JP2005140262A - Fluid shut-off device - Google Patents

Fluid shut-off device Download PDF

Info

Publication number
JP2005140262A
JP2005140262A JP2003378276A JP2003378276A JP2005140262A JP 2005140262 A JP2005140262 A JP 2005140262A JP 2003378276 A JP2003378276 A JP 2003378276A JP 2003378276 A JP2003378276 A JP 2003378276A JP 2005140262 A JP2005140262 A JP 2005140262A
Authority
JP
Japan
Prior art keywords
shut
drive
valve
fluid
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003378276A
Other languages
Japanese (ja)
Other versions
JP4501411B2 (en
JP2005140262A5 (en
Inventor
Masaki Yamaguchi
正樹 山口
Koichi Ueki
浩一 植木
Takahisa Otani
卓久 大谷
Nobumasa Kasashima
伸正 笠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003378276A priority Critical patent/JP4501411B2/en
Publication of JP2005140262A publication Critical patent/JP2005140262A/en
Publication of JP2005140262A5 publication Critical patent/JP2005140262A5/ja
Application granted granted Critical
Publication of JP4501411B2 publication Critical patent/JP4501411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid shut-off device capable of shutting off a fluid more positively and safely by a shut-off means. <P>SOLUTION: In the case a shut-off storage part 29 is in the middle of shutting off and a flow determining part 28 determines that there is a predetermined quantity or more of flow, a frequency switching means built in a shut-off driving part 26 sets driving frequency low and enhances the driving force of a driving means of a shut-off valve 23 such as a stepping motor to perform shut-off driving again. The probability of the shut-off valve 23 being able to shut off a gas passage 22 thereby becomes high, so that gas can be shut off more positively and safely. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流路の開閉を行う流体制御装置、特に、ガスの事故を未然に防ぐためガスメータなどに内蔵されるガス遮断装置の遮断機構として使用される遮断弁装置に関するものである。   The present invention relates to a fluid control device that opens and closes a flow path, and more particularly to a shut-off valve device used as a shut-off mechanism of a gas shut-off device built in a gas meter or the like in order to prevent a gas accident.

ガス事故を未然に防ぐため、従来より種種の安全装置が利用されており、中でもガスメータに内蔵され流量センサによりガスの流量を検出しマイクロコンピュータによりガスの使用状態を異常使用と判断した場合や、地震センサ、ガス圧力センサ、ガス警報器、一酸化炭素センサなどのセンサの状況を監視し危険状態と判断した場合は、ガスメータに内蔵された遮断弁によりガスを遮断する電池電源によるマイクロコンピュータ搭載ガス遮断装置内蔵ガスメータ(以下マイコンメータと省略する)は、安全性、ガス配管の容易性、経済的価格等の優位性のため普及が促進され、ほぼ全世帯普及が実施されるに至っており、ガス事故の飛躍的低減に貢献している。   In order to prevent gas accidents, various types of safety devices have been used in the past.In particular, when the flow rate of gas is detected by a flow sensor built in a gas meter and the use state of the gas is judged abnormal by a microcomputer, Microcomputer-equipped gas with a battery power source that shuts off the gas with a shut-off valve built in the gas meter when the status of sensors such as earthquake sensors, gas pressure sensors, gas alarms, carbon monoxide sensors, etc. Gas meter with built-in shut-off device (hereinafter abbreviated as microcomputer meter) has been promoted due to advantages such as safety, ease of gas piping, economic price, etc., and almost all households have been implemented. Contributes to drastic reduction of accidents.

このマイコンメータは、停電などの影響を受けないよう電池電源で駆動され、また全戸普及のため経済的な容量の電池が搭載されているため、遮断弁は開弁、閉弁状態の保持に電力を必要としない自己保持型電磁ソレノイドやPM型ステッピングモータで駆動されていて、マイコンメータシステムの異常時に必ず安全側、すなわちガス遮断側に状態移動するフェールセーフ構造ではない。   This microcomputer meter is driven by a battery power supply so as not to be affected by power outages, etc., and since it has an economical capacity battery for the spread of all units, the shutoff valve is open and the power is maintained to keep the valve closed. It is not a fail-safe structure that is driven by a self-holding electromagnetic solenoid or PM-type stepping motor that does not need to be used, and that always moves to the safe side, that is, the gas cutoff side, when the microcomputer meter system is abnormal.

このため、フェールセーフ構成でないことを補い、マイコンメータの安全性を高めるため様々なシステムバックアップ手段が考案、搭載されている。   For this reason, various system backup means have been devised and installed in order to compensate for the fact that the configuration is not fail-safe and to increase the safety of the microcomputer meter.

以下に従来の流体遮断装置(マイコンメータ)について説明する(例えば、特許文献1参照)。   A conventional fluid shutoff device (micrometer) will be described below (see, for example, Patent Document 1).

この特許文献1記載の流体遮断装置(燃料制御遮断装置)は、図11に示したように、ガスメータ1に内蔵されガス流路2を遮断可能な自己保持型の遮断弁3と、ガスの流量を検知する流量センサ等による流量検出部4と、この流量検出部4の流量信号5が所定の流量以上の場合遮断弁3を駆動する遮断駆動部6に遮断信号7を出力する流量判定部8と、遮断信号7が出力されたことを記憶する遮断記憶部9と、この遮断記憶部9の状態が遮断中でありかつ流量検出部4が流量信号5を出力した流量ありの状態の場合遮断駆動部6に遮断信号10を出力するアンドゲート等による遮断中流量あり判定部11と、これらの制御部4〜11および遮断弁3に電力を供給する電池等による電源部13より構成されている。流量判定部8、遮断記憶部9、遮断中流量あり判定部11はマイクロコンピュータ14に記録されたソフトウェア手段などで実現されている。   As shown in FIG. 11, the fluid shut-off device (fuel control shut-off device) described in Patent Document 1 includes a self-holding shut-off valve 3 built in the gas meter 1 and capable of shutting off the gas flow path 2, and a gas flow rate. A flow rate detection unit 4 that detects a flow rate sensor 4 and a flow rate determination unit 8 that outputs a cutoff signal 7 to a cutoff drive unit 6 that drives the cutoff valve 3 when the flow rate signal 5 of the flow rate detection unit 4 is greater than or equal to a predetermined flow rate. And a shut-off storage unit 9 for storing the output of the shut-off signal 7 and shut-off when the state of the shut-off storage unit 9 is shut off and the flow rate detection unit 4 outputs a flow rate signal 5 It is comprised from the determination part 11 with the flow amount during interruption | blocking by the AND gate etc. which output the interruption | blocking signal 10 to the drive part 6, and the power supply part 13 by the battery etc. which supply electric power to these control parts 4-11 and the cutoff valve 3. . The flow rate determination unit 8, the cutoff storage unit 9, and the cutoff level determination unit 11 are realized by software means recorded in the microcomputer 14.

以上のように構成された流体遮断装置の動作について説明する。   The operation of the fluid shut-off device configured as described above will be described.

ガス使用において危険性のない通常状態においては、遮断弁3は復帰(開弁)状態であり、ガスメータ1の下流のガス機具(図示せず)などにガスを供給可能である。このときガスの流量を検出した場合、流量検出部4は流量信号5を出力している。   In a normal state where there is no danger in using the gas, the shut-off valve 3 is in a return (opened) state, and gas can be supplied to a gas instrument (not shown) downstream of the gas meter 1. If the gas flow rate is detected at this time, the flow rate detection unit 4 outputs a flow rate signal 5.

流量信号5が異常に大きな流量であったり、流量信号5の継続が図示していないタイマー手段によって異常に長時間である場合など、ガス消費パターンが異常であると流量判定部8が判定した場合、遮断駆動部6に遮断信号7が出力され遮断弁3でガス流路2を遮断駆動すると同時に、遮断記憶部9に遮断駆動したことを記憶する。   When the flow rate determination unit 8 determines that the gas consumption pattern is abnormal, such as when the flow rate signal 5 is an abnormally large flow rate, or when the continuation of the flow rate signal 5 is abnormally long due to timer means (not shown) The shutoff signal 7 is output to the shutoff drive unit 6 to drive the shutoff valve 3 to shut off the gas flow path 2, and at the same time, the shutoff storage unit 9 stores the shutoff drive.

この後、流量検出部4が流量を検出した場合流量信号5が遮断中流量あり判定部11に出力され、遮断記憶部9の記憶が遮断中である場合、遮断中流量あり判定部11は遮断駆動部6に遮断信号10を出力し、遮断駆動部6は遮断弁3を再度遮断駆動する。   After that, when the flow rate detection unit 4 detects the flow rate, the flow rate signal 5 is output to the cutoff flow rate determination unit 11, and when the storage of the cutoff storage unit 9 is blocked, the cutoff flow rate determination unit 11 The shut-off signal 10 is output to the drive unit 6, and the shut-off drive unit 6 drives the shut-off valve 3 to shut off again.

このように図11に示す流体遮断装置は、遮断中に流量がある場合再度遮断動作を行うことによって、遮断弁3がフェールセーフ構造でないことを補いマイコンメータの安全性を高めている。
特開昭59−69618号公報
As described above, the fluid shut-off device shown in FIG. 11 improves the safety of the microcomputer meter by compensating for the shut-off valve 3 not having the fail-safe structure by performing the shut-off operation again when there is a flow rate during shut-off.
JP 59-69618

この種の流体遮断装置において、遮断中に流量があるということは、遮断弁の損失が増えるなど機構部が特性劣化しているか、電池電源部の電圧が低下するなど駆動部が特性劣化しているなどの原因により、遮断弁の動作が完了していないか動くことができないためであることが多い。   In this type of fluid shut-off device, the fact that there is a flow rate during shut-off means that the mechanism part has deteriorated characteristics such as an increase in the loss of the shut-off valve, or the drive part has deteriorated characteristics such as a voltage drop in the battery power supply part. This is often because the operation of the shut-off valve is not completed or cannot move due to a cause such as being present.

