JP2005139508A - Method for producing valve spring - Google Patents

Method for producing valve spring Download PDF

Info

Publication number
JP2005139508A
JP2005139508A JP2003376750A JP2003376750A JP2005139508A JP 2005139508 A JP2005139508 A JP 2005139508A JP 2003376750 A JP2003376750 A JP 2003376750A JP 2003376750 A JP2003376750 A JP 2003376750A JP 2005139508 A JP2005139508 A JP 2005139508A
Authority
JP
Japan
Prior art keywords
valve spring
nitriding
steel
shot peening
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003376750A
Other languages
Japanese (ja)
Other versions
JP4809579B2 (en
Inventor
Hidetoshi Yoshikawa
英利 吉川
Masami Wakita
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2003376750A priority Critical patent/JP4809579B2/en
Publication of JP2005139508A publication Critical patent/JP2005139508A/en
Application granted granted Critical
Publication of JP4809579B2 publication Critical patent/JP4809579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitridation method capable of obtaining a surface nitriding hardness and a nitriding depth equal to or more than heretofore in a shorter period of time than heretofore while suppressing the production of iron-nitrogen compound. <P>SOLUTION: A coil spring consisting of a steel containing, by weight, 0.60-0.80% C, 1.20-2.20% Mn is quenched and tempered, and then is nitrided at 480-500°C for 30-110 min by using a treating gas mainly consisting of ammonia gas. The steel may further contain one or more elements selected among 0.40-1.40% Cr, 0.05-0.25% Mo and 0.05-0.60% V. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車の内燃機関用の弁ばね及びその製造方法、特に表面窒化処理に関する。   The present invention relates to a valve spring for an internal combustion engine of an automobile and a method for manufacturing the same, and more particularly to a surface nitriding treatment.

弁ばねにおいて疲労強度を上げるには、表面硬さを上げることが有効である。従来より、疲労強度の向上を目的とした表面処理として、窒化が行われている。窒化処理を弁ばねの疲労強度向上に結びつけるためには、表面を十分窒化させることにより必要な硬さを確保することと、十分な窒化深さを確保することが必要である。
特開平9-112614号公報 特開平5-156351号公報 特開2003-193197号公報 特許第3142689号公報 特許第3006432号公報
In order to increase the fatigue strength of the valve spring, it is effective to increase the surface hardness. Conventionally, nitriding has been performed as a surface treatment for the purpose of improving fatigue strength. In order to link the nitriding treatment to the fatigue strength improvement of the valve spring, it is necessary to secure the necessary hardness by sufficiently nitriding the surface and to secure a sufficient nitriding depth.
Japanese Patent Laid-Open No. 9-12614 Japanese Unexamined Patent Publication No. 5-156351 JP 2003-193197 A Japanese Patent No. 3142689 Japanese Patent No. 3006432

現在、弁ばねの窒化には、処理の容易な、アンモニアガスを主体とする処理ガスを用いたガス軟窒化が主に用いられている。このガス軟窒化処理において十分な表面硬さ及び窒化深さを得るためには、最低でも2〜4時間の窒化を行う必要があるとされている(特許文献3)。しかし、従来、このような窒化処理において、表面に化合物層が生成することが問題となっている。化合物層とは、Fe2-3N等の鉄−窒素化合物から成る層のことである。鉄−窒素化合物は非常に硬い物質であり、非常に脆い。弁ばねの表面にこのような鉄−窒素化合物層が存在すると、弁ばね使用時の極めて早期にその層に亀裂が発生し、それがその層の下の素地(ばね鋼層)にまで伝播して早期に弁ばねが折損するという問題を生ずる(特許文献2)。 Currently, gas soft nitriding using a processing gas mainly composed of ammonia gas, which is easy to process, is mainly used for nitriding a valve spring. In order to obtain a sufficient surface hardness and nitriding depth in this gas soft nitriding treatment, it is said that nitriding must be performed for at least 2 to 4 hours (Patent Document 3). However, conventionally, in such a nitriding treatment, it has been a problem that a compound layer is formed on the surface. The compound layer is a layer made of an iron-nitrogen compound such as Fe 2-3 N. Iron-nitrogen compounds are very hard materials and are very brittle. If such an iron-nitrogen compound layer exists on the surface of the valve spring, the layer will crack very early when the valve spring is used, and it will propagate to the base material (spring steel layer) under the layer. This causes a problem that the valve spring breaks early (Patent Document 2).

表面におけるこのような鉄−窒素化合物の生成を防止するため、処理時の雰囲気の窒素濃度を2段に変化させるという方法が知られている(特許文献5)。すなわち、最初は高濃度のアンモニア雰囲気で窒化を行って十分な量の窒素を鋼中に浸入させ、その後、雰囲気のアンモニア濃度を下げることにより、最表面における鉄−窒素化合物の生成を防止するとともに、既に生成した鉄−窒素化合物を内部に向けて拡散させる。   In order to prevent the formation of such iron-nitrogen compounds on the surface, a method of changing the nitrogen concentration of the atmosphere during the treatment in two stages is known (Patent Document 5). That is, first, nitriding is performed in a high-concentration ammonia atmosphere to allow a sufficient amount of nitrogen to enter the steel, and then the ammonia concentration in the atmosphere is lowered to prevent the formation of iron-nitrogen compounds on the outermost surface. The iron-nitrogen compound already produced is diffused toward the inside.

しかし、このような処理は当然、長時間を要するため、通常の生産工程において採用することは、その箇所において生産能率を大きく低下させることにつながる。   However, since such a process naturally takes a long time, adopting it in a normal production process greatly reduces the production efficiency at that point.

本発明は、このような鉄−窒素化合物の生成を抑えつつ、従来よりも短時間で従来と同様若しくは従来以上の表面窒化硬さ及び窒化深さを得ることのできる窒化処理方法を提供するものである。   The present invention provides a nitriding treatment method capable of obtaining a surface nitriding hardness and nitriding depth that are the same as or higher than conventional ones in a shorter time than the conventional one while suppressing the formation of such iron-nitrogen compounds. It is.

上記のような課題を解決するために成された本発明に係るばねの窒化方法は、重量比にしてC:0.60〜0.80%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼を素材とするコイルばねを、480℃〜500℃の間の温度で30分〜110分の間の時間だけ、アンモニアガスを主体とする処理ガスによる窒化処理を施すことを特徴とする。   The spring nitriding method according to the present invention made to solve the above-mentioned problems contains C: 0.60 to 0.80%, Si: 1.20 to 2.20%, and Mn: 0.30 to 0.90% in weight ratio. A coil spring made of steel is subjected to nitriding with a processing gas mainly composed of ammonia gas at a temperature between 480 ° C. and 500 ° C. for a time between 30 minutes and 110 minutes.

また、その素材鋼は、重量比にしてC:0.60〜0.75%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼であってもよい。   The material steel may be steel containing C: 0.60 to 0.75%, Si: 1.20 to 2.20%, and Mn: 0.30 to 0.90% in weight ratio.

更に、その鋼がCr:0.40〜1.40%、Mo:0.05〜0.25%、V:0.05〜0.60%のうちの1種又は2種以上を含有するものであってもよい。   Further, the steel may contain one or more of Cr: 0.40 to 1.40%, Mo: 0.05 to 0.25%, V: 0.05 to 0.60%.

或いは、その鋼が更に、Cr:0.40〜1.00%、Mo:0.05〜0.25%、V:0.05〜0.25%のうちの1種又は2種以上を含有するものであってもよい。   Alternatively, the steel may further contain one or more of Cr: 0.40 to 1.00%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.25%.

上記窒化処理後は、表面圧縮残留応力が1600MPa以上となるようにショットピーニングを施すことが望ましい。   After the nitriding treatment, it is desirable to perform shot peening so that the surface compressive residual stress becomes 1600 MPa or more.

そのショットピーニングは、3回以上施すことが望ましい。   The shot peening is desirably performed three times or more.

そして、その第1回目のショットピーニングではφ0.5〜0.7mmの硬質ショット球を使用し、第2回目のショットピーニングではφ0.2〜0.4mmの硬質ショット球を使用し、第3回目のショットピーニングではφ0.15mm以下のショット球を使用することが望ましい。   In the first shot peening, a hard shot ball of φ0.5 to 0.7 mm is used, and in the second shot peening, a hard shot ball of φ0.2 to 0.4 mm is used. For peening, it is desirable to use a shot ball of φ0.15mm or less.

また、本発明に係る弁ばねは、重量比にしてC:0.60〜0.80%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼を素材とし、コイリング・窒化・ショットピーニング後、表面から0.02mmの硬さがHv750以上、表面の窒素化合物層の平均厚さが0.1〜3μmとなるようにアンモニアガス窒化処理が施されたことを特徴とする。 Further, the valve spring according to the present invention is made of steel containing C: 0.60 to 0.80%, Si: 1.20 to 2.20%, Mn: 0.30 to 0.90% in weight ratio, after coiling / nitriding / shot peening, Ammonia gas nitriding treatment is performed so that the hardness of 0.02 mm from the surface is Hv 750 or more and the average thickness of the nitrogen compound layer on the surface is 0.1 to 3 μm.

同様に、その素材鋼は、重量比にしてC:0.60〜0.75%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼であってもよい。   Similarly, the material steel may be steel containing C: 0.60 to 0.75%, Si: 1.20 to 2.20%, and Mn: 0.30 to 0.90% in weight ratio.

上記鋼は、更に、Cr:0.40〜1.40%、Mo:0.05〜0.25%、V:0.05〜0.60%のうちの1種又は2種以上を含有するものであってもよい。   The steel may further contain one or more of Cr: 0.40 to 1.40%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.60%.

或いは、上記鋼は、更に、Cr:0.40〜1.00%、Mo:0.05〜0.25%、V:0.05〜0.25%のうちの1種又は2種以上を含有するものであってもよい。   Alternatively, the steel may further contain one or more of Cr: 0.40 to 1.00%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.25%.

上記弁ばねはいずれも、窒化処理後に表面圧縮残留応力が1600MPa以上となるようにショットピーニングが施されていることが望ましい。   Any of the above valve springs is preferably shot peened so that the surface compressive residual stress becomes 1600 MPa or more after nitriding.

本発明に係る弁ばねの製造方法によると、弁ばねの最表面における窒素化合物層の生成が最小限に抑えられ、使用時のそこからの亀裂生成が抑制される。一方、所定の耐久性を確保するに必要な表面硬さ及び十分な窒素拡散層深さが得られるため、両効果が相まって、高い耐久性(疲労寿命)を持つ弁ばねを得ることができる。   According to the method for manufacturing a valve spring according to the present invention, the generation of a nitrogen compound layer on the outermost surface of the valve spring is suppressed to a minimum, and the generation of cracks therefrom is suppressed during use. On the other hand, since the surface hardness and sufficient nitrogen diffusion layer depth required to ensure the predetermined durability can be obtained, a valve spring having high durability (fatigue life) can be obtained by combining both effects.

発明を実施するための最良の形態及び効果BEST MODE FOR CARRYING OUT THE INVENTION

本発明に係る弁ばねの素材である鋼の各成分を上記のように規定したのは、次の理由からである。   The reason why the respective components of steel, which is the material of the valve spring according to the present invention, is defined as described above is as follows.

C:0.60〜0.80%
炭素は鋼に強度を与えるために最も大きな影響を有する元素であり、本発明が目的とする高強度弁ばねとして十分な耐へたり性及び耐久性を有する程度の強度を与えるためには、0.60%以上含有していなければならない。しかし、0.80%を超えて含有させると、冷間成形が困難となる。また、靭性の低下による耐久性の低下も問題となる。
なお、上限を0.75%としたときでも、窒化処理により、必要な表面硬さを確保することができるほか、内部の硬さをやや下げ、より高い靭性を確保できるようになる。
C: 0.60 ~ 0.80%
Carbon is an element that has the greatest influence on giving strength to steel, and in order to give strength sufficient to have sag resistance and durability as a high strength valve spring intended by the present invention, 0.60 is required. Must contain at least%. However, if the content exceeds 0.80%, cold forming becomes difficult. Further, a decrease in durability due to a decrease in toughness is also a problem.
Even when the upper limit is set to 0.75%, the necessary surface hardness can be ensured by nitriding, and the internal hardness can be lowered slightly to ensure higher toughness.

Si:1.20〜2.20%
シリコンも炭素同様、鋼に強度を与える元素であるが、ばねの場合には、耐へたり性付与の効果が重要である。シリコン含有量が1.20%未満では、本発明が目的とする高強度弁ばねとして必要な耐へたり性を付与することができない。しかし、シリコンは同時に、加熱時の表面脱炭を助長する元素でもある。表面に最大の応力が加わる状態で使用されるばねの場合には、熱処理時の表面脱炭の生成に最も注意を払う必要がある。シリコン含有量が2.20%を超えると、熱処理(特に焼入れ加熱)時に、表面にフェライト脱炭が生成する可能性がある。
Si: 1.20-2.20%
Silicon, like carbon, is an element that imparts strength to steel, but in the case of a spring, the effect of imparting sag resistance is important. When the silicon content is less than 1.20%, the sag resistance necessary for the high-strength valve spring intended by the present invention cannot be imparted. However, silicon is also an element that promotes surface decarburization during heating. In the case of a spring that is used in a state where the maximum stress is applied to the surface, the most attention must be paid to the generation of surface decarburization during heat treatment. If the silicon content exceeds 2.20%, ferrite decarburization may occur on the surface during heat treatment (particularly quenching heating).

Mn:0.30〜0.90%
マンガンは、鋼に固溶してそれ自体でマトリックスの強度を上げる他、焼入性を向上させる効果も顕著に有する。ただし、オーステナイトを安定化させる効果も有するため、焼入れ後の残留オーステナイト量が増加する。マンガン含有量が0.30%未満では、本発明が目的とする高強度弁ばねとして必要な強度が得られない可能性がある。しかし、0.90%を超えて含有させると、熱処理後の残留オーステナイト量が多くなり、耐へたり性等に悪影響を
及ぼす可能性がある。
Mn: 0.30-0.90%
Manganese has a remarkable effect of improving hardenability in addition to increasing the strength of the matrix by solid solution in steel. However, since it also has the effect of stabilizing austenite, the amount of retained austenite after quenching increases. If the manganese content is less than 0.30%, the strength required for the high-strength valve spring intended by the present invention may not be obtained. However, if the content exceeds 0.90%, the amount of retained austenite after heat treatment increases, which may adversely affect sag resistance.

Cr:0.40〜1.40%
クロムはマンガンと同様、鋼に固溶してその強度を高めると共に、焼入性を向上させる。また、鋼に固溶した場合、その靭性を高める効果を有することが知られている。しかし、これもオーステナイトを安定化させる元素の一つであり、過度に添加すると熱処理後の残留オーステナイト量が増加する。本発明に係る弁ばねでは、特にその靭性向上効果を利用するためにクロムを添加したが、その含有量が0.40%未満では目的とする耐久性が得られない可能性がある。一方、1.40%を超えて添加しても、それ以上の靭性向上効果を望むことはできず、単にコストを増加させるのみである。また、熱処理後の残留オーステナイト量が増加し、前述のとおり耐へたり性に悪影響を及ぼす可能性がある。なお、他の元素(例えば炭素やマンガン)の含有量が高い場合には、上限を1.00%としてもその効果は十分発揮される。
Cr: 0.40 to 1.40%
Chromium, like manganese, dissolves in steel to increase its strength and improve hardenability. Moreover, when it dissolves in steel, it is known to have an effect of increasing its toughness. However, this is also one of the elements that stabilize austenite, and when added excessively, the amount of retained austenite after heat treatment increases. In the valve spring according to the present invention, chromium is added particularly in order to utilize the effect of improving the toughness. However, if the content is less than 0.40%, the intended durability may not be obtained. On the other hand, even if added in excess of 1.40%, no further improvement in toughness can be expected, and only the cost is increased. Further, the amount of retained austenite after the heat treatment increases, which may adversely affect the sag resistance as described above. When the content of other elements (for example, carbon and manganese) is high, the effect is sufficiently exhibited even if the upper limit is set to 1.00%.

Mo:0.05〜0.25%
モリブデンはそれ自身で鋼の強度を上げる他、焼入性向上の効果も大きい。これらの定性的効果はマンガンやクロムと同様であるが、その添加量はそれらよりも十分少なくてよい。本発明の素材鋼においてモリブデン含有量を0.05%以上としたのは、それ未満では本発明が目的とする十分な強度が得られないためであり、一方、0.25%を超えて添加してもその効果は飽和し、単にコストを増加させるに過ぎないためである。また、マンガン及びクロムと同様、熱処理後の残留オーステナイトを安定化するという悪影響についても考慮した。
Mo: 0.05-0.25%
Molybdenum increases the strength of steel by itself and has a great effect of improving hardenability. These qualitative effects are the same as those of manganese and chromium, but the amount added may be sufficiently smaller than those. The reason why the molybdenum content in the material steel of the present invention is 0.05% or more is that if it is less than that, sufficient strength intended by the present invention cannot be obtained. This is because the effect is saturated and only increases costs. In addition, like manganese and chromium, the adverse effect of stabilizing the retained austenite after heat treatment was also considered.

V:0.05〜0.60%
バナジウムは鋼中において炭素と結合して炭化バナジウムとなるが、この炭化物は非常に微細であり、また、高温まで鋼中に固溶しない。従って、熱処理(オイルテンパー時の焼入れ)のための加熱に際して、オーステナイト結晶粒が成長することを防止し、鋼の靭性が低下するのを防止する効果がある。本発明においては、このバナジウムのオーステナイト結晶粒の粗大化防止効果に着目し、それを0.05〜0.60%添加することとした。これ未満では十分な量の炭化物が生成せず、このような結晶粒成長防止効果がほとんど期待できない。一方、結晶粒成長防止効果はこの上限値程度で十分発揮され、それを超えて添加すると逆にバナジウム炭化物自体が成長して大きくなり、耐久性(耐疲労性)に悪影響を与えるおそれがある。なお、クロム、モリブデン及びバナジウムは、いずれか1種のみでもよいが、複数種を添加した場合には、バナジウムの上限を0.25%としても構わない。
V: 0.05 ~ 0.60%
Vanadium combines with carbon in the steel to form vanadium carbide, but this carbide is very fine and does not dissolve in the steel up to high temperatures. Accordingly, there is an effect of preventing the austenite crystal grains from growing during heating for heat treatment (quenching during oil tempering) and preventing the toughness of the steel from being lowered. In the present invention, paying attention to the effect of preventing the austenite crystal grains of vanadium from becoming coarse, 0.05 to 0.60% thereof is added. If it is less than this, a sufficient amount of carbide is not generated, and such a crystal grain growth preventing effect can hardly be expected. On the other hand, the effect of preventing crystal grain growth is sufficiently exhibited at about this upper limit value, and when it is added beyond this upper limit, the vanadium carbide itself grows and becomes larger, which may adversely affect durability (fatigue resistance). Note that chromium, molybdenum and vanadium may be only one of them, but when a plurality of them are added, the upper limit of vanadium may be 0.25%.

本発明においては、アンモニアガスを主体とする処理ガスによる窒化処理を用いるとともに、その処理時間を従来よりも短くするため、窒化処理温度を従来よりも高い480℃〜500℃とした。これにより、十分な窒素の拡散層深さが確保されるとともに、最表面における化合物層の形成が抑制される。具体的には、化合物層の平均厚さは5μm以下となり、表面硬さ(最表面から0.02mm内部の硬さ)をHv750以上とすることができる。なお、このように窒化処理した弁ばねに対してショットピーニング処理を施すことにより、表面の化合物層の一部が消滅するため、最終的には表面の化合物層の平均厚さは3μm以下となる。ショットピーニング処理は上記の通り3回以上施すことにより、表面の化合物層を十分に除去した上で、要求耐久性能を確保するために必要な圧縮残留応力(1600MPa以上)を確保することができるようになる。この3回以上のショットピーニングを行う際、各回に使用するショット球の種類を上記のように設定することにより、上記の表面化合物層除去及び圧縮残留応力付与という効果の他、ショット球自身の耐久性(寿命)を長くして、弁ばねの製造コストを低減することができるようになる。   In the present invention, nitriding treatment using a processing gas mainly composed of ammonia gas is used, and the nitriding treatment temperature is set to 480 ° C. to 500 ° C., which is higher than the conventional temperature, in order to shorten the processing time. This ensures a sufficient nitrogen diffusion layer depth and suppresses formation of the compound layer on the outermost surface. Specifically, the average thickness of the compound layer is 5 μm or less, and the surface hardness (the hardness within 0.02 mm from the outermost surface) can be Hv750 or more. In addition, since a part of the compound layer on the surface disappears by performing shot peening treatment on the valve spring thus nitrided, the average thickness of the compound layer on the surface finally becomes 3 μm or less. . By performing the shot peening treatment three times or more as described above, it is possible to secure the necessary compressive residual stress (1600 MPa or more) to ensure the required durability performance after sufficiently removing the compound layer on the surface. become. When performing shot peening three times or more, by setting the type of shot sphere used each time as described above, in addition to the effects of removing the surface compound layer and applying compressive residual stress, the durability of the shot sphere itself Thus, the manufacturing cost of the valve spring can be reduced.

本発明の一実施例である弁ばねの特性を調査した。図1に、試験を行った発明品及び従来品の素材鋼の主要化学成分(質量%)を示す。このような成分を有する線材を用いて、図2に示す工程で弁ばねを製造した。この工程において、窒化処理はアンモニアガス分率(容量)75%の窒化処理ガスを使用して、480℃で60分、90分、120分及び240分の4種行った。ショットピーニングは3回行い、第1段目にはφ0.6mmの硬質ショット球を、第2段目にはφ0.3mmの硬質ショット球を、そして第3段目のショットピーニングではφ0.10mmのショット球を使用した。   The characteristic of the valve spring which is one Example of this invention was investigated. FIG. 1 shows the main chemical components (mass%) of the material steels of the invention products and the conventional products tested. A valve spring was manufactured by the process shown in FIG. 2 using a wire having such a component. In this step, the nitriding treatment was performed at 4 minutes at 480 ° C. for 60 minutes, 90 minutes, 120 minutes and 240 minutes using a nitriding gas having an ammonia gas fraction (volume) of 75%. The shot peening is performed three times, the hard shot ball of φ0.6mm is used in the first stage, the hard shot ball of φ0.3mm is used in the second stage, and φ0.10mm is used in the third stage shot peening. A shot ball was used.

各発明品及び従来品の窒化処理後の窒化層の硬さ分布を図3に示す。いずれも表面硬さはHv850を超えており、また、Hv700以上である深さ(窒化層深さ)はいずれも0.03mm(30μm)を超えている。発明品の480℃×60分〜120分の窒化では、表面から0.02mmでの硬さがHv780以上となっているが、従来品ではHv700以下となっている。   The hardness distribution of the nitrided layer after the nitriding treatment of each invention product and the conventional product is shown in FIG. In any case, the surface hardness exceeds Hv850, and the depth (nitride layer depth) of Hv700 or more exceeds 0.03 mm (30 μm). In the nitriding of the invention product at 480 ° C. × 60 minutes to 120 minutes, the hardness at 0.02 mm from the surface is Hv780 or more, but the conventional product is Hv700 or less.

発明品において、窒化処理時間を種々変化させ、ショットピーニング後の最表面の化合物層の平均厚さを測定した結果を図4に示す。窒化処理時間90分では化合物層の平均厚さはいずれも3μm以下となっている。120分を超えると3μm以上となり、240分では約5μmとなっている。窒化処理時間90分(発明品)と240分(従来品)の表面の顕微鏡写真を図5に示す。なお、このようにショットピーニング後の化合物層の厚さを0.1〜3μmとするためには、ショットピーニング前の化合物層の厚さを2〜5μmとしておく必要がある。   FIG. 4 shows the results of measuring the average thickness of the outermost surface compound layer after shot peening by varying the nitriding time in the invention. When the nitriding time is 90 minutes, the average thickness of the compound layers is 3 μm or less. If it exceeds 120 minutes, it becomes 3 μm or more, and it is about 5 μm in 240 minutes. FIG. 5 shows micrographs of the surfaces of the nitriding treatment time of 90 minutes (invention product) and 240 minutes (conventional product). In order to set the thickness of the compound layer after shot peening to 0.1 to 3 μm in this way, it is necessary to set the thickness of the compound layer before shot peening to 2 to 5 μm.

これら各種厚さの化合物層を有する発明品に3段ショットピーニングを施した後の表面圧縮残留応力の値を測定した結果を図6に示す。化合物層が厚くなるにつれ、表面圧縮残留応力は増加している。化合物層がない場合には、表面圧縮残留応力も低くなっている。   FIG. 6 shows the results of measuring the surface compressive residual stress values after performing the three-step shot peening on the inventions having the compound layers having various thicknesses. As the compound layer becomes thicker, the surface compressive residual stress increases. When there is no compound layer, the surface compressive residual stress is also low.

最後に、各種化合物層厚さを持つ発明品の耐久性試験を行った。その結果を図7に示す。化合物層の平均厚さが3μm以上となると、耐久性が低下する傾向が見られる。また、化合物層が全く無い場合にも十分な耐久性が得られない。   Finally, the durability test of the invention having various compound layer thicknesses was performed. The result is shown in FIG. When the average thickness of the compound layer is 3 μm or more, the durability tends to decrease. Further, sufficient durability cannot be obtained even when there is no compound layer.

本発明の実施例である発明品及び従来品弁ばねの素材の化学成分。The chemical composition of the material of the inventive and conventional valve springs that are embodiments of the present invention. 発明品及び従来品弁ばねの製造工程図。Manufacturing process drawing of invention product and conventional product valve spring. 発明品及び従来品弁ばねの窒化処理後の表面硬さ分布。Surface hardness distribution after nitriding treatment of inventive and conventional valve springs. 発明材弁ばねの、窒化処理時間と表面化合物層厚さの関係を示すグラフ。The graph which shows the relationship between nitriding treatment time and surface compound layer thickness of an invention valve spring. 発明品及び従来品弁ばねの表面化合物層の顕微鏡写真。The micrograph of the surface compound layer of an invention product and a conventional product valve spring. 発明材弁ばねの、表面化合物層厚さとショットピーニング後の表面圧縮残留応力の関係を示すグラフ。The graph which shows the relationship between the surface compound layer thickness of the invention material valve spring and the surface compressive residual stress after shot peening. 発明材弁ばねの、表面化合物層厚さと耐久性の関係を示すグラフ。The graph which shows the relationship between surface compound layer thickness and durability of an invention valve spring.

Claims (12)

重量比にしてC:0.60〜0.80%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼を素材とするコイルばねを、480℃〜500℃の間の温度で30分〜110分の間の時間だけアンモニアガスを主体とする処理ガスによる窒化処理を施すことを特徴とする弁ばねの製造方法。   Coil spring made of steel containing C: 0.60-0.80% by weight, Si: 1.20-2.20%, Mn: 0.30-0.90%, at a temperature between 480 ° C.-500 ° C. for 30 minutes-110 A method for manufacturing a valve spring, characterized in that nitriding with a processing gas mainly composed of ammonia gas is performed for a time of minutes. 重量比にしてC:0.60〜0.75%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼を素材とするコイルばねを、480℃〜500℃の間の温度で30分〜110分の間の時間だけアンモニアガスを主体とする処理ガスによる窒化処理を施すことを特徴とする弁ばねの製造方法。   Coil springs made of steel containing C: 0.60 to 0.75% by weight, Si: 1.20 to 2.20%, Mn: 0.30 to 0.90% at a temperature between 480 ° C. and 500 ° C. for 30 minutes to 110 A method for manufacturing a valve spring, characterized in that nitriding with a processing gas mainly composed of ammonia gas is performed for a time of minutes. 上記鋼が、更に、Cr:0.40〜1.40%、Mo:0.05〜0.25%、V:0.05〜0.60%のうちの1種又は2種以上を含有することを特徴とする請求項1又は2に記載の弁ばねの製造方法。   3. The steel according to claim 1, wherein the steel further contains one or more of Cr: 0.40 to 1.40%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.60%. Manufacturing method for the valve spring. 上記鋼が、更に、Cr:0.40〜1.00%、Mo:0.05〜0.25%、V:0.05〜0.25%のうちの1種又は2種以上を含有することを特徴とする請求項1又は2に記載の弁ばねの製造方法。   3. The steel according to claim 1, further comprising one or more of Cr: 0.40 to 1.00%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.25%. Manufacturing method for the valve spring. 窒化処理後、表面圧縮残留応力が1600MPa以上となるようにショットピーニングを施すことを特徴とする請求項1〜4のいずれかに記載の弁ばねの製造方法。   5. The method for manufacturing a valve spring according to claim 1, wherein shot peening is performed after the nitriding treatment so that the surface compressive residual stress is 1600 MPa or more. ショットピーニングを3回以上施すことを特徴とする請求項5に記載の弁ばねの製造方法。   6. The method for manufacturing a valve spring according to claim 5, wherein the shot peening is performed three or more times. 第1回目のショットピーニングではφ0.5〜0.7mmの硬質ショット球を使用し、第2回目のショットピーニングではφ0.2〜0.4mmの硬質ショット球を使用し、第3回目のショットピーニングではφ0.15mm以下のショット球を使用することを特徴とする請求項6に記載の弁ばねの製造方法。   The first shot peening uses a hard shot ball of φ0.5-0.7mm, the second shot peening uses a hard shot ball of φ0.2-0.4mm, and the third shot peening uses φ0 7. The method for manufacturing a valve spring according to claim 6, wherein a shot ball of .15 mm or less is used. 重量比にしてC:0.60〜0.80%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼を素材とし、コイリング・窒化・ショットピーニング後、表面から0.02mmの硬さがHv750以上、表面の窒素化合物層の平均厚さが0.1〜3μmとなるようにアンモニアガス窒化処理が施されたことを特徴とする弁ばね。   Made of steel containing C: 0.60-0.80%, Si: 1.20-2.20%, Mn: 0.30-0.90% by weight, and after coiling / nitriding / shot peening, 0.02mm hardness from surface is Hv750 or more The valve spring is characterized in that ammonia gas nitriding is performed so that the average thickness of the nitrogen compound layer on the surface is 0.1 to 3 μm. 重量比にしてC:0.60〜0.75%、Si:1.20〜2.20%、Mn:0.30〜0.90%を含有する鋼を素材とし、コイリング・窒化・ショットピーニング後、表面から0.02mmの硬さがHv750以上、表面の窒素化合物層の平均厚さが0.1〜3μmとなるようにアンモニアガス窒化処理が施されたことを特徴とする弁ばね。   Made of steel containing C: 0.60-0.75%, Si: 1.20-2.20%, Mn: 0.30-0.90% in weight ratio, 0.02mm hardness from surface is Hv750 or more after coiling / nitriding / shot peening The valve spring is characterized in that ammonia gas nitriding is performed so that the average thickness of the nitrogen compound layer on the surface is 0.1 to 3 μm. 上記鋼が、更に、Cr:0.40〜1.40%、Mo:0.05〜0.25%、V:0.05〜0.60%のうちの1種又は2種以上を含有することを特徴とする請求項8又は9に記載の弁ばね。   10. The steel according to claim 8 or 9, further comprising one or more of Cr: 0.40 to 1.40%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.60%. Valve spring. 上記鋼が、更に、Cr:0.40〜1.00%、Mo:0.05〜0.25%、V:0.05〜0.25%のうちの1種又は2種以上を含有することを特徴とする請求項8又は9に記載の弁ばね。   10. The steel according to claim 8 or 9, further comprising one or more of Cr: 0.40 to 1.00%, Mo: 0.05 to 0.25%, and V: 0.05 to 0.25%. Valve spring. 窒化処理後、表面圧縮残留応力が1600MPa以上となるようにショットピーニングが施されたことを特徴とする請求項8〜11のいずれかに記載の弁ばね。   The valve spring according to any one of claims 8 to 11, wherein shot peening is performed so that the surface compressive residual stress becomes 1600 MPa or more after nitriding.
JP2003376750A 2003-11-06 2003-11-06 Valve spring Expired - Fee Related JP4809579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376750A JP4809579B2 (en) 2003-11-06 2003-11-06 Valve spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376750A JP4809579B2 (en) 2003-11-06 2003-11-06 Valve spring

Publications (2)

Publication Number Publication Date
JP2005139508A true JP2005139508A (en) 2005-06-02
JP4809579B2 JP4809579B2 (en) 2011-11-09

Family

ID=34687703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376750A Expired - Fee Related JP4809579B2 (en) 2003-11-06 2003-11-06 Valve spring

Country Status (1)

Country Link
JP (1) JP4809579B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031770A (en) * 2005-07-26 2007-02-08 Honda Motor Co Ltd Steel-made spring member
JP2007332421A (en) * 2006-06-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing soft-nitride part
WO2011129179A1 (en) 2010-04-14 2011-10-20 日本発條株式会社 Spring and method for producing same
EP2548976A1 (en) * 2010-03-18 2013-01-23 Nhk Spring Co., Ltd. Spring steel and surface treatment method for steel material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031770A (en) * 2005-07-26 2007-02-08 Honda Motor Co Ltd Steel-made spring member
JP4711403B2 (en) * 2005-07-26 2011-06-29 本田技研工業株式会社 Steel spring member and manufacturing method thereof
JP2007332421A (en) * 2006-06-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing soft-nitride part
EP2548976A1 (en) * 2010-03-18 2013-01-23 Nhk Spring Co., Ltd. Spring steel and surface treatment method for steel material
EP2548976A4 (en) * 2010-03-18 2014-10-01 Nhk Spring Co Ltd Spring steel and surface treatment method for steel material
US9469895B2 (en) 2010-03-18 2016-10-18 Nhk Spring Co., Ltd. Spring steel and surface treatment method for steel material
WO2011129179A1 (en) 2010-04-14 2011-10-20 日本発條株式会社 Spring and method for producing same
EP2559781A1 (en) * 2010-04-14 2013-02-20 Nhk Spring Co., Ltd. Spring and method for producing same
EP2559781A4 (en) * 2010-04-14 2014-12-10 Nhk Spring Co Ltd Spring and method for producing same
US9080233B2 (en) 2010-04-14 2015-07-14 Nhk Spring Co., Ltd. Spring and method for producing same

Also Published As

Publication number Publication date
JP4809579B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
CN100439540C (en) Steel material with excellent rolling fatigue life and method of producing the same
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JPWO2006118243A1 (en) Carburized induction hardening parts
JPH05148535A (en) Production of surface hardened parts having decreased heat treating strain and excellent bending fatigue strength
JP2007077411A (en) Machine structural component having excellent fatigue strength and wear property, and method for producing the same
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JP2012077367A (en) Coil spring and method of manufacturing the same
JP2006322036A (en) Vacuum-carburized parts and manufacturing method therefor
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP6572216B2 (en) Stainless steel spring and method for producing stainless steel spring
JP2004315968A (en) Steel wire for high strength spring having excellent workability, and high strength spring
JPH11246941A (en) High strength valve spring and its manufacture
JP4798963B2 (en) High strength gear and manufacturing method thereof
JP5198765B2 (en) Rolling member and manufacturing method thereof
JP4809579B2 (en) Valve spring
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JP2004190116A (en) Steel wire for spring
JP2001140020A (en) Method for heat-treating carbo-nitriding treated member excellent in pitting resistance
JP6160054B2 (en) High surface pressure resistant parts
JP2003231943A (en) Case hardening steel superior in temper softening resistance
JP4379315B2 (en) Mechanical structure member and shaft using the same
JP2020111803A (en) Method for manufacturing surface hardened steel component
JP3142689B2 (en) Spring with excellent fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090908

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees