JP5656037B1 - Interfacial forward freeze concentration system - Google Patents

Interfacial forward freeze concentration system Download PDF

Info

Publication number
JP5656037B1
JP5656037B1 JP2014054275A JP2014054275A JP5656037B1 JP 5656037 B1 JP5656037 B1 JP 5656037B1 JP 2014054275 A JP2014054275 A JP 2014054275A JP 2014054275 A JP2014054275 A JP 2014054275A JP 5656037 B1 JP5656037 B1 JP 5656037B1
Authority
JP
Japan
Prior art keywords
ice crystal
ice
vertical pipe
lower opening
ice crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014054275A
Other languages
Japanese (ja)
Other versions
JP2015174067A (en
Inventor
長人 宮脇
長人 宮脇
滋 北野
滋 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefectural Public University Corp
Meiwa Kogyo Co Ltd
Original Assignee
Ishikawa Prefectural Public University Corp
Meiwa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefectural Public University Corp, Meiwa Kogyo Co Ltd filed Critical Ishikawa Prefectural Public University Corp
Priority to JP2014054275A priority Critical patent/JP5656037B1/en
Application granted granted Critical
Publication of JP5656037B1 publication Critical patent/JP5656037B1/en
Publication of JP2015174067A publication Critical patent/JP2015174067A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

【課題】氷結晶を容易に切断・搬送できると共に融解液中の溶質の保存性に優れる界面前進凍結濃縮システムを提供する。【解決手段】本発明の界面前進凍結濃縮システムは、鉛直管の外部を冷媒で冷却しながらその内部に溶液を循環させることで鉛直管内に中空棒状の氷結晶を生成する氷結晶生成部と、鉛直管の下部開口を開閉する開閉弁と、鉛直管の下方に配置されており、開閉弁を開いて鉛直管から自然落下させて取り出した前記氷結晶を搬送面上に載置して搬送する氷結晶破砕用コンベヤと、搬送された前記氷結晶を部分融解させて所望の濃度の融解液を得る氷結晶融解部とを備える。また、搬送面上に所定の間隔で配置した凸部を備えており、前記下部開口から自然落下した氷結晶の下端を走行中の凸部に引っ掛けることで、当該氷結晶を前記下部開口近傍で順次切断する。【選択図】図3An interface forward freezing and concentrating system capable of easily cutting and transporting ice crystals and being excellent in preservation of a solute in a melt. An interface forward freeze concentration system according to the present invention includes an ice crystal generation unit that generates a hollow bar-like ice crystal in a vertical pipe by circulating the solution in the vertical pipe while cooling the outside of the vertical pipe with a refrigerant. An open / close valve that opens and closes the lower opening of the vertical pipe, and is disposed below the vertical pipe. The ice crystal taken out by being naturally dropped from the vertical pipe by opening the open / close valve is placed on the transfer surface and transferred. An ice crystal crushing conveyor and an ice crystal melting part for partially melting the conveyed ice crystal to obtain a melt having a desired concentration are provided. In addition, it is provided with convex portions arranged at predetermined intervals on the transport surface, and by hooking the lower end of the ice crystal that naturally dropped from the lower opening to the convex portion that is running, the ice crystal is placed near the lower opening. Cut sequentially. [Selection] Figure 3

Description

本発明は、水溶液・果汁・酒等の各種溶液を冷却・凍結し、氷結晶を除去することで濃縮液を生成する界面前進凍結濃縮システムに関する。   The present invention relates to an interfacial forward freeze concentration system that generates a concentrated solution by cooling and freezing various solutions such as aqueous solution, fruit juice, and sake and removing ice crystals.

従来、食品や医薬品等の様々な分野で原材料の濃縮液が利用されており、濃縮液の生成方法の一つとして凍結濃縮法が知られている。
凍結濃縮法は蒸発濃縮法や膜濃縮法と比較して、原材料となる溶液の高品質濃縮が可能であり、また、低温濃縮という特徴によって熱的に不安定な溶質の晶析法としても優れている。
Conventionally, concentrated concentrates of raw materials have been used in various fields such as foods and pharmaceuticals, and freeze concentration methods are known as one of the methods for producing concentrated liquids.
Compared with evaporative concentration and membrane concentration methods, freeze concentration method enables high-quality concentration of the raw material solution, and it is also excellent as a crystallization method for thermally unstable solutes due to its low-temperature concentration. ing.

凍結濃縮法のうち界面前進凍結濃縮法は、果物等の試料溶液に接触する冷却面から氷結晶を生成・成長させてゆくこと、すなわち未凍結溶液相と氷相との界面を未凍結溶液相側(伝熱方向と逆方向)に前進させて1個の氷結晶を作ることによって凍結濃縮を行う方法で、氷結晶成長速度の制御と、凍結相と液相との界面の撹拌が重要である。
この方法は1個の大きな氷結晶を生成するため、従来の凍結濃縮法(懸濁結晶法)と比較して固液分離が極めて容易でシステムを単純化できるという利点がある。また、氷結晶への溶質(栄養成分やフレーバー成分)の取り込みが成分非選択的に行われる。従って、濃縮液に含まれる溶質の成分バランスが濃縮前とほぼ同等であり、溶質の保存性に優れ、果汁等の品質劣化を防止して香味を高めることができるという利点もある。なお、このような氷結晶への溶質の成分非選択的な取り込みは、氷結晶構造の空隙への溶質の非平衡的取り込み機構によるものと推察される。
Among the freeze concentration methods, the interfacial forward freeze concentration method generates and grows ice crystals from the cooling surface that comes into contact with a sample solution such as fruit, that is, the interface between the unfrozen solution phase and the ice phase is the unfrozen solution phase. This is a method of freezing and concentrating by making a single ice crystal by moving it forward (opposite to the heat transfer direction). Control of the ice crystal growth rate and stirring of the interface between the frozen phase and the liquid phase are important. is there.
Since this method produces one large ice crystal, it has an advantage that solid-liquid separation is extremely easy and the system can be simplified as compared with the conventional freeze concentration method (suspension crystal method). In addition, solutes (nutrient components and flavor components) are incorporated into ice crystals in a non-selective manner. Therefore, there is an advantage that the balance of the solute components contained in the concentrated liquid is almost the same as that before the concentration, the solute has excellent storability, and the flavor can be enhanced by preventing deterioration of the quality of fruit juice and the like. Such non-selective uptake of solute components into ice crystals is presumed to be due to a non-equilibrium uptake mechanism of solutes into the voids of the ice crystal structure.

界面前進凍結濃縮装置として、例えば特許文献1には、直立させた外管と、外管に挿入した内管とからなる2重円筒管を複数本備えており、内管の内部に被濃縮液を循環させつつ外管の内部に冷媒を循環させることで、内管の内壁面に中空状の氷結晶を成長させる技術が開示されている。この装置は各2重円筒管の下部にボールバルブが接続されており、制御装置がボールバルブを開くことで中空状の氷結晶を自重により内管から自然落下させ、次に所定のタイミングでボールバルブを閉じることで氷結晶を適当な長さにせん断する仕組みになっている。せん断された氷結晶はボールバルブの下方に配置した受け器で回収したり(特許文献1の図1〜4参照)、更に破砕機の回転刃で再破砕(同図5参照)した後、台車で搬送する仕組みになっている。
また、例えば特許文献2には、回収した中空状の氷結晶に対して送風機で風を送り融解させることで、最初に高濃度の融解溶液を回収し、その後低濃度の融解溶液になるまで多段階で回収していく部分融解に関する技術が開示されている。
As an interfacial forward freeze concentration apparatus, for example, Patent Document 1 includes a plurality of double cylindrical tubes each composed of an upright outer tube and an inner tube inserted into the outer tube. A technique for growing a hollow ice crystal on the inner wall surface of the inner tube by circulating a refrigerant in the outer tube while circulating the water is disclosed. In this device, a ball valve is connected to the lower part of each double cylindrical tube, and the control device opens the ball valve so that hollow ice crystals are naturally dropped from the inner tube by its own weight, and then the ball is By closing the valve, the ice crystals are sheared to an appropriate length. The sheared ice crystals are collected by a receiver disposed below the ball valve (see FIGS. 1 to 4 of Patent Document 1), and further crushed with a rotating blade of a crusher (see FIG. 5). It has a mechanism to transport by.
For example, Patent Document 2 discloses that a high-concentration molten solution is first recovered by sending air to the recovered hollow ice crystals with a blower and melted until a low-concentration molten solution is obtained. Techniques relating to partial melting that are recovered in stages are disclosed.

特開2005−144202号公報JP 2005-144202 A 特開2002−153859号公報JP 2002-153859 A

ところが、上記各特許文献に開示されたような従来の技術では以下のような問題があった。
すなわち、特許文献1の技術では氷結晶の切断をボールバルブで行うので装置構成が複雑になり製造コストが嵩むという問題や、受け器で回収した氷結晶を台車に載せて融解作業を行う場所まで移動させることになるため実生産する際の装置の自動化が難しいという問題がある。また、溶液の濃度や溶質の種類・成分比によって氷結晶の硬さは異なるが、氷結晶を破砕機で破砕すると氷片のサイズにばらつきが出てしまうため、後の部分融解工程において所望の濃度の融解液を回収することが困難になるという問題もある。
また、特許文献2の技術では送風機で風を送りながら氷結晶を部分融解させるので、融解液に含まれている溶質のフレーバー成分が風で拡散してしまい、濃縮液中の溶質の成分バランスが濃縮前と大きく異なってしまうという問題がある。
However, the conventional techniques as disclosed in the above patent documents have the following problems.
That is, in the technique of Patent Document 1, since the ice crystal is cut by a ball valve, the apparatus configuration becomes complicated and the manufacturing cost increases, and the place where the ice crystal collected by the receiver is placed on the carriage and the melting work is performed. There is a problem that it is difficult to automate the apparatus in actual production because it is moved. In addition, although the hardness of ice crystals varies depending on the concentration of the solution and the type / component ratio of the solute, if the ice crystals are crushed with a crusher, the size of the ice pieces will vary. There is also a problem that it becomes difficult to recover a melt having a concentration.
Further, in the technology of Patent Document 2, since ice crystals are partially melted while sending air with a blower, the solute flavor component contained in the melt is diffused by the wind, and the solute component balance in the concentrate is balanced. There is a problem that it is greatly different from that before concentration.

本発明はこのような問題に鑑み、氷結晶を容易に切断・搬送できると共に融解液中の溶質の保存性に優れる界面前進凍結濃縮システムを提供することを目的とする。   In view of such a problem, an object of the present invention is to provide an interfacial forward freeze concentration system that can easily cut and transport ice crystals and is excellent in storability of a solute in a melt.

本発明の界面前進凍結濃縮システムは、鉛直管の外部を冷媒で冷却しながらその内部に溶液を循環させることで鉛直管内に中空棒状の氷結晶を生成する氷結晶生成部と、鉛直管の下部開口を開閉する開閉弁と、鉛直管の下方に配置されており、開閉弁を開いて鉛直管から自然落下させて取り出した前記氷結晶を搬送面上に載置して破砕する氷結晶破砕用コンベヤと、前記氷結晶を部分融解させて所望の濃度の融解液を得る氷結晶融解部とを備える界面前進凍結濃縮システムにおいて、前記搬送面上に所定の間隔で配置した凸部を備えており、前記下部開口から自然落下した氷結晶の下端を走行中の凸部に引っ掛けることで、当該氷結晶を前記下部開口近傍で順次切断することを特徴とする。
また、前記下部開口から搬送面までの相対距離を変えるための高さ調節機構を備えることを特徴とする。
また、前記氷結晶融解部が、切断後の氷結晶を外気に対して密閉状態で収容する収容容器と、収容容器内を加温する加温機構と、収容容器内の氷結晶を撹拌する撹拌機構とを備えることを特徴とする。
The interface forward freezing and concentrating system of the present invention includes an ice crystal generating unit that generates a hollow bar-like ice crystal in a vertical pipe by circulating a solution inside the vertical pipe while cooling the outside with a refrigerant, and a lower part of the vertical pipe An on-off valve that opens and closes the opening, and an ice crystal crusher that is disposed below the vertical pipe and that crushes by placing the ice crystal on the transport surface by opening the on-off valve and letting it fall naturally from the vertical pipe In an interfacial forward freeze concentration system comprising a conveyor and an ice crystal melting portion that partially melts the ice crystals to obtain a melt having a desired concentration, the system includes convex portions arranged at predetermined intervals on the transport surface. The ice crystal is naturally cut in the vicinity of the lower opening by hooking the lower end of the ice crystal that naturally falls from the lower opening to the projecting portion.
In addition, a height adjusting mechanism for changing a relative distance from the lower opening to the conveying surface is provided.
In addition, the ice crystal melting part contains a container containing the cut ice crystal in a sealed state with respect to the outside air, a heating mechanism for heating the inside of the container, and stirring for stirring the ice crystal in the container And a mechanism.

本発明の界面前進凍結濃縮システムによれば、搬送面に設けた凸部を利用して中空棒状の氷結晶を切断するので、装置構成がシンプルになり製造コストを抑制できるという利点がある。また、搬送面上で氷結晶を切断するので、切断後の氷結晶を搬送面に載せたまま氷結晶破砕用コンベヤで氷結晶融解部まで搬送でき、実生産する際の装置の自動化が容易となる。
また、上述の通り溶液の濃度や溶質の種類・成分比によって氷結晶の硬さは異なるが、凸部の配置間隔を一定にすることで、氷結晶の硬さによらず切断長さを一定にできる。したがって、氷結晶融解部で行う氷結晶の融解液の濃度調節が容易になり、所望の濃度の融解液を回収できるようになる。
また、高さ調節機構を備えることにすれば、氷結晶破砕用コンベヤの搬送能力や氷結晶融解部の処理能力に応じて氷結晶の切断長さを調節できる。
According to the interfacial forward freeze concentration system of the present invention, the hollow bar-shaped ice crystals are cut using the convex portions provided on the transport surface, so that there is an advantage that the apparatus configuration is simplified and the manufacturing cost can be suppressed. In addition, since the ice crystal is cut on the transfer surface, the cut ice crystal can be transferred to the ice crystal melting part by the ice crystal crushing conveyor while it is placed on the transfer surface, making it easy to automate the equipment during actual production. Become.
In addition, the hardness of ice crystals varies depending on the concentration of the solution and the type / component ratio of the solute as described above, but the cutting length is constant regardless of the hardness of the ice crystals by making the convex spacing constant. Can be. Accordingly, the concentration adjustment of the ice crystal melt performed in the ice crystal melting part is facilitated, and the melt having a desired concentration can be recovered.
If the height adjusting mechanism is provided, the cutting length of the ice crystals can be adjusted according to the conveying capacity of the ice crystal crushing conveyor and the processing capacity of the ice crystal melting part.

また、氷結晶を外気に対して密閉状態で収容する収容容器を備えることにすれば、従来の装置のように送風機で風を送りながら氷結晶を部分融解させる場合と比較して、融解液に含まれる溶質のフレーバー成分が風で煽られて大気中に拡散してしまう事態を防ぎ、融解液中の溶質の成分バランスを濃縮前の溶液の成分バランスとほぼ同等にできる。
また、界面前進凍結濃縮法で生成した氷結晶をゆっくり時間をかけて融解していくと、まず最初に溶質を多く含有する高濃度の融解液が溶出し、次第に濃度が低くなっていくことが知られている。したがって、加温機構と撹拌機構を用いて氷結晶を撹拌しながら加温すると、収容容器内の温度をほぼ均一化できるため、所望の濃度の融解液が回収し易くなる。
In addition, if a container for containing ice crystals in a hermetically sealed state with respect to the outside air is provided, compared to a case where ice crystals are partially melted while blowing air with a blower as in a conventional apparatus, The situation that the flavor component of the contained solute is blown by the wind and diffused in the atmosphere can be prevented, and the solute component balance in the melt can be made substantially equal to the component balance of the solution before concentration.
In addition, when ice crystals generated by the interfacial forward freeze concentration method are slowly melted over time, a high-concentration melt containing a large amount of solute elutes first, and the concentration gradually decreases. Are known. Therefore, when the ice crystals are heated while stirring using the heating mechanism and the stirring mechanism, the temperature in the container can be made substantially uniform, so that a melt with a desired concentration can be easily collected.

界面前進凍結濃縮システムの構成を示す正面図Front view showing configuration of interfacial forward freeze concentration system 界面前進凍結濃縮システムの構成を示す側面図Side view showing configuration of interfacial forward freeze concentration system 中空棒状の氷結晶を切断し、搬送する状態を示す図(a)〜(e)The figure which shows the state which cut | disconnects and conveys a hollow rod-shaped ice crystal (a)-(e) 切断した氷結晶を氷結晶融解部に搬送する状態を示す図(a)、部分融解中の状態を示す図(b)The figure (a) which shows the state which conveys the cut | disconnected ice crystal to an ice crystal melting part, The figure (b) which shows the state in partial melting ラ・フランスのフレーバーパターンの変化を示すグラフA graph showing changes in flavor patterns in La France 加賀棒茶の氷結晶の様子を示す図(a)及び、左から氷融解液、濃縮前原液、および濃縮液の様子を示す図(b)The figure which shows the state of the ice crystal of Kaga stick tea (a) and the figure which shows the state of the ice melt from the left, the undiluted undiluted solution, and the concentrate from the left (b) 加賀棒茶の香気成分の分析結果Analysis results of aroma components of Kaga stick tea ラ・フランス果汁凝縮液の濃縮液等の香気成分を示すグラフGraph showing aroma components such as concentrate of La France fruit juice condensate トマト果汁に部分融解を行った場合の氷相融解率と濃度及び収率との関係を示すグラフGraph showing the relationship between ice phase melting rate, concentration and yield when partial melting is performed on tomato juice 凍結濃縮日本酒のアルコール度数を示すグラフ(a)と香気成分を示すグラフ(b)Graph (a) showing alcohol content of frozen concentrated sake and graph (b) showing aroma components 日本酒の成分分析結果を示すグラフ(a)と香気成分分析結果を示す表(b)Graph (a) showing component analysis results of sake and table (b) showing aroma component analysis results

本発明の界面前進凍結濃縮システム1の実施の形態について説明する。
図1〜図4に示すように界面前進凍結濃縮システム1は、氷結晶生成部10と氷結晶破砕部(氷結晶破砕用コンベヤ20)および氷結晶融解部30から概略構成され、後2者の位置関係によっては必要に応じて、図4に示すように氷結晶搬送用コンベヤ40を用いる。
氷結晶生成部10は鉛直管11の外部を冷媒で冷却しながら鉛直管11の内部に溶液を循環させることで鉛直管11内に中空棒状の氷結晶50を生成するものである。
An embodiment of the interface forward freeze concentration system 1 of the present invention will be described.
As shown in FIG. 1 to FIG. 4, the interfacial forward freeze concentration system 1 is roughly composed of an ice crystal generation unit 10, an ice crystal crushing unit (ice crystal crushing conveyor 20), and an ice crystal melting unit 30. Depending on the positional relationship, an ice crystal conveying conveyor 40 is used as shown in FIG.
The ice crystal generation unit 10 circulates a solution inside the vertical tube 11 while cooling the outside of the vertical tube 11 with a refrigerant, thereby generating a hollow rod-shaped ice crystal 50 in the vertical tube 11.

溶液の種類は例えば水溶液・果汁・酒等が挙げられるが、特に限定されるものではない。
水溶液としては、果汁、コーヒー(焙煎コーヒー豆の水抽出液)、茶(各種茶葉の水抽出液)、牛乳、だし汁等が挙げられる。茶葉は単独で用いてもよく、複数種類を組合せてもよい。牛乳は殺菌乳や加工乳等が挙げられる。だし汁は昆布だし、かつおだし、ブイヨン、うまみ抽出エキス、和風だし、洋風だし、中華だし等が挙げられる。なお、これら水溶液中には水に不溶な成分が懸濁又は分散されていてもよい。また、水溶液はそのまま凍結濃縮してもよく、あるいは水に不溶な成分を濾過した後に凍結濃縮してもよい。
果汁としては、レモン果汁、オレンジ果汁、りんご果汁等の一般的な果実果汁を挙げられる。
酒としては、醸造酒(例えば日本酒(原酒及び加水調整したものを含む)、ビール、ワイン、シードル等)、混成酒(合成清酒、甘味果実酒、リキュール類、雑酒、発泡酒、フルーツビール等)が挙げられる。
Examples of the type of solution include an aqueous solution, fruit juice, and sake, but are not particularly limited.
Examples of the aqueous solution include fruit juice, coffee (water extract of roasted coffee beans), tea (water extract of various tea leaves), milk, and soup stock. Tea leaves may be used alone or in combination. Examples of the milk include pasteurized milk and processed milk. Dashi soup includes kombu dashi, bonito dashi, bouillon, umami extract, Japanese dashi, Western dashi, Chinese dashi, and so on. In these aqueous solutions, water-insoluble components may be suspended or dispersed. The aqueous solution may be frozen and concentrated as it is, or may be freeze-concentrated after filtering water-insoluble components.
Examples of the fruit juice include common fruit juices such as lemon juice, orange juice and apple juice.
Sake includes brewed liquor (for example, Japanese liquor (including raw sake and water adjusted)), beer, wine, cider, etc., mixed liquor (synthetic sake, sweet fruit liquor, liqueurs, miscellaneous liquor, sparkling liquor, fruit beer, etc. ).

鉛直管11は複数本(本実施の形態では2本)で構成されており、鉛直管11同士はその上下両端が連結されることで循環流路を形成している。そして、溶液タンク12内の溶液を送液用ポンプ12aで循環流路に供給ののち、流量計13で流量を計測しながら溶液循環用ポンプ14で循環させる。
また、各鉛直管11の外周面の一部は冷却ジャケット15で覆われている。冷却ジャケット15同士も循環流路で結ばれており、この循環流路に冷媒タンク16内の冷媒を温度計17で温度を計測しながら冷媒用ポンプ18で送り込んで循環させることで各鉛直管11を外周面側から冷却する。冷媒としてはメタノール、エタノール、イソプロピルアルコール、ナイブラインなど周知のものを使用できる。
本システムでは、氷結晶生成部10を構成する各装置の駆動制御を制御装置で行っており、制御装置が溶液循環用ポンプ14の駆動を制御することで鉛直管11内の溶液の流速を調節すると共に流量計13で流量を計測する。鉛直管11の内壁面から中心に向かって氷結晶の生成が進んでゆき、所望の肉厚の中空棒状の氷結晶50を生成する仕組みになっている。
The vertical pipes 11 are composed of a plurality (two in the present embodiment), and the vertical pipes 11 form a circulation flow path by connecting their upper and lower ends. Then, the solution in the solution tank 12 is supplied to the circulation flow path by the liquid feed pump 12 a and then circulated by the solution circulation pump 14 while measuring the flow rate by the flow meter 13.
A part of the outer peripheral surface of each vertical pipe 11 is covered with a cooling jacket 15. The cooling jackets 15 are also connected to each other by a circulation flow path, and the refrigerant in the refrigerant tank 16 is sent to the circulation flow path by the refrigerant pump 18 while measuring the temperature by the thermometer 17 and circulated. Is cooled from the outer peripheral surface side. As the refrigerant, known ones such as methanol, ethanol, isopropyl alcohol, and nybrine can be used.
In this system, the drive control of each device constituting the ice crystal generation unit 10 is performed by the control device, and the control device controls the drive of the solution circulation pump 14 to adjust the flow rate of the solution in the vertical pipe 11. In addition, the flow rate is measured by the flow meter 13. Ice crystals are generated from the inner wall surface of the vertical pipe 11 toward the center, and a hollow rod-shaped ice crystal 50 having a desired thickness is generated.

各鉛直管11はその下端部に開口11aを備えており、この下部開口11aは開閉弁11bで開閉自在になっている。
氷結晶50を生成した後はまず鉛直管11内の溶液(濃縮液)を取り出し、次に冷媒を加温して氷結晶50の外周面を温める。これにより氷結晶50は鉛直管11の内壁面から剥離するので、下部開口11aの開閉弁11bを開いて自重により自然落下させる。
なお、界面前進凍結濃縮法において良好な凍結濃縮効果を得るには、氷結晶の成長速度を小さく(遅く)することが有効であることが知られている。これは氷結晶の成長速度が速すぎると氷結晶への溶質取込率が高くなってしまうためであるが、その一方で氷結晶の成長速度が遅すぎると凍結濃縮時間が長くなり濃縮液の生産性が低下するという問題も生じる。また、凍結界面付近での溶液の流速を大きく(速く)することが有効であることも知られている。これは、凍結界面での溶液の流速が遅いと凍結界面近傍での溶質の濃度が高まり、氷結晶への溶質取込率が高くなってしまうためであるが、その一方で凍結界面での溶液の流速が速すぎると装置への負荷が大きくなり、故障等の原因になり易いという問題も生じる。
濃縮液は溶液中の水分の一部を氷結晶として取り除いた残りの液体であり、溶液の種類によって、果実ジュース、コーヒー、茶、牛乳、だし汁等の飲食品を製造する目的で利用できる。濃縮液は、多量の水分を含む溶液をそのまま輸送したり保管したりする場合と比較して輸送コストや保管コストの低減を図れるという利点があり、主にその目的のために調製されるが、そのまま他の飲食品等に添加して用いることもできる。また、溶液が日本酒の場合には、濃縮によりアルコールのみならず、他のエキス分もそのまま濃縮できるため、蒸留酒とは異なる新しいカテゴリーの高濃度酒とすることができる。
Each vertical pipe 11 is provided with an opening 11a at its lower end, and this lower opening 11a can be freely opened and closed by an on-off valve 11b.
After the ice crystal 50 is generated, the solution (concentrated liquid) in the vertical tube 11 is first taken out, and then the refrigerant is heated to warm the outer peripheral surface of the ice crystal 50. As a result, the ice crystals 50 are peeled off from the inner wall surface of the vertical tube 11, so that the on-off valve 11b of the lower opening 11a is opened and is naturally dropped by its own weight.
In order to obtain a good freeze concentration effect in the interfacial forward freeze concentration method, it is known that it is effective to reduce (slow) the growth rate of ice crystals. This is because if the ice crystal growth rate is too high, the solute uptake rate into the ice crystal will be high. On the other hand, if the ice crystal growth rate is too slow, the freeze concentration time will be long and There is also a problem that productivity decreases. It is also known that it is effective to increase (fasten) the flow rate of the solution near the freezing interface. This is because if the flow rate of the solution at the freezing interface is slow, the concentration of the solute near the freezing interface increases and the rate of solute uptake into the ice crystals increases. If the flow rate of the gas is too high, the load on the apparatus increases, and there is a problem that it is liable to cause a failure or the like.
The concentrated liquid is the remaining liquid from which a part of the water in the solution is removed as ice crystals, and can be used for the purpose of producing food and drink such as fruit juice, coffee, tea, milk, and broth depending on the type of the solution. Concentrated liquid has the advantage that it can reduce transportation cost and storage cost compared to the case of transporting and storing a solution containing a large amount of water as it is, and it is prepared mainly for that purpose. It can also be used as it is added to other foods and drinks. In addition, when the solution is sake, not only alcohol but also other extract components can be concentrated as it is by concentration, so that a high concentration sake of a new category different from distilled sake can be obtained.

氷結晶破砕用コンベヤ20は鉛直管11の下方に配置されており、開閉弁11bを開いて鉛直管11から自然落下させて取り出した氷結晶50を搬送面21上に載置して搬送するために設けられる。
搬送面21上には凸部22を所定の間隔で設けている(図2及び図3(a))。開閉弁11bが開かれて下部開口11aから自然落下した氷結晶50はその下端面が搬送面21に接触したまま直立状態で静止する(図3(b))。この状態では氷結晶50の大部分は鉛直管11内に留まり、下端部のみが外部に露出している。そして搬送面21の走行に伴って氷結晶50の下端面は搬送面21上を相対的に摺動していき、凸部22が氷結晶50の下端に引っ掛かった際に氷結晶50の下端に対して当該凸部22から前方(搬送面21の走行方向)に向けて外力が作用し、この外力の影響により氷結晶50は下部開口11a近傍で切断される(図3(c))。
切断された氷結晶50はそのまま搬送面21に載置された状態で前方に移動していき、鉛直管11内の氷結晶50は自重により自然落下する(図3(d))。落下した氷結晶の下端面(切断面)は搬送面21に接触したまま直立状態で静止し、次の凸部22によって切断される(図3(e))。このように氷結晶50の自重による自然落下と凸部22による切断を繰り返し行うことで全ての氷結晶50を順次適当な長さに切断していく。なお、氷結晶50の切断作業は、鉛直管11が複数ある場合には一本ずつ行ってもよくあるいは複数本同時に行ってもよい。
本実施の形態では鉛直管11の下部開口11aから搬送面21までの相対距離を変えられる高さ調節機構(図示略)を備える。高さ調節機構としては、例えば電動モータ等の周知の駆動装置を用いて、鉛直管11を支持するブラケットの上下方向の位置を調節したり、あるいは搬送面21が巻き回されている前後2つの回転ローラ23の上下方向の位置を調節すればよい。高さ調節機構を用いて鉛直管11の下部開口11aから搬送面21までの距離を変えることで氷結晶の切断長さを変えることができる。
The ice crystal crushing conveyor 20 is disposed below the vertical pipe 11, and opens and closes the open / close valve 11 b to naturally drop the ice crystal 50 taken out from the vertical pipe 11 to carry it on the conveying surface 21. Is provided.
Convex portions 22 are provided on the transport surface 21 at predetermined intervals (FIGS. 2 and 3A). The ice crystal 50 that spontaneously falls from the lower opening 11a when the on-off valve 11b is opened comes to rest in an upright state with its lower end surface being in contact with the transport surface 21 (FIG. 3B). In this state, most of the ice crystals 50 remain in the vertical tube 11 and only the lower end is exposed to the outside. As the transport surface 21 travels, the lower end surface of the ice crystal 50 slides relatively on the transport surface 21, and when the convex portion 22 is caught by the lower end of the ice crystal 50, On the other hand, an external force acts forward (in the traveling direction of the conveying surface 21) from the convex portion 22, and the ice crystal 50 is cut in the vicinity of the lower opening 11a due to the influence of the external force (FIG. 3 (c)).
The cut ice crystal 50 moves forward while being placed on the transport surface 21 as it is, and the ice crystal 50 in the vertical tube 11 naturally falls due to its own weight (FIG. 3D). The lower end surface (cut surface) of the fallen ice crystal remains stationary while being in contact with the transport surface 21, and is cut by the next convex portion 22 (FIG. 3 (e)). In this way, by repeating the natural fall due to the weight of the ice crystal 50 and the cutting by the convex portion 22, all the ice crystals 50 are sequentially cut to an appropriate length. Note that the cutting operation of the ice crystals 50 may be performed one by one when a plurality of vertical tubes 11 are present, or may be performed simultaneously.
In the present embodiment, a height adjusting mechanism (not shown) capable of changing the relative distance from the lower opening 11a of the vertical pipe 11 to the transport surface 21 is provided. As the height adjustment mechanism, for example, a known drive device such as an electric motor is used to adjust the vertical position of the bracket that supports the vertical pipe 11, or two front and rear around which the conveyance surface 21 is wound. What is necessary is just to adjust the position of the up-down direction of the rotating roller 23. FIG. The cutting length of the ice crystal can be changed by changing the distance from the lower opening 11a of the vertical tube 11 to the transport surface 21 using the height adjusting mechanism.

図4(a)及び(b)に示すように氷結晶融解部30は、切断後の中空状の氷結晶を部分融解させて所望の濃度の融解液を得るために設けられる。
具体的には、氷結晶融解部30は収容容器31、加温機構32及び撹拌機構33から概略構成される。
収容容器31は切断後の氷結晶50を外気に対して密閉状態で収容するものである。収容容器31の形状は特に限定されるものではないが、例えば下方に向かって縮径する円錐形状とし、その上端面に氷結晶50を投入するための上部開口31aを設け、その下部に融解液を回収するための取出口31bを設け、上部開口31aを蓋体31cで閉じることで内部を密閉する構造にすればよい。
上記氷結晶破砕用コンベヤ20を床面近くに配置する場合には、必要に応じて氷結晶破砕用コンベヤ20の終端(前端)から斜め上方に収容容器31の上部開口31aにまで至る氷結晶搬送用コンベヤ40を別途配置すればよい。この場合、氷結晶50をこの氷結晶搬送用コンベヤ40に載せて上部開口31aまで移動させて収容容器31内に投入することになる。
加温機構32は収容容器31内を加温するために設けられる。加温するための手段としては特に限定されるものではなく、例えば収容容器31の外周面に温媒を循環させたり、収容容器31の内部にヒーターを取り付けることにしてもよい。収容容器31内の温度は温度計32aで測定可能にしておく。
撹拌機構33は収容容器31内の氷結晶50を撹拌するために設けられる。撹拌するための手段としては特に限定されるものではなく、例えば上記蓋体31cに支持された状態でその下端が収容容器31の内部にまで至る回転軸33aと、この回転軸33aの周囲に取り付けたプロペラ状の攪拌翼33bで構成してもよい。攪拌翼33bの構造も特に限定されるものではないが、例えば複数の棒状部材33cの上端同士を円環33dで接続し、下端同士を円盤33eで接続することで収容容器31の形状に対応した円錐形状にしてもよい。また、蓋体31cの下面にいわゆる邪魔板としての棒状部材33fを取り付けた構成にしてもよい。撹拌機構33を用いることで収容容器31内の温度分布をより均一化することができる。
As shown in FIGS. 4A and 4B, the ice crystal melting unit 30 is provided to partially melt the cut hollow ice crystals to obtain a melt having a desired concentration.
Specifically, the ice crystal melting unit 30 is generally composed of a storage container 31, a heating mechanism 32, and a stirring mechanism 33.
The storage container 31 stores the cut ice crystal 50 in a sealed state with respect to the outside air. The shape of the container 31 is not particularly limited. For example, the container 31 has a conical shape with a diameter decreasing downward, and an upper opening 31a for introducing the ice crystals 50 is provided on the upper end surface of the container 31, and the melt is formed at the lower part. A take-out port 31b may be provided to collect the air and the inside may be sealed by closing the upper opening 31a with the lid 31c.
When the ice crystal crushing conveyor 20 is arranged near the floor surface, the ice crystal conveyance from the terminal end (front end) of the ice crystal crushing conveyor 20 to the upper opening 31a of the storage container 31 obliquely upward is performed as necessary. The conveyor 40 may be arranged separately. In this case, the ice crystals 50 are placed on the ice crystal conveying conveyor 40 and moved to the upper opening 31a and put into the storage container 31.
The heating mechanism 32 is provided to heat the inside of the storage container 31. The means for heating is not particularly limited, and for example, a heating medium may be circulated on the outer peripheral surface of the storage container 31 or a heater may be attached inside the storage container 31. The temperature in the storage container 31 can be measured by the thermometer 32a.
The stirring mechanism 33 is provided for stirring the ice crystals 50 in the container 31. The means for stirring is not particularly limited. For example, the rotating shaft 33a that is supported by the lid 31c and whose lower end reaches the inside of the container 31 is attached to the periphery of the rotating shaft 33a. Alternatively, a propeller-like stirring blade 33b may be used. The structure of the stirring blade 33b is not particularly limited. For example, the upper ends of the plurality of rod-shaped members 33c are connected by an annular ring 33d, and the lower ends are connected by a disk 33e, which corresponds to the shape of the container 31. It may be conical. Moreover, you may make it the structure which attached the rod-shaped member 33f as what is called a baffle plate to the lower surface of the cover body 31c. By using the stirring mechanism 33, the temperature distribution in the container 31 can be made more uniform.

[果物香気成分濃縮による天然香気素材開発]
次に、本発明の界面前進凍結濃縮システムの実施例1について説明する。
本システムを用いるとリンゴ、モモ、ラ・フランス、ブドウなどの果実フレーバー凝縮液を濃縮することにより天然香気素材の開発が可能となる。図5はラ・フランス果汁凝縮液に本システムによる界面前進凍結濃縮を行った場合と、比較例として逆浸透濃縮を行った場合における濃縮後の香気成分のフレーバーパターンを比較した結果を示す。逆浸透においては濃縮により香気バランスが大きく崩れているのに対し、本システムによる界面前進凍結濃縮は香気バランスを保ったまま有効な濃縮ができていることが分かる。
[Development of natural aroma materials by concentrating fruit aroma components]
Next, Example 1 of the interface forward freeze concentration system of the present invention will be described.
Using this system, it is possible to develop natural aroma materials by concentrating fruit flavor condensates such as apples, peaches, La France and grapes. FIG. 5 shows the result of comparing flavor patterns of concentrated aroma components when interfacial forward freeze concentration by this system was performed on La France juice condensate and when reverse osmosis concentration was performed as a comparative example. In the reverse osmosis, the aroma balance is largely lost due to the concentration, whereas the interface forward freezing concentration by this system can be effectively concentrated while maintaining the aroma balance.

[嗜好性飲料濃縮による食品新素材開発]
次に、本発明の界面前進凍結濃縮システムの実施例2について説明する。
本システムを用いると緑茶、ほうじ茶、紅茶、コーヒーなどの嗜好性飲料の高品質濃縮が可能となる。図6(a)は石川県特産の茎ほうじ茶である加賀棒茶の界面前進凍結濃縮を行った際の中空状の氷結晶の様子、図6(b)は左より、界面前進凍結濃縮法により生成した氷結晶の融解液、濃縮前の茎ほうじ茶原液、および濃縮液の様子である。また、図7は香気成分の分析結果である。香気成分の氷結晶への取り込み率は低く、また濃縮還元液はほぼ原液組成に近い良好な濃縮が行われていることがわかる。このような濃縮素材は氷菓や菓子原料などへの応用も考えられる。
[Development of new food ingredients by concentrating palatable beverages]
Next, a second embodiment of the interface forward freeze concentration system of the present invention will be described.
When this system is used, high-quality enrichment of palatable beverages such as green tea, hojicha, black tea, and coffee becomes possible. Fig. 6 (a) shows the shape of hollow ice crystals when Kaga stick tea, a special stalk hoji tea made in Ishikawa Prefecture, is subjected to interfacial forward freeze concentration, and Fig. 6 (b) shows from the left the interface forward freeze concentration method. It is the appearance of the melted ice crystal produced, the stem Hoji tea stock solution before concentration, and the concentrated solution. FIG. 7 shows the analysis result of the aroma component. It can be seen that the uptake rate of the aroma component into the ice crystals is low, and that the concentrated reducing solution is well concentrated close to the composition of the stock solution. Such concentrated materials can be applied to ice confectionery and confectionery ingredients.

[浸透圧が低い溶液への本システムの適用]
次に、本発明の界面前進凍結濃縮システムの実施例3について説明する。
この範疇に属する溶液としては果実フレーバー凝縮液、茶・コーヒー等の嗜好性飲料、カツオだし汁等の調味液、タンパク質溶液等があり、これらのうち茎ほうじ茶についてすでに実施例2で述べた。この範疇の食品は、本システムによる界面前進凍結濃縮により95%以上の収率達成を容易に行えることから、本システムを最も適用し易い溶液群といえる。図8はラ・フランス果汁凝縮液に対して本システムによる界面前進凍結濃縮を行い、約6倍に濃縮した後の濃縮液及び部分融解液、そして比較例としての原液のクロマトグラムである。氷結晶への溶質の取り込みは極めて少なく、フレーバーバランスを保ったまま香気成分の有効な濃縮が行われていることが分かる。
[Application of this system to solutions with low osmotic pressure]
Next, a third embodiment of the interface forward freeze concentration system of the present invention will be described.
Examples of solutions belonging to this category include fruit flavor condensate, taste drinks such as tea and coffee, seasonings such as bonito soup stock, protein solutions, etc. Among these, stem houji tea has already been described in Example 2. The foods in this category can be said to be the solution group most easily applicable to this system because the yield of 95% or more can be easily achieved by interfacial forward freezing concentration by this system. FIG. 8 is a chromatogram of a concentrated solution and a partially melted solution obtained by subjecting La France juice condensate to interfacial forward freeze concentration by this system and concentrating to about 6 times, and a stock solution as a comparative example. It can be seen that solute uptake into ice crystals is extremely small, and that effective concentration of aroma components is performed while maintaining flavor balance.

[浸透圧が中程度の溶液への本システムの適用]
次に、本発明の界面前進凍結濃縮システムの実施例4について説明する。
多くの果汁、野菜汁がこの範疇に分類され、浸透圧が高いために氷結晶への溶質の取り込み率が高く、収率が低下し易い。このような溶液に対して本システムが有効である。トマト果汁(除パルプ)に対して本システムによる界面前進凍結濃縮を行った結果、部分濃縮を行う前の段階では浸透圧がやや高く(9.9atm)、図9に示すように体積濃縮比1.63倍の濃縮において濃度濃縮比は1.49倍、収率は91%とやや低い結果である。次に生成した氷結晶に対して本システムによる部分濃縮を行い、約25%程度の氷結晶を融解し、溶質を回収することで収率を95%以上に改善できた。
[Application of this system to a medium osmotic pressure solution]
Next, Example 4 of the interfacial forward freeze concentration system of the present invention will be described.
Many fruit juices and vegetable juices fall into this category, and since the osmotic pressure is high, the solute uptake rate into ice crystals is high, and the yield tends to decrease. This system is effective for such a solution. As a result of interfacial forward freeze concentration using this system for tomato juice (depulped pulp), the osmotic pressure was slightly high (9.9 atm) before partial concentration, and the volume concentration ratio was 1.63 times as shown in FIG. Concentration ratio was 1.49 times, and the yield was slightly low at 91%. Next, the resulting ice crystals were partially concentrated by this system, and about 25% of the ice crystals were melted, and the solute was recovered to improve the yield to 95% or more.

[浸透圧が高い溶液への本システムの適用]
次に、本発明の界面前進凍結濃縮システム1の実施例5について説明する。
この範疇に属する溶液としては高濃度糖液や日本酒がある。(図10(a)及び(b)に3種類の日本酒(純米酒と大吟醸1及び2)に対して本システムによる界面前進凍結濃縮を行った場合と、比較例としての原液のアルコール度数と香気成分を示す。アルコール度数は平均25%程度に濃縮され、香気成分(酢酸エチル)もそれに応じて濃縮されていることが分かる。日本酒の場合は部分融解ではなく全融解することも有力な選択肢となる。
また、図11(a)はアルコール度数17.5%の日本酒原酒に対して本システムによる界面前進凍結濃縮を行った結果を示すものであり、アルコール度数28.9%とこれまでにないカテゴリーの日本酒を得られた。また、図11(b)に示すように香気成分等もほぼ同様の比率で濃縮できており、高品質の濃縮が可能であることが分かる。
[Application of this system to solutions with high osmotic pressure]
Next, a fifth embodiment of the interface forward freeze concentration system 1 of the present invention will be described.
Solutions belonging to this category include high-concentration sugar solutions and sake. (Figures 10 (a) and (b) show three types of sake (pure rice sake and Daiginjo 1 and 2) subjected to interfacial forward freeze concentration by this system, and the alcohol content of the stock solution as a comparative example. It shows that the alcohol content is concentrated to about 25% on average, and the fragrance component (ethyl acetate) is also concentrated accordingly. It becomes.
Fig. 11 (a) shows the results of interfacial forward freezing and concentrating with 17.5% of the alcoholic sake, which is 17.5% of the alcohol content. It was. Further, as shown in FIG. 11 (b), fragrance components and the like can also be concentrated at substantially the same ratio, and it is understood that high quality concentration is possible.

本発明は、氷結晶を容易に切断・搬送できると共に融解液中の溶質の保存性に優れる界面前進凍結濃縮システムに関するものであり、産業上の利用可能性を有する。   The present invention relates to an interfacial forward freeze concentration system that can easily cut and transport ice crystals and is excellent in preservability of a solute in a melt, and has industrial applicability.

1 界面前進凍結濃縮システム1
10 氷結晶生成部
11 鉛直管
11a 下部開口
11b 開閉弁
12 溶液タンク
12a 送液用ポンプ
13 流量計
14 溶液循環用ポンプ
15 冷却ジャケット
16 冷媒タンク
17 温度計
18 冷媒用ポンプ
20 氷結晶破砕用コンベヤ
21 搬送面
22 凸部
23 回転ローラ
30 氷結晶融解部
31 収容容器
31a 上部開口
31b 取出口
31c 蓋体
32 加温機構
32a 温度計
33 撹拌機構
33a 回転軸
33b 攪拌翼
33c 棒状部材
33d 円環
33e 円盤
33f 邪魔板
40 氷結晶搬送用コンベヤ
50 氷結晶

1 Interfacial forward freeze concentration system 1
DESCRIPTION OF SYMBOLS 10 Ice crystal production | generation part 11 Vertical pipe 11a Lower opening 11b On-off valve 12 Solution tank 12a Liquid feed pump 13 Flowmeter 14 Solution circulation pump 15 Cooling jacket 16 Refrigerant tank 17 Thermometer 18 Refrigerant pump 20 Ice crystal crushing conveyor 21 Conveying surface 22 Convex part 23 Rotating roller 30 Ice crystal melting part 31 Container 31a Upper opening 31b Outlet 31c Cover 32 Heating mechanism 32a Thermometer 33 Stirring mechanism 33a Rotating shaft 33b Stirring blade 33c Rod-shaped member 33d Ring 33e Disk 33f Baffle plate 40 ice crystal conveyor 50 ice crystal

Claims (3)

鉛直管の外部を冷媒で冷却しながらその内部に溶液を循環させることで鉛直管内に中空棒状の氷結晶を生成する氷結晶生成部と、
鉛直管の下部開口を開閉する開閉弁と、
鉛直管の下方に配置されており、開閉弁を開いて鉛直管から自然落下させて取り出した前記氷結晶を搬送面上に載置して破砕する氷結晶破砕用コンベヤと、
前記氷結晶を部分融解させて所望の濃度の融解液を得る氷結晶融解部とを備える界面前進凍結濃縮システムにおいて、
前記搬送面上に所定の間隔で配置した凸部を備えており、前記下部開口から自然落下した氷結晶の下端を走行中の凸部に引っ掛けることで、当該氷結晶を前記下部開口近傍で順次切断することを特徴とする界面前進凍結濃縮システム。
An ice crystal generator that generates hollow rod-shaped ice crystals in the vertical pipe by circulating the solution inside the vertical pipe while cooling the outside with a refrigerant;
An on-off valve for opening and closing the lower opening of the vertical pipe;
An ice crystal crushing conveyor disposed below the vertical pipe, placing the crushing ice on the transport surface by crushing the ice crystal taken out from the vertical pipe by opening an on-off valve;
An interfacial forward freeze concentration system comprising: an ice crystal melting portion that partially melts the ice crystals to obtain a melt having a desired concentration;
Convex portions arranged at predetermined intervals on the transport surface, and by hooking the lower end of the ice crystal that naturally dropped from the lower opening to the running convex portion, the ice crystals are sequentially placed in the vicinity of the lower opening. Interfacial forward freeze concentration system characterized by cutting.
前記下部開口から搬送面までの相対距離を変えるための高さ調節機構を備えることを特徴とする請求項1に記載の界面前進凍結濃縮システム。   The interface forward freezing and concentrating system according to claim 1, further comprising a height adjusting mechanism for changing a relative distance from the lower opening to the conveying surface. 前記氷結晶融解部が、切断後の氷結晶を外気に対して密閉状態で収容する収容容器と、収容容器内を加温する加温機構と、収容容器内の氷結晶を撹拌する撹拌機構とを備えることを特徴とする請求項1又は2に記載の界面前進凍結濃縮システム。
The ice crystal melting part contains a container containing the cut ice crystals in a sealed state with respect to the outside air, a heating mechanism for heating the inside of the container, and a stirring mechanism for stirring the ice crystals in the container The interfacial forward freeze concentration system according to claim 1 or 2, characterized by comprising:
JP2014054275A 2014-03-18 2014-03-18 Interfacial forward freeze concentration system Expired - Fee Related JP5656037B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054275A JP5656037B1 (en) 2014-03-18 2014-03-18 Interfacial forward freeze concentration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054275A JP5656037B1 (en) 2014-03-18 2014-03-18 Interfacial forward freeze concentration system

Publications (2)

Publication Number Publication Date
JP5656037B1 true JP5656037B1 (en) 2015-01-21
JP2015174067A JP2015174067A (en) 2015-10-05

Family

ID=52437392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054275A Expired - Fee Related JP5656037B1 (en) 2014-03-18 2014-03-18 Interfacial forward freeze concentration system

Country Status (1)

Country Link
JP (1) JP5656037B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019237660A1 (en) * 2018-03-23 2020-11-12 Suntory Holdings Limited Aroma-free pear juice

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153859A (en) * 2000-11-20 2002-05-28 Kansho Riyo Gijutsu Kenkyusho:Kk Freeze-thawing solution separation method by advanced freeze concentration method as well as freeze-thawing solid-liquid separation method for suspension solution and freeze-thawing separator for the same
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method
JP2005144202A (en) * 2003-11-11 2005-06-09 Kagome Co Ltd Advanced freeze/concentration apparatus
JP2010532458A (en) * 2007-07-02 2010-10-07 ウエー・スホーネン・ビヘール・ベー・ベー Apparatus and method for making ice cubes, and ice cube weighing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153859A (en) * 2000-11-20 2002-05-28 Kansho Riyo Gijutsu Kenkyusho:Kk Freeze-thawing solution separation method by advanced freeze concentration method as well as freeze-thawing solid-liquid separation method for suspension solution and freeze-thawing separator for the same
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method
JP2005144202A (en) * 2003-11-11 2005-06-09 Kagome Co Ltd Advanced freeze/concentration apparatus
JP2010532458A (en) * 2007-07-02 2010-10-07 ウエー・スホーネン・ビヘール・ベー・ベー Apparatus and method for making ice cubes, and ice cube weighing device

Also Published As

Publication number Publication date
JP2015174067A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
Miyawaki et al. Progressive freeze-concentration of apple juice and its application to produce a new type apple wine
JP2015204777A (en) Production method and system for fruit wine using surface progress freeze concentration method
NO155912B (en) PROCEDURE FOR THE PREPARATION OF A CONCENTRATED NATURAL CITRUS WARE PRODUCT.
US20140106033A1 (en) Beverage Supplement and Method for Making the Same
JP6712336B2 (en) Method for producing concentrated product by freeze concentration method
IE881476L (en) Commercially processed orange juice products having a more¹hand-squeezed character
EP3021688A2 (en) Process for preparing natural flavors
US20100287951A1 (en) Method and apparatus for flash frozen drinks mixes
BG62447B1 (en) Method for drinks produced by fermentation
CN106551037A (en) A kind of process for preparing instant tea
JP5656037B1 (en) Interfacial forward freeze concentration system
JP6598460B2 (en) Method for producing green tea extract
EP2236060A1 (en) A method for making an iced beverage and a package containing a liquid
JP5374020B2 (en) How to store fragrance ingredients
KR101719171B1 (en) An espresso coffee
JP4406599B2 (en) Freeze concentration method
US20210022382A1 (en) Production of spice plant part particles
CN101057698B (en) Method for improving stability of concentrated fruit juice
US11122822B2 (en) Extraction and concentration of food flavours
Horváth‐Kerkai Manufacturing fruit beverages
JP7525308B2 (en) Coffee drinks
EP3747273A1 (en) Process for cold brewing coffee and beverage obtained thereof
Stahl Concentration of citrus juices by freezing
JP6121661B2 (en) Interface forward freeze concentration apparatus and interface forward freeze concentration method
JP6438647B2 (en) Method for producing green tea extract

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5656037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees