JP2007085920A - Fluid-interrupting device - Google Patents
Fluid-interrupting device Download PDFInfo
- Publication number
- JP2007085920A JP2007085920A JP2005275722A JP2005275722A JP2007085920A JP 2007085920 A JP2007085920 A JP 2007085920A JP 2005275722 A JP2005275722 A JP 2005275722A JP 2005275722 A JP2005275722 A JP 2005275722A JP 2007085920 A JP2007085920 A JP 2007085920A
- Authority
- JP
- Japan
- Prior art keywords
- opening
- returning
- closing means
- driving
- drive unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Volume Flow (AREA)
- Safety Valves (AREA)
- Pipeline Systems (AREA)
Abstract
Description
本発明は、例えば、ガスの事故を未然に防ぐためにガスメータなどに内蔵される流体遮断装置の関するものである。 The present invention relates to a fluid shut-off device built in, for example, a gas meter in order to prevent a gas accident.
ガス事故を未然に防ぐため、従来より種種の安全装置が利用されており、中でもガスメータにおいて、流量センサによりガスの流量を検出しマイクロコンピュータによりガスの使用状態を異常使用と判断した場合や、地震センサ、ガス圧力センサ、ガス警報器、一酸化炭素センサなどのセンサの状況を監視して危険状態と判断した場合は、内蔵された遮断弁を閉じるものが既に提案されている。 In order to prevent gas accidents, various types of safety devices have been used in the past. Especially, in gas meters, when the flow rate of gas is detected by a flow sensor and the use state of gas is judged abnormal by a microcomputer, When a sensor, gas pressure sensor, gas alarm, carbon monoxide sensor, or other sensor is monitored to determine that it is in a dangerous state, it has already been proposed to close a built-in shut-off valve.
一般的には、これをマイコンメータと称し、安全性、ガス配管の容易性、経済的価格などの優位性が顕著であるため、ほぼ全世帯に普及しているのが現状で、ガス事故の飛躍的低減に貢献している。 In general, this is called a microcomputer meter, and the advantages such as safety, ease of gas piping, and economic price are remarkable, so it is widely used in almost all households. Contributes to dramatic reductions.
このマイコンメータは、停電などの影響を受けないよう電池電源で駆動され、また全戸普及のため経済的な容量の電池が搭載されているところから、遮断弁は開弁、閉弁状態の保持に電力を必要としない自己保持型電磁ソレノイドやPM型ステッピングモータで駆動されている。 This microcomputer meter is powered by battery power so that it will not be affected by power outages, etc., and since all batteries are equipped with an economical capacity for widespread use, the shut-off valve can be opened and kept closed. It is driven by a self-holding electromagnetic solenoid or PM stepping motor that does not require power.
さらに具体的構成を述べると、図11において、ガスメータ101に内蔵されガス通路102には自己保持型の遮断弁103と、ガスの流量を検知する流量検出部104とが接続されている。そして、この流量検出部104による検出結果が所定流量値以上となると、流量判定部105から遮断駆動部106に遮断信号が出力されて、遮断弁103を閉動する。 More specifically, in FIG. 11, a self-maintained shut-off valve 103 and a flow rate detection unit 104 for detecting the gas flow rate are connected to the gas passage 102 built in the gas meter 101. When the detection result by the flow rate detection unit 104 exceeds a predetermined flow rate value, a cutoff signal is output from the flow rate determination unit 105 to the cutoff drive unit 106, and the cutoff valve 103 is closed.
その後、外部から操作によって復帰スイッチ107を操作することによって復帰駆動部108が遮断弁103を開動し、ガスの供給を再開するようになっている。前記流量判定部105、遮断駆動部106、復帰駆動部108はマイクロコンピュータ109の中で構成されている。遮断弁103は電池による電源部110をもつとともに、閉弁信頼性を確保するためにガス上下流差圧が閉弁方向に印加されるように設定してある(例えば、特許文献1参照)。 Thereafter, when the return switch 107 is operated from the outside, the return drive unit 108 opens the shut-off valve 103 to resume the gas supply. The flow rate determination unit 105, the cutoff drive unit 106, and the return drive unit 108 are configured in a microcomputer 109. The shut-off valve 103 has a battery power supply unit 110 and is set so that a gas upstream / downstream differential pressure is applied in the valve closing direction in order to ensure valve closing reliability (see, for example, Patent Document 1).
ガス使用において問題のない通常状態においては、遮断弁103は開弁状態でありガスメータ101の下流のガス機具などにガスの供給が可能である。 In a normal state where there is no problem in the use of gas, the shutoff valve 103 is in an open state, and gas can be supplied to gas equipment downstream of the gas meter 101.
ここで、流量検出部104での検出流量が設定値を超え、異常流量に達した場合とか、長時間にわたり流量検出部104がガス流量を検出している場合には、ガス消費パターンが異常であると流量判定部105が判定し、遮断駆動部106に遮断信号が出力して遮断弁103を閉動する。この遮断弁103の閉動には電力は供給されるが、閉弁状態の維持には電力の供給はない。 Here, when the detected flow rate at the flow rate detection unit 104 exceeds the set value and reaches an abnormal flow rate, or when the flow rate detection unit 104 has detected the gas flow rate for a long time, the gas consumption pattern is abnormal. The flow rate determination unit 105 determines that there is, and a cutoff signal is output to the cutoff drive unit 106 to close the cutoff valve 103. Electric power is supplied to close the shut-off valve 103, but no electric power is supplied to maintain the closed state.
遮断弁103の開成復帰は、外部から復帰スイッチ107を操作して復帰駆動部108を作動させればよい。よって、ガス通路102が開かれてガスの供給が可能な復帰状態になる。
しかし、前記構成では、復帰スイッチを操作して遮断弁を開成復帰する場合、その開弁が不十分となる可能性があった。 However, in the above configuration, when the shut-off valve is opened and returned by operating the return switch, the valve opening may be insufficient.
すなわち、この種の流体遮断装置において、遮断弁を復帰できない理由は、遮断弁の動作的損失が増えたり、開閉部が固着したり、外来異物によって粘着したりするなど機構部が特性劣化しているか、電池電源部の電圧が低下するなど駆動部が特性劣化しているか、ガス調整器などの一時的な異常や気圧変化などにより遮断状態の上下流の差圧が大きくなるなど使用状態異常に起因していることが多い。 That is, in this type of fluid shut-off device, the reason why the shut-off valve cannot be restored is because the mechanical part deteriorates its characteristics, such as the operational loss of the shut-off valve increases, the open / close part sticks, or it adheres to foreign objects. Or the drive part has deteriorated in characteristics such as a voltage drop in the battery power supply part, or a temporary abnormality such as a gas regulator or a change in atmospheric pressure causes the differential pressure upstream and downstream to increase. Often due to this.
本発明はかかる従来の課題を解消したもので、遮断弁の開成復帰を確実とした流体遮断装置を提供することを目的とする。 The present invention solves such a conventional problem, and an object of the present invention is to provide a fluid shut-off device that ensures the opening and returning of the shut-off valve.
前記の目的を達成するために本発明の流体遮断装置は、流体通路に接続された電気的流路開閉手段、および流れ検出手段と、この流れ検出手段による検出結果が異常状態であるときに前記流路開閉手段を遮断する遮断駆動部と、遮断状態の流路開閉手段を開成復帰させる開成復帰駆動部とを具備し、前記開成復帰駆動部は最初の開成復帰命令を受けた後、再度開成復帰命令を受けたときには、前記流路開閉手段の開動のための作用力を大きくしたもので、これにより流路開閉手段の開成復帰が確実となる。 In order to achieve the above object, the fluid shutoff device according to the present invention includes an electrical flow path opening / closing means connected to a fluid passage, a flow detection means, and a detection result by the flow detection means when the detection result is abnormal. A shut-off drive unit that shuts off the flow path opening / closing means; and an open / return drive unit that opens and returns the shut-off flow path opening / closing means. The open / return drive unit receives the first open / return command and then opens again. When a return command is received, the acting force for opening the flow path opening / closing means is increased, thereby ensuring the opening and returning of the flow path opening / closing means.
本発明の流体遮断装置によれば、開成復帰駆動部が最初の開成復帰命令を受けた後、再度開成復帰命令を受けたときに流路開閉手段の開動のための作用力を大きくしたから、流路開閉手段の開成復帰が確実に行われ、流体遮断後のメンテナンス性を大いに高めることができるものである。 According to the fluid shut-off device of the present invention, after the opening / returning drive unit receives the first opening / returning command, the working force for opening the flow path opening / closing means is increased when the opening / returning command is received again. The opening / closing of the flow path opening / closing means is surely performed, and the maintainability after the fluid is shut off can be greatly enhanced.
本発明の流体遮断装置は、流体通路に接続された電気的流路開閉手段、および流れ検出手段と、この流れ検出手段による検出結果が異常状態であるときに前記流路開閉手段を遮断する遮断駆動部と、遮断状態の流路開閉手段を開成復帰させる開成復帰駆動部とを具備し、前記開成復帰駆動部は最初の開成復帰命令を受けた後、再度開成復帰命令を受けたときには、前記流路開閉手段の開動のための作用力を大きくして流路開閉手段の開成復帰を確実とした。 The fluid shut-off device of the present invention includes an electrical channel opening / closing means connected to a fluid passage, a flow detecting means, and a shut-off that shuts off the channel opening / closing means when the detection result by the flow detecting means is abnormal. A drive unit and an opening / returning drive unit that opens and returns the shut-off flow path opening / closing means, and when the opening / returning drive unit receives the opening / returning command again after receiving the first opening / returning command, The acting force for opening the flow path opening / closing means was increased to ensure the return of the flow path opening / closing means.
流路開閉手段の開動のための作用力を大きくするには、例えば、開成復帰駆動部の駆動力を大きくする、駆動ストロークを大きくする、或いはその両方を大きくすることなどが考えられる。 In order to increase the acting force for opening the flow path opening / closing means, for example, it is conceivable to increase the driving force of the opening / returning drive unit, increase the driving stroke, or increase both.
最初の開成復帰命令を受けた後、再度開成復帰命令を受けたことを具体化する形態としては、開成復帰駆動部に開成復帰命令が発せられたことを記憶手段で記憶し、この記憶手段での記憶中に開成復帰駆動部が開成復帰命令を受けたときには、前記流路開閉手段の開動のための作用力を大きくする。 As a form for embodying the receipt of the opening / returning instruction again after receiving the opening / returning instruction for the first time, the opening / returning drive unit has stored the fact that the opening / returning instruction has been issued. When the opening / returning drive unit receives the opening / returning command during storage, the acting force for opening the flow path opening / closing means is increased.
そして、流路開閉手段の開動のための作用力を大きく具体策として、流路開閉手段の駆動源をモータとし、開成復帰駆動部が再度開成復帰命令を受けたときに、最初の開成復帰命令を受けたときよりも駆動電流を高く設定したり、流路開閉手段の駆動源をステッピングモータとし、開成復帰駆動部が再度開成復帰命令を受けたときに、最初の開成復帰命令
を受けたときよりも駆動周波数を低く設定したり、流路開閉手段の駆動源をステッピングモータとするとともに、このステッピングモータの励磁方式を切り替え可能に設定し、開成復帰駆動部が再度開成復帰命令を受けたときに、最初の開成復帰命令を受けたときよりも励磁方式を高出力側に切り替えるようにする。
Then, the action force for opening the flow path opening / closing means is greatly specified as a specific measure, when the drive source of the flow path opening / closing means is a motor, and the opening / returning drive unit receives the opening / returning instruction again, the first opening / returning instruction When the driving current is set higher than when receiving the signal, or the driving source of the flow path opening / closing means is a stepping motor, and when the opening / returning drive unit receives the opening / returning command again, the first opening / returning command is received When the drive frequency is set lower than that, the drive source of the flow path opening / closing means is a stepping motor, the excitation method of this stepping motor is set to be switchable, and the opening / returning drive unit receives the opening / returning command again In addition, the excitation method is switched to the higher output side than when the first opening return instruction is received.
また、流路開閉手段の駆動源をステッピングモータとするとともに、このステッピングモータの駆動ステップ数を切り替え可能に設定し、開成復帰駆動部が再度開成復帰命令を受けたときに、最初の開成復帰命令を受けたときよりも駆動ステップ数が多くなるように切り替えるようにする。 In addition, a stepping motor is used as the driving source of the flow path opening / closing means, and the number of driving steps of this stepping motor is set to be switchable. Switching is performed so that the number of driving steps is larger than when receiving the signal.
以下、本発明の実施の形態について図面を参照して説明する。なお、以下の実施の形態はガス流体を例にしているが、流体の種類の違いによって本発明の精神が拘束されることはない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, gas fluid is used as an example, but the spirit of the present invention is not restricted by the difference in the type of fluid.
(実施の形態1)
図1において、ガスメータ1のガス通路となる流体通路2には、電気的遮断弁からなる流路開閉手段3と流れ検出手段4とが上流側より順に接続してある。
(Embodiment 1)
In FIG. 1, a fluid passage 2 serving as a gas passage of a gas meter 1 is connected to a flow path opening / closing means 3 and a flow detection means 4 each consisting of an electrical shut-off valve in order from the upstream side.
流路開閉手段3は、PM型ステッピングモータや自己保持型電磁ソレノイドなどによって駆動される自己保持型の構成であり、流れ検出手段4は、磁気センサ、圧力センサ、超音波センサ、熱線流量センサ、流体素子センサ、質量流量センサ、フロートセンサなどによりガスの流速、または流量を検出するものである。 The flow path opening / closing means 3 has a self-holding configuration driven by a PM stepping motor, a self-holding electromagnetic solenoid, or the like, and the flow detection means 4 includes a magnetic sensor, a pressure sensor, an ultrasonic sensor, a heat ray flow sensor, The flow rate or flow rate of gas is detected by a fluid element sensor, a mass flow sensor, a float sensor, or the like.
流れ検出手段4の検出結果は流れ判定部5で判定され、異常流量などの判定結果が出力されると、遮断駆動部6を介して流路開閉手段3を閉動するようにしてある。遮断駆動部6を介しての流路開閉手段3の閉動は、それ以外に、地震などを検出するその他の検出手段7の検出信号、および外部遮断命令手段8からの命令信号によっても行われるものである。 The detection result of the flow detection unit 4 is determined by the flow determination unit 5, and when a determination result such as an abnormal flow rate is output, the flow path opening / closing unit 3 is closed via the cutoff drive unit 6. In addition to this, the closing operation of the flow path opening / closing means 3 via the cutoff drive unit 6 is also performed by a detection signal of other detection means 7 for detecting an earthquake or the like and a command signal from the external cutoff command means 8. Is.
流路開閉手段3の開成復帰は外部から操作される復帰スイッチ9をONすることによって行われる。すなわち、復帰スイッチ9のONによって、開成復帰駆動部10の第1駆動部11が流路開閉手段3を開成復帰動作させ、また復帰スイッチ9から第1駆動部11へ動作指令が出力されたのを記憶手段12が記憶するようにしてある。 The opening / closing of the flow path opening / closing means 3 is performed by turning on a return switch 9 operated from the outside. That is, when the return switch 9 is turned on, the first drive unit 11 of the opening / returning drive unit 10 causes the flow path opening / closing means 3 to perform the opening / returning operation, and an operation command is output from the return switch 9 to the first driving unit 11. Is stored in the storage means 12.
第1駆動部11を介しての流路開閉手段3の開成復帰が不十分で、再度、復帰スイッチ9がONされた場合には、アンドゲートなどによる判定部13に復帰スイッチ9を介しての入力と記憶手段12からの入力がなされ、この結果、判定部13は第2駆動部14を駆動し、流路開閉手段3の開成復帰動作を行う。 When the opening / returning of the flow path opening / closing means 3 through the first drive unit 11 is insufficient and the return switch 9 is turned on again, the determination unit 13 such as an AND gate is connected to the determination unit 13 via the return switch 9. As a result, the determination unit 13 drives the second driving unit 14 to perform the opening / returning operation of the flow path opening / closing unit 3.
そして、第2駆動部14を介しての流路開閉手段3の開動作用力は、第1駆動部11を介してのそれよりも大きく設定してある。 The force for opening operation of the flow path opening / closing means 3 through the second driving unit 14 is set to be larger than that through the first driving unit 11.
流れ判定部5、記憶手段12、判定部13、遮断駆動部6、開成復帰駆動部10などはマイクロコンピュータ14に記録されたソフトウェア手段や論理ICなどで実現されるようにしている。 The flow determination unit 5, the storage unit 12, the determination unit 13, the cutoff drive unit 6, the opening / returning drive unit 10, and the like are realized by software means or a logic IC recorded in the microcomputer 14.
前記した制御部や流路開閉手段3などは電池よりなる電源部15で駆動される。 The control unit, the channel opening / closing means 3 and the like described above are driven by a power source unit 15 made of a battery.
このように、第1駆動部11を介して流路開閉手段3の開成復帰動作を行った後、再度復帰スイッチ9がONされた場合、今度は、開動作用力が大きい第2駆動部14を介して
流路開閉手段3を確実に開成復帰させるようになっている。
As described above, when the return switch 9 is turned on again after the opening / closing operation of the flow path opening / closing means 3 is performed via the first driving unit 11, the second driving unit 14 having a large opening operation force is now turned on. Thus, the flow path opening / closing means 3 is reliably opened and returned.
開動作用力を大きくする具体的手段としては、第2駆動部14による流路開閉手段3の開動駆動力を高くするとか、開動ストロークを大きくすることなどが考えられる。 As specific means for increasing the opening force, it is conceivable to increase the opening driving force of the flow path opening / closing means 3 by the second driving unit 14 or to increase the opening stroke.
図2は流路開閉手段3がA相、B相の2相バイポーラ励磁方式のステッピングモータ16で駆動される一具体例を示し、またそれに伴って、開成復帰駆動部10が駆動周波数を切り替えるカウンタやタイマなどで構成された周波数切替手段17と、駆動周波数に同期した駆動波形を出力する分配手段18と、この駆動波形を2相バイポーラ駆動波形に変換すると同時に電力増幅する励磁回路19とで構成されている例を示す。 FIG. 2 shows a specific example in which the flow path opening / closing means 3 is driven by the stepping motor 16 of the A-phase and B-phase two-phase bipolar excitation system, and the opening / return drive unit 10 switches the driving frequency accordingly. And a frequency switching means 17 constituted by a timer, a distribution means 18 for outputting a drive waveform synchronized with the drive frequency, and an excitation circuit 19 for converting the drive waveform into a two-phase bipolar drive waveform and simultaneously amplifying the power. An example is shown.
通常の第1駆動部11を介しての開成復帰動作時において、周波数切替手段17は、例えば200Hzの高い周波数の駆動周波数を分配手段18に出力し、第2駆動部14を介しての開成復帰動作時には周波数切替手段17が、例えば100Hzの低い駆動周波数に切り替えて分配手段18に出力する。 During the opening / returning operation via the normal first driving unit 11, the frequency switching unit 17 outputs a driving frequency having a high frequency of, for example, 200 Hz to the distributing unit 18, and the opening / returning operation via the second driving unit 14. During operation, the frequency switching unit 17 switches to a low driving frequency of, for example, 100 Hz and outputs it to the distributing unit 18.
図3はステッピングモータ16を用いた流路開閉手段3の具体構成を示し、すなわち、A相、B相に接続された電磁コイル20,21、および磁力を伝達するヨーク22,23,24,25でステータ26が、また、永久磁石27、およびリード部28を有するリードシャフト29とでロータ30がそれぞれ構成してある。 FIG. 3 shows a specific configuration of the flow path opening / closing means 3 using the stepping motor 16, that is, the electromagnetic coils 20, 21 connected to the A phase and the B phase, and the yokes 22, 23, 24, 25 for transmitting the magnetic force. The rotor 26 is constituted by the stator 26 and the permanent magnet 27 and the lead shaft 29 having the lead portion 28.
リードシャフト29のリード部28には進退自在で、かつ回転不能に弁体31のボス部32が螺合されており、したがって、ロータ30とともにリードシャフト29を回転すると弁体31が進退し、弁座33を開閉することとなる。 The boss portion 32 of the valve body 31 is screwed to the lead portion 28 of the lead shaft 29 so that the valve body 31 can move forward and backward, and cannot rotate. Therefore, when the lead shaft 29 is rotated together with the rotor 30, the valve body 31 moves forward and backward. The seat 33 will be opened and closed.
前記ステータ26とロータ30は2相励磁型のPM(永久磁石)型ステッピングモータを形成しており、電磁コイル20,21、すなわちA相、B相に1/2・πの位相差を有する矩形波等の回転磁界を発生する電流を印加することによってロータ30が回転し、電流を印加しない場合は永久磁石27による静止トルクによってロータ30は回転を阻止されている。 The stator 26 and the rotor 30 form a two-phase excitation type PM (permanent magnet) type stepping motor, which is a rectangular having a phase difference of 1/2 · π between the electromagnetic coils 20 and 21, that is, the A phase and the B phase. The rotor 30 is rotated by applying a current that generates a rotating magnetic field such as a wave. When no current is applied, the rotor 30 is prevented from rotating by the stationary torque by the permanent magnet 27.
図3においては、弁体31側から見てCW(時計回り)方向にリードシャフト29、すなわちロータ30が回転した場合は、弁体31が弁座33に近づく遮断動作を行い、CCW(反時計回り)に回転した場合は弁体31が弁座33から遠ざかる復帰動作を行う。 In FIG. 3, when the lead shaft 29, that is, the rotor 30 rotates in the CW (clockwise) direction as viewed from the valve body 31 side, a shut-off operation is performed in which the valve body 31 approaches the valve seat 33, and CCW (counterclockwise). In the case of rotation, the valve body 31 performs a return operation to move away from the valve seat 33.
図4はPM型ステッピングモータの駆動周波数と脱調トルクの関係を示すグラフで、駆動周波数が低い方が高いトルクを発生するもので、例えば駆動周波数200Hzでは1.9mN・mであるのに対し、低周波数100Hzでは3.2mN・mと強いトルクを発生する。すなわち低周波数駆動時ほどにはステッピングモータの駆動力が強くなることがわかる。 FIG. 4 is a graph showing the relationship between the driving frequency of the PM type stepping motor and the step-out torque. The lower the driving frequency, the higher the torque generated. For example, at a driving frequency of 200 Hz, the torque is 1.9 mN · m. At a low frequency of 100 Hz, a strong torque of 3.2 mN · m is generated. That is, it can be seen that the driving force of the stepping motor becomes stronger as the frequency is lower.
以上のように構成された流体遮断装置の動作について説明する。 The operation of the fluid shut-off device configured as described above will be described.
流れ検出手段4による流速または流量を流れ判定部5が判定し、判定結果に異常がない場合には流路開閉手段3は開成されている。 When the flow determination unit 5 determines the flow velocity or flow rate of the flow detection unit 4 and there is no abnormality in the determination result, the flow path opening / closing unit 3 is opened.
流体通路2を流れる流体の流速または流量が異常に多い場合とか、所定時間を超えて流体の流れがあると流れ判定部5がそれを判定して遮断駆動部6を作動させ、流路開閉手段3を閉成し流体通路2を遮断する。 When the flow velocity or flow rate of the fluid flowing in the fluid passage 2 is abnormally high, or when there is a fluid flow exceeding a predetermined time, the flow determination unit 5 determines that and activates the shut-off drive unit 6 to open and close the channel. 3 is closed and the fluid passage 2 is shut off.
勿論、地震センサ、圧力センサ、ガス漏れセンサなどのその他の検出手段7、遮断スイッチや通信回線などによる外部遮断命令手段37がONした場合も、同様に流路開閉手段3を閉成し流体通路2を遮断する。同時に、記憶手段12の記憶内容をリセットし遮断中であることを記憶させる。 Of course, when the other detection means 7 such as an earthquake sensor, a pressure sensor, a gas leak sensor, and the external shutoff command means 37 by a shutoff switch or a communication line are turned on, the flow path opening / closing means 3 is similarly closed and the fluid passage Block 2 At the same time, the contents stored in the storage unit 12 are reset to store the fact that they are being shut off.
遮断動作後、流路開閉手段3の弁体31は永久磁石27による静止トルクによって無通電でもその遮断状態を保持する。 After the shut-off operation, the valve element 31 of the flow path opening / closing means 3 maintains its shut-off state even when no current is applied due to the stationary torque by the permanent magnet 27.
次に、復帰スイッチ9の操作により開成復帰命令が出された場合、開成復帰駆動部10の第1駆動部11が流路開閉手段3を開動して流体通路2への流体流動が再開され、同時に、記憶手段12に開成復帰命令が出されたことを記憶させる。 Next, when an opening return command is issued by operating the return switch 9, the first drive unit 11 of the opening / returning drive unit 10 opens the flow path opening / closing means 3 and the fluid flow to the fluid passage 2 is resumed, At the same time, the storage means 12 is made to memorize that the opening return command has been issued.
図2、図3および図4によると、この通常駆動時の駆動周波数は例えば200Hzであり、PM型ステッピングモータ16は1.9mN・mのトルクで復帰動作を行う。 According to FIG. 2, FIG. 3, and FIG. 4, the drive frequency during this normal drive is, for example, 200 Hz, and the PM type stepping motor 16 performs a return operation with a torque of 1.9 mN · m.
流路開閉手段3の損失が増えたり、開閉部が固着したり、外来異物によって粘着したりなどなど機構部が特性劣化している場合とか、電池による電源部15の電圧が低下するなど駆動部が特性劣化しているの場合とか、ガスなどの流体調整器などの一時的な異常や気圧変化などにより流路開閉手段3の上下流の差圧が大きくなるなど使用状態に異常が発生している場合、流路開閉手段3が開成復帰動作を完了しないことがある。 Drive unit such as loss of flow path opening / closing means 3, opening / closing part is stuck, adhesion of foreign matter, etc., mechanism part has deteriorated characteristics, or voltage of power supply unit 15 is reduced by battery When there is a deterioration in the characteristics, or because of a temporary abnormality such as in a fluid regulator of gas or a change in atmospheric pressure, the pressure difference between the upstream and downstream of the flow path opening / closing means 3 increases, resulting in an abnormality in the usage state. If there is, the flow path opening / closing means 3 may not complete the opening / returning operation.
この開成復帰動作未完了状態において、記憶手段12は開成復帰命令が出されたことを記憶しており、ここで、再度、復帰スイッチ9の操作により開成復帰命令が出された場合、判定部13は第2駆動部14を駆動し、流路開閉手段3の開成復帰動作を行う。 In this state where the opening / returning operation has not been completed, the storage means 12 stores that the opening / returning command has been issued. Here, when the opening / returning command is issued again by operating the return switch 9, the determination unit 13. Drives the second drive unit 14 to perform the opening / returning operation of the flow path opening / closing means 3.
そして、図2に示すように、第2駆動部14の周波数切替手段17は、例えば100Hzの低い駆動周波数を分配手段18に出力して励磁回路19を介してPM型ステッピングモータ16を駆動するため、図4のように、3.2mN・mの強いトルクを発し流路開閉手段3を強い駆動力で開成復帰動作を行う。 As shown in FIG. 2, the frequency switching unit 17 of the second drive unit 14 outputs a low driving frequency of, for example, 100 Hz to the distribution unit 18 to drive the PM type stepping motor 16 via the excitation circuit 19. As shown in FIG. 4, a strong torque of 3.2 mN · m is generated to perform the opening / returning operation of the flow path opening / closing means 3 with a strong driving force.
このため、機構部や駆動部が特性劣化したり一時的な使用状態異常が発生している場合にも、流路開閉手段3は流体通路を開成復帰できる確率が高くなり、より確実に流体を使用することができる。 For this reason, even when the mechanism part or the drive part has deteriorated characteristics or a temporary use state abnormality has occurred, the flow path opening / closing means 3 has a higher probability of opening and returning the fluid passage, and the fluid can be more reliably supplied. Can be used.
なお、ここで記憶手段12の記録を複数としておけば、複数段の開成復帰動作が可能となり、また開成復帰動作の都度駆動周波数を低くすることも考えられる。 If a plurality of records are stored in the storage unit 12 here, a plurality of stages of opening / returning operations can be performed, and it is conceivable that the drive frequency is lowered each time the opening / returning operations are performed.
(実施の形態2)
開成復帰駆動部10の第2駆動部14を介しての開動駆動力を高くする別の実施の形態を説明する。
(Embodiment 2)
Another embodiment in which the opening drive force of the opening / returning drive unit 10 through the second drive unit 14 is increased will be described.
図5において、開成復帰駆動部10は、制限抵抗34を介する通常電流駆動回路35と、制限抵抗のない高電流回路36と、それら回路を切り替える電流切替手段37と、電流切替手段37からの電流に応じて電力を増幅する励磁回路19とで構成されている。すなわち、通常電流駆動回路35を経由するものが図1の第1駆動部11、高電流回路36を経由するものが図1の第2駆動部14となっている。 In FIG. 5, the opening / returning drive unit 10 includes a normal current drive circuit 35 through a limiting resistor 34, a high current circuit 36 without a limiting resistor, a current switching unit 37 for switching these circuits, and a current from the current switching unit 37. And an excitation circuit 19 that amplifies the power according to the above. That is, what passes through the normal current drive circuit 35 is the first drive unit 11 in FIG. 1, and what passes through the high current circuit 36 is the second drive unit 14 in FIG.
通常の開成復帰動作時においては、電流切替手段37は、例えば200mAの低い駆動電流を励磁回路19に出力し、再度の開成復帰動作時の場合においては、電流切替手段37は例えば400mAの高い駆動電流に切り替えて励磁回路19を駆動する。 In the normal opening / recovery operation, the current switching unit 37 outputs a low drive current of, for example, 200 mA to the excitation circuit 19, and in the case of the reopening / opening operation again, the current switching unit 37 is driven at a high drive of, for example, 400 mA. The excitation circuit 19 is driven by switching to the current.
図6は図3の遮断弁の駆動部であるPM型ステッピングモータの駆動電流と脱調トルクの関係を表すグラフである。 FIG. 6 is a graph showing the relationship between the drive current and the step-out torque of the PM type stepping motor which is the drive unit of the shut-off valve of FIG.
図6のように、駆動電流が高い方が高いトルクを発生させる。例えば、駆動電流200mAでは1.3mN・mであるのに対し、高電流400mAでは5.2mN・mと強いトルクを発生させる。すなわち、高電流駆動時に流路開閉手段3の開成駆動力が強くなることがわかる。 As shown in FIG. 6, a higher driving current generates a higher torque. For example, while a driving current of 200 mA is 1.3 mN · m, a high current of 400 mA generates a strong torque of 5.2 mN · m. That is, it can be seen that the opening driving force of the flow path opening / closing means 3 becomes strong during high current driving.
なお、電流切替手段37は制限抵抗34の有無を切り替えることによって電流を切り替えるようにしたが、駆動電圧や、励磁回路の電源電圧、駆動回路のONデューティーを切り替えることによって電流を切り替えてもよい。 The current switching unit 37 switches the current by switching the presence or absence of the limiting resistor 34. However, the current switching unit 37 may switch the current by switching the drive voltage, the power supply voltage of the excitation circuit, and the ON duty of the drive circuit.
(実施の形態3)
開成復帰駆動部10の第2駆動部14を介しての開動駆動力を高くする別の実施の形態を説明する。
(Embodiment 3)
Another embodiment in which the opening drive force of the opening / returning drive unit 10 through the second drive unit 14 is increased will be described.
図7において、開成復帰駆動部10は励磁方式を1−2相励磁と2相励磁に切り替えて分配手段18に出力する励磁方式切替手段38と、駆動波形39を2相バイポーラ駆動波形に変換すると同時に電力増幅する励磁回路19とで構成されている。 In FIG. 7, the opening / returning drive unit 10 switches the excitation method to 1-2 phase excitation and 2-phase excitation and outputs it to the distribution unit 18 and converts the drive waveform 39 into a two-phase bipolar drive waveform. It comprises an excitation circuit 19 that simultaneously amplifies power.
通常の開成復帰動作時においては、励磁方式切替手段38は1−2相励磁の駆動信号40を分配手段18に出力するため、PM型ステッピングモータ16は消費電流の低い弱いトルクで駆動され、再度の開成復帰動作時の場合においては、励磁方式切替手段38が2相励磁駆動信号41を分配手段18に出力して、これにより、励磁回路19は消費電流の高い強いトルクでPM型ステッピングモータ16を駆動する。 During normal opening / returning operation, the excitation method switching means 38 outputs the drive signal 40 for 1-2 phase excitation to the distribution means 18, so that the PM stepping motor 16 is driven with a weak torque with low current consumption, and again. In the case of the opening / returning operation, the excitation method switching means 38 outputs the two-phase excitation drive signal 41 to the distribution means 18, whereby the excitation circuit 19 causes the PM stepping motor 16 with a strong torque with high current consumption. Drive.
なお、励磁方式切替手段38は1−2相励磁と2相励磁を切り替えるとしたが、モノポーラ駆動とバイポーラ駆動とを切り替えてもよい。 The excitation method switching means 38 switches between 1-2 phase excitation and 2 phase excitation, but may switch between monopolar drive and bipolar drive.
(実施の形態4)
開成復帰駆動部10の第2駆動部14を介しての開動駆動ストロークを大きくする別の実施の形態を説明する。
(Embodiment 4)
Another embodiment in which the opening drive stroke of the opening / returning drive unit 10 through the second drive unit 14 is increased will be described.
図8にいて、開成復帰駆動部10は、流路開閉手段3を駆動するステップ数を通常ステップ42と長ステップ43に切り替えて分配手段18に出力する駆動ステップ切替手段44と、駆動波形45を2相バイポーラ駆動波形に変換すると同時に電力増幅する励磁回路19とで構成されている。 In FIG. 8, the opening / returning drive unit 10 switches the number of steps for driving the flow path opening / closing means 3 between the normal step 42 and the long step 43 and outputs the drive step switching means 44 to the distribution means 18 and the drive waveform 45. An excitation circuit 19 that converts power into a two-phase bipolar drive waveform and simultaneously amplifies power is configured.
通常の開成復帰動作時において、駆動ステップ切替手段44は通常のステップ、例えば図3のリードシャフト29におけるリード部28のリードピッチが2mm/回転、ステッピングモータ16のステップ数が48ステップ/回転で、全ストロークが6mmである場合、最低必要ステップ数は144ステップであるため、通常のステップ数は安全率を1.25とし180ステップの駆動パルスを出力し、開成復帰命令ありの場合においては駆動ステップ切替手段44は通常のステップ42の1.5倍の長ステップ数270ステップの駆動パルスを出力し、開成復帰完了した後にあっては、余った駆動パルスはステッピングモータ16を開弁位置で脱調させて消費される。 During the normal opening / returning operation, the drive step switching means 44 is a normal step, for example, the lead pitch of the lead portion 28 in the lead shaft 29 in FIG. When the total stroke is 6 mm, the minimum required number of steps is 144. Therefore, the normal number of steps is set to a safety factor of 1.25, and a drive pulse of 180 steps is output. The switching means 44 outputs a drive pulse having a length of 270 steps which is 1.5 times longer than the normal step 42. After the completion of the opening recovery, the remaining drive pulse steps out the stepping motor 16 at the valve opening position. To be consumed.
流路開閉手段3が開成復帰動作を完了していない場合、ステッピングモータ16は駆動パルスに対し部分的に脱調して動作しないため、復帰に必要なストロークに対して駆動パ
ルス数が不足し、結果として駆動パルス数不足で復帰動作未完了となることが多い。
When the flow path opening / closing means 3 has not completed the opening / returning operation, the stepping motor 16 does not operate by partially stepping out with respect to the driving pulse, so that the number of driving pulses is insufficient with respect to the stroke required for returning, As a result, the return operation is often incomplete due to an insufficient number of drive pulses.
このような場合においても、本実施の形態では、通常の開成復帰動作時はステップ数180ステップで駆動されるのに対し、再度の開成復帰動作時は、駆動ステップ切替手段42が長ストロークに相当する長ステップ数270ステップの駆動パルスに切り替え、ステッピングモータ16の駆動ストロークを高めて駆動するため、流路開閉手段3は流体通路2を開成復帰できる確率が高くなる。 Even in such a case, in the present embodiment, the normal opening / returning operation is driven with the number of steps of 180, while the driving step switching means 42 corresponds to a long stroke during the reopening / returning operation. Since the driving pulse is switched to the driving pulse having the long step number of 270 steps and the driving stroke of the stepping motor 16 is increased, the flow path opening / closing means 3 is likely to be able to open and return to the fluid passage 2.
(実施の形態5)
図9は、図1における実施の形態1の流路開閉手段3に開成検出手段46を設けた例であり、図1と同様な作用を発揮する構成については同一符号を付し、説明は実施の形態1を援用する。
(Embodiment 5)
FIG. 9 is an example in which the opening / closing detection means 46 is provided in the flow path opening / closing means 3 of the first embodiment in FIG. 1, and the same reference numerals are given to the components that exhibit the same action as in FIG. Form 1 is used.
すなわち、図9において、流れ判定部5が流れの異常を判定して遮断駆動部6に遮断信号を出力した後、復帰スイッチ9が作動されたことを記憶手段12で記憶するようにしている。ここで、開成復帰駆動部10の第1駆動部11が作動して、流路開閉手段3が十分に開くと、開成検出手段46からの出力がなく、そのため、判定部13が第2駆動部14を駆動させることはない。 That is, in FIG. 9, after the flow determination unit 5 determines a flow abnormality and outputs a cutoff signal to the cutoff drive unit 6, the storage unit 12 stores that the return switch 9 has been activated. Here, when the first driving unit 11 of the opening / returning driving unit 10 is operated and the flow path opening / closing means 3 is sufficiently opened, there is no output from the opening detecting unit 46, so that the determination unit 13 is the second driving unit. 14 is not driven.
しかしながら、流路開閉手段3の開成が不十分な場合には、開成検出手段46から信号が出力され、判定部13に入力される。したがって、この判定部13は第2駆動部14を駆動し、先述したように流路開閉手段3を強制的に開成することとなる。 However, when the flow path opening / closing means 3 is not sufficiently opened, a signal is output from the opening detection means 46 and input to the determination unit 13. Therefore, the determination unit 13 drives the second drive unit 14 to forcibly open the flow path opening / closing means 3 as described above.
図10は流路開閉手段3に開成検出手段46を設けた場合の具体的な構成を示すものである。 FIG. 10 shows a specific configuration when the opening detection means 46 is provided in the flow path opening / closing means 3.
前記開成検出手段46は、リードスイッチ47とマグネット48とを具備する。このマグネット48はガイド49を介してスライド自在に案内される摺動体50に取着されており、通常は復帰スプリング51の作用力を受けて反リードスイッチ47側へ付勢されている。摺動体50からは弁体31方向へのピン52が突設されている。 The opening detection means 46 includes a reed switch 47 and a magnet 48. The magnet 48 is attached to a sliding body 50 that is slidably guided through a guide 49, and is normally biased toward the anti-reed switch 47 side by receiving the acting force of a return spring 51. A pin 52 in the direction of the valve body 31 protrudes from the sliding body 50.
したがって、弁体31が弁座33を閉じているときには、ピン52が押動されてマグネット48がリードスイッチ47に接近してこれを閉じ(ON)、反対に弁体31が弁座33を開いているときには、復帰スプリング51の作用でマグネット48がリードスイッチ47より離れてこれを開く(OFF)こととなる。 Therefore, when the valve body 31 closes the valve seat 33, the pin 52 is pushed and the magnet 48 approaches the reed switch 47 and closes it (ON). On the contrary, the valve body 31 opens the valve seat 33. When this occurs, the magnet 48 is separated from the reed switch 47 and opened (OFF) by the action of the return spring 51.
流路開閉手段3の開成復帰が不十分であるときには、リードスイッチ47が閉じている状態(ON)であって、この信号が判定部13に入力されるようにしてある。 When the opening / closing of the flow path opening / closing means 3 is insufficient, the reed switch 47 is closed (ON), and this signal is input to the determination unit 13.
なお、その他の構成、作用は図3と同じで、説明は実施の形態1のものを援用する。 Other configurations and operations are the same as those in FIG. 3, and the description of the first embodiment is used for the description.
上記実施の形態において、流路開閉手段3は2相バイポーラ励磁PM型ステッピングモータを駆動手段としたが、3相以上でもモノポーラ励磁でもよく、その他同機モータでもよく、実施の形態2に示した電流を切り替える例においてはDCブラシレスモータなどの直流モータも選択可能である。 In the above embodiment, the flow path opening / closing means 3 is a two-phase bipolar excitation PM type stepping motor as the driving means. However, the flow path opening / closing means 3 may be three or more phases, monopolar excitation, or other same-machine motor, and the current shown in the second embodiment. In the example of switching, a DC motor such as a DC brushless motor can also be selected.
勿論、流路開閉手段3の駆動手段はモータだけでなく、駆動電流を変えることによって、または駆動時間を変えることによって復帰駆動力を変えることができるよう設計された電磁ソレノイドでもよく、また、複軌駆動力を変えることができるれば必ずしも自己保持型モータ、電磁ソレノイドでなくてもよい。 Of course, the driving means of the flow path opening / closing means 3 is not limited to a motor, and may be an electromagnetic solenoid designed so that the return driving force can be changed by changing the driving current or by changing the driving time. A self-holding motor and an electromagnetic solenoid are not necessarily required as long as the gauge driving force can be changed.
また、流路開閉手段3はロータの回転が直接弁体の前後動に変換されるよう説明したが、減速機構を介してもよく、磁気カップリングなど気密隔壁を介した動力伝達でもよい。 Further, although the flow path opening / closing means 3 has been described so that the rotation of the rotor is directly converted into the longitudinal movement of the valve body, it may be via a speed reduction mechanism or power transmission via an airtight partition such as a magnetic coupling.
さらに、復帰命令受付手段は復帰スイッチとしたが、有線、無線による通信手段でもよく、圧力検出手段など他の制御機器からの命令を受信する手段でもよい。 Furthermore, although the return command receiving means is a return switch, it may be a wired or wireless communication means, or a means for receiving a command from another control device such as a pressure detection means.
また、この流体遮断装置はガスメータに内蔵され、電池電源部によって駆動されるよう説明したが、他の商用電源、自己発電電源などの活用、およびコンデンサなどの電源で駆動してもよい。 Moreover, although this fluid interruption | blocking apparatus was built in the gas meter and it demonstrated driving | running by the battery power supply part, you may drive with power supplies, such as utilization of another commercial power supply, a self-power-generation power supply, etc., and a capacitor | condenser.
以上のように、本発明にかかる流体遮断装置は、開成復帰駆動部が最初の開成復帰命令を受けた後、再度開成復帰命令を受けたときに流路開閉手段の開動のための作用力を大きくしたから、流路開閉手段の開成復帰が確実に行われ、流体遮断後のメンテナンス性を大いに高めることができるもので、ガス流体の他、あらゆる流体の遮断制御への適用が可能である。 As described above, the fluid shut-off device according to the present invention has an acting force for opening the flow path opening / closing means when the opening / returning drive unit receives the opening / returning command again after receiving the first opening / returning command. Since it is enlarged, the opening and closing means of the flow path opening / closing means is surely performed, and the maintainability after the fluid is shut off can be greatly improved, and can be applied to the shut-off control of any fluid other than the gas fluid.
2 流体通路
3 流路開閉手段
4 流れ検出手段
6 遮断駆動部
10 開成復帰駆動部
12 記憶手段
2 fluid passage 3 flow path opening / closing means 4 flow detection means 6 shut-off drive section 10 opening / return drive section 12 storage means
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005275722A JP4774886B2 (en) | 2005-09-22 | 2005-09-22 | Fluid shut-off device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005275722A JP4774886B2 (en) | 2005-09-22 | 2005-09-22 | Fluid shut-off device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007085920A true JP2007085920A (en) | 2007-04-05 |
JP4774886B2 JP4774886B2 (en) | 2011-09-14 |
Family
ID=37973041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005275722A Expired - Fee Related JP4774886B2 (en) | 2005-09-22 | 2005-09-22 | Fluid shut-off device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4774886B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115252A (en) * | 2007-11-08 | 2009-05-28 | Panasonic Corp | Fluid shutoff apparatus |
JP2015077018A (en) * | 2013-10-10 | 2015-04-20 | 東芝三菱電機産業システム株式会社 | Air vent pipe and electric rotating machine using the same |
CN106949382A (en) * | 2017-04-21 | 2017-07-14 | 上海山南勘测设计有限公司 | A kind of device and its application method for being used to detect pipeline liquid leakage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178528A (en) * | 1995-12-22 | 1997-07-11 | Tokyo Gas Co Ltd | Isolation valve controller for gas meter |
JP2001141096A (en) * | 1999-11-12 | 2001-05-25 | Matsushita Electric Ind Co Ltd | Electric motor and fluid control valve using the same |
JP2005140262A (en) * | 2003-11-07 | 2005-06-02 | Matsushita Electric Ind Co Ltd | Fluid shut-off device |
-
2005
- 2005-09-22 JP JP2005275722A patent/JP4774886B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178528A (en) * | 1995-12-22 | 1997-07-11 | Tokyo Gas Co Ltd | Isolation valve controller for gas meter |
JP2001141096A (en) * | 1999-11-12 | 2001-05-25 | Matsushita Electric Ind Co Ltd | Electric motor and fluid control valve using the same |
JP2005140262A (en) * | 2003-11-07 | 2005-06-02 | Matsushita Electric Ind Co Ltd | Fluid shut-off device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115252A (en) * | 2007-11-08 | 2009-05-28 | Panasonic Corp | Fluid shutoff apparatus |
JP2015077018A (en) * | 2013-10-10 | 2015-04-20 | 東芝三菱電機産業システム株式会社 | Air vent pipe and electric rotating machine using the same |
CN106949382A (en) * | 2017-04-21 | 2017-07-14 | 上海山南勘测设计有限公司 | A kind of device and its application method for being used to detect pipeline liquid leakage |
CN106949382B (en) * | 2017-04-21 | 2023-09-12 | 上海山南勘测设计有限公司 | Device for detecting liquid leakage of pipeline and application method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4774886B2 (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4501411B2 (en) | Fluid shut-off device | |
US6900657B2 (en) | Stall detection circuit and method | |
JP5031547B2 (en) | Compressor drive device and refrigeration cycle device | |
JP4774886B2 (en) | Fluid shut-off device | |
JP4998218B2 (en) | Fluid shut-off device | |
JP5140130B2 (en) | motor | |
WO2017051517A1 (en) | Motor control device | |
JP2003194252A (en) | Fluid control device | |
EP2407993B1 (en) | An improved trip circuit supervision relay for low and medium voltage applications | |
JP4998217B2 (en) | Fluid shut-off device | |
JP2001141094A (en) | Fluid control valve | |
JP2008151240A (en) | Electric control valve and electric actuator | |
JP5272840B2 (en) | Fluid shut-off device | |
JP2001141096A (en) | Electric motor and fluid control valve using the same | |
JP4985332B2 (en) | Fluid shut-off device | |
WO2022044776A1 (en) | Stepping motor abnormality detecting device | |
KR101415079B1 (en) | Appratus for diagnosing circuit breaker | |
JP6543673B2 (en) | Center type butterfly valve | |
JP2001141096A5 (en) | ||
JPH102449A (en) | Actuator action monitoring device for valve | |
JP2009268335A (en) | Motor device | |
JP2009115405A (en) | Fluid shut-off device | |
JP2007298255A (en) | Gas shutoff device | |
JP7539062B2 (en) | Stepping motor abnormality detection device | |
JP4125649B2 (en) | Battery voltage detection method for flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080115 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110613 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |