JP2005142338A - Printed wiring board and method for manufacturing same - Google Patents

Printed wiring board and method for manufacturing same Download PDF

Info

Publication number
JP2005142338A
JP2005142338A JP2003376776A JP2003376776A JP2005142338A JP 2005142338 A JP2005142338 A JP 2005142338A JP 2003376776 A JP2003376776 A JP 2003376776A JP 2003376776 A JP2003376776 A JP 2003376776A JP 2005142338 A JP2005142338 A JP 2005142338A
Authority
JP
Japan
Prior art keywords
plating
insulating layer
layer
circuit
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003376776A
Other languages
Japanese (ja)
Inventor
Kenji Takai
健次 高井
Masaharu Matsuura
雅晴 松浦
Michio Moriike
教夫 森池
Kiyoshi Hasegawa
清 長谷川
Akishi Nakaso
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003376776A priority Critical patent/JP2005142338A/en
Publication of JP2005142338A publication Critical patent/JP2005142338A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board wherein the number of steps can be reduced and a substrate with high density can be formed at a low cost. <P>SOLUTION: The printed wiring board comprises at least one or more insulating layers, two circuit conductor layers formed on both surfaces of the insulating layer, and a via hole filled with an electroless plating metal to connect the two circuit conductor layers with each other. In this case, at least one circuit conductor layer is partly formed by a sputtering method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体装置等の搭載に用いるプリント配線板、およびその製造方法に関するものである。   The present invention relates to a printed wiring board used for mounting a semiconductor device and the like, and a manufacturing method thereof.

近年、半導体の高集積化、高密度化に伴い、その半導体を搭載する基板も配線の微細化と高密度化が求められている。この要求を実現する配線板として、薄膜多層基板がある。薄膜多層基板のビアの構造としては、積み重ね形のスタックトビア(或いはフィルドビア)と上層と下層のビアの位置をずらして接続するスタッガードビアの2種類がある。従来からあるスタックトビアの形成法としては、特許文献1にあるように、フォトリソ法と電気めっき法によりビアポストを予め形成し、絶縁層を塗布し、給電層のスッパッタを行った後、回路形成を行う方法がある。
特開平6-302965
In recent years, with higher integration and higher density of semiconductors, a substrate on which the semiconductor is mounted is required to have finer wiring and higher density. As a wiring board that realizes this requirement, there is a thin film multilayer substrate. As the via structure of the thin film multilayer substrate, there are two types of stacked vias (or filled vias) and staggered vias in which the positions of the upper and lower vias are shifted and connected. As a conventional method for forming a stacked via, as disclosed in Patent Document 1, via posts are formed in advance by photolithography and electroplating, an insulating layer is applied, a power supply layer is sputtered, and then a circuit is formed. There is a way to do it.
JP-A-6-302965

しかしながら、上記2種類のビアの形成方法には下記のような問題がある。   However, the above two types of via formation methods have the following problems.

まず、従来の方法でスタックトビアを形成する場合、予めビアポストを形成する必要があり、電気めっきを行うための給電層が必要になるため、工程が煩雑になる。   First, when forming a stacked via by a conventional method, it is necessary to form a via post in advance, and a power supply layer for performing electroplating is required, which complicates the process.

次に、スタッガードビアはビアの上にビアを配置することが出来ないために高密度化が困難になる。   Next, since the staggered via cannot be disposed on the via, it is difficult to increase the density.

本発明は、このような事情のもとで考え出されたものであって、以上に述べた問題を解消するためのものである。工程数を低減し、安価に高密度な基板を形成することを目的とする。   The present invention has been conceived under such circumstances, and is intended to solve the problems described above. An object is to reduce the number of steps and form a high-density substrate at low cost.

(1)本発明は、少なくとも1層以上の絶縁層と、その絶縁層の両面に設けられた2層の回路導体層と、その2層の回路導体層間を接続するための無電解めっき金属で充填されたビアホールからなるプリント配線板であり、少なくとも1層の回路導体層の一部がスパッタ法によって形成されていることを特徴とするプリント配線板を提供する。   (1) The present invention is an electroless plating metal for connecting at least one insulating layer, two circuit conductor layers provided on both surfaces of the insulating layer, and the two circuit conductor layers. A printed wiring board comprising a filled via hole, wherein a part of at least one circuit conductor layer is formed by sputtering.

(2)また、本発明は、内層回路板の上に絶縁層を設け、その絶縁層に層間接続のためのビアホールをあけ、そのビアホール内を無電解めっきにより穴埋めし、穴埋めした絶縁層の表面にスパッタ法により給電層を形成した後、フォトレジスト層を形成し、回路となる箇所にのみめっきによる回路導体を形成し、不要な箇所のめっきをエッチング除去する工程を有することを特徴とするプリント製造板の製造方法を提供する。     (2) Further, according to the present invention, an insulating layer is provided on the inner layer circuit board, a via hole for interlayer connection is formed in the insulating layer, the inside of the via hole is filled by electroless plating, and the surface of the insulating layer is filled. The method includes a step of forming a power supply layer by sputtering, forming a photoresist layer, forming a circuit conductor by plating only at a portion to be a circuit, and etching away an unnecessary portion of the plating. A method for producing a production plate is provided.

(3)さらに、本発明は、無電解めっきの穴埋め後、絶縁層の表面を研磨し、平滑化する工程を有することを特徴とする(2)に記載のプリント製造板の製造方法を提供する。     (3) Further, the present invention provides the method for producing a printed board according to (2), further comprising the step of polishing and smoothing the surface of the insulating layer after filling the holes in the electroless plating. .

さらに、本発明は、ビアホール内に無電解めっきを穴埋めする前処理として無電解パラジウムめっきを行うことを特徴とする(2)又は(3)に記載のプリント製造板の製造方法を提供する。     Furthermore, the present invention provides the method for producing a printed board according to (2) or (3), wherein electroless palladium plating is performed as a pretreatment for filling electroless plating in via holes.

発明によれば安価に高密度な多層基板を作製することが出来る。 According to the invention, a high-density multilayer substrate can be manufactured at low cost.

本発明の実施の形態を、図1を用いて説明する。   An embodiment of the present invention will be described with reference to FIG.

まず、予め導体回路が形成された基板を準備する。基板1としては、特に限定されないが、例えば、エポキシ樹脂、シアネートエステル樹脂、ポリイミド樹脂等を用いるいことができる。回路2としては、特に限定はされないが、例えば、銅やアルミニウムを用いることができ、銅を用いるのが電気特性上好ましい。回路2は、基板1上に銅箔をエッチングする等、公知の方法を用いて作製できる。   First, a substrate on which a conductor circuit is formed in advance is prepared. Although it does not specifically limit as the board | substrate 1, For example, an epoxy resin, cyanate ester resin, a polyimide resin etc. can be used. Although it does not specifically limit as the circuit 2, For example, copper and aluminum can be used and it is preferable on electrical characteristics to use copper. The circuit 2 can be manufactured using a known method such as etching a copper foil on the substrate 1.

次に、絶縁層3を、図1(a)に示すように予め導体回路が形成された基板1上に形成する。絶縁層としては、特に限定はされないが、例えば、フェノール樹脂、シアネートエステル樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂等の熱硬化性樹脂やフッ素樹脂、ポリフェニレンエーテル樹脂等の熱可塑性樹脂を用いることができる。中でも熱硬化性樹脂を用いるのが好ましく、後にスパッタを行うことからシアネートエステル樹脂やポリイミド樹脂が特に好ましい。これらの樹脂を、図1(a)に示すように予め導体回路が形成された基板上に、塗布又はラミネートし、硬化して絶縁層を形成する。絶縁層の厚みは10〜40μm程度が良い。   Next, the insulating layer 3 is formed on the substrate 1 on which a conductor circuit has been previously formed as shown in FIG. The insulating layer is not particularly limited. For example, a thermosetting resin such as phenol resin, cyanate ester resin, epoxy resin, polyimide resin, bismaleimide-triazine resin, or thermoplastic resin such as fluorine resin or polyphenylene ether resin is used. Can be used. Among these, it is preferable to use a thermosetting resin, and a cyanate ester resin and a polyimide resin are particularly preferable because sputtering is performed later. These resins are applied or laminated on a substrate on which a conductor circuit has been previously formed as shown in FIG. 1 (a) and cured to form an insulating layer. The thickness of the insulating layer is preferably about 10 to 40 μm.

次に、図1(b)に示すように、層間接続のための、ビア4を形成する。ビア径としては10〜100μm程度が好ましい。ビアをあけるのは、絶縁層にレーザを照射して形成する方法と、絶縁層に光硬化型の絶縁樹脂を用い、ビアホールとなる箇所をマスクしたフォトマスクを重ねて露光し、ビアホールとなる箇所の絶縁層を現像・除去する方法とを用いることができる。     Next, as shown in FIG. 1B, a via 4 for interlayer connection is formed. The via diameter is preferably about 10 to 100 μm. The via is formed by irradiating the insulating layer with a laser and using a photo-curing insulating resin for the insulating layer, exposing a photomask that masks a portion to be a via hole, and exposing the via hole to a portion to be a via hole And a method of developing and removing the insulating layer.

レーザを照射してビアホールをあけるときに用いるレーザ加工機のレーザの種類については、炭酸ガスレーザ、UV−YAGレーザ等、特に制限されないが、小径穴あけ性の観点からUV−YAGレーザが好ましい。穴あけ条件は、めっき銅の厚さと接着剤の種類及び接着剤の厚さにより調整しなければならず、実験的に求めるのが好ましく、エネルギー量としては、0.001W〜1Wの範囲内であって、レーザ発振用の電源をパルス状に印加し、一度に大量のエネルギーが集中しないよう制御しなければならない。この穴あけ条件の調整は、内層回路板の内層回路に達する穴があけられることと、穴径をできるだけ小さくするために、レーザ発振用の電源を駆動するパルス波形デューティー比で1/1000〜1/10の範囲で、1〜20ショット(パルス)であることが好ましい。波形デューティー比が1/1000未満であると穴をあけるのに時間がかかりすぎ効率的でなく、1/10を越えると照射エネルギーが大きすぎて穴径が1mm以上に大きくなり実用的でない。ショット(パルス)数は、穴内の接着剤が内層回路に達するところまで蒸発できるようにする数を実験的に求めればよく、1ショット未満では穴があけられず、20ショットを越えると、1ショットのパルスの波形デューティー比が1/1000近くであっても穴径が大きくなり実用的でない。   The type of laser of the laser processing machine used when opening a via hole by irradiating with a laser is not particularly limited, such as a carbon dioxide gas laser or a UV-YAG laser, but a UV-YAG laser is preferable from the viewpoint of small-diameter drillability. The drilling conditions must be adjusted according to the thickness of the plated copper, the type of adhesive, and the thickness of the adhesive, and are preferably obtained experimentally. The amount of energy is within the range of 0.001 W to 1 W. Therefore, it is necessary to control the laser oscillation power supply so that a large amount of energy is not concentrated at a time by applying a pulsed power supply. The adjustment of the drilling conditions is performed by adjusting the pulse waveform duty ratio for driving the laser oscillation power source to 1/1000 to 1/1 in order to make a hole reaching the inner layer circuit of the inner layer circuit board and to make the hole diameter as small as possible. In the range of 10, it is preferably 1 to 20 shots (pulses). If the waveform duty ratio is less than 1/1000, it takes too much time to make a hole and is not efficient. If it exceeds 1/10, the irradiation energy is too large and the hole diameter becomes 1 mm or more, which is not practical. The number of shots (pulses) should be determined experimentally so that the adhesive in the hole can evaporate to reach the inner layer circuit. If less than one shot, a hole cannot be drilled. Even if the waveform duty ratio of the pulse is near 1/1000, the hole diameter becomes large and is not practical.

ビアホールとなる箇所をマスクしたフォトマスクを重ねて露光し、ビアホールとなる箇所の絶縁層を現像・除去する方法においては、絶縁層に、光開始剤を混合することが必要となり、このような光開始剤としては、BF6、PF6、AsF6、SbF6を対アニオンとするスルホニウム塩、ヨードニウム塩等、種々のオニウム塩が使用できる。 In a method in which a photomask masking a portion that becomes a via hole is overlaid and exposed, and the insulating layer in the portion that becomes a via hole is developed and removed, it is necessary to mix a photoinitiator with the insulating layer. As the initiator, various onium salts such as a sulfonium salt and an iodonium salt having BF 6 , PF 6 , AsF 6 , and SbF 6 as a counter anion can be used.

次に、図1(c)に示すように無電解めっき6によってビア部4に穴埋めを行う。無電解めっきによって穴埋めするには、まず置換パラジウムめっきを行うのが好適である。置換パラジウムめっきは、めっき液中のパラジウムイオンの置換反応によって、銅上にパラジウム5皮膜を形成できるものであればよく、特に限定しない。置換パラジウムめっきを行った後に、ビアホール内部を無電解めっき6により充填する。無電解ニッケルめっき若しくは無電解銅めっき或いは両者の合金めっきを用いるのが穴埋めのために望ましい。その無電解ニッケルめっき液あるいは無電解銅めっき液には、ニッケル(銅)イオンとニッケル(銅)イオンの錯化剤、ニッケル(銅)イオンの還元剤、pH調整剤、及び必要な場合には安定剤などの添加剤を含むものを用いることが好ましい。無電解ニッケルめっき若しくは無電解銅めっきに用いる還元剤として、ヒドラジン、次亜リン酸塩、ジメチルアミンボランの内いずれかを含有する無電解めっき液を用いることが好ましい。無電解ニッケルめっき若しくは無電解めっきに用いるめっき液には、ニッケル(銅)イオンを少なくとも0.1ミリモル/l以上含有することが好ましく、0.1ミリモル/l未満では、めっき析出速度が遅くなるおそれがある。めっき析出速度は1〜20μm/分程度が望ましい。     Next, as shown in FIG. 1C, the via portion 4 is filled with electroless plating 6. In order to fill a hole by electroless plating, it is preferable to perform substitution palladium plating first. The displacement palladium plating is not particularly limited as long as it can form a palladium 5 film on copper by a substitution reaction of palladium ions in the plating solution. After performing the displacement palladium plating, the inside of the via hole is filled with the electroless plating 6. Use of electroless nickel plating or electroless copper plating or alloy plating of both is desirable for filling the hole. The electroless nickel plating solution or electroless copper plating solution includes a complexing agent of nickel (copper) ions and nickel (copper) ions, a reducing agent of nickel (copper) ions, a pH adjusting agent, and if necessary. It is preferable to use those containing additives such as stabilizers. As a reducing agent used for electroless nickel plating or electroless copper plating, it is preferable to use an electroless plating solution containing any one of hydrazine, hypophosphite, and dimethylamine borane. The plating solution used for electroless nickel plating or electroless plating preferably contains at least 0.1 mmol / l or more of nickel (copper) ions. There is a fear. The plating deposition rate is preferably about 1 to 20 μm / min.

めっきが終了後、絶縁層の表面を研磨し平滑化するため、層間樹脂絶縁層表面の整面処理を行なうことが好ましい。この整面処理は、羽布ロールやブラシロールを使用した整面研磨機やスクラブ研磨機、センチュリー研磨機を用い、層間樹脂絶縁層表面を羽布ロールやブラシロール、砥粒で機械的に研磨するものである。研磨は、0.1〜5μm程度行い、絶縁層と無電解めっきの高さが±3μm以内に収まるようにする。     After the plating is finished, in order to polish and smooth the surface of the insulating layer, it is preferable to perform a surface conditioning treatment on the surface of the interlayer resin insulating layer. In this surface treatment, a surface polishing machine, a scrubbing machine, or a century machine using a cloth roll or brush roll is used to mechanically polish the surface of the interlayer resin insulation layer with a cloth roll, brush roll, or abrasive grains. To do. Polishing is performed at about 0.1 to 5 μm so that the height of the insulating layer and the electroless plating is within ± 3 μm.

次に、図1(d)に示すように、絶縁層表面にプラズマ処理もしくはコロナ放電処理を行った後に、スパッタにより導体層7を形成する。スパッタリング方式としてはグロー放電方式、プラズマ方式、ビーム方式等があるが、ここでは特に限定しない。スパッタリングで形成される導体層は、Au、Pt、Ag、Al、Fe、W、Mo、Sn、Ni、Co、Cr、Ti、Cu及びTaから選ばれる少なくとも1種以上の金属を含有している層であることが好ましい。導体層の厚みは、0.01〜3.0μmが好ましい。より好ましい厚みは0.1〜1μmである。ドライプロセス用絶縁層上に形成する導体層7の厚みが0.01μm未満では導通が不充分で後の電気めっき工程で不良が発生し易く、3.0μmを超えるとエッチング時の導体溶解量が大きく微細配線形成に支障をきたす場合がある。   Next, as shown in FIG. 1 (d), after conducting plasma treatment or corona discharge treatment on the surface of the insulating layer, a conductor layer 7 is formed by sputtering. Sputtering methods include a glow discharge method, a plasma method, a beam method, and the like, but are not particularly limited here. The conductor layer formed by sputtering contains at least one metal selected from Au, Pt, Ag, Al, Fe, W, Mo, Sn, Ni, Co, Cr, Ti, Cu, and Ta. A layer is preferred. As for the thickness of a conductor layer, 0.01-3.0 micrometers is preferable. A more preferred thickness is 0.1 to 1 μm. If the thickness of the conductor layer 7 formed on the insulating layer for dry process is less than 0.01 μm, conduction is insufficient and defects are likely to occur in the subsequent electroplating process, and if it exceeds 3.0 μm, the amount of conductor dissolved during etching is reduced. There is a case where the formation of fine wiring is greatly hindered.

次に、図1(e)に示すように導体層の上にめっきレジスト8を形成する。めっきレジスト8の厚さは、その後めっきする導体の厚さと同程度かより厚い膜厚にするのが好適である。めっきレジストに使用できる樹脂には、例えば、HW−425(日立化成工業株式会社、商品名)、RY−3025(日立化成工業株式会社、商品名)等のドライフィルムがある。IVH上と導体回路となるべき個所には、めっきレジストを形成しない。   Next, a plating resist 8 is formed on the conductor layer as shown in FIG. The thickness of the plating resist 8 is preferably set to a thickness that is about the same as or thicker than the thickness of the conductor to be subsequently plated. Examples of the resin that can be used for the plating resist include dry films such as HW-425 (Hitachi Chemical Industry Co., Ltd., trade name) and RY-3025 (Hitachi Chemical Industry Co., Ltd., trade name). A plating resist is not formed on the IVH and where the conductor circuit is to be formed.

引き続き図1(f)に示すように回路パターン9を形成する。回路パターン9の形成は、電気めっきにより行うことができる。電気めっきには、通常プリント配線板で使用される硫酸銅電気めっきやピロリン酸電気めっきが使用できる。めっきの厚さは、回路導体として使用できればよく、1〜100μmの範囲であることが好ましく、5〜50μmの範囲であることがより好ましい。   Subsequently, a circuit pattern 9 is formed as shown in FIG. The circuit pattern 9 can be formed by electroplating. For the electroplating, copper sulfate electroplating or pyrophosphoric acid electroplating usually used for printed wiring boards can be used. The plating thickness may be used as a circuit conductor, and is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm.

次に、図1(g)に示すようにアルカリ性剥離液や硫酸あるいは市販のレジスト剥離液を用いてめっきレジストの剥離を行い、回路パターン以外の導体層をエッチング除去することで回路形成が終了する。   Next, as shown in FIG. 1 (g), the plating resist is stripped using an alkaline stripping solution, sulfuric acid, or a commercially available resist stripping solution, and the circuit formation is completed by etching away the conductor layer other than the circuit pattern. .

以下、実施例を用いて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例)
厚み0.6mmのエポキシ銅張り積層板であるMCL-679(日立化成工業株式会社製、商品名)の片側にフォトリソ法により回路形成を行い、絶縁層と導体回路2よりなる内層板(基板1)を作製した後、厚み0.06mmのプリプレグであるGXA-67Y(日立化成工業株式会社製、商品名)を、210℃、80分の条件で積層プレスした(図1(a))。
(Example)
A circuit is formed by photolithographic method on one side of MCL-679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), an epoxy copper-clad laminate with a thickness of 0.6 mm, and an inner layer board (substrate 1) consisting of an insulating layer and a conductor circuit 2 After that, GXA-67Y (trade name, manufactured by Hitachi Chemical Co., Ltd.), a prepreg having a thickness of 0.06 mm, was laminated and pressed at 210 ° C. for 80 minutes (FIG. 1A).

炭酸ガスインパクトレーザー穴あけ機L−500(住友重機械工業株式会社製、商品名)により、直径50μmのビア4をあけ、過マンガン酸カリウム65g/リットルと水酸化ナトリウム40g/リットルの混合水溶液に、液温70℃で20分間浸漬し、スミアの除去を行なった(図1(b))。   With a carbon dioxide impact laser drilling machine L-500 (trade name, manufactured by Sumitomo Heavy Industries, Ltd.), a via 4 having a diameter of 50 μm is opened, and a mixed aqueous solution of potassium permanganate 65 g / liter and sodium hydroxide 40 g / liter is used. It was immersed for 20 minutes at a liquid temperature of 70 ° C. to remove smear (FIG. 1B).

めっき前処理として、酸性脱脂液Z−200(株式会社ワールドメタル製、商品名)に液温60℃の条件で1分浸漬し、それを過硫酸ソーダ50g/Lに1分間浸漬し、続いて10vol%の硫酸に室温で1分間浸漬した。それをメルプレートアクチベータ350(メルテックス株式会社製、商品名)に室温で5分間浸漬し、パラジウム触媒を銅(導体回路2)の上に選択的に付与し、無電解ニッケル−リン合金めっきであるNIPS−100(日立化成工業株式会社製、商品名)に90℃で2時間浸漬し、銅ポスト(無電解めっき6)を形成し、樹脂表面を羽布研磨により平坦にした(図1(c))。   As a pretreatment for plating, it is immersed in acidic degreasing solution Z-200 (trade name, manufactured by World Metal Co., Ltd.) for 1 minute at a liquid temperature of 60 ° C., then immersed in sodium persulfate 50 g / L for 1 minute, It was immersed in 10 vol% sulfuric acid for 1 minute at room temperature. It is immersed in Melplate Activator 350 (trade name, manufactured by Meltex Co., Ltd.) at room temperature for 5 minutes, and a palladium catalyst is selectively applied onto copper (conductor circuit 2), and electroless nickel-phosphorus alloy plating is performed. It was immersed in a certain NIPS-100 (manufactured by Hitachi Chemical Co., Ltd., trade name) at 90 ° C. for 2 hours to form a copper post (electroless plating 6), and the resin surface was flattened by cloth polishing (FIG. 1 ( c)).

マグネトロンスパッタリング装置MLH6315D(日本真空技術社製、商品名)を用いて、表1に示す条件で、電気めっきのための給電層である導体層7(クロム層0.01μm、銅層0.1μm)を形成した(図1(d))。

Figure 2005142338
Conductor layer 7 (chromium layer 0.01 μm, copper layer 0.1 μm) as a power feeding layer for electroplating under the conditions shown in Table 1 using magnetron sputtering apparatus MLH6315D (trade name, manufactured by Nippon Vacuum Technology Co., Ltd.) Was formed (FIG. 1 (d)).
Figure 2005142338

めっきレジスト8としてドライフィルムフォトレジストであるRY−3025(日立化成工業株式会社製、商品名)を、導体層7の表面にラミネートし、電解銅めっきを行う箇所をマスクしたフォトマスクを介して紫外線を露光し、現像してめっきレジスト8を形成した(図1(e))。   RY-3025 (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is a dry film photoresist as the plating resist 8 is laminated on the surface of the conductor layer 7, and ultraviolet rays are passed through a photomask which masks a place where electrolytic copper plating is performed. Was exposed and developed to form a plating resist 8 (FIG. 1E).

硫酸銅浴を用いて、液温25℃、電流密度1.0A/dm2の条件で、電解銅めっきを20μmほど行い、回路パターン9を電解銅めっきにて形成した(図1(f))。 Using a copper sulfate bath, electrolytic copper plating was performed for about 20 μm under conditions of a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2 , and a circuit pattern 9 was formed by electrolytic copper plating (FIG. 1 (f)). .

レジスト剥離液であるHTO(ニチゴー・モートン株式会社製、商品名)でドライフィルムの除去を行い、引き続き余分な個所の無電解めっき層をエッチング除去することで基板を作製した(図1(g))。   The dry film was removed with HTO (trade name, manufactured by Nichigo-Morton Co., Ltd.), which is a resist stripping solution, and then the substrate was fabricated by removing the electroless plating layer at the excess portion by etching (FIG. 1 (g) ).

(試験方法)
実施例の方法で作製した基板を用いて信頼性試験を行った。試験は、図2に示すように上下の層を400ケのビアでチェーン状につないだパターンを用いて行った。ここで、図2中、20はビアを、21は絶縁層を、導体回路は22とする。
(Test method)
A reliability test was performed using the substrate manufactured by the method of the example. The test was performed using a pattern in which the upper and lower layers were connected in a chain with 400 vias as shown in FIG. In FIG. 2, 20 is a via, 21 is an insulating layer, and 22 is a conductor circuit.

(はんだフロート試験)
ビアの層間の接続信頼性を評価するため、260℃のはんだフロート試験を行った。1分毎に1ビアあたりの導通抵抗変化率を測定し、導通抵抗変化率が10%以上になる時間を調べ、3分以上であれば合格とした。結果を表2に示す。
(Solder float test)
In order to evaluate the connection reliability between via layers, a solder float test at 260 ° C. was performed. The rate of change in conduction resistance per via was measured every minute, and the time for the rate of change in conduction resistance to be 10% or more was examined. The results are shown in Table 2.

(ホットオイル試験)
層間の接続信頼性を評価するため、ホットオイル試験を行った。このホットオイル試験は260℃、10秒(オイル)と20℃、10秒(水)を1サイクルとして、1ビアあたりの導通抵抗変化率を10サイクル毎に測定し、導通抵抗変化率が10%以上になるサイクル数を調べた。100サイクル以上であれば合格とした。この結果も表2に示す。
(Hot oil test)
In order to evaluate the connection reliability between the layers, a hot oil test was conducted. This hot oil test is conducted at 260 ° C., 10 seconds (oil) and 20 ° C., 10 seconds (water) as one cycle, and the conduction resistance change rate per via is measured every 10 cycles, and the conduction resistance change rate is 10%. The number of cycles above was examined. If it was 100 cycles or more, it was determined to be acceptable. The results are also shown in Table 2.

(熱サイクル試験)
層間の接続信頼性を評価するため、熱サイクル試験を行った。この熱サイクル試験は気相125℃、30分と、−65℃、30分を1サイクルとして、1ビアあたりの導通抵抗変化率を10サイクル毎に測定し、導通抵抗変化率が10%以上になるサイクル数を調べた。1000サイクル以上であれば合格とした。この結果も表2に示す。

Figure 2005142338
(Thermal cycle test)
A thermal cycle test was conducted to evaluate the connection reliability between the layers. In this thermal cycle test, the conduction resistance change rate per via is measured every 10 cycles, with the gas phase 125 ° C. for 30 minutes and −65 ° C. for 30 minutes as one cycle, and the conduction resistance change rate is 10% or more. The number of cycles was examined. If it was 1000 cycles or more, it was determined to be acceptable. The results are also shown in Table 2.
Figure 2005142338

以上示したように本発明により作成した基板は実使用上特に問題ないレベルであることが分かる。   As described above, it can be seen that the substrate prepared according to the present invention is at a level that is not particularly problematic in actual use.

(a)〜(g)は、本発明の各工程における断面図である。(A)-(g) is sectional drawing in each process of this invention. 実施例で用いたパターンの断面図である。It is sectional drawing of the pattern used in the Example.

符号の説明Explanation of symbols

1. 基板
2. 導体回路
3. 絶縁層
4. ビア
5. パラジウム
6. 無電解めっき
7. 導体層(スパッタ層)
8. めっきレジスト
9. 回路パターン
20. ビア
21. 絶縁層
22. 導体回路
1. Board
2. Conductor circuit
3. Insulating layer
4. Via
5. Palladium
6. Electroless plating
7. Conductor layer (sputter layer)
8. Plating resist
9. Circuit pattern
20. Via
21. Insulating layer
22. Conductor circuit

Claims (4)

少なくとも1層以上の絶縁層と、その絶縁層の両面に設けられた2層の回路導体層と、その2層の回路導体層間を接続するための無電解めっき金属で充填されたビアホールからなるプリント配線板であり、少なくとも1層の回路導体層の一部がスパッタ法によって形成されていることを特徴とするプリント配線板。   A print comprising at least one or more insulating layers, two circuit conductor layers provided on both surfaces of the insulating layer, and via holes filled with electroless plating metal for connecting the two circuit conductor layers A printed wiring board, being a wiring board, wherein at least a part of one circuit conductor layer is formed by sputtering. 内層回路板の上に絶縁層を設け、その絶縁層に層間接続のためのビアホールをあけ、そのビアホール内を無電解めっきにより穴埋めし、穴埋めした絶縁層の表面にスパッタ法により給電層を形成した後、フォトレジスト層を形成し、回路となる箇所にのみめっきによる回路導体を形成し、不要な箇所のめっきをエッチング除去する工程を有することを特徴とするプリント製造板の製造方法。   An insulating layer was provided on the inner layer circuit board, a via hole for interlayer connection was made in the insulating layer, the via hole was filled with electroless plating, and a power feeding layer was formed on the surface of the filled insulating layer by sputtering. Thereafter, a method for producing a printed board comprising forming a photoresist layer, forming a circuit conductor by plating only at a portion to be a circuit, and etching away an unnecessary portion of the plating. 無電解めっきの穴埋め後、絶縁層の表面を研磨し、平滑化する工程を有することを特徴とする請求項2に記載のプリント製造板の製造方法。   The method for producing a printed board according to claim 2, further comprising a step of polishing and smoothing a surface of the insulating layer after filling the holes in the electroless plating. ビアホール内に無電解めっきを穴埋めする前処理として無電解パラジウムめっきを行うことを特徴とする請求項2又は3に記載のプリント製造板の製造方法。   The method for producing a printed board according to claim 2 or 3, wherein electroless palladium plating is performed as a pretreatment for filling the via holes with electroless plating.
JP2003376776A 2003-11-06 2003-11-06 Printed wiring board and method for manufacturing same Pending JP2005142338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376776A JP2005142338A (en) 2003-11-06 2003-11-06 Printed wiring board and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376776A JP2005142338A (en) 2003-11-06 2003-11-06 Printed wiring board and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2005142338A true JP2005142338A (en) 2005-06-02

Family

ID=34687716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376776A Pending JP2005142338A (en) 2003-11-06 2003-11-06 Printed wiring board and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2005142338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057419A1 (en) * 2007-11-01 2009-05-07 C. Uyemura & Co., Ltd. Method for forming circuit
US20160078998A1 (en) * 2014-09-16 2016-03-17 Innochips Technology Co., Ltd. Circuit protection device and method of manufacturing same
US9392703B2 (en) 2013-06-24 2016-07-12 Shinko Electric Industries Co., Ltd. Pad structure and mounted structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057419A1 (en) * 2007-11-01 2009-05-07 C. Uyemura & Co., Ltd. Method for forming circuit
JP2009117415A (en) * 2007-11-01 2009-05-28 C Uyemura & Co Ltd Method of forming circuit
US8262831B2 (en) 2007-11-01 2012-09-11 C. Uyemura & Co., Ltd. Method for forming a circuit pattern
KR101535126B1 (en) * 2007-11-01 2015-07-08 우에무라 고교 가부시키가이샤 Method for forming circuit
US9392703B2 (en) 2013-06-24 2016-07-12 Shinko Electric Industries Co., Ltd. Pad structure and mounted structure
US20160078998A1 (en) * 2014-09-16 2016-03-17 Innochips Technology Co., Ltd. Circuit protection device and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP5568618B2 (en) Method of manufacturing a circuit carrier and use of the method
TWI383721B (en) Printed wiring board
US20040025333A1 (en) Multilayered printed circuit board and manufacturing method therefor
JP2009010276A (en) Manufacturing method for wiring substrate
JP4032712B2 (en) Method for manufacturing printed wiring board
EP2163147A2 (en) Method of forming solid blind vias through the dielectric coating on high density interconnect (hdi) substrate materials
KR20090105162A (en) Method for manufacturing PCB
JP4000225B2 (en) Manufacturing method of multilayer printed wiring board
JP2005142338A (en) Printed wiring board and method for manufacturing same
JP2013093359A (en) Semiconductor chip mounting substrate and manufacturing method therefor
JP3049215B2 (en) Manufacturing method of wiring board
JP2009041112A (en) Copper etching liquid and manufacturing method of printed wiring board using the same
JP4370490B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JP2000036661A (en) Manufacture of build-up multilayer interconnection board
JP5369950B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP2000261149A (en) Mutilayer printed wiring board and manufacture thereof
JP4366632B2 (en) Metal-clad laminate with inner layer circuit, multilayer printed wiring board, and manufacturing method thereof
JP4051923B2 (en) Manufacturing method of build-up multilayer printed wiring board
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JP2004006611A (en) Method for producing printed wiring board
JP4934901B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4505907B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2005191080A (en) Laminate plate and multilayer printed circuit board using it and these manufacturing method
JP2001144446A (en) Method for producing multilayer printed wiring board and multilayer printed wiring board
JP2010067897A (en) Method of manufacturing printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324