JP2005139041A - Method for growing single crystal - Google Patents

Method for growing single crystal Download PDF

Info

Publication number
JP2005139041A
JP2005139041A JP2003378357A JP2003378357A JP2005139041A JP 2005139041 A JP2005139041 A JP 2005139041A JP 2003378357 A JP2003378357 A JP 2003378357A JP 2003378357 A JP2003378357 A JP 2003378357A JP 2005139041 A JP2005139041 A JP 2005139041A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
material rod
melting zone
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003378357A
Other languages
Japanese (ja)
Inventor
Toshifumi Kiyohara
敏史 清原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003378357A priority Critical patent/JP2005139041A/en
Publication of JP2005139041A publication Critical patent/JP2005139041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing a single crystal whereby the large-diameter single crystal can be easily and stably provided. <P>SOLUTION: In the method for growing the single crystal through an FZ method, a part of a material rod 6 is subjected to induction heating by an induction heating coil 4 to form a melting zone 7 and, while the melting zone 7 is being moved, it is serially melted and solidified at its lower and upper ends, respectively, to grow the single crystal 8. The material rod 6 has protruding parts 6a, each continuing in the longitudinal direction, on its surface. This enables melting of the upper end of the material rod 6 from its center, stabilization of the melting zone 7 by shaping the upper end of the material rod 6 into a so-called bowl-shape and shortening of the melting zone 7, thereby enabling growth of the large-diameter single crystal 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、FZ法(フローティング・ゾーン法;浮遊帯域溶融法)を用いて、大口径で高品質の単結晶を安定して得ることができる単結晶の製造方法に関するものである。   The present invention relates to a method for producing a single crystal that can stably obtain a large-diameter and high-quality single crystal by using the FZ method (floating zone method; floating zone melting method).

従来、金属や半導体の単結晶を育成する際に、高純度を要求される場合には、または、育成する単結晶が高融点のため、結晶融液と反応しない材質から成る適当な坩堝が無い場合には、誘導加熱コイルを用いるFZ法が用いられている。   Conventionally, there is no suitable crucible made of a material that does not react with the crystal melt when high purity is required when growing a single crystal of metal or semiconductor, or because the single crystal to be grown has a high melting point. In some cases, the FZ method using an induction heating coil is used.

FZ法においては、まず、単結晶を得ようとする材料から成る多結晶の円柱状の原料棒を下部シャフトに固定し、種結晶を上部シャフトに固定する。そして、誘導加熱コイルにより原料棒の上端を加熱溶融してから上部および下部シャフトを動かして原料棒の溶融した上端を種結晶と接合させ、原料棒の上端部に適当な長さの溶融帯が形成された後、上部および下部シャフトを互いに反対方向に回転させながら上方に移動させる。これにより、溶融帯を原料棒の上端部から下端に向けて移動させて、溶融帯の移動につれて単結晶を成長させる。   In the FZ method, first, a polycrystalline cylindrical raw material rod made of a material for obtaining a single crystal is fixed to the lower shaft, and the seed crystal is fixed to the upper shaft. Then, the upper end of the raw material rod is heated and melted by the induction heating coil, and then the upper and lower shafts are moved to join the molten upper end of the raw material rod to the seed crystal. After being formed, the upper and lower shafts are moved upward while rotating in opposite directions. Accordingly, the melting zone is moved from the upper end portion of the raw material rod toward the lower end, and a single crystal is grown as the melting zone moves.

導電性の結晶材料を高周波加熱で引き上げるFZ法では、電磁誘導による浮揚力が溶融帯において原料の融液を誘導加熱コイルの中央に押しやるように働くため、溶融帯の維持が表面張力にだけ依存している場合よりは、比較的結晶径を大きくすることができる。
特開2002−249393号公報
In the FZ method in which conductive crystal material is pulled up by high-frequency heating, the levitation force due to electromagnetic induction works to push the raw material melt to the center of the induction heating coil in the melting zone, so the maintenance of the melting zone depends only on the surface tension. The crystal diameter can be made relatively larger than the case where it is.
JP 2002-249393 A

しかしながら、誘導加熱コイルによる誘導加熱では、多くの場合、誘導磁場が原料棒,溶融帯および単結晶に浸透する深さ、つまり表皮厚が、それぞれの径に比較して極端に薄いため、原料棒,溶融帯および単結晶の表面近傍のみが加熱されることとなり、原料棒および単結晶は表面から溶解することとなる。そのため、図5に従来の単結晶の育成方法における溶融帯近傍の様子を縦断面図で示すように、原料棒36と溶融帯37との界面46および単結晶38と溶融帯37との界面45の形状は、溶融帯37に対して中央で溶融帯37側に凸となった凸型の形状となる。   However, in induction heating with an induction heating coil, in many cases, the depth at which the induction magnetic field penetrates the raw material rod, melting zone and single crystal, that is, the skin thickness is extremely thin compared to the respective diameters. Only the melting zone and the vicinity of the surface of the single crystal are heated, and the raw material rod and the single crystal are dissolved from the surface. Therefore, as shown in a longitudinal sectional view of the state in the vicinity of the melting zone in the conventional single crystal growth method in FIG. 5, the interface 46 between the raw material rod 36 and the melting zone 37 and the interface 45 between the single crystal 38 and the melting zone 37 are shown. This shape is a convex shape that is convex toward the melting zone 37 at the center with respect to the melting zone 37.

したがって、溶融帯37の内部で単結晶38の先端(単結晶38の下端)と原料棒36の先端(原料棒36の上端)とが接触しないためには、両者がいずれも凸型の形状であることから溶融帯37を長くとる必要があり、これにより、溶融帯37において下方の静水圧が増加し、ついには溶融帯37が原料棒36から垂れ落ちてしまうため、単結晶の育成の続行が困難になり、大型の単結晶が育成できないという致命的な問題点があった。   Therefore, in order to prevent the tip of the single crystal 38 (the lower end of the single crystal 38) and the tip of the raw material rod 36 (the upper end of the raw material rod 36) from coming into contact with each other in the melting zone 37, both of them have a convex shape. Therefore, it is necessary to make the melting zone 37 longer, which increases the hydrostatic pressure below in the melting zone 37, and eventually the melting zone 37 hangs down from the raw material rod 36. There is a fatal problem that a large single crystal cannot be grown.

本発明は以上のような従来の技術の問題点を解決するために案出されたものであり、その目的は、大口径の単結晶を容易にかつ安定して提供できる単結晶の育成方法を提供することにある。   The present invention has been devised in order to solve the problems of the conventional techniques as described above, and an object of the present invention is to provide a method for growing a single crystal that can provide a large-diameter single crystal easily and stably. It is to provide.

本発明の単結晶の育成方法は、誘導加熱コイルで原料棒を誘導加熱して溶融帯を形成し、この溶融帯を移動させながら、溶融帯の上下の端部においてそれぞれ溶融および凝固を順次行なうことにより単結晶を成長させるFZ法による単結晶の育成方法において、前記原料棒は、その表面に長さ方向に連続した複数の突起部を有することを特徴とするものである。   In the method for growing a single crystal according to the present invention, a raw material rod is induction-heated with an induction heating coil to form a melting zone, and melting and solidification are sequentially performed at the upper and lower ends of the melting zone while moving the melting zone. In the method for growing a single crystal by the FZ method for growing a single crystal, the raw material rod has a plurality of protrusions continuous in the length direction on the surface thereof.

本発明の単結晶の育成方法によれば、原料棒の形状をその表面に長さ方向に連続した複数の突起部を有する棒状にしたことから、原料の周方向の厚みを薄くした突起部ではその表面で誘導加熱を行なうための渦電流が互いに逆方向となって打ち消し合うために渦電流がほとんど流れなくなり、原料棒の外周表面に配置された突起部では自己発熱はしないため、突起部は自己的には溶融しなくなる。これに対し、原料棒の棒状の中央部(本体部)では、従来の単結晶の育成方法と同様に、渦電流が円周状に周回し、そのジュール発熱により原料棒の本体部は自己的に溶融する。このようにまず中央部(棒状の本体部)を高温に加熱して溶融させ、その熱を原料棒の周辺部(複数の突起部)に伝導させることで、これら複数の突起部は間接的に溶融させることができる。この結果、原料棒の上端部は端面部分の形状が下に凸となって、いわゆるお椀状の形状となり、原料棒と溶融帯との界面の形状はその中央で下に凸となるので、溶融した原料が溶融帯から垂れ落ちることを有効に防止することができる。   According to the method for growing a single crystal of the present invention, since the shape of the raw material rod is formed into a rod shape having a plurality of protrusions continuous in the length direction on the surface thereof, in the protrusion portion with a reduced thickness in the circumferential direction of the raw material, Since the eddy currents for induction heating on the surface cancel each other in opposite directions, the eddy currents hardly flow, and the protrusions arranged on the outer peripheral surface of the raw material rod do not self-heat, so the protrusions are It will not melt on its own. On the other hand, in the rod-shaped central portion (main body portion) of the raw material rod, the eddy current circulates in a circular shape as in the conventional method for growing a single crystal, and the main body portion of the raw material rod is self-generated by the Joule heat generation. To melt. In this way, first, the central portion (rod-shaped main body portion) is heated to a high temperature and melted, and the heat is conducted to the peripheral portion (a plurality of protrusions) of the raw material rod, so that the plurality of protrusions are indirectly Can be melted. As a result, the upper end of the raw material bar has a so-called bowl-like shape in which the shape of the end face part is convex downward, and the shape of the interface between the raw material bar and the melting zone is convex downward in the center. It is possible to effectively prevent the raw material dripping from the melting zone.

また、原料棒の表面において隣接する突起間では、溶融した原料が表面張力により保持されるので、原料棒と溶融帯との界面の形状を下に凸とすることができるとともに、安定してその形状を保つことができる。このようにして形成された溶融帯は、溶融帯の下方の原料棒との界面の中央部が下側、すなわち、原料棒側に凸になることにより、溶融帯の内部で上方の単結晶の先端と下方の原料棒の先端とが接触しないようにするために設定される溶融帯の長さを短くすることができ、溶融帯の高さを小さくできることによって、溶融帯の下方に働く静水圧を低くすることができるので、これによっても溶融した原料が溶融帯から垂れ落ちることを有効に防止することができる。   In addition, since the molten raw material is held by surface tension between adjacent protrusions on the surface of the raw material rod, the shape of the interface between the raw material rod and the melting zone can be convex downward, and stably The shape can be kept. The melt zone formed in this way has a central portion of the interface with the raw material rod below the melt zone that protrudes downward, i.e., the raw material rod side. The hydrostatic pressure that works below the melting zone can be shortened and the height of the melting zone can be reduced by setting the length of the melting zone to prevent the tip and the tip of the lower raw material rod from contacting each other. Therefore, it is possible to effectively prevent the molten raw material from dripping from the melting zone.

これらの結果、本発明の単結晶の育成方法によれば、引き上げる単結晶の寸法を大きくして溶融帯が大きくなっても、溶融帯から溶融した原料が垂れ落ちることがなくなるので、大型の単結晶を安定して引き上げることができる。   As a result, according to the method for growing a single crystal of the present invention, even if the size of the single crystal to be pulled up is increased and the melting zone becomes large, the molten raw material does not sag from the melting zone. The crystal can be pulled up stably.

以下、本発明の単結晶の育成方法について、図面を参照しつつ詳細に説明する。   Hereinafter, the method for growing a single crystal of the present invention will be described in detail with reference to the drawings.

図1は本発明の単結晶の育成方法の実施の形態の一例を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing an example of an embodiment of the method for growing a single crystal of the present invention.

図1には本発明の単結晶の育成方法を実施する育成装置の例についてその縦断面図を示しているが、これによると、本発明の単結晶の育成方法に用いる育成装置では、密閉可能な耐圧容器12中にて単結晶の育成を行なう。耐圧容器12は、耐圧容器12内の空間13にて数気圧の不活性ガス雰囲気において単結晶の育成が可能なように設計されている。6は原料棒であり、その誘導加熱には誘導加熱コイル4が使用される。この例の誘導加熱コイル4は、水冷銅管が水平面に渦巻き状に捲回されて構成され、その誘導加熱コイル4の中心部が、原料棒6が挿通される貫通穴を形成し、耐圧容器12内に配置されている。   FIG. 1 shows a longitudinal sectional view of an example of a growth apparatus for carrying out the method for growing a single crystal of the present invention. According to this, the growth apparatus used for the method for growing a single crystal of the present invention can be sealed. Single crystal is grown in a pressure vessel 12. The pressure vessel 12 is designed so that a single crystal can be grown in an inert gas atmosphere of several atmospheres in the space 13 in the pressure vessel 12. Reference numeral 6 denotes a raw material rod, and an induction heating coil 4 is used for induction heating. The induction heating coil 4 of this example is configured by winding a water-cooled copper tube in a spiral shape on a horizontal plane, and the central portion of the induction heating coil 4 forms a through-hole through which the raw material rod 6 is inserted, and the pressure vessel Is located within 12.

誘導加熱コイル4の上下には、耐圧容器12外に配置された昇降可能な上軸駆動部1および下軸駆動部9と、それぞれの駆動部1および9から伸びて耐圧容器12を気密にかつ回転および上下移動可能に貫通する上軸2および下軸10と、これら上軸2および下軸10にそれぞれ固定された上ホルダー3および下ホルダー11とが配置され、上ホルダー3と下ホルダー11との間で、誘導加熱コイル4の中心部を貫通する原料棒6の端部が握持される。そして、上軸駆動部1と下軸駆動部9とは、個別に上下移動可能に制御される。   Above and below the induction heating coil 4, an upper shaft drive unit 1 and a lower shaft drive unit 9 which are disposed outside the pressure vessel 12 and which can be moved up and down, and extend from the respective drive units 1 and 9, the pressure vessel 12 is hermetically sealed. An upper shaft 2 and a lower shaft 10 penetrating through the upper shaft 2 and the lower shaft 10, and an upper holder 3 and a lower holder 11 fixed to the upper shaft 2 and the lower shaft 10, respectively, are arranged. In between, the edge part of the raw material stick | rod 6 which penetrates the center part of the induction heating coil 4 is gripped. The upper shaft driving unit 1 and the lower shaft driving unit 9 are controlled to be individually movable up and down.

溶融帯7の操作については、下ホルダー11に原料棒6の下端側を握持させ、その上端(図1中では既に単結晶8になった部分を図示している。)を上ホルダー3に握持された種結晶5の下端に接触させて、かつその接触部を誘導加熱コイル4の中心にある貫通穴の中央に位置させた後、誘導加熱コイル4に高周波電力を印加して誘導磁場を生じさせ、それによって発生するジュール熱により、種結晶5と接触させた原料棒6の上端部を局部的に加熱溶融して溶融帯7を形成する。このようにして形成された溶融帯7に下方より原料棒6を順次送り込み、溶融帯7の上方に単結晶8を順次成長させる。   Regarding the operation of the melting zone 7, the lower holder 11 is made to grip the lower end side of the raw material rod 6, and the upper end (the portion already formed into the single crystal 8 in FIG. 1) is shown in the upper holder 3. After the gripped seed crystal 5 is brought into contact with the lower end and the contact portion is positioned at the center of the through hole at the center of the induction heating coil 4, high frequency power is applied to the induction heating coil 4 to induce an induction magnetic field. The upper end portion of the raw material rod 6 brought into contact with the seed crystal 5 is locally heated and melted by Joule heat generated thereby to form the melting zone 7. The raw material rods 6 are sequentially fed into the melting zone 7 formed in this way from below, and the single crystals 8 are successively grown above the melting zone 7.

図2は本発明の単結晶の育成方法の実施の形態の一例における原料棒6の横断面を示す横断面図である。   FIG. 2 is a cross sectional view showing a cross section of the raw material rod 6 in an example of the embodiment of the method for growing a single crystal of the present invention.

本発明の単結晶の育成方法において用いる原料棒6としては、図2にその横断面を示すように、中央に位置する棒状の原料の本体部6aの表面に、長さ方向に連続した突起部6bを周方向に複数形成して配置した形状であることが重要である。このような原料棒6を用いた場合の原料棒および誘導コイル近傍における磁束および渦電流の様子を示す原理説明図を図3に示す。   As the raw material rod 6 used in the method for growing a single crystal according to the present invention, as shown in the cross section in FIG. 2, a protrusion that is continuous in the length direction on the surface of the main body portion 6a of the rod-shaped raw material located at the center. It is important to have a shape in which a plurality of 6b are formed and arranged in the circumferential direction. FIG. 3 shows a principle explanatory view showing the state of magnetic flux and eddy current in the vicinity of the raw material rod and the induction coil when such a raw material rod 6 is used.

図3は、本発明の単結晶の育成方法における原料棒6および誘導コイル4の部分を取り出した横断面において、誘導コイル4に流れる電流I,誘導コイル4の内側に発生する磁束B,原料棒6の本体部6aの表面に流れる渦電流J,原料棒6の突起部6bに流れる渦電流J’の様子を表した原理説明図である。図3に示すように、誘導コイル4に交流電流Iを流すことで、誘導コイル4の内側には磁束Bが発生する。図3に示すように、誘導コイル4に流す交流電流Iが左回りのときには、紙面の奥側から手前側に磁束Bが発生する。誘導コイル4に流れる交流電流Iが時間的に変化すれば、誘導コイル4の内部の磁束Bも変化する。これに対し、導電性のある原料棒6には、この磁束Bの変化を打ち消そうとする方向に渦電流JおよびJ’が生じるため、原料棒6に流れる渦電流J,J’の位相は、誘導コイル4に流れる交流電流Iと逆位相となる。本発明の単結晶の育成方法における原料棒6では、原料棒6の本体部6aの表面に長さ方向に連続した複数の突起部6bを設けており、中央部の本体部6aが棒状であり、周辺部に突起部6bを有する原料棒6としたことから、原料の周方向における厚みを薄くした突起部6bでは、その表面で渦電流J’が互いに逆方向となって打ち消し合い、突起部6bには全体として渦電流J’がほとんど流れなくなる。その結果、原料棒6の外周部の突起部6bでは、渦電流J’のジュール発熱による自己発熱は起こらず、突起部6bは自己的には溶融しなくなる。一方、原料棒6の本体部6aでは、従来の単結晶の育成方法と同様に、渦電流Jが円周状に周回し、そのジュール発熱により原料棒6を中央部から自己的に溶融する。このようにまず中央部(本体部6a)を高温にして溶融させ、その熱を原料棒6の本体部6aから周辺部(突起部6b)に伝導させることで、間接的に突起部6bを溶融させることができる。   FIG. 3 shows a current I flowing through the induction coil 4, a magnetic flux B generated inside the induction coil 4, and a raw material rod in a cross section obtained by taking out the raw material rod 6 and the induction coil 4 in the method for growing a single crystal of the present invention. 6 is a principle explanatory view showing a state of an eddy current J flowing on the surface of the main body portion 6a of FIG. As shown in FIG. 3, by passing an alternating current I through the induction coil 4, a magnetic flux B is generated inside the induction coil 4. As shown in FIG. 3, when the alternating current I flowing through the induction coil 4 is counterclockwise, a magnetic flux B is generated from the back side to the front side of the page. If the alternating current I flowing through the induction coil 4 changes with time, the magnetic flux B inside the induction coil 4 also changes. On the other hand, since the eddy currents J and J ′ are generated in the conductive material rod 6 in the direction to cancel the change of the magnetic flux B, the phase of the eddy currents J and J ′ flowing through the material rod 6 is increased. Is opposite in phase to the alternating current I flowing through the induction coil 4. In the raw material rod 6 in the method for growing a single crystal according to the present invention, a plurality of protrusions 6b continuous in the length direction are provided on the surface of the main body portion 6a of the raw material rod 6, and the main body portion 6a in the central portion has a rod shape. Since the raw material rod 6 having the protrusion 6b at the peripheral portion is used, the protrusion 6b having a reduced thickness in the circumferential direction of the raw material cancels the eddy currents J ′ in opposite directions on the surface. As a whole, the eddy current J ′ hardly flows through 6b. As a result, self-heating due to Joule heat generation of the eddy current J 'does not occur in the protrusion 6b on the outer peripheral portion of the raw material rod 6, and the protrusion 6b does not melt by itself. On the other hand, in the main body portion 6a of the raw material rod 6, the eddy current J circulates in a circumferential manner, and the raw material rod 6 is automatically melted from the central portion by the Joule heat generation, as in the conventional method of growing a single crystal. In this way, the central portion (main body portion 6a) is first melted at a high temperature, and the heat is conducted from the main body portion 6a of the raw material rod 6 to the peripheral portion (protrusion portion 6b), thereby indirectly melting the protrusion portion 6b. Can be made.

このようにして溶融させた原料棒6について、図4に本発明の単結晶の育成方法における溶融帯近傍の様子を示す要部斜視図を示す。図4からも分かるように、原料棒6は、棒状の本体部6aが高温となり、その中央部から溶融が始まるため、原料棒6の上端部における溶融帯7との界面の形状は、下に凸となった、いわゆるお椀状の形状となる。したがって、溶融帯7の形状は、原料棒6の中央で下に凸となり、溶融した原料が溶融帯7から垂れ落ちることを有効に防止することができる。また、原料棒6の隣接する突起部6b間では、溶融した原料が表面張力により保持され、安定してその形状を保つことができる。このようにして形成された溶融帯7は、溶融帯7の下方の原料棒6との界面の中央部が下側、すなわち原料棒6側に凸になり、これにより溶融帯7の内部で上方の単結晶8の先端と下方の原料棒6の先端とが接触しないようにするために設定される溶融帯7の長さを短くすることができ、溶融帯7の高さを小さくできることにより、溶融帯7の下方に働く静水圧を低くすることができるので、これによっても溶融した原料が溶融帯7から垂れ落ちることを有効に防止することができる。これらの結果、本発明の単結晶の育成方法によれば、引き上げる単結晶8の寸法を大きくして溶融帯7が大きくなっても、溶融帯7から溶融した原料が垂れ落ちることがなくなるので、大型の単結晶8を安定して引き上げることができる。   FIG. 4 shows a perspective view of a main part of the raw material rod 6 thus melted, showing the vicinity of the melting zone in the method for growing a single crystal of the present invention. As can be seen from FIG. 4, the raw material rod 6 has a high temperature in the rod-shaped main body 6a and starts melting from the central portion thereof, so that the shape of the interface with the melting zone 7 at the upper end of the raw material rod 6 is It becomes a so-called bowl-like shape that is convex. Therefore, the shape of the melting zone 7 is convex downward at the center of the raw material rod 6, and the molten raw material can be effectively prevented from dripping from the melting zone 7. Moreover, between the adjacent projection parts 6b of the raw material stick | rod 6, the melted raw material is hold | maintained by surface tension, and the shape can be maintained stably. In the melting zone 7 formed in this way, the central portion of the interface with the raw material rod 6 below the melting zone 7 is convex downward, that is, the raw material rod 6 side. The length of the melting zone 7 set so as to prevent the tip of the single crystal 8 and the tip of the lower raw material rod 6 from contacting each other can be shortened, and the height of the melting zone 7 can be reduced, Since the hydrostatic pressure working below the melting zone 7 can be reduced, it is possible to effectively prevent the molten raw material from dripping from the melting zone 7. As a result of these, according to the method for growing a single crystal of the present invention, even if the size of the single crystal 8 to be pulled up is increased and the melting zone 7 becomes large, the melted raw material does not sag from the melting zone 7. The large single crystal 8 can be pulled up stably.

以上のような本発明の単結晶の育成方法に用いる原料棒6を得るには、原料粉末に結合材として例えば少量の樟脳を加え、ラバープレス等により加圧して、長さ方向に連続した複数の突起部を有する棒状の圧粉体棒を作製する。好ましくは、この圧粉体棒を真空中あるいは不活性ガス中で千数百度に加熱して焼結させて、所望の濃度分布で不純物が配合された原料棒6を作製する。   In order to obtain the raw material rod 6 used in the method for growing a single crystal of the present invention as described above, a small amount of camphor, for example, is added to the raw material powder as a binder, and pressed by a rubber press or the like, and a plurality of continuous materials in the length direction are obtained. A rod-shaped green compact bar having the protrusions is prepared. Preferably, the green compact bar is heated and sintered in a vacuum or in an inert gas to a few hundreds of degrees to produce a raw material bar 6 in which impurities are blended with a desired concentration distribution.

このようにして作製した原料棒6を用いて、図1に示すように育成装置内に、前述のように、原料棒6の下端を下軸10に下ホルダー11を介して固定し、その上端を上軸2にホルダー3を介してセットされた種結晶5に接触させて配置する。   Using the raw material bar 6 thus produced, the lower end of the raw material bar 6 is fixed to the lower shaft 10 via the lower holder 11 in the growth apparatus as shown in FIG. Is placed in contact with the seed crystal 5 set on the upper shaft 2 via the holder 3.

次に、種結晶5に接触させた原料棒6の上端を誘導加熱コイル4の誘導加熱により溶融させて溶融帯7を形成し、上軸2と下軸10とを、単結晶8の育成速度および原料棒6の溶融速度に応じて、ゆっくり上方に移動させて、溶融帯7の下部で原料棒6を順次溶融させ、上部で順次凝固させて、溶融帯7の上方に単結晶8を継続的に育成する。   Next, the upper end of the raw material rod 6 brought into contact with the seed crystal 5 is melted by induction heating of the induction heating coil 4 to form a melting zone 7, and the upper shaft 2 and the lower shaft 10 are made to grow the single crystal 8. The raw material rod 6 is slowly moved upward in accordance with the melting speed of the raw material rod 6, the raw material rod 6 is sequentially melted at the lower part of the melting zone 7, and is sequentially solidified at the upper part, and the single crystal 8 is continued above the melting zone 7. Cultivate it.

このとき、原料棒6は、渦電流が流れる棒状の本体部6aのある中央部が高温となり、突起部6bのある周辺部は渦電流が流れず発熱しないために比較的低温となり、原料棒6の上端は中央部から溶融する。その結果、原料棒6の上端は中央部が下に凸のいわゆるお椀形の形状となり、溶融した原料を溶融帯7内に安定に保つことができることとなる。なお、隣接する突起部6aの間では、溶融した原料の表面張力によりその形状を安定に保つことができる。さらに、原料棒6の上端において、原料棒6の先端中央部が下に凸のお椀形になり、従来の育成方法におけるように上方に凸状に尖らないため、これが溶融帯7内で単結晶8の下端と当ることはないので、溶融帯7の高さ方向の寸法(長さ)を小さくすることができ、溶融帯7の下部における静水圧を低くして溶融した原料が溶融帯7から垂れ落ちることを防止することができるので、大型の単結晶8を安定して製造することができる単結晶の育成方法となる。   At this time, the raw material rod 6 has a relatively high temperature in the central portion where the rod-shaped main body portion 6a through which the eddy current flows is high, and the peripheral portion where the protruding portion 6b is at a relatively low temperature because the eddy current does not flow and does not generate heat. The upper end of the glass melts from the center. As a result, the upper end of the raw material rod 6 has a so-called bowl-like shape with the central portion projecting downward, and the molten raw material can be kept stable in the melting zone 7. In addition, between the adjacent projection parts 6a, the shape can be kept stable by the surface tension of the melted raw material. In addition, at the upper end of the raw material rod 6, the central portion of the tip of the raw material rod 6 has a bowl shape that protrudes downward, and does not protrude upwardly as in the conventional growth method. 8, the dimension (length) in the height direction of the melting zone 7 can be reduced, and the melted raw material is reduced from the melting zone 7 by reducing the hydrostatic pressure at the lower portion of the melting zone 7. Since it can prevent dripping, it becomes the growth method of the single crystal which can manufacture the large sized single crystal 8 stably.

本発明の単結晶の育成方法における原料棒6の突起部6aは、原料棒6の表面の渦電流を打ち消す作用があれば、特に、その形状に制限があるものではない。その横断面の形状は、矩形状,扇形状,半楕円形状,三角形状,多角形状等、そのいずれであってもよい。   The protrusion 6a of the raw material rod 6 in the method for growing a single crystal of the present invention is not particularly limited in its shape as long as it has an action of canceling the eddy current on the surface of the raw material rod 6. The shape of the cross section may be any of rectangular shape, fan shape, semi-elliptical shape, triangular shape, polygonal shape, and the like.

また、本発明の単結晶の育成方法における原料棒6の突起部6aの厚みについても特に制限があるものではないが、図4に示すように原料棒6の突起部6aの厚みをdとして、誘導コイル4に加える交流電流Iの周波数をf、原料棒6の透磁率をμ、原料棒6の導電率をgとすれば、原料棒6の表皮厚δは近似的に次式(1)で与えられる。   Further, the thickness of the protrusion 6a of the raw material rod 6 in the method for growing a single crystal of the present invention is not particularly limited, but the thickness of the protrusion 6a of the raw material rod 6 is d as shown in FIG. If the frequency of the alternating current I applied to the induction coil 4 is f, the magnetic permeability of the raw material rod 6 is μ, and the conductivity of the raw material rod 6 is g, the skin thickness δ of the raw material rod 6 is approximately expressed by the following equation (1) Given in.

δ=√(1/πf×g×μ)・・・(1)
これに対し、突起部6aの厚みdは、次式(2)に示す範囲が望ましい。
δ = √ (1 / πf × g × μ) (1)
On the other hand, the thickness d of the protrusion 6a is preferably in the range represented by the following formula (2).

0.5〔mm〕≦d≦1.5δ〔mm〕・・・(2)
これは、突起部6aの厚みdが1.5δよりも大きくなると、突起部6aでの渦電流J’の打ち消し作用が弱まり、渦電流J’が無視できない大きさになり、突起部6aの自己発熱により突起部6aが溶融する可能性があるからである。また、突起部6aの厚みdが0.5〔mm〕以下では、加工が困難であり、破壊しやすくなるからである。よって、突起部6aの厚みdは、0.5〔mm〕≦d≦1.5δ〔mm〕の範囲が好ましい。
0.5 [mm] ≦ d ≦ 1.5δ [mm] (2)
This is because when the thickness d of the protrusion 6a is larger than 1.5δ, the action of canceling the eddy current J ′ in the protrusion 6a is weakened, and the eddy current J ′ becomes a non-negligible magnitude, and the self-heating of the protrusion 6a. This is because the protrusion 6a may be melted by the above. Further, when the thickness d of the protrusion 6a is 0.5 [mm] or less, it is difficult to process and it is easy to break. Therefore, the thickness d of the protrusion 6a is preferably in the range of 0.5 [mm] ≦ d ≦ 1.5δ [mm].

さらに、本発明の単結晶の育成方法における原料棒6の突起部6aの高さについても特に制限があるものではないが、図4に示すように原料棒6の突起部6aの高さをlとすれば、次式(3)に示す範囲が望ましい。   Further, the height of the protrusion 6a of the raw material rod 6 in the method for growing a single crystal of the present invention is not particularly limited. However, as shown in FIG. Then, the range shown in the following formula (3) is desirable.

1.0〔mm〕≦l≦40〔mm〕・・・(3)
これは、突起部6aの高さlが1.0〔mm〕より小さければ、突起として機能せずに原料棒6は外周部から溶融してしまい、また、40〔mm〕より大きくなれば突起部6aの先端が溶融しない場合が生じるからである。よって、突起部6aの長さlは、1.0〔mm〕≦l≦40〔mm〕の範囲が望ましい。
1.0 [mm] ≤ l ≤ 40 [mm] (3)
This is because if the height l of the projection 6a is smaller than 1.0 [mm], the raw material rod 6 does not function as a projection and melts from the outer periphery, and if the height l is larger than 40 [mm], the projection 6a. This is because the tip of the metal may not melt. Therefore, the length l of the protrusion 6a is preferably in the range of 1.0 [mm] ≦ l ≦ 40 [mm].

また、本発明の単結晶の育成方法における原料棒6の本体部6aの形状は、円柱状,四角柱状,多角柱状,筒状等のいずれであってもよく、その形状は特に制限があるものではなく種々の応用が可能である。例えば、八角柱状の本体部6aの8個の各辺に、それぞれ突起部6aを設け、合計で8個の突起部6aを形成しても構わない。   Further, the shape of the main body 6a of the raw material rod 6 in the method for growing a single crystal of the present invention may be any of a cylindrical shape, a quadrangular prism shape, a polygonal prism shape, a cylindrical shape, etc., and the shape is particularly limited. Rather, various applications are possible. For example, the protrusions 6a may be provided on each of the eight sides of the octagonal columnar main body 6a to form a total of eight protrusions 6a.

また、本発明の単結晶の育成方法では、原料棒6の突起部6aの本数についても特に制限があるものではなく、種々の本数に選定することが可能である。例えば、突起部6aの厚みdが薄い場合には、多数の突起部6aを設ける方が望ましい。これは、突起部6aの厚みdを薄くすれば、隣接する突起部6a間の間隔が広がるため、溶融した原料が溶融帯7から落下するのを防ぐためには、突起部6aの本数を増やす方が有利だからである。このように、溶融した原料の粘度や突起部6aの厚みd等に応じて、最適な突起部6aの本数を選定することが可能である。   In the method for growing a single crystal according to the present invention, the number of protrusions 6a of the raw material rod 6 is not particularly limited, and various numbers can be selected. For example, when the thickness d of the protrusion 6a is small, it is desirable to provide a large number of protrusions 6a. This is because if the thickness d of the protrusion 6a is reduced, the interval between the adjacent protrusions 6a is widened. Therefore, in order to prevent the molten material from falling from the melting zone 7, the number of the protrusions 6a is increased. Is advantageous. Thus, it is possible to select the optimal number of protrusions 6a according to the viscosity of the melted raw material, the thickness d of the protrusions 6a, and the like.

本発明の単結晶の育成方法に用いる原料棒を、次のようにして作製した。ZrBとCrBとの混合粉を圧縮し、中心部は外径が40mm,長さが800mmの円柱形で、その外周部に高さが10mm,幅が2mm,長さが800mmの長さ方向に連続した突起部を22.5°間隔で16個設け、長さを800mmとした突起部を有する棒状の粉末棒に圧縮し、これを1400℃で焼結して、長さ方向に連続した16個の突起部を有する棒状の原料棒を作製した。 A raw material rod used in the method for growing a single crystal of the present invention was produced as follows. The mixed powder of ZrB 2 and CrB 2 is compressed, the central part is a cylinder with an outer diameter of 40 mm and a length of 800 mm, and the outer peripheral part has a height of 10 mm, a width of 2 mm, and a length of 800 mm 16 protrusions that are continuous in the direction are provided at intervals of 22.5 °, compressed into a rod-shaped powder bar having protrusions with a length of 800 mm, and sintered at 1400 ° C. A rod-shaped raw material bar having a plurality of protrusions was produced.

この突起部を有する棒状の原料棒を用いて、誘導加熱型のFZ装置で、入力52kWの高周波電力を投入して突起部を有する棒状の原料棒の先端部を溶融し、この溶融部に種結晶を接続して溶融帯を形成した。その溶融帯は、垂れ落ちることなく、安定していた。その後、溶融帯を20mm/hの速度で移動させて、口径45mmの円筒形の単結晶を作製したところ、溶融帯から溶融した原料が垂れ落ちることはなく、最後まで良好な円柱状の単結晶を育成することができた。この育成された単結晶を観察した結果、双晶や多結晶がなく、全体にわたって単結晶が生成された良好な特性であった。   Using the rod-shaped raw material rod having the protruding portion, an induction heating type FZ apparatus is used to apply a high-frequency power of 52 kW to melt the tip of the rod-shaped raw material rod having the protruding portion. The crystals were connected to form a melt zone. The melting zone was stable without dripping. Thereafter, the molten zone was moved at a speed of 20 mm / h to produce a cylindrical single crystal having a diameter of 45 mm. The molten raw material did not sag from the molten zone, and a good cylindrical single crystal until the end. I was able to train. As a result of observing the grown single crystal, there was no twin crystal or polycrystal, and the single crystal was formed over the whole.

一方、比較例として、ZrBとCrBとの混合粉を圧縮し、外形が50mm,長さが800mmの円柱形の粉末棒に圧縮し、これを1400℃で焼結して、突起部の無い円柱形の原料棒を作製した。 On the other hand, as a comparative example, a mixed powder of ZrB 2 and CrB 2 is compressed and compressed into a cylindrical powder rod having an outer diameter of 50 mm and a length of 800 mm, and this is sintered at 1400 ° C. A column-shaped raw material rod without a gap was produced.

この比較例としての円柱状の原料棒を用いて、同様に、誘導加熱型のFZ装置で、入力52kWの高周波電力を投入して形成した溶融帯を20mm/hの速度で移動させて、口径45mmの単結晶を作製しようとしたところ、溶融帯の下部から溶融した原料が垂れ落ちてしまい、単結晶を引き上げることができなかった。   Using this cylindrical raw material rod as a comparative example, similarly, the induction zone FZ apparatus was used to move the melt zone formed by applying high-frequency power of 52 kW at a speed of 20 mm / h, When an attempt was made to produce a 45 mm single crystal, the melted raw material dropped from the lower part of the melting zone, and the single crystal could not be pulled up.

なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更を加えることは何ら差し支えない。   It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明の単結晶の育成方法の実施の形態の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of embodiment of the growth method of the single crystal of this invention. 本発明の単結晶の育成方法の実施の形態の一例における原料棒の横断面図である。It is a cross-sectional view of the raw material stick | rod in an example of embodiment of the growth method of the single crystal of this invention. 本発明の単結晶の育成方法の実施の形態の一例における原料棒および誘導コイル近傍における磁束および渦電流の様子を示す原理説明図である。It is principle explanatory drawing which shows the mode of the magnetic flux and eddy current in the raw material stick | rod and induction coil vicinity in an example of embodiment of the growth method of the single crystal of this invention. 本発明の単結晶の育成方法の実施の形態の一例における溶融帯近傍の様子を示す要部斜視図である。It is a principal part perspective view which shows the mode of the fusion zone vicinity in an example of embodiment of the growth method of the single crystal of this invention. 従来の単結晶の育成方法における溶融帯近傍の様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the mode of the fusion zone vicinity in the growth method of the conventional single crystal.

符号の説明Explanation of symbols

1・・・上軸駆動部
2・・・上軸
3・・・上ホルダー
4・・・誘導加熱コイル
5・・・種結晶
6・・・原料棒
6a・・・本体部
6b・・・突起部
7・・・溶融帯
8・・・単結晶
9・・・下軸駆動部
10・・・下軸
11・・・下ホルダー
12・・・耐圧容器
13・・・容器内空間
DESCRIPTION OF SYMBOLS 1 ... Upper shaft drive part 2 ... Upper shaft 3 ... Upper holder 4 ... Induction heating coil 5 ... Seed crystal 6 ... Raw material rod 6a ... Main-body part 6b ... Protrusion Part 7: Melting zone 8 ... Single crystal 9 ... Lower shaft drive part
10 ... Lower shaft
11 ... Lower holder
12 ... pressure vessel
13: Space inside the container

Claims (1)

誘導加熱コイルで原料棒を誘導加熱して溶融帯を形成し、該溶融帯を移動させながら、溶融帯の上下の端部においてそれぞれ溶融および凝固を順次行なうことにより単結晶を成長させるFZ法による単結晶の育成方法において、前記原料棒は、その表面に長さ方向に連続した複数の突起部を有することを特徴とする単結晶の育成方法。 By an FZ method in which a raw material rod is induction-heated with an induction heating coil to form a melting zone, and a single crystal is grown by sequentially performing melting and solidification at the upper and lower ends of the melting zone while moving the melting zone. In the method for growing a single crystal, the raw material rod has a plurality of protrusions continuous in the length direction on the surface thereof.
JP2003378357A 2003-11-07 2003-11-07 Method for growing single crystal Pending JP2005139041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378357A JP2005139041A (en) 2003-11-07 2003-11-07 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378357A JP2005139041A (en) 2003-11-07 2003-11-07 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JP2005139041A true JP2005139041A (en) 2005-06-02

Family

ID=34688771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378357A Pending JP2005139041A (en) 2003-11-07 2003-11-07 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JP2005139041A (en)

Similar Documents

Publication Publication Date Title
JP4872283B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2002517366A (en) Electric resistance heater for crystal growth equipment
KR20180120076A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL AND PRODUCTION DEVICE
JPH01501468A (en) Equipment for growing single crystals in a predetermined shape
JP5877812B2 (en) Method for producing SiC single crystal
WO2014167844A1 (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2010070404A (en) Apparatus for forming silicon melt
JP6998460B2 (en) Manufacturing equipment and method for manufacturing tubular single crystals
TW201012983A (en) Method for growing silicon single crystal
JP2005139041A (en) Method for growing single crystal
KR101983491B1 (en) Manufacturing method of SiC single crystal
WO2018062224A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SEED CRYSTAL
US9822468B2 (en) Method for producing SiC single crystal
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
WO2017135272A1 (en) Method for manufacturing sic single crystal and sic seed crystal
KR101679157B1 (en) Method for producing sic single crystal
JP6958854B2 (en) Manufacturing method of magnetostrictive material
EP2504470B1 (en) Process and apparatus for producing semiconductor single crystals
JP5262346B2 (en) Method for producing silicon single crystal
JP2005126283A (en) Growth method for single crystal
JP7061911B2 (en) Single crystal manufacturing method and single crystal manufacturing equipment
JP2005097053A (en) Method for growing single crystal
JP2019163184A (en) ScAlMgO4 SINGLE CRYSTAL SUBSTRATE, AND PRODUCTION METHOD THEREOF
JP6992488B2 (en) Crucible for growing single crystals
JP7275674B2 (en) Method for growing lithium niobate single crystal