しかしながら、図11に示した従来の流体遮断装置は、遮断中に流量がある場合通常と同じ遮断動作を繰り返すだけであるため、機構部や駆動部が特性劣化している場合遮断弁3がガス流路2を遮断できる確率は高くならない。すなわち、遮断中に流量がある場合でもガス流路を遮断できない可能性が高いという課題を有していた。   However, since the conventional fluid shut-off device shown in FIG. 11 only repeats the same shut-off operation as usual when there is a flow rate during shut-off, the shut-off valve 3 is a gas when the characteristics of the mechanism part and the drive part are deteriorated. The probability that the flow path 2 can be blocked does not increase. That is, there is a problem that even when there is a flow rate during shutoff, there is a high possibility that the gas flow path cannot be shut off.

本発明はかかる従来の課題に鑑み、遮断弁の損失が増えるなど機構部が特性劣化しているか、電池電源部の電圧が低下するなど駆動部が特性劣化しているなどの場合でも、遮断弁がガス流路を遮断できる確率を高くしマイコンメータの安全性をより高くできる流体遮断装置を提供することを目的とする。   In view of such a conventional problem, the present invention provides a shut-off valve even in the case where the mechanism part has deteriorated characteristics such as an increase in the loss of the shut-off valve or the drive part has deteriorated characteristics such as a voltage drop of the battery power supply part. An object of the present invention is to provide a fluid shut-off device that can increase the probability that the gas flow path can be shut off and can increase the safety of the microcomputer meter.

前記従来の課題を解決するために、本発明の流体遮断装置は、流路を遮断する遮断手段と、流路遮断動作後に前記遮断手段の流路遮断動作が不完全であることを検出した場合、前記遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動するものである。   In order to solve the above-described conventional problems, the fluid blocking device of the present invention detects blocking means for blocking a flow path and that the flow blocking action of the blocking means is incomplete after the flow blocking action. Further, the driving force or the shut-off stroke of the shut-off means is increased to drive the shut-off means again.

前記流路遮断動作が不完全であることを検出する手段として、流量検出手段および所定量以上の流量を検出した場合分岐する制御手段、または、遮断手段の開閉状態を検出する開閉検出手段および開閉検出手段の出力が閉止でない場合分岐する制御手段を提供するものである。   As a means for detecting that the flow path blocking operation is incomplete, a flow rate detecting means and a control means for branching when a flow rate of a predetermined amount or more is detected, or an open / close detecting means for detecting an open / closed state of the blocking means and an open / close The control means for branching when the output of the detection means is not closed is provided.

前記駆動力を高める手段として、周波数同期モータの駆動周波数を低く設定する手段、モータの駆動電流を高く設定する手段、ステッピングモータの励磁方式を高出力側に切りかえる手段を提供するものであり、遮断ストロークを高める手段として、ステッピングモータの駆動ステップ数を多く設定する手段を提供するものである。   As means for increasing the driving force, means for setting the driving frequency of the frequency synchronous motor low, means for setting the motor driving current high, and means for switching the stepping motor excitation method to the high output side are provided. As means for increasing the stroke, means for setting a large number of driving steps of the stepping motor is provided.

上記のように、流路遮断動作後に遮断手段の流路遮断動作が不完全であることを検出した場合、遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   As described above, when it is detected that the flow path blocking operation of the blocking means is incomplete after the flow path blocking operation, the blocking means is driven again by increasing the driving force or the blocking stroke of the blocking means. The probability that the fluid passage such as gas can be blocked increases, and the fluid can be blocked more reliably or safely.

本発明の流体遮断装置は、流路を遮断する遮断手段と、流路遮断動作後に前記遮断手段の流路遮断動作が不完全であることを検出した場合、遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断する流体遮断装置を提供できる。   The fluid shut-off device of the present invention includes a shut-off means for shutting off the flow path, and when detecting that the flow shut-off operation of the shut-off means is incomplete after the flow shut-off operation, Since the shut-off means is driven to be shut off again, the probability that the shut-off means can shut off a fluid passage such as gas increases, and a fluid shut-off device that shuts off the fluid more reliably or safely can be provided.

第1の発明は、流路を遮断する遮断手段と、流路遮断動作後に前記遮断手段の流路遮断動作が不完全であることを検出した場合、前記遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動するものである。   The first invention increases the driving force or the blocking stroke of the blocking means when it detects that the blocking means for blocking the flow path and the flow blocking action of the blocking means after the flow blocking action is incomplete. Then, the shut-off means is driven to shut off again.

そして、流路遮断動作後に遮断手段の流路遮断動作が不完全であることを検出した場合、遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   Then, when it is detected that the flow path blocking operation of the blocking means is incomplete after the flow path blocking operation, the blocking means is configured to turn off the blocking means again by increasing the driving force or the blocking stroke of the blocking means. The probability that the fluid passage can be blocked increases, and the fluid can be blocked more reliably or safely.

第2の発明は、流体を遮断する遮断手段と、流量を検出する流量検出手段と、前記遮断手段を遮断駆動したことを記録する記憶手段と、前記遮断手段の駆動力または駆動量を可変可能な駆動手段とを有し、前記記憶手段が遮断中であり、前記流量検出手段の検出流量より流路遮断動作が不完全であることを検出した場合、前記駆動手段の駆動力を高くまたは遮断ストロークを長く設定して再度前記遮断手段を遮断駆動する制御手段を有するものである。   According to a second aspect of the present invention, the shutoff means for shutting off the fluid, the flow rate detection means for detecting the flow rate, the storage means for recording that the shutoff means is driven to shut off, and the driving force or drive amount of the shutoff means can be varied. Drive means, the storage means is shutting off, and when it is detected that the flow path shutoff operation is incomplete from the detected flow rate of the flow rate detecting means, the driving force of the drive means is increased or shut off. It has control means for setting the stroke longer and driving the shut-off means again.

そして、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、駆動手段の駆動力を高くまたは遮断ストロークを長く設定して再度遮断手段を遮断駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   When the storage means is shut off and the flow rate detection means detects a flow rate greater than or equal to a predetermined amount, the drive means of the drive means is set high or the cutoff stroke is set longer to drive the shut-off means again. The probability that the fluid passage such as gas can be blocked increases, and the fluid can be blocked more reliably or safely.

第3の発明は、流体を遮断する遮断手段と、前記遮断手段の開閉状態を検出する開閉検出手段と、前記遮断手段を遮断駆動したことを記録する記憶手段と、前記遮断手段の駆動力または駆動量を可変可能な駆動手段とを有し、前記記憶手段が遮断中であり、前記開閉検出手段の出力より流路遮断動作が不完全であることを検出した場合、前記駆動手段の駆動力を高くまたは遮断ストロークを長く設定して再度前記遮断手段を遮断駆動する制御手段を有するものである。   According to a third aspect of the present invention, there is provided a blocking means for blocking a fluid, an open / close detection means for detecting an open / closed state of the blocking means, a storage means for recording that the blocking means is driven to be driven, and a driving force of the blocking means or Drive means capable of varying the drive amount, and when the storage means is shut off, and the output of the open / close detection means detects that the flow path shut-off operation is incomplete, the drive force of the drive means Or a control means for setting the shut-off stroke long and setting the shut-off stroke to be long.

そして、記憶手段が遮断中であり、開閉検出手段の出力が閉止でない場合、駆動手段の駆動力を高くまたは遮断ストロークを長く設定して再度遮断手段を遮断駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   When the storage means is shut off and the output of the open / close detection means is not closed, the shutoff means is driven again by setting the driving force of the drive means high or setting the shutoff stroke long to shut off the shutoff means again. The probability that the fluid passage can be blocked increases, and the fluid can be blocked more reliably or safely.

第4の発明は、第1〜3のいずれか1つの発明の流体遮断装置において、遮断手段が周波数同期モータを駆動源とする遮断弁であり、駆動手段は駆動周波数を切り替え可能で、記憶手段が遮断中であり、流路遮断動作が不完全であることを検出した場合、前記駆動周波数を低く設定して再度前記遮断手段を駆動するものである。   According to a fourth invention, in the fluid shut-off device according to any one of the first to third inventions, the shut-off means is a shut-off valve using a frequency synchronous motor as a drive source, the drive means can switch the drive frequency, and the storage means Is shut off, and when it is detected that the flow path shut-off operation is incomplete, the drive frequency is set low and the shut-off means is driven again.

そして、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、または開閉検出手段の出力が閉止でない場合、駆動周波数を低く設定してステッピングモータ等同期モータの駆動トルクすなわち遮断手段の駆動力を高めて駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   If the storage means is shut off and the flow rate detection means detects a flow rate greater than a predetermined amount, or if the output of the open / close detection means is not closed, the drive frequency of the synchronous motor such as a stepping motor is set with a low drive frequency. That is, since the driving force of the shut-off means is increased, the probability that the shut-off means can shut off a fluid passage such as gas increases, and the fluid can be shut off more reliably or safely.

第5の発明は、第1〜3のいずれか1つの発明の流体遮断装置において、遮断手段がモータを駆動源とする遮断弁であり、駆動手段は駆動電流を切り替え可能で、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、または開閉検出手段の出力が閉止でない場合、前記駆動電流を高く設定して再度前記遮断手段を駆動するものである。   According to a fifth invention, in the fluid shut-off device according to any one of the first to third inventions, the shut-off means is a shut-off valve using a motor as a drive source, the drive means can switch the drive current, and the storage means is shut off If the flow rate detection means detects a flow rate of a predetermined amount or more, or if the output of the open / close detection means is not closed, the drive current is set high and the cutoff means is driven again.

そして、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、または開閉検出手段の出力が閉止でない場合、駆動電流を高く設定してモータの駆動トルクすなわち遮断手段の駆動力を高めて駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   If the storage means is shut off and the flow rate detection means detects a flow rate of a predetermined amount or more, or if the output of the open / close detection means is not closed, the drive current is set high and the motor drive torque, that is, the cutoff means Since the driving force is increased to drive, there is a high probability that the blocking means can block the fluid passage such as gas, and the fluid can be blocked more reliably or safely.

第6の発明は、第1〜3のいずれか1つの発明の流体遮断装置において、遮断手段がステッピングモータを駆動源とする遮断弁であり、駆動手段は励磁方式を切り替え可能で、記憶手段が遮断中であり、流路遮断動作が不完全であることを検出した場合、前記励磁方式を高出力側に切り替えて再度前記遮断手段を駆動するものである。   A sixth invention is the fluid shut-off device according to any one of the first to third inventions, wherein the shut-off means is a shut-off valve using a stepping motor as a drive source, the drive means can switch the excitation method, and the storage means If it is detected that the flow path blocking operation is incomplete, the excitation method is switched to the high output side and the blocking means is driven again.

そして、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、または開閉検出手段の出力が閉止でない場合、励磁方式を高出力側に切り替えてステッピングモータの駆動トルクすなわち遮断手段の駆動力を高めて駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   If the storage means is shut off and the flow rate detection means detects a flow rate of a predetermined amount or more, or if the output of the open / close detection means is not closed, the excitation method is switched to the high output side, that is, the stepping motor drive torque, Since the driving force of the shut-off means is increased and driven, the probability that the shut-off means can shut off a fluid passage such as a gas increases, and the fluid can be shut off more reliably or safely.

第7の発明は、第1〜3のいずれか1つの発明の流体遮断装置において、遮断手段がステッピングモータを駆動源とする遮断弁であり、駆動手段は駆動ステップ数を切り替え可能で、記憶手段が遮断中であり、流路遮断動作が不完全であることを検出した場合、前記駆動ステップ数を多く設定して再度前記遮断手段を駆動するものである。   A seventh invention is the fluid shut-off device according to any one of the first to third inventions, wherein the shut-off means is a shut-off valve using a stepping motor as a drive source, the drive means can switch the number of drive steps, and the storage means Is shut off, and when it is detected that the flow path shut-off operation is incomplete, the number of drive steps is set to be large and the shut-off means is driven again.

そして、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、または開閉検出手段の出力が閉止でない場合、前記駆動ステップ数を多く設定してステッピングモータの駆動量すなわち駆動手段の遮断ストロークを長く駆動するため、遮断手段がガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   When the storage means is shut off and the flow rate detection means detects a flow rate of a predetermined amount or more, or when the output of the open / close detection means is not closed, the drive step number is set by increasing the number of drive steps. Since the shut-off stroke of the drive means is driven long, the probability that the shut-off means can shut off a fluid passage such as gas increases, and the fluid can be shut off more reliably or safely.

以下、本発明の実施の形態について図面を用いて説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1の流体遮断装置のブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram of a fluid cutoff device according to Embodiment 1 of the present invention.

図1において、ガスメータ21に内蔵されガス流路22を遮断可能なPM型ステッピングモータや自己保持型電磁ソレノイド等によって駆動される自己保持型の遮断弁23と、ガスの流量を検知する磁気センサ、圧力センサ、超音波センサ、熱線流量センサ、流体素子センサ、質量流量センサ、フロートセンサ等による流量検出部24と、この流量検出部24の流量信号25が異常流量などの場合遮断弁23を駆動する遮断駆動部26に遮断信号27を出力する流量判定部28と、遮断信号27が出力されたことを記憶する遮断記憶部29と、この遮断記憶部29の状態が遮断中でありかつ流量検出部24の流量信号25が所定の流量Q0以上で流量ありと判定される場合、遮断駆動部26に遮断信号30を出力するアンドゲート等による遮断中流量あり判定部31と、これらの各部および遮断弁23に電力を供給する電池等による電源部33より構成され、遮断駆動部26は遮断信号27を受けて遮断弁23を通常の駆動力または遮断ストロークで駆動し、遮断信号30を受けた場合、すなわち遮断記憶部29の状態が遮断中でありかつ所定量以上の流量を検出した遮断中流量ありの状態の場合は駆動力を高出力側または遮断ストロークを長く切り替えて遮断駆動する。   In FIG. 1, a PM-type stepping motor built in the gas meter 21 and capable of shutting off the gas flow path 22, a self-holding shut-off valve 23 driven by a self-holding electromagnetic solenoid, and the like, a magnetic sensor for detecting the gas flow rate, A flow rate detection unit 24 such as a pressure sensor, an ultrasonic sensor, a heat ray flow rate sensor, a fluid element sensor, a mass flow rate sensor, or a float sensor, and the shutoff valve 23 is driven when the flow rate signal 25 of the flow rate detection unit 24 is an abnormal flow rate. A flow rate determination unit 28 that outputs a cut-off signal 27 to the cut-off drive unit 26, a cut-off storage unit 29 that stores the output of the cut-off signal 27, and the flow rate detection unit When the flow rate signal 25 of 24 is determined to be greater than or equal to the predetermined flow rate Q0, there is an interruption by an AND gate or the like that outputs a cutoff signal 30 to the cutoff drive unit 26. The medium flow rate determining unit 31 and a power source unit 33 such as a battery for supplying power to each of these units and the shut-off valve 23 are configured. The shut-off drive unit 26 receives the shut-off signal 27 and controls the shut-off valve 23 with a normal driving force or When driving with a shut-off stroke and receiving a shut-off signal 30, that is, when the state of the shut-off storage unit 29 is being shut off and a flow rate of more than a predetermined amount is detected, the driving force is increased to the high output side. Alternatively, the cut-off stroke is switched over for a long time to drive off.

流量判定部28、遮断記憶部29、遮断中流量あり判定部31、遮断駆動部26はマイクロコンピュータ34に記録されたソフトウェア手段や論理ICなどで実現されている。   The flow rate determination unit 28, the cutoff storage unit 29, the cutoff flow rate determination unit 31, and the cutoff drive unit 26 are realized by software means or a logic IC recorded in the microcomputer 34.

図2は本発明の実施の形態1の流体遮断装置の遮断駆動部および遮断弁のブロック図である。   FIG. 2 is a block diagram of the cutoff drive unit and the cutoff valve of the fluid cutoff device according to Embodiment 1 of the present invention.

図2において、遮断弁23はA相、B相の2相バイポーラ励磁方式のステッピングモータ41で駆動されていて、遮断駆動部42は駆動周波数43を切り替えるカウンタやタイマ等で構成された周波数切替手段44と、駆動周波数43に同期した駆動波形45を出力する分配手段46と、駆動波形45を2相バイポーラ駆動波形に変換すると同時に電力増幅する励磁回路47とで構成されている。   In FIG. 2, the shut-off valve 23 is driven by a two-phase bipolar excitation stepping motor 41 of A phase and B phase, and the shut-off drive unit 42 is a frequency switching means composed of a counter, a timer or the like for switching the drive frequency 43. 44, distribution means 46 for outputting a drive waveform 45 synchronized with the drive frequency 43, and an excitation circuit 47 for converting the drive waveform 45 into a two-phase bipolar drive waveform and simultaneously amplifying the power.

異常流量などによる通常駆動時においては周波数切替手段44は例えば200Hzの高い周波数の駆動周波数43を分配手段46に出力し、遮断中流量ありの状態の場合においては周波数切替手段44は例えば100Hzの低い駆動周波数43に切り替えて分配手段46に出力する。   During normal driving due to abnormal flow or the like, the frequency switching means 44 outputs a driving frequency 43 having a high frequency of, for example, 200 Hz to the distributing means 46, and in the case of a flow rate during shut-off, the frequency switching means 44 is as low as 100 Hz, for example. The drive frequency 43 is switched to output to the distribution means 46.

図3は本発明の実施の形態1の流体遮断装置の遮断弁の断面図である。   FIG. 3 is a cross-sectional view of the cutoff valve of the fluid cutoff device according to Embodiment 1 of the present invention.

図3において、A相、B相に接続された電磁コイル51、52と、磁力を伝達するヨーク53、54、55、56とでステータ57が構成され、永久磁石58と、流路59に突出したリード部60を有するリードシャフト61とで構成されたロータ62がステータ57と同軸に配され、流路59に形成された弁座63と当接することによってガス等の流体を遮断可能でリードナット部64を有する弁体65がリード部60に螺合して配され、弁体65自身の回転は爪状の回動規制手段66によって規制されているためロータ62の回転によって弁体65は軸方向に前後動する。   In FIG. 3, a stator 57 is constituted by electromagnetic coils 51, 52 connected to A phase and B phase and yokes 53, 54, 55, 56 that transmit magnetic force, and protrudes into a permanent magnet 58 and a flow path 59. A rotor 62 composed of a lead shaft 61 having a lead portion 60 is arranged coaxially with the stator 57 and can shut off a fluid such as a gas by abutting against a valve seat 63 formed in the flow path 59 so that the lead nut can be shut off. Since the valve body 65 having the portion 64 is screwed to the lead portion 60 and the rotation of the valve body 65 is restricted by the claw-like rotation restricting means 66, the rotation of the rotor 62 causes the valve body 65 to pivot. Move back and forth in the direction.

ステータ57とロータ62は2相励磁型のPM(永久磁石)型のステッピングモータを形成しており、電磁コイル51、52すなわちA相、B相に1/2・πの位相差を有する矩形波等の回転磁界を発生する電流を印加することによってロータ62が回転し、電流を印加しない場合は永久磁石58による静止トルクによってロータ62は回転を阻止されている。   The stator 57 and the rotor 62 form a two-phase excitation type PM (permanent magnet) stepping motor. The electromagnetic coils 51 and 52, that is, rectangular waves having a phase difference of 1/2 · π between the A phase and the B phase. The rotor 62 is rotated by applying a current that generates a rotating magnetic field such as, and when the current is not applied, the rotor 62 is prevented from rotating by the stationary torque by the permanent magnet 58.

図3においては、弁体65側から見てCW(時計回り)方向にロータ62が回転した場合は弁体65が弁座63に近づく遮断動作を行い、CCW(反時計回り)に回転した場合は弁体65が弁座63から遠ざかる復帰動作を行う。   In FIG. 3, when the rotor 62 rotates in the CW (clockwise) direction when viewed from the valve body 65 side, the valve body 65 performs a shut-off operation to approach the valve seat 63 and rotates in the CCW (counterclockwise) direction. Performs a return operation in which the valve body 65 moves away from the valve seat 63.

図4は図3の遮断弁の駆動部であるステッピングモータの駆動周波数と脱調トルクの関係を表すグラフの一例である。   FIG. 4 is an example of a graph showing the relationship between the drive frequency of the stepping motor, which is the drive unit of the shut-off valve of FIG. 3, and the step-out torque.

図4のように、駆動周波数が低い方が高いトルクを発生させ、例えば駆動周波数200Hzでは1.9mN・mであるのに対し、低周波数100Hzでは3.2mN・mと強いトルクを発生させ、すなわち低周波数駆動時には遮断弁の駆動力が強くなることがわかる。   As shown in FIG. 4, a lower driving frequency generates a higher torque, for example, a driving frequency of 200 Hz is 1.9 mN · m, while a low frequency of 100 Hz generates a strong torque of 3.2 mN · m, That is, it can be seen that the driving force of the shut-off valve becomes stronger during low frequency driving.

以上のように構成された流体遮断装置の動作について説明する。   The operation of the fluid shut-off device configured as described above will be described.

流量検出部24の流量信号25を流量判定部28が判定し、ガスの使用状態に異常がない場合、遮断信号27は出力されず、遮断弁23はガス流路22を開放した復帰状態を保つ。   When the flow rate determination unit 28 determines the flow rate signal 25 of the flow rate detection unit 24 and there is no abnormality in the gas usage state, the cutoff signal 27 is not output, and the cutoff valve 23 maintains the return state in which the gas flow path 22 is opened. .

流量検出部24の流量信号25を流量判定部28が判定し、合計流量が異常に多い場合や、個別流量区分の使用時間が異常に長い場合などガスの使用状態に異常がある場合や、地震センサ、圧力センサ、ガス漏れセンサ等のその他センサ36や、遮断スイッチや通信回線等による外部遮断命令37を受けた場合、遮断信号27が遮断駆動部26に出力され、遮断駆動部26は遮断弁23を通常駆動によって遮断すると同時に、遮断記憶部29に遮断信号を出力したこと、すなわち遮断中であることを記憶させる。   When the flow rate determination unit 28 determines the flow rate signal 25 of the flow rate detection unit 24 and the total flow rate is abnormally high, or when the usage time of the individual flow rate category is abnormally long, or when the gas usage state is abnormal, When an external shut-off command 37 is received by other sensors 36 such as a sensor, a pressure sensor, a gas leak sensor, etc., or a shut-off switch or a communication line, a shut-off signal 27 is output to the shut-off drive unit 26, and the shut-off drive unit 26 23 is shut off by normal drive, and at the same time, the shut-off storage unit 29 stores that the shut-off signal is output, that is, the shut-off is being performed.

図2、図3および図4によると、この通常駆動時の駆動周波数は例えば200Hzであり、遮断弁23のステッピングモータ41は1.9mN・mのトルクで遮断動作を行う。   According to FIG. 2, FIG. 3, and FIG. 4, the driving frequency during this normal driving is 200 Hz, for example, and the stepping motor 41 of the shut-off valve 23 performs the shut-off operation with a torque of 1.9 mN · m.

遮断動作後、遮断弁23は永久磁石58による静止トルクによって無通電でも遮断状態を保持する。   After the shut-off operation, the shut-off valve 23 keeps the shut-off state even when there is no energization due to the stationary torque by the permanent magnet 58.

遮断弁23の損失が増えるなど機構部が特性劣化したり、電池による電源部33の電圧が低下するなど駆動部が特性劣化しているの場合、遮断弁23の遮断動作が完了していないことがある。   When the mechanism part is deteriorated in characteristics such as an increase in the loss of the shut-off valve 23 or the drive part is deteriorated in characteristics such as a voltage drop of the power source 33 due to the battery, the shut-off operation of the shut-off valve 23 is not completed. There is.

この遮断動作未完了状態においては遮断記憶部29は遮断中であることを記憶し、流量検出部24が流量を検出し流量判定部28が流量信号25を所定の流量Q0以上で流量ありと判定した場合流量ありの信号が発生し、遮断中でありかつ流量があるため遮断中流量あり判定部31は遮断駆動部26に遮断信号30を出力し、遮断駆動部26は高出力駆動で遮断弁23を再遮断する。   In this incomplete state of shutoff operation, the shutoff storage unit 29 stores that the shutoff is in progress, the flow rate detection unit 24 detects the flow rate, and the flow rate determination unit 28 determines that the flow rate signal 25 is greater than or equal to the predetermined flow rate Q0 and that there is a flow rate. In this case, a signal with a flow rate is generated, and the cutoff flow rate determination unit 31 outputs a cutoff signal 30 to the cutoff drive unit 26 because the cutoff is present and the flow rate is high, and the cutoff drive unit 26 is a high output drive and cutoff valve. 23 is shut off again.

すなわち、図2において周波数切替手段44は例えば100Hzの低い駆動周波数43を分配手段46に出力し励磁回路47を介して遮断弁44を駆動するため、図4に示したように遮断弁23の駆動部であるステッピングモータ41は3.2mN・mの強いトルクを発し遮断弁23は強い駆動力で再遮断を行う。   That is, in FIG. 2, since the frequency switching means 44 outputs a driving frequency 43 as low as 100 Hz to the distributing means 46 and drives the shut-off valve 44 via the excitation circuit 47, the drive of the shut-off valve 23 as shown in FIG. The stepping motor 41, which is a part, emits a strong torque of 3.2 mN · m, and the shut-off valve 23 re-blocks with a strong driving force.

このため、機構部や駆動部が特性劣化している場合でも、遮断弁23はガスなどの流体通路を遮断できる確率が高くなり、より確実または安全に流体を遮断することができる。   For this reason, even when the mechanism part and the drive part have deteriorated characteristics, the probability that the shutoff valve 23 can shut off a fluid passage such as gas becomes high, and the fluid can be shut off more reliably or safely.

なお、ここで遮断記憶部の遮断中記録を複数とし、遮断中流量ありで再遮断した後再度流量がある場合、駆動周波数をより低くして遮断弁を再再遮断してよく、この場合はより確実または安全に流体を遮断することができる。   In this case, when the shut-off memory unit has a plurality of records during shut-off, and there is a flow rate again after shut-off with a flow rate during shut-off, the shut-off valve may be shut off again by lowering the drive frequency. The fluid can be shut off more reliably or safely.

次に図示していない外部手段などから復帰信号があたえられた場合、図示していない復帰駆動部が遮断弁23の駆動部であるステッピングモータ41を例えばCCW方向に逆転駆動することによってガス流路22を開弁復帰すると同時に、遮断記憶部29の遮断中記録をリセットし、ガスを流すことができる通常状態に復帰する。   Next, when a return signal is given from an external means (not shown) or the like, the return drive unit (not shown) reversely drives the stepping motor 41, which is the drive unit of the shut-off valve 23, in the CCW direction, for example. At the same time that the valve 22 is returned to the open state, the shut-off record of the shut-off storage unit 29 is reset, and the normal state in which the gas can flow is restored.

このように、本発明の実施の形態1の流体遮断装置は、遮断記憶部29が遮断中であり、流量判定部28が所定量以上の流量があると判定した場合、周波数切替手段44が駆動周波数43を低く設定してステッピングモータ41など遮断弁23の駆動手段の駆動力を高めて駆動するため、遮断弁23がガス流路22を遮断できる確率が高くなり、より確実または安全にガスを遮断することができる。   As described above, in the fluid shutoff device according to the first embodiment of the present invention, when the shutoff storage unit 29 is shutting down and the flow rate determination unit 28 determines that there is a flow rate greater than or equal to the predetermined amount, the frequency switching unit 44 is driven. Since the frequency 43 is set low and the driving force of the driving means of the shut-off valve 23 such as the stepping motor 41 is increased and driven, the probability that the shut-off valve 23 can shut off the gas flow path 22 is increased, and the gas is supplied more reliably or safely. Can be blocked.

(実施の形態2)
図5は本発明の実施の形態2の流体遮断装置の遮断駆動部および遮断弁のブロック図である。
(Embodiment 2)
FIG. 5 is a block diagram of the shut-off drive unit and shut-off valve of the fluid shut-off device according to Embodiment 2 of the present invention.

図5において、遮断弁23は図1、図2、図3と同様であり、遮断駆動部72は制限抵抗73を介する通常電流回路74と制限抵抗のない高電流回路75を切り替える電流切替手段76と、電流切替手段76からの電流に応じて電力増幅する励磁回路77とで構成されている。   In FIG. 5, the shut-off valve 23 is the same as in FIGS. 1, 2, and 3, and the shut-off drive unit 72 switches current switching means 76 that switches between a normal current circuit 74 through a limiting resistor 73 and a high current circuit 75 without a limiting resistor. And an excitation circuit 77 that amplifies power in accordance with the current from the current switching means 76.

異常流量などによる通常駆動時においては電流切替手段76は例えば200mAの低い駆動電流を励磁回路77に出力し、遮断中流量ありの状態の場合においては電流切替手段76は例えば400mAの高い駆動電流に切り替えて励磁回路77を駆動する。   At the time of normal driving due to abnormal flow or the like, the current switching means 76 outputs a driving current as low as 200 mA, for example, to the excitation circuit 77, and in the case of a flow rate during interruption, the current switching means 76 increases to a driving current as high as 400 mA, for example. The excitation circuit 77 is driven by switching.

図6は図3の遮断弁の駆動部であるPM型ステッピングモータの駆動電流と脱調トルクの関係を表すグラフの一例である。   FIG. 6 is an example of a graph showing the relationship between the drive current and the step-out torque of the PM type stepping motor that is the drive unit of the shut-off valve in FIG.

図6のように、駆動電流が高い方が高いトルクを発生させ、例えば駆動電流200mAでは1.3mN・mであるのに対し、高電流400mAでは5.2mN・mと強いトルクを発生させ、すなわち高電流駆動時には遮断弁の駆動力が強くなることがわかる。   As shown in FIG. 6, a higher driving current generates a higher torque. For example, a driving current of 200 mA is 1.3 mN · m, while a high current of 400 mA generates a strong torque of 5.2 mN · m. That is, it can be seen that the driving force of the shut-off valve becomes stronger during high current driving.

その他の部分は、図1の流体遮断装置と同様であり説明を省略する。   Other parts are the same as those of the fluid shutoff device of FIG.

このように、本発明の実施の形態2の流体遮断装置は、遮断記憶部29が遮断中であり、流量判定部28が所定量以上の流量があると判定した場合、電流切替手段76が駆動電流を高く設定してステッピングモータ41など遮断弁23の駆動手段の駆動力を高めて駆動するため、遮断弁23がガス流路22を遮断できる確率が高くなり、より確実または安全にガスを遮断することができる。   Thus, in the fluid shutoff device according to the second embodiment of the present invention, when the shutoff storage unit 29 is shutting down and the flow rate determination unit 28 determines that there is a flow rate greater than or equal to the predetermined amount, the current switching unit 76 is driven. Since the driving force of the driving means of the shutoff valve 23 such as the stepping motor 41 is increased by setting the current high, the probability that the shutoff valve 23 can shut off the gas flow path 22 is increased, and the gas is shut off more reliably or safely. can do.

なお、電流切替手段は制限抵抗の有無を切り替えることによって電流を切り替えるよう説明したが、駆動電圧や、励磁回路の電源電圧、駆動回路のONデューティーを切り替えることによって電流を切り替えてもよい。   Although the current switching unit has been described as switching the current by switching the presence or absence of the limiting resistor, the current may be switched by switching the drive voltage, the power supply voltage of the excitation circuit, and the ON duty of the drive circuit.

(実施の形態3)
図7は本発明の実施の形態3の流体遮断装置の遮断駆動部および遮断弁のブロック図である。
(Embodiment 3)
FIG. 7 is a block diagram of a cutoff drive unit and a cutoff valve of the fluid cutoff device according to Embodiment 3 of the present invention.

図7において、遮断弁23は図1、図2、図3と同様であり、遮断駆動部82は励磁方式を1−2相励磁と2相励磁に切り替えて分配手段83に出力する励磁方式切替手段84と、駆動波形85を2相バイポーラ駆動波形に変換すると同時に電力増幅する励磁回路86とで構成されている。   In FIG. 7, the shut-off valve 23 is the same as in FIGS. 1, 2, and 3, and the shut-off drive unit 82 switches the excitation method to 1-2 phase excitation and 2-phase excitation and outputs to the distribution means 83. It comprises means 84 and an excitation circuit 86 that converts the drive waveform 85 into a two-phase bipolar drive waveform and simultaneously amplifies the power.

異常流量などによる通常駆動時においては励磁方式切替手段84は1−2相励磁の駆動信号87分配手段83に出力するため遮断弁23は消費電流の低い弱いトルクで駆動され、遮断中流量ありの状態の場合においては励磁方式切替手段84は2相励磁駆動信号88を分配手段83に出力し励磁回路86は消費電流の高い強いトルクで遮断弁23を駆動する。   At the time of normal driving due to abnormal flow or the like, the excitation method switching means 84 outputs to the drive signal 87 distribution means 83 for 1-2 phase excitation, so that the shut-off valve 23 is driven with a weak torque with low current consumption and there is a flow rate during shut-off. In the state, the excitation method switching means 84 outputs a two-phase excitation drive signal 88 to the distribution means 83, and the excitation circuit 86 drives the shut-off valve 23 with a strong torque with high current consumption.

その他の部分は、図1の流体遮断装置と同様であり説明を省略する。   Other parts are the same as those of the fluid shutoff device of FIG.

このように、本発明の実施の形態3の流体遮断装置は、通常状態では消費電流の低い1−2相励磁駆動信号87で遮断弁23が駆動され、遮断記憶部29が遮断中であり、流量判定部28が所定量以上の流量があると判定した場合、励磁方式切替手段84が高出力の2相励磁駆動信号88に切り替えステッピングモータ41など遮断弁23の駆動手段の駆動力を高めて駆動するため、遮断弁23がガス流路22を遮断できる確率が高くなり、より確実または安全にガスを遮断することができる。   Thus, in the fluid shutoff device according to the third embodiment of the present invention, the shutoff valve 23 is driven by the 1-2 phase excitation drive signal 87 with low current consumption in the normal state, and the shutoff storage unit 29 is shutting down. When the flow rate determination unit 28 determines that there is a flow rate greater than or equal to a predetermined amount, the excitation method switching means 84 switches to a high-output two-phase excitation drive signal 88 to increase the driving force of the drive means of the shutoff valve 23 such as the stepping motor 41. Since it drives, the probability that the shutoff valve 23 can shut off the gas flow path 22 increases, and the gas can be shut off more reliably or safely.

なお、励磁方式切替手段は1−2相励磁と2相励磁を切り替えるとしたが、モノポーラ駆動とバイポーラ駆動とを切り替えてもよい。   The excitation method switching means switches between 1-2-phase excitation and 2-phase excitation, but may switch between monopolar driving and bipolar driving.

(実施の形態4)
図8は本発明の実施の形態4の流体遮断装置の遮断駆動部および遮断弁のブロック図である。
(Embodiment 4)
FIG. 8 is a block diagram of the shut-off drive unit and shut-off valve of the fluid shut-off device according to the fourth embodiment of the present invention.

図8において、遮断弁23は図1、図2、図3と同様であり、遮断駆動部92は遮断弁23を駆動するステップ数を通常ステップ数と長ステップ数に切り替えて分配手段93に出力する駆動ステップ切替手段94と、駆動波形89を2相バイポーラ駆動波形に変換すると同時に電力増幅する励磁回路96とで構成されている。   In FIG. 8, the shut-off valve 23 is the same as in FIGS. 1, 2, and 3, and the shut-off drive unit 92 switches the number of steps for driving the shut-off valve 23 between the normal step number and the long step number and outputs it to the distribution means 93. Drive step switching means 94 for converting the drive waveform 89 into a two-phase bipolar drive waveform and simultaneously amplifying the power.

異常流量などによる通常駆動時においては駆動ステップ切替手段94は通常のステップ数、例えば遮断弁23のリードピッチが2mm/回転で、ステッピングモータ41のステップ数が48ステップ/回転で、全ストロークが6mmである場合、最低必要ステップ数は144ステップであるため、通常のステップ数は安全率を1.25とし180ステップの駆動パルスを出力し、遮断中流量ありの状態の場合においては駆動ステップ切替手段94は通常のステップ数の1.5倍の長ステップ数270ステップの駆動パルスを出力し、遮断弁23が遮断完了した後は、余った駆動パルスは遮断弁23の駆動部であるステッピングモータ41を閉弁遮断位置で脱調させて消費される。   At the time of normal driving due to abnormal flow, the drive step switching means 94 has a normal number of steps, for example, the lead pitch of the shut-off valve 23 is 2 mm / rotation, the step number of the stepping motor 41 is 48 steps / rotation, and the total stroke is 6 mm. Since the minimum required number of steps is 144, the normal number of steps is a safety factor of 1.25, and a 180-step drive pulse is output. 94 outputs a drive pulse having a long step number 270 steps which is 1.5 times the normal step number. After the shut-off valve 23 is shut off, the remaining drive pulse is a stepping motor 41 which is a drive unit of the shut-off valve 23. Is consumed at the valve closing cutoff position.

その他の部分は、図1の流体遮断装置と同様であり説明を省略する。   Other parts are the same as those of the fluid shutoff device of FIG.

遮断中流量ありの状態となるのは、遮断弁23の損失が増えるなど機構部が特性劣化したり、電池による電源部33の電圧が低下するなど駆動部が特性劣化しているの場合、遮断弁23の遮断動作が完了していないためであり、このとき遮断弁23の駆動部であるステッピングモータ41は駆動パルスに対し部分的に脱調して動作しないため、遮断に必要なストロークに対して駆動パルス数が不足し、結果として駆動パルス数不足で遮断動作未完了となることが多い。   A state with a flow rate during shut-off occurs when the mechanism part deteriorates in characteristics such as an increase in the loss of the shut-off valve 23, or when the drive part deteriorates in characteristics such as a voltage drop of the power source 33 due to the battery. This is because the shut-off operation of the valve 23 is not completed. At this time, the stepping motor 41 which is a drive unit of the shut-off valve 23 does not operate by partially stepping out with respect to the drive pulse. In many cases, the number of drive pulses is insufficient, and as a result, the cutoff operation is not completed due to the insufficient number of drive pulses.

このような場合においても、本発明の実施の形態4の流体遮断装置は、通常状態では通常のステップ数180ステップで遮断弁23が駆動されるのに対し、遮断記憶部29が遮断中であり、流量判定部28が所定量以上の流量があると判定した場合、駆動ステップ切替手段94が長ストロークに相当する長ステップ数270ステップの駆動パルスに切り替えステッピングモータ41など遮断弁23の駆動手段の駆動ストロークを高めて駆動するため、遮断弁23がガス流路22を遮断できる確率が高くなり、より確実または安全にガスを遮断することができる。   Even in such a case, in the fluid shut-off device according to the fourth embodiment of the present invention, the shut-off valve 23 is driven with a normal number of steps of 180 in the normal state, whereas the shut-off storage unit 29 is shut off. When the flow rate determination unit 28 determines that there is a flow rate greater than or equal to the predetermined amount, the drive step switching means 94 switches to a drive pulse with a long step number of 270 steps corresponding to a long stroke. Since the drive stroke is increased to drive, the probability that the shutoff valve 23 can shut off the gas flow path 22 is increased, and the gas can be shut off more reliably or safely.

(実施の形態5)
図9は本発明の実施の形態5の流体遮断装置のブロック図である。
(Embodiment 5)
FIG. 9 is a block diagram of a fluid cutoff device according to Embodiment 5 of the present invention.

図9において、ガスメータ101に内蔵されガス流路22を遮断可能なPM型ステッピングモータや自己保持型電磁ソレノイド等によって駆動される自己保持型の遮断弁23と、遮断弁23の開閉状態を検出するリミットスイッチ、磁気スイッチ、インダクタンス検出手段、サーチコイル、フォトセンサ、感圧素子などからなる開閉検出部102と、ガスの流量を検知する磁気センサ、圧力センサ、超音波センサ、熱線流量センサ、流体素子センサ、質量流量センサ、フロートセンサ等による流量検出部24と、この流量検出部24の流量信号25が異常流量などの場合遮断弁23を駆動する遮断駆動部26に遮断信号27を出力する遮断判定部103と、遮断信号27が出力されたことを記憶する遮断記憶部29と、この遮断記憶部29の状態が遮断中でありかつ開閉検出部102の信号が未閉止の場合遮断駆動部26に遮断信号104を出力するアンドゲート等による遮断中閉止不完全判定部105と、これらの各部および遮断弁23に電力を供給する電池等による電源部33より構成され、遮断駆動部26は遮断信号27を受けて遮断弁23を通常の駆動力または遮断ストロークで駆動し、遮断信号104を受けた場合、すなわち遮断記憶部29の状態が遮断中でありかつ開閉検出部102の信号が未閉止の遮断中閉止不完全の場合は駆動力を高出力側または遮断ストロークを長く切り替えて遮断駆動する。   In FIG. 9, a self-holding shut-off valve 23 that is built in the gas meter 101 and is driven by a PM stepping motor, a self-holding electromagnetic solenoid, or the like that can shut off the gas flow path 22, and the open / close state of the shut-off valve 23 are detected. Open / close detection unit 102 including a limit switch, a magnetic switch, an inductance detection means, a search coil, a photosensor, a pressure-sensitive element, etc., and a magnetic sensor, a pressure sensor, an ultrasonic sensor, a heat ray flow sensor, and a fluid element that detect a gas flow rate A shut-off determination that outputs a shut-off signal 27 to a shut-off drive unit 26 that drives the shut-off valve 23 when the flow rate detector 25 of the sensor, mass flow sensor, float sensor, etc. Unit 103, a block storage unit 29 that stores the output of the block signal 27, and the block storage unit 29 When the state is being shut off and the signal of the open / close detection unit 102 is not closed, the shut-off incomplete determination unit 105 during shut-off by an AND gate or the like that outputs a shut-off signal 104 to the shut-off drive unit 26, these parts, and the shut-off valve 23 When the cutoff drive unit 26 receives the cutoff signal 27 to drive the cutoff valve 23 with a normal driving force or cutoff stroke and receives the cutoff signal 104, that is, When the state of the shut-off storage unit 29 is shut-off and the signal of the open / close detection unit 102 is not fully closed during shut-off, the driving force is cut off by switching the high output side or the shut-off stroke for a long time.

流量判定部103、遮断記憶部29、遮断中閉止不完全判定部105、遮断駆動部26はマイクロコンピュータ106に記録されたソフトウェア手段や論理ICなどで実現されている。   The flow rate determination unit 103, the cutoff storage unit 29, the closed / incomplete cutoff determination unit 105, and the cutoff drive unit 26 are realized by software means or a logic IC recorded in the microcomputer 106.

遮断駆動部26は実施の形態1〜4と同様の手段が可能であるので説明を省略する。   Since the cutoff drive unit 26 can be the same as in the first to fourth embodiments, the description thereof is omitted.

図10は本発明の実施の形態5の流体遮断装置の遮断弁および開閉検出部の断面図である。   FIG. 10 is a cross-sectional view of the shutoff valve and the open / close detection unit of the fluid shutoff device according to the fifth embodiment of the present invention.

図10において、遮断弁23は図1、図2、図3と同様であり、開閉検出部102は、遮断弁23と同軸に配され一端は遮断弁23が閉弁時に当接し他端に永久磁石112が固定されたロッド113と、ロッド113を摺動可能に保持するハウジング111と、ロッド113を遮断弁23方向に付勢する遮断弁23の閉弁力より弱いスプリング114と、ガスメータ内のガス隔壁115を距てて配され永久磁石112が接近した時ONとなり離反した時OFFとなる磁気リードスイッチ116とで構成されている。   10, the shut-off valve 23 is the same as that shown in FIGS. 1, 2, and 3. The on / off detector 102 is arranged coaxially with the shut-off valve 23, and one end contacts the shut-off valve 23 when the valve is closed, and the other end is permanent. A rod 113 to which a magnet 112 is fixed, a housing 111 that slidably holds the rod 113, a spring 114 that is weaker than the closing force of the shut-off valve 23 that biases the rod 113 in the direction of the shut-off valve 23, and a gas meter The magnetic reed switch 116 is arranged at a distance from the gas partition wall 115 and turns on when the permanent magnet 112 approaches and turns off when the permanent magnet 112 moves away.

上記開閉検出部102の動作は、遮断弁23の弁体65の位置が開弁状態の場合は、ロッド113は弁体65に当接せずスプリング114に付勢されて図中右側にあるため、永久磁石112は磁気リードスイッチ116から離反し磁気リードスイッチはOFFの状態であり、遮断弁23の弁体65の位置が閉弁状態の場合は、ロッド113は弁体65に当接し遮断弁23の閉弁力に押されて図中左側に移動し、永久磁石112は磁気リードスイッチ116に接近し磁気リードスイッチがONの状態となることによって、遮断弁23の開閉状態を電機信号として検出することが可能である。   When the position of the valve body 65 of the shutoff valve 23 is in the open state, the opening / closing detection unit 102 operates because the rod 113 is not in contact with the valve body 65 and is biased by the spring 114 and is on the right side in the figure. When the permanent magnet 112 is separated from the magnetic reed switch 116 and the magnetic reed switch is OFF, and the position of the valve body 65 of the shut-off valve 23 is closed, the rod 113 contacts the valve body 65 and the shut-off valve When the permanent magnet 112 approaches the magnetic reed switch 116 and the magnetic reed switch is turned on, the open / closed state of the shut-off valve 23 is detected as an electrical signal. Is possible.

そして、異常流量などによる通常駆動時においては遮断駆動部26は通常の駆動力または遮断ストローク遮断弁23を駆動し、遮断記憶部29の状態が遮断中であり、かつ開閉検出部102の信号が未閉止の場合、すなわち磁気リードスイッチがOFFの遮断中閉止不完全の場合は、駆動力を高出力側または遮断ストロークを長く切り替えて遮断駆動する。   During normal driving due to an abnormal flow rate or the like, the cutoff drive unit 26 drives the normal driving force or cutoff stroke cutoff valve 23, the cutoff storage unit 29 is in the cutoff state, and the signal of the open / close detection unit 102 is If not closed, that is, if the magnetic reed switch is not fully closed while the magnetic reed switch is OFF, the driving force is cut off by switching the high output side or the interruption stroke for a long time.

このように、本発明の実施の形態5の流体遮断装置は、遮断記憶部29が遮断中であり、開閉検出部102の信号が未閉止の遮断中閉止不完全の場合は、遮断駆動部26を高駆動力または遮断ストロークを長く切り替えて遮断駆動するため、遮断弁23がガス流路22を遮断できる確率が高くなり、より確実または安全にガスを遮断することができる。   As described above, in the fluid shutoff device according to the fifth embodiment of the present invention, when the shutoff storage unit 29 is shutting down and the signal of the open / close detection unit 102 is unclosed during incomplete shutoff, the shutoff drive unit 26 Therefore, the probability that the shutoff valve 23 can shut off the gas flow path 22 is increased, and the gas can be shut off more reliably or safely.

なお、上記実施の形態において遮断弁23は2相バイポーラ励磁PM型ステッピングモータ41が駆動手段である例を説明したが、3相以上でもモノポーラ励磁でもよく、その他同機モータでもよく、実施の形態2に示した遮断駆動部が電流を切り替える例においてはDCブラシレスモータ等の直流モータも選択可能である。   In the above-described embodiment, the example in which the two-phase bipolar excitation PM type stepping motor 41 is the driving means has been described as the shut-off valve 23, but it may be three-phase or more, monopolar excitation, or other same-machine motor. In the example in which the cutoff drive unit shown in FIG. 5 switches the current, a DC motor such as a DC brushless motor can also be selected.

また、遮断弁23の駆動手段はモータだけでなく、駆動電流を変えることによって、または駆動時間を変えることによって遮断駆動力を変えることができるよう設計された電磁ソレノイドでもよく、また、遮断駆動力を変えることができるれば必ずしも自己保持型モータ、電磁ソレノイドでなくてもよい。   Further, the drive means of the shut-off valve 23 may be not only a motor but also an electromagnetic solenoid designed so that the shut-off drive force can be changed by changing the drive current or by changing the drive time. If it can be changed, it is not necessarily a self-holding motor or an electromagnetic solenoid.

また、遮断弁23はロータ62の回転が直接弁体65の前後動に変換されるよう説明したが、減速機構を介してもよく、磁気カップリングなど気密隔壁を介した動力伝達でもよい。   Further, the shutoff valve 23 has been described so that the rotation of the rotor 62 is directly converted into the longitudinal movement of the valve body 65, but it may be through a speed reduction mechanism or power transmission through an airtight partition such as a magnetic coupling.

また、この流体遮断装置はガスメータ21に内蔵され、電池電源部33によって駆動されるよう説明したが、孤立型流体遮断装置でもよく燃焼機器等に内蔵されてもよく、商用電源、自己発電電源などで駆動されてもよく、コンデンサ等のアックアップ電源で駆動されてもよい。   In addition, the fluid shut-off device has been described as being built in the gas meter 21 and driven by the battery power supply unit 33. However, the fluid shut-off device may be an isolated fluid shut-off device or may be built in a combustion device, or the like. Or may be driven by an backup power source such as a capacitor.

以上のように、本発明にかかる流体遮断装置は、遮断手段の流路遮断動作が不完全であることを検出した場合、遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動するため、遮断手段がガスなどの流体通路を遮断できる確率を高くすることが出来るので、モータ駆動などで確実な動作が必要な装置に応用できる。   As described above, the fluid shut-off device according to the present invention increases the driving force or the shut-off stroke of the shut-off means and drives the shut-off means again when it detects that the flow shut-off operation of the shut-off means is incomplete. Therefore, since the probability that the blocking means can block the fluid passage such as gas can be increased, it can be applied to a device that requires a reliable operation by motor driving or the like.

本発明の実施の形態1の流体遮断装置のブロック図1 is a block diagram of a fluid shutoff device according to a first embodiment of the present invention. 本発明の実施の形態1の流体遮断装置の遮断駆動部および遮断弁のブロック図1 is a block diagram of a cutoff drive unit and a cutoff valve of the fluid cutoff device according to Embodiment 1 of the present invention. 本発明の実施の形態1の流体遮断装置の遮断弁の断面図Sectional drawing of the cutoff valve of the fluid cutoff apparatus of Embodiment 1 of this invention 図3の遮断弁の駆動部であるPM型ステッピングモータの駆動周波数と脱調トルクの関係を表すグラフ3 is a graph showing the relationship between the drive frequency of the PM stepping motor, which is the drive unit of the shut-off valve in FIG. 3, and the step-out torque. 本発明の実施の形態2の流体遮断装置の遮断駆動部および遮断弁のブロック図Block diagram of shut-off drive unit and shut-off valve of fluid shut-off device according to embodiment 2 of the present invention 図3の遮断弁の駆動部であるPM型ステッピングモータの駆動電流と脱調トルクの関係を表すグラフ3 is a graph showing the relationship between the drive current and the step-out torque of the PM type stepping motor that is the drive unit of the shut-off valve in FIG. 本発明の実施の形態3の流体遮断装置の遮断駆動部および遮断弁のブロック図Block diagram of shut-off drive unit and shut-off valve of fluid shut-off device according to embodiment 3 of the present invention 本発明の実施の形態4の流体遮断装置の遮断駆動部および遮断弁のブロック図Block diagram of shut-off drive unit and shut-off valve of fluid shut-off device according to embodiment 4 of the present invention 本発明の実施の形態5の流体遮断装置のブロック図Block diagram of fluid shutoff device according to embodiment 5 of the present invention 本発明の実施の形態5の流体遮断装置の遮断弁および開閉検出部の断面図Sectional drawing of the cutoff valve and opening / closing detection part of the fluid cutoff apparatus of Embodiment 5 of this invention 従来の流体遮断装置のブロック図Block diagram of a conventional fluid shutoff device

符号の説明Explanation of symbols

22 ガス流路(流路)
23 遮断弁(遮断手段)
24 流量検出部(流量検出手段)
26、42、72、82、92 遮断駆動部(駆動手段)
29 遮断記憶部(記憶手段)
31 遮断中流量あり判定部(制御手段)
41 ステッピングモータ
44 周波数切替手段
76 電流切替手段
84 励磁方式切替手段
94 駆動ステップ切替手段
102 開閉検出部(開閉検出手段)
105 遮断中閉止不完全判定部(制御手段)


22 Gas flow path (flow path)
23 Shut-off valve (shut-off means)
24 Flow rate detection unit (flow rate detection means)
26, 42, 72, 82, 92 Blocking drive part (drive means)
29. Blocking storage unit (storage means)
31 Determining part with flow rate during shutdown (control means)
41 Stepping motor 44 Frequency switching means 76 Current switching means 84 Excitation system switching means 94 Drive step switching means 102 Open / close detection unit (open / close detection means)
105 Incomplete closing determination unit during shutdown (control means)


Claims (7)

流路を遮断する遮断手段と、流路遮断動作後に前記遮断手段の流路遮断動作が不完全であることを検出した場合、前記遮断手段の駆動力または遮断ストロークを高めて再度遮断手段を遮断駆動する流体遮断装置。 A blocking means for blocking the flow path, and when the flow blocking action of the blocking means is detected to be incomplete after the flow blocking action, the driving force or the blocking stroke of the blocking means is increased to shut the blocking means again. Driven fluid shut-off device. 流体を遮断する遮断手段と、流量を検出する流量検出手段と、前記遮断手段を遮断駆動したことを記録する記憶手段と、前記遮断手段の駆動力または駆動量を可変可能な駆動手段とを有し、前記記憶手段が遮断中であり、前記流量検出手段の検出流量より流路遮断動作が不完全であることを検出した場合、前記駆動手段の駆動力を高くまたは遮断ストロークを長く設定して再度前記遮断手段を遮断駆動する制御手段を有する流体遮断装置。 A shut-off means for shutting off the fluid; a flow rate detecting means for detecting the flow rate; a storage means for recording that the shut-off means is driven to be shut off; and a drive means capable of changing the driving force or drive amount of the shut-off means. If the storage means is shut off, and it is detected that the flow path shut-off operation is incomplete from the detected flow rate of the flow rate detecting means, the driving force of the drive means is set higher or the shut-off stroke is set longer. A fluid shut-off device having control means for driving the shut-off means again. 流体を遮断する遮断手段と、前記遮断手段の開閉状態を検出する開閉検出手段と、前記遮断手段を遮断駆動したことを記録する記憶手段と、前記遮断手段の駆動力または駆動量を可変可能な駆動手段とを有し、前記記憶手段が遮断中であり、前記開閉検出手段の出力より流路遮断動作が不完全であることを検出した場合、前記駆動手段の駆動力を高くまたは遮断ストロークを長く設定して再度前記遮断手段を遮断駆動する制御手段を有する流体遮断装置。 A shut-off means for shutting off the fluid, an open / close detecting means for detecting an open / close state of the shut-off means, a storage means for recording that the shut-off means is driven to shut off, and a driving force or drive amount of the shut-off means can be varied. Drive means, and when the storage means is shut off, and it is detected from the output of the open / close detection means that the flow path shut-off operation is incomplete, the drive force of the drive means is increased or the shut-off stroke is increased. A fluid shut-off device having a control means for setting the length long and driving the shut-off means again. 遮断手段が周波数同期モータを駆動源とする遮断弁であり、駆動手段は駆動周波数を切り替え可能で、記憶手段が遮断中であり、流路遮断動作が不完全であることを検出した場合、前記駆動周波数を低く設定して再度前記遮断手段を駆動することを特徴とする請求項1〜3のいずれか1項に記載の流体遮断装置。 When the shut-off means is a shut-off valve using a frequency synchronous motor as a drive source, the drive means can switch the drive frequency, the storage means is shut off, and it is detected that the flow path shut-off operation is incomplete, The fluid cutoff device according to any one of claims 1 to 3, wherein the cutoff means is driven again with a drive frequency set low. 遮断手段がモータを駆動源とする遮断弁であり、駆動手段は駆動電流を切り替え可能で、記憶手段が遮断中であり、流量検出手段が所定量以上の流量を検出した場合、または開閉検出手段の出力が閉止でない場合、前記駆動電流を高く設定して再度前記遮断手段を駆動することを特徴とする請求項1、2または3記載の流体遮断装置。 The shut-off means is a shut-off valve that uses a motor as the drive source, the drive means can switch the drive current, the storage means is shut off, and the flow rate detection means detects a flow rate greater than a predetermined amount, or the open / close detection means 4. The fluid shut-off device according to claim 1, wherein when the output is not closed, the shut-off means is driven again by setting the drive current high. 遮断手段がステッピングモータを駆動源とする遮断弁であり、駆動手段は励磁方式を切り替え可能で、記憶手段が遮断中であり、流路遮断動作が不完全であることを検出した場合、前記励磁方式を高出力側に切り替えて再度前記遮断手段を駆動することを特徴とする請求項1〜3のいずれか1項に記載の流体遮断装置。 If the shut-off means is a shut-off valve using a stepping motor as a drive source, the drive means can switch the excitation method, the storage means is shut off, and if it detects that the flow path shut-off operation is incomplete, the excitation means 4. The fluid shut-off device according to claim 1, wherein the shut-off unit is driven again by switching the system to a high output side. 遮断手段がステッピングモータを駆動源とする遮断弁であり、駆動手段は駆動ステップ数を切り替え可能で、記憶手段が遮断中であり、流路遮断動作が不完全であることを検出した場合、前記駆動ステップ数を多く設定して再度前記遮断手段を駆動することを特徴とする請求項1〜3のいずれか1項に記載の流体遮断装置。 When the shut-off means is a shut-off valve using a stepping motor as a drive source, the drive means can switch the number of drive steps, the storage means is shut off, and it is detected that the flow path shut-off operation is incomplete, The fluid cutoff device according to any one of claims 1 to 3, wherein the cutoff means is driven again after setting a large number of drive steps.
JP2003378276A 2003-11-07 2003-11-07 Fluid shut-off device Expired - Fee Related JP4501411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378276A JP4501411B2 (en) 2003-11-07 2003-11-07 Fluid shut-off device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378276A JP4501411B2 (en) 2003-11-07 2003-11-07 Fluid shut-off device

Publications (3)

Publication Number Publication Date
JP2005140262A true JP2005140262A (en) 2005-06-02
JP2005140262A5 JP2005140262A5 (en) 2006-10-26
JP4501411B2 JP4501411B2 (en) 2010-07-14

Family

ID=34688717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378276A Expired - Fee Related JP4501411B2 (en) 2003-11-07 2003-11-07 Fluid shut-off device

Country Status (1)

Country Link
JP (1) JP4501411B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085920A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Fluid-interrupting device
JP2008138702A (en) * 2006-11-30 2008-06-19 Rinnai Corp Method for controlling motor safety valve
JP2009115253A (en) * 2007-11-08 2009-05-28 Panasonic Corp Fluid shutoff device
JP2009115252A (en) * 2007-11-08 2009-05-28 Panasonic Corp Fluid shutoff apparatus
JP2009115254A (en) * 2007-11-08 2009-05-28 Panasonic Corp Fluid shutoff device
JP2010084827A (en) * 2008-09-30 2010-04-15 Toto Ltd Hot and cold water mixing device
JP2010156597A (en) * 2008-12-26 2010-07-15 Toho Gas Co Ltd Isolation valve failure detection method and gas meter
JP2010223527A (en) * 2009-03-25 2010-10-07 Panasonic Corp Fluid cutoff device
WO2012066947A1 (en) * 2010-11-17 2012-05-24 カヤバ工業株式会社 Damper
JP2013200046A (en) * 2012-03-23 2013-10-03 Noritz Corp Bath water heater system and three-way valve driving device
CN103608605A (en) * 2011-06-23 2014-02-26 萱场工业株式会社 Shock absorber
JP2015048966A (en) * 2013-08-30 2015-03-16 株式会社パロマ Heating cooker
EP2304267A4 (en) * 2008-07-02 2016-12-07 öHLINS RACING AB Electrically controlled valve arrangement for a shock absorber
US20170198705A1 (en) * 2014-07-01 2017-07-13 Mitsubishi Heavy Industries, Ltd. Multi-stage compression system, control device, control method, and program
CN114008363A (en) * 2019-11-25 2022-02-01 爱模系统有限公司 Actuator and fluid control apparatus
JP7391393B2 (en) 2019-11-25 2023-12-05 株式会社エム・システム技研 Actuators and fluid control equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969618A (en) * 1982-10-14 1984-04-19 Matsushita Electric Ind Co Ltd Fuel cut control device
JPS61175383A (en) * 1985-01-31 1986-08-07 Keihin Seiki Mfg Co Ltd Electrically operated valve
JPS6331455A (en) * 1986-07-22 1988-02-10 Canon Inc Motor
JPH0426348A (en) * 1990-05-17 1992-01-29 Seiko Epson Corp Synchronous motor
JPH096439A (en) * 1995-06-22 1997-01-10 Toto Ltd Flow rate regulator
JPH10267153A (en) * 1997-03-24 1998-10-09 Matsushita Electric Ind Co Ltd Controller for fluid control valve
JP2000181546A (en) * 1998-12-14 2000-06-30 Matsushita Electric Ind Co Ltd Gas flow rate controller
JP2001141096A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Electric motor and fluid control valve using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969618A (en) * 1982-10-14 1984-04-19 Matsushita Electric Ind Co Ltd Fuel cut control device
JPS61175383A (en) * 1985-01-31 1986-08-07 Keihin Seiki Mfg Co Ltd Electrically operated valve
JPS6331455A (en) * 1986-07-22 1988-02-10 Canon Inc Motor
JPH0426348A (en) * 1990-05-17 1992-01-29 Seiko Epson Corp Synchronous motor
JPH096439A (en) * 1995-06-22 1997-01-10 Toto Ltd Flow rate regulator
JPH10267153A (en) * 1997-03-24 1998-10-09 Matsushita Electric Ind Co Ltd Controller for fluid control valve
JP2000181546A (en) * 1998-12-14 2000-06-30 Matsushita Electric Ind Co Ltd Gas flow rate controller
JP2001141096A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Electric motor and fluid control valve using the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085920A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Fluid-interrupting device
JP2008138702A (en) * 2006-11-30 2008-06-19 Rinnai Corp Method for controlling motor safety valve
JP4698563B2 (en) * 2006-11-30 2011-06-08 リンナイ株式会社 Control method of motor safety valve
JP2009115253A (en) * 2007-11-08 2009-05-28 Panasonic Corp Fluid shutoff device
JP2009115252A (en) * 2007-11-08 2009-05-28 Panasonic Corp Fluid shutoff apparatus
JP2009115254A (en) * 2007-11-08 2009-05-28 Panasonic Corp Fluid shutoff device
EP2304267A4 (en) * 2008-07-02 2016-12-07 öHLINS RACING AB Electrically controlled valve arrangement for a shock absorber
JP2010084827A (en) * 2008-09-30 2010-04-15 Toto Ltd Hot and cold water mixing device
JP2010156597A (en) * 2008-12-26 2010-07-15 Toho Gas Co Ltd Isolation valve failure detection method and gas meter
JP2010223527A (en) * 2009-03-25 2010-10-07 Panasonic Corp Fluid cutoff device
JP2012107696A (en) * 2010-11-17 2012-06-07 Kyb Co Ltd Damper
CN103069191A (en) * 2010-11-17 2013-04-24 萱场工业株式会社 Damper
US9284014B2 (en) 2010-11-17 2016-03-15 Kyb Corporation Damper
WO2012066947A1 (en) * 2010-11-17 2012-05-24 カヤバ工業株式会社 Damper
CN103608605A (en) * 2011-06-23 2014-02-26 萱场工业株式会社 Shock absorber
US9273745B2 (en) 2011-06-23 2016-03-01 Kyb Corporation Shock absorber
JP2013200046A (en) * 2012-03-23 2013-10-03 Noritz Corp Bath water heater system and three-way valve driving device
JP2015048966A (en) * 2013-08-30 2015-03-16 株式会社パロマ Heating cooker
US20170198705A1 (en) * 2014-07-01 2017-07-13 Mitsubishi Heavy Industries, Ltd. Multi-stage compression system, control device, control method, and program
US10400774B2 (en) * 2014-07-01 2019-09-03 Mitsubishi Heavy Industries Compressor Corporation Multi-stage compression system, control device, control method, and program
CN114008363A (en) * 2019-11-25 2022-02-01 爱模系统有限公司 Actuator and fluid control apparatus
JP7391393B2 (en) 2019-11-25 2023-12-05 株式会社エム・システム技研 Actuators and fluid control equipment
US11927274B2 (en) 2019-11-25 2024-03-12 M-System Co., Ltd. Actuator and fluid control device

Also Published As

Publication number Publication date
JP4501411B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4501411B2 (en) Fluid shut-off device
TWI699959B (en) Motor driving device and method
US7679307B2 (en) Electronic method for starting a compressor
AU714745B2 (en) Position encoder with fault indicator
US6781341B2 (en) Abnormality detector for a motor drive system
JP2009156236A (en) Compressor driving device and refrigerating cycle device
KR100232363B1 (en) Driver circuit for a bidirectional flow control valve
JP4998218B2 (en) Fluid shut-off device
JP2003194252A (en) Fluid control device
JP5140130B2 (en) motor
JP4774886B2 (en) Fluid shut-off device
JP5272840B2 (en) Fluid shut-off device
JP4998217B2 (en) Fluid shut-off device
KR20180052551A (en) Motor control device
JP2001141094A (en) Fluid control valve
JPH11101359A (en) Electric cutoff valve
JP4985332B2 (en) Fluid shut-off device
JP5071120B2 (en) Gas shut-off device
JP2001141096A (en) Electric motor and fluid control valve using the same
WO2022044776A1 (en) Stepping motor abnormality detecting device
JP2001141096A5 (en)
JP2009115405A (en) Fluid shut-off device
KR200218142Y1 (en) control device of water supply valve for boiler
KR19990079193A (en) How to Drive Sensorless BLDC Motor
JP2007298255A (en) Gas shutoff device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees