to 76 have the same configuration as the ball valve 71 of FIG. 1, and these valve bodies (not shown) are connected to a control device (not shown) to open and close the ball valves 73 to 76, specifically. The opening / closing operation of these valve bodies is controlled by a signal emitted from the control device.

図5の前進凍結濃縮装置でも、制御装置からの信号によりボールバルブ73〜76を間欠的に開閉すると、すなわちこれらの弁体を間欠的に開閉作動させると、被濃縮液流路23〜26を形成する内側円筒管14a〜17aの内壁面に成長した筒状の氷をボールバルブ73〜76を介して排出すると同時にボールバルブ73〜76で破砕するようになっているが、ここでは更に破砕機93の回転刃92で再破砕するようになっている。   In the forward freeze concentration apparatus of FIG. 5 as well, when the ball valves 73 to 76 are intermittently opened and closed by a signal from the control device, that is, when these valve bodies are intermittently opened and closed, the concentrated liquid flow paths 23 to 26 are opened. The cylindrical ice grown on the inner wall surfaces of the inner cylindrical tubes 14a to 17a to be formed is discharged through the ball valves 73 to 76 and simultaneously crushed by the ball valves 73 to 76. It is designed to re-crush with 93 rotary blades 92.

本発明に係る前進凍結濃縮装置を一部縦断面で例示する全体図。BRIEF DESCRIPTION OF THE DRAWINGS The whole figure which illustrates in part a longitudinal cross-section the forward freezing concentration apparatus which concerns on this invention. 図1の前進凍結濃縮装置において筒状の氷の排出状況を略示する拡大縦断面図。FIG. 2 is an enlarged longitudinal sectional view schematically showing a discharge state of cylindrical ice in the forward freeze concentration apparatus of FIG. 1. 図1の前進凍結濃縮装置において筒状の氷の他の排出状況を略示する拡大縦断面図。FIG. 3 is an enlarged vertical sectional view schematically showing another discharge state of cylindrical ice in the forward freeze concentration apparatus of FIG. 1. 図1の前進凍結濃縮装置において筒状の氷の更に他の排出状況を略示する拡大縦断面図。FIG. 5 is an enlarged longitudinal sectional view schematically showing still another discharge state of cylindrical ice in the forward freeze concentration apparatus of FIG. 1. 本発明に係る他の前進凍結濃縮装置を例示する部分縦断面図。The fragmentary longitudinal cross-section which illustrates the other forward freezing concentration apparatus which concerns on this invention.

符号の説明Explanation of symbols

11,12,14〜17 2重円筒管
11a,12a,14a〜17a 内側円筒管
11b,12b,14b〜17b 外側円筒管
13,18 凍結濃縮器
21〜26 被濃縮液流路
31〜36 冷媒流路
41,51 循環系
42 被濃縮液供給タンク
43 被濃縮液用ポンプ
44 流量計
52 冷却機
53 冷媒用ポンプ
54 温度計
61 制御装置
71〜76 ボールバルブ
71a ケーシング
71b 弁体
71c 開口部
81,82 受器
91 台車
92 回転刃
93 破砕機
11, 12, 14-17 Double cylindrical tube 11a, 12a, 14a-17a Inner cylindrical tube 11b, 12b, 14b-17b Outer cylindrical tube 13, 18 Freeze concentrator 21-26 Concentrated liquid channel 31-36 Refrigerant flow Channels 41 and 51 Circulating system 42 Concentrated liquid supply tank 43 Concentrated liquid pump 44 Flow meter 52 Cooler 53 Refrigerant pump 54 Thermometer 61 Controller 71 to 76 Ball valve 71a Casing 71b Valve body 71c Opening 81 and 82 Receiving machine 91 Bogie 92 Rotary blade 93 Crusher

Claims (5)

立設された1本又は2本以上の多重管を有する凍結濃縮器を備え、被濃縮液を該多重管の被濃縮液流路に循環させつつ、冷媒を該多重管の冷媒流路に循環させて、該多重管の被濃縮液流路を形成する壁面に氷結晶を順次形成して成長させることにより、該被濃縮液を凍結濃縮するようにした前進凍結濃縮装置において、各多重管毎でその下部に被濃縮液流路と連通して弁体の開口径が該被濃縮液流路の最大径と同等か又はそれよりも大きいボールバルブを接続すると共に、該ボールバルブの開閉を制御する制御装置を設け、各多重管毎の被濃縮液流路を形成する壁面に成長した氷を該ボールバルブを介して排出するようにして成ることを特徴とする前進凍結濃縮装置。   A freeze concentrator having one or more multi-tubes standing upright is provided, and the refrigerant is circulated through the refrigerant flow path of the multi-pipe while the liquid to be concentrated is circulated through the multi-pipe liquid flow path of the multi-pipe. In the forward freeze concentration apparatus in which the concentrated liquid is freeze-concentrated by sequentially forming and growing ice crystals on the wall surface forming the concentrated liquid flow path of the multiple pipe, In the lower part, a ball valve is connected to the concentrated liquid flow path and the opening diameter of the valve body is equal to or larger than the maximum diameter of the concentrated liquid flow path, and the opening and closing of the ball valve is controlled. A forward freezing and concentrating device characterized in that a control device is provided, and ice grown on the wall surface forming the liquid flow path to be concentrated for each of the multiple tubes is discharged through the ball valve. 凍結濃縮器が2本以上の多重管を有し、各多重管の被濃縮液流路が直列に接続された請求項1記載の前進凍結濃縮装置。   The forward freeze concentration apparatus according to claim 1, wherein the freeze concentrator has two or more multiple tubes, and the concentrated liquid flow paths of the multiple tubes are connected in series. 多重管が2重円筒管である請求項1又は2記載の前進凍結濃縮装置。   The forward freeze concentration apparatus according to claim 1 or 2, wherein the multiple tube is a double cylindrical tube. ボールバルブを介して排出する氷を該ボールバルブの開閉により破砕するようにした請求項1〜3のいずれか一つの項記載の前進凍結濃縮装置。   The forward freezing and concentrating apparatus according to any one of claims 1 to 3, wherein ice discharged through the ball valve is crushed by opening and closing the ball valve. 更に、ボールバルブの下方に受器を設け、該受器にボールバルブを介して排出した氷を破砕又は溶解する手段を設けた請求項1〜4のいずれか一つの項記載の前進凍結濃縮装置。
The forward freeze concentration apparatus according to any one of claims 1 to 4, further comprising a receiver provided below the ball valve, and the receiver is provided with means for crushing or melting ice discharged through the ball valve. .
JP2003380611A 2003-11-11 2003-11-11 Advance freeze concentrator Expired - Fee Related JP4380299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380611A JP4380299B2 (en) 2003-11-11 2003-11-11 Advance freeze concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380611A JP4380299B2 (en) 2003-11-11 2003-11-11 Advance freeze concentrator

Publications (2)

Publication Number Publication Date
JP2005144202A true JP2005144202A (en) 2005-06-09
JP4380299B2 JP4380299B2 (en) 2009-12-09

Family

ID=34690238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380611A Expired - Fee Related JP4380299B2 (en) 2003-11-11 2003-11-11 Advance freeze concentrator

Country Status (1)

Country Link
JP (1) JP4380299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656037B1 (en) * 2014-03-18 2015-01-21 石川県公立大学法人 Interfacial forward freeze concentration system
EP2450341B1 (en) * 2009-06-30 2021-03-10 Nippon Shokubai Co., Ltd. Method for crystallizing acrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450341B1 (en) * 2009-06-30 2021-03-10 Nippon Shokubai Co., Ltd. Method for crystallizing acrylic acid
JP5656037B1 (en) * 2014-03-18 2015-01-21 石川県公立大学法人 Interfacial forward freeze concentration system

Also Published As

Publication number Publication date
JP4380299B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US11278040B2 (en) Heat exchanger and method of making thereof
DK2684004T3 (en) Heat exchanger with multiple surfaces with the possibility vacuo and magnetic scrapers
US20180228180A1 (en) Machine for making and dispensing a liquid or semi-liquid product
US20100319878A1 (en) Multilateral continuous uniform rapid cooling device of double cooling structure
JP2007132649A (en) Sherbet ice making machine
JP4380299B2 (en) Advance freeze concentrator
US20060196631A1 (en) Thermal storage device
JP2006214683A (en) Ozone ice making machine and its method
US5706883A (en) Mass storage and dispensing system for liquids such as citrus products
CN109289232A (en) A kind of Horizontal crystallizer
JP2003028546A (en) Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method
US4442679A (en) Vertical shell and tube heat exchanger with sleeves around upper part of tubes
WO2019049645A1 (en) Dissolved gas-containing ice production device and production method
CN104689596A (en) Crystal growth tank used for freezing and concentration
AU2016350039A1 (en) Method and device for controlling foaming in containers for liquids or foams and register system for such a device
KR101544612B1 (en) Device and method for high-efficiency cooling using a cooling water tank and second different cooling and stirring system of a dual structure
CN209019943U (en) A kind of Horizontal crystallizer
JP2008064356A (en) Ozone ice manufacturing method and device, and ozone ice manufactured thereby
KR101754896B1 (en) indirect cooling freeze concentrator
KR102116513B1 (en) Drink rapid cooling system using double dividing wall
JP3053623B1 (en) Fresh food storage equipment
JP4393275B2 (en) Ice temperature storage and ice temperature storage method
JP2006189177A (en) Manufacturing device for seawater micron-order ice for cooling
JP3075395B2 (en) Thermal storage refrigeration system
KR100924420B1 (en) Cold water bucket of cold/hot water purifiers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees