JP2005138107A - Soil-cleaning agent and soil cleaning method - Google Patents

Soil-cleaning agent and soil cleaning method Download PDF

Info

Publication number
JP2005138107A
JP2005138107A JP2004350611A JP2004350611A JP2005138107A JP 2005138107 A JP2005138107 A JP 2005138107A JP 2004350611 A JP2004350611 A JP 2004350611A JP 2004350611 A JP2004350611 A JP 2004350611A JP 2005138107 A JP2005138107 A JP 2005138107A
Authority
JP
Japan
Prior art keywords
soil
soil purification
purification agent
iron
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004350611A
Other languages
Japanese (ja)
Other versions
JP4530824B2 (en
Inventor
Terunobu Maeda
照信 前田
Yasunori Kimura
康典 木村
Junji Igawa
順司 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyo Ink Mfg Co Ltd
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Hazama Corp
Nippon Steel Corp
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Hazama Corp, Nippon Steel Corp, Toyo Ink Mfg Co Ltd filed Critical Hazama Gumi Ltd
Priority to JP2004350611A priority Critical patent/JP4530824B2/en
Publication of JP2005138107A publication Critical patent/JP2005138107A/en
Application granted granted Critical
Publication of JP4530824B2 publication Critical patent/JP4530824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil cleaning method for directly and efficiently removing organic halogenated compounds or the like from the soil polluted with the organic halogenated compounds or the like, and a soil-cleaning agent advantageously used in the method. <P>SOLUTION: The soil-cleaning agent is an aqueous suspension containing slurry including fine iron particles in which the spherical fine iron particles having an average diameter below 10μm are dispersed in water. The contaminated-soil cleaning method uses this agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機ハロゲン化物、6価クロム等により汚染された土壌から該汚染物質を除去するために使用される鉄微粒子スラリーを含む土壌浄化剤、並びに汚染された土壌を浄化する方法に関する。   The present invention relates to a soil purification agent containing an iron fine particle slurry used for removing the contaminants from soil contaminated with organic halides, hexavalent chromium, and the like, and a method for purifying the contaminated soil.

機械類の油類除去等の工業的な洗浄には、これまでトリクロロエチレン等の有機ハロゲン化物が大量に使用されてきた。環境汚染の観点から、最近ではこのような有機ハロゲン化物の使用が規制されるようになってきている。しかしながら、既に多量の有機ハロゲン化物が使用されており、このためその土壌汚染あるいは水質汚染も進んでいる。即ち、トリクロロエチレン等の有機ハロゲン化物は、安定で微生物に分解され難く、自然環境に投棄された有機ハロゲン化物は、土壌を汚染するだけでなく、最終的には河川や地下水を汚染し、これが飲料水の原水となることがあり、問題となる。またこのような自然環境の汚染は、メッキ工場等の工場跡地に残された6価クロムによっても同様に起こっていることは知られている。   A large amount of organic halides such as trichlorethylene has been used for industrial cleaning such as oil removal of machinery. From the viewpoint of environmental pollution, the use of such organic halides has recently been regulated. However, a large amount of organic halide has already been used, and as a result, soil contamination or water pollution is also progressing. That is, organic halides such as trichlorethylene are stable and difficult to be decomposed by microorganisms, and organic halides discarded in the natural environment not only contaminate the soil, but ultimately pollute rivers and groundwater, which can be used as beverages. It can become raw water, which is a problem. In addition, it is known that such pollution of the natural environment is also caused by hexavalent chromium left in a factory site such as a plating factory.

上記有機ハロゲン化物等の揮発性の有機化合物で汚染された土壌を浄化する方法としては、土壌ガス吸引法、地下水揚水法、土壌掘削法等が知られている。土壌ガス吸引法は、不飽和帯に存在する対象物質を強制的に吸引するものであり、ボーリングにより地盤中に吸引用井戸を設置し、真空ポンプによって吸引用井戸内を減圧にし、気化した有機化合物を吸引井戸内に集め、地下に導いて土壌ガス中の有機化合物を活性炭に吸着させるなどの方法によって処理するものである。上記有機化合物による汚染が帯水層にまで及んでいる場合には、吸引用井戸内に水中ポンプを設置し、土壌ガスと同時に揚水して処理する方法が採用される。   Known methods for purifying soil contaminated with volatile organic compounds such as organic halides include a soil gas suction method, a groundwater pumping method, and a soil excavation method. The soil gas suction method forcibly sucks the target substances present in the unsaturated zone. A suction well is installed in the ground by boring, and the inside of the suction well is depressurized by a vacuum pump, and the vaporized organic The compounds are collected in a suction well, guided to the underground, and treated by a method such as adsorption of organic compounds in soil gas onto activated carbon. When the contamination by the organic compound extends to the aquifer, a method is adopted in which a submersible pump is installed in the suction well and the water is pumped and treated simultaneously with the soil gas.

地下揚水法は、土壌中に揚水井戸を設置し、汚染地下水を揚水して処理する方法である。さらに、土壌掘削法は、汚染土壌を掘削し、掘削した土壌を風力乾燥、加熱処理を施して有機化合物の除去回収を行う方法である。   The underground pumping method is a method of setting up a pumping well in soil and pumping up contaminated groundwater. Furthermore, the soil excavation method is a method in which contaminated soil is excavated, and the excavated soil is subjected to wind drying and heat treatment to remove and collect organic compounds.

上記のような集められた汚染水、あるいは地下水等の汚染水を浄化する方法としては、例えば特許文献1に、汚染水中の溶存酸素を除去した後、汚染水を鉄等の金属表面に接触させ、汚染水中に含まれる有機ハロゲン化物を還元除去する方法が開示されている。このような鉄の還元作用を利用した汚染水の浄化方法は、特許文献2〜6等にも記載されている。これらの方法はいずれも汚染水を、鉄を含む層、フィルター等の一定部分を通過させて処理を行う方法である。   As a method for purifying contaminated water such as collected water or ground water as described above, for example, in Patent Document 1, after removing dissolved oxygen in contaminated water, the contaminated water is brought into contact with a metal surface such as iron. A method for reducing and removing organic halides contained in contaminated water is disclosed. Such a method for purifying contaminated water using the reducing action of iron is also described in Patent Documents 2 to 6 and the like. In any of these methods, the contaminated water is treated by passing it through a certain portion such as a layer containing iron or a filter.

しかしながら、これらの方法は、土壌を直接浄化する方法ではなく、上記土壌ガス吸引法、地下水揚水法等により集められた汚染水、あるいは河川、地下水等の汚染水を浄化する方法であり、対象は極めて大量であり、処理は長期間を要する場合が多い。また処理工程が複雑となる場合が多いのも欠点である。このため、汚染源である土壌を直接簡便に浄化する方法が求められている。   However, these methods are not methods for directly purifying soil, but are methods for purifying contaminated water collected by the soil gas suction method, groundwater pumping method, etc., or contaminated water such as rivers and groundwater. The amount is extremely large, and the treatment often takes a long time. It is also a drawback that the processing steps are often complicated. For this reason, a method for directly and simply purifying soil that is a source of contamination is required.

また、前記6価クロムで汚染された土壌については、硫酸第1鉄等の還元剤で浄化する方法が知られているが、クロム鉱滓のように3価及び6価クロムの塊状で存在する場合には、硫酸第1鉄では還元作用を示す時間が短いため、十分な還元を行うことができない。従って、長期に亘って還元作用を示す浄化剤の出現が望まれている。   In addition, for the soil contaminated with hexavalent chromium, a method of purifying with a reducing agent such as ferrous sulfate is known. However, when the soil exists in the form of trivalent and hexavalent chromium as in a chromium slag. On the other hand, ferrous sulfate cannot be sufficiently reduced because of the short time during which it exhibits a reducing action. Therefore, the appearance of a purifier that exhibits a reducing action over a long period of time is desired.

特許公報第2636171号Japanese Patent No. 2636171 特開平3−106496号公報JP-A-3-106496 特開平3−30895号公報JP-A-3-30895 特表平6−501521号公報JP-T 6-501521 特開平8−257570号公報JP-A-8-257570 特開平10−263522号公報Japanese Patent Laid-Open No. 10-263522

本発明の目的は、有機ハロゲン化物、6価クロム等の汚染物質により汚染された土壌から、直接、効率よくこの汚染物質を還元することにより無毒化、或いは無毒化後除去することができる鉄微粒子スラリーを含む土壌浄化剤、及びこの土壌浄化剤を用いる浄化方法を提供することにある。   It is an object of the present invention to detoxify iron particles that can be removed from soil contaminated with contaminants such as organic halides, hexavalent chromium, etc. directly or efficiently by detoxification, or removed after detoxification. It is providing the soil purification agent containing a slurry, and the purification method using this soil purification agent.

従来の有機ハロゲン化物で汚染された土壌を浄化する方法は、汚染土壌から汚染水を集め、これを浄化処理するか、土壌そのものを集め浄化処理するものであり、汚染土壌自体を直接、簡便に浄化する方法ではない。   The conventional method of purifying soil contaminated with organic halides is to collect contaminated water from the contaminated soil and purify it, or collect the soil itself and purify it. It is not a way to purify.

本発明者等は、有機ハロゲン化物を還元分解する作用(いわゆる脱ハロゲン化作用)を示す鉄に注目し、これを利用して、上記簡便な浄化方法を開発するため研究を重ねてきた。しかしながら、従来の浄化方法に用いられてきた鉄微粒子は、平均粒径が数十μmと比較的大きく、またその形状も不定形であるため、例えば直接その水分散液を土壌に付与しても、充分に浸透し難いとの問題があることを見出した。このような知見を基に更に研究を重ね、微粒化されて、鉄の表面積が大きく、その形が球状の鉄微粒子が上記問題を解決するのに有効であることを見出し、本発明に到達したものである。このように、鉄粒子を微粒することにより、鉄の表面積を大きくして汚染物質の処理能力を増大させ、また微粒化に加え、粒子の形を球状にすることにより土壌内への鉄の迅速な浸透を可能にすることができる。前述のように、従来浄化に用いられてきた鉄微粒子は平均粒径が数十μmであるのに対して、本発明の鉄微粒子は10μm未満であり、2倍以上(場合によっては10倍以上)の浄化能力を有し、更にその形状が球状であり、従来の不定形のものに比べて、土壌内への浸透性においても遙かに優れている。   The present inventors have paid attention to iron that exhibits an action of reducing and decomposing organic halides (so-called dehalogenation action), and have made extensive studies to develop a simple purification method using the iron. However, the iron fine particles that have been used in the conventional purification method have a relatively large average particle size of several tens of μm, and the shape thereof is also indefinite, so even if the aqueous dispersion is directly applied to the soil, for example. I found that there was a problem that it was difficult to penetrate. Based on such knowledge, further research was conducted, and it was found that iron fine particles having a large iron surface area and a spherical shape were effective in solving the above-mentioned problems. Is. Thus, by finely pulverizing iron particles, the surface area of iron is increased to increase the processing capacity of pollutants, and in addition to atomization, the shape of the particles is made spherical so that iron can quickly enter the soil. Permeation can be made possible. As described above, the iron fine particles conventionally used for purification have an average particle diameter of several tens of μm, whereas the iron fine particles of the present invention are less than 10 μm, which is 2 times or more (in some cases, 10 times or more). ) And a spherical shape, which is far superior in permeability to soil compared to conventional amorphous ones.

またこのような鉄微粒子の還元作用は還元され得る汚染物質、特に6価クロムに対して有効であることも見出した。   It has also been found that the reducing action of such iron fine particles is effective against contaminants that can be reduced, particularly hexavalent chromium.

従って、前記の目的は、10μm未満(好ましくは0.1〜6μm)の平均粒径を有する球状の鉄微粒子が水中に分散されてなる鉄微粒子スラリーを含む土壌浄化剤により解決することができる。このような極小さい粒径にすることにより大幅な洗浄力の向上を図ることができる。更にスラリーは、酸化防止剤を含むことが好ましい。これにより鉄が酸化されないように維持することができる。また、スラリーの固形分は20〜70質量%(特に30〜50質量%)が好ましい。   Therefore, the object can be solved by a soil purifier containing an iron fine particle slurry in which spherical iron fine particles having an average particle size of less than 10 μm (preferably 0.1 to 6 μm) are dispersed in water. By making such a very small particle size, it is possible to greatly improve the cleaning power. Further, the slurry preferably contains an antioxidant. Thereby, it can maintain so that iron may not be oxidized. The solid content of the slurry is preferably 20 to 70% by mass (particularly 30 to 50% by mass).

また、前記目的は、上記の土壌浄化剤を汚染された土壌に浸透させることからなる、汚染土壌から汚染物質(例、有機ハロゲン化物、6価クロム等、特に有機ハロゲン化物)を無毒化、或いは無毒化、除去する方法により達成することができる。好ましくは、土壌浄化剤の浸透を、土壌浄化剤を土壌表面の略全面に散布することにより行う方法;汚染された土壌に、上記の土壌浄化剤を供給するための注入管を挿入し、該土壌浄化剤をその注入管に注入することからなる方法を挙げることができる。   In addition, the object is to detoxify pollutants (eg, organic halides, hexavalent chromium, etc., especially organic halides) from contaminated soil, which comprises infiltrating the soil purification agent into the contaminated soil, or This can be achieved by detoxification and removal methods. Preferably, the method of performing the penetration of the soil purification agent by spraying the soil purification agent over substantially the entire surface of the soil; inserting an injection pipe for supplying the soil purification agent to the contaminated soil; Mention may be made of a method comprising injecting a soil purification agent into the injection tube.

本発明で使用される鉄微粒子スラリーは、平均粒径が10μm未満であり、且つその形状が球状である鉄微粒子を含有することを特徴としている。このスラリーを含む水性懸濁液からなる本発明の土壌浄化剤は、汚染土壌から汚染物質を還元等により無毒化、或いは無毒化後除去するために有用である。   The iron fine particle slurry used in the present invention is characterized by containing iron fine particles having an average particle diameter of less than 10 μm and a spherical shape. The soil purification agent of the present invention comprising an aqueous suspension containing this slurry is useful for decontaminating contaminants from contaminated soil, such as by reduction, or after detoxification.

本発明の浄化の対象となる汚染源として、有機ハロゲン化物、6価クロム、シアン化物を挙げることができ、有機ハロゲン化物、6価クロムが適当であり、特に有機ハロゲン化物適当である。有機ハロゲン化物の例としては、1,1−ジクロロエチレン、1,2−ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2−ジクロロメタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,2,2−テトラクロロエタン、ジクロロジフルオロエタン等を挙げることができる。これらの有機ハロゲン化物は、鉄の脱ハロゲン化作用(還元作用)により、ハロゲンを失って対応する炭化水素となり、土壌より除去されると考えられる。有機ハロゲン化物としては、有機塩化物(有機塩素置換化合物)に特に有効である。また、6価クロムは、長期間に亘る有効な鉄の還元作用により、効率良く3価クロムに還元することができ、その後必要により土壌より除去することができる。さらに、シアン化物(シアンイオン)は、鉄イオンと錯体を形成して無毒化される。   Examples of the contamination source to be purified according to the present invention include organic halides, hexavalent chromium, and cyanide. Organic halides and hexavalent chromium are suitable, and organic halides are particularly suitable. Examples of organic halides include 1,1-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, dichloromethane, carbon tetrachloride, 1,2-dichloromethane, 1,1,1-trichloroethane, 1,1,2- Examples include trichloroethane, 1,1,2,2-tetrachloroethane, dichlorodifluoroethane, and the like. These organic halides are considered to be removed from the soil by losing halogen to the corresponding hydrocarbons due to the dehalogenation action (reduction action) of iron. The organic halide is particularly effective for organic chlorides (organic chlorine-substituted compounds). Hexavalent chromium can be efficiently reduced to trivalent chromium by an effective iron reducing action over a long period of time, and then removed from the soil as necessary. Furthermore, cyanide (cyanide ions) is detoxified by forming a complex with iron ions.

本発明の土壌浄化剤に使用されるスラリーに含まれる鉄微粒子は、極めて微粒子であり、このため直接汚染土壌に付与した場合、土壌内に迅速に浸透する。鉄微粒子の平均粒径は10μm未満であり、0.1〜6μmが好ましく、特に0.1〜3μmが好ましい。このような超微粒子の鉄粉を用いることにより大幅な洗浄力の向上が図れる。また、鉄微粒子はこのように超微粒子である上、その形状が球であることから、汚染土壌に付与した際、極めて迅速に土壌内に浸透し、浄化作用を示す。   The iron fine particles contained in the slurry used in the soil purification agent of the present invention are extremely fine particles. For this reason, when directly applied to contaminated soil, they rapidly penetrate into the soil. The average particle size of the iron fine particles is less than 10 μm, preferably 0.1 to 6 μm, particularly preferably 0.1 to 3 μm. By using such ultrafine iron powder, the detergency can be greatly improved. Further, since the iron fine particles are ultrafine particles as described above and the shape thereof is a sphere, when applied to the contaminated soil, the iron fine particles penetrate into the soil very quickly and exhibit a purification action.

また、上記スラリーの固形分は20〜70質量%(特に30〜50質量%)が好ましい。更にスラリーは、酸化防止剤を含むことが好ましい。これにより鉄が酸化されないように維持することができる。固形分中、90質量%以上は金属鉄及び鉄含有化合物である。固形分中、金属鉄が30質量%以上占める。   The solid content of the slurry is preferably 20 to 70% by mass (particularly 30 to 50% by mass). Further, the slurry preferably contains an antioxidant. Thereby, it can maintain so that iron may not be oxidized. In the solid content, 90% by mass or more is metallic iron and an iron-containing compound. In solid content, metal iron accounts for 30 mass% or more.

このようなスラリーは、一般に製鋼用の酸素吹転炉から、精錬中に発生する排ガス中の製鋼ダストを集塵(好ましくは湿式集塵)し、炭酸ガス等のガスを除去することにより得られる製鋼ダストからなるスラリーを有利に利用することができる。通常、集塵後、上記製鋼ダストをシックナーにより鉄粉スラッジのスラリーとされたものである。所望により、得られた製鋼ダストにさらに特定用途(例、トナー用)向けの高品位鉄粉を加えて、スラリーとすることもできる。   Such a slurry is generally obtained by collecting steelmaking dust in an exhaust gas generated during refining (preferably wet dusting) from an oxygen blow furnace for steelmaking and removing a gas such as carbon dioxide. A slurry made of steelmaking dust can be advantageously used. Usually, after dust collection, the steelmaking dust is made into a slurry of iron powder sludge by a thickener. If desired, a high-grade iron powder for a specific application (eg, for toner) can be further added to the obtained steelmaking dust to form a slurry.

上記鉄微粒子スラリーの製造方法の一例を、図1を参照しながら説明する。   An example of a method for producing the iron fine particle slurry will be described with reference to FIG.

製鋼用の酸素吹転炉内において、C、Si、P等の不純物を含有する銑鉄等が投入され、攪拌されながら、酸素が上部から急速に吹き込まれる。この状態で不純物含有銑鉄と酸素との間で反応が起こり、C、Si、P等は酸化物となり、銑鉄は綱となる。この間における、酸素を吹き込むことにより発生する微粒子の鉄粉を含む排ガスは、ガス回収フードを通って、湿式集塵で集められる。湿式集塵では、CO等の気体はガス回収タンクに送られる。排ガスを集塵して得た製鋼ダストは、スラリー状であり、このスラリーは粗粒分別(60μmで)され、粗いものは粗粒鉄粉として回収され、そして細かいものは、シックナーで濃縮化され、最終的にフィルタープレスにより微粒子のみに選別されて、細粒鉄粉(即ち、鉄微粒子スラリー)を得ることができる。   In an oxygen blowing furnace for steelmaking, pig iron containing impurities such as C, Si, and P is charged and oxygen is rapidly blown from above while stirring. In this state, a reaction occurs between the impurity-containing pig iron and oxygen, C, Si, P, etc. become oxides, and pig iron becomes a rope. During this time, the exhaust gas containing fine iron powder generated by blowing oxygen is collected by wet dust collection through a gas recovery hood. In wet dust collection, a gas such as CO is sent to a gas recovery tank. Steelmaking dust obtained by collecting exhaust gas is in the form of a slurry. This slurry is coarsely divided (at 60 μm), the coarse is collected as coarse iron powder, and the fine is concentrated by a thickener. Finally, only fine particles are selected by a filter press, and fine iron powder (that is, iron fine particle slurry) can be obtained.

こうして得られる鉄微粒子は、種々の酸化段階の酸化鉄も含むものであるが、このような酸化鉄もガス燃焼状態で捕捉されたダストでは還元状態にあるため、浄化作用に繋がる還元作用を示すと考えられる。従って、金属鉄が30質量%以上占めなくても、上記の鉄微粒子は高い還元作用を示すことができる場合が多い。   The iron fine particles obtained in this way contain iron oxides in various oxidation stages, but such iron oxides are also in a reduced state in the dust trapped in the gas combustion state, and are considered to exhibit a reducing action that leads to a purification action. It is done. Therefore, even if metallic iron does not occupy 30% by mass or more, the iron fine particles can often exhibit a high reducing action.

前記粗粒鉄粉中の97質量%Feの粒度の例は下記の通り。   Examples of the particle size of 97% by mass Fe in the coarse iron powder are as follows.

Figure 2005138107
Figure 2005138107

前記細粒鉄粉の組成例は下記の通り。   A composition example of the fine-grained iron powder is as follows.

Figure 2005138107
Figure 2005138107

前記細粒鉄粉の成分の範囲は下記の通り。   The range of the components of the fine iron powder is as follows.

Figure 2005138107
Figure 2005138107

上記のように本発明の鉄微粒子は、その鉄微粒子を製造するための特別な方法、装置を用いることなく、鉄精錬の際の副産物を利用して得ることができ、簡便で経済的である。また、スラリー状で得られるので、鉄粒子表面の酸化を防止でき、従って輸送の際の酸化も防止できる。尚、輸送中は、鉄粒子が沈殿固化しないように攪拌することが好ましい。また鉄粒子表面の酸化を防止するために、酸化防止剤をスラリーに添加することが好ましい。酸化防止剤としては、有機酸(例、アスコルビン酸(ビタミンC)、クエン酸、リンゴ酸、特にアスコルビン酸)及びこれらの塩を挙げることができ、その添加量は、鉄微粒子に対して0.01〜10質量%が一般的で、0.1〜3質量%が好ましい。更に、スラリー状であるため、土壌浄化剤を製造する際、他の材料との混合が容易との利点がある。   As described above, the iron fine particles of the present invention can be obtained by using a by-product during iron refining without using a special method and apparatus for producing the iron fine particles, and are simple and economical. . Moreover, since it is obtained in the form of a slurry, oxidation of the iron particle surface can be prevented, and therefore oxidation during transportation can be prevented. During transportation, it is preferable to stir so that the iron particles do not precipitate and solidify. Moreover, in order to prevent the oxidation of the iron particle surface, it is preferable to add an antioxidant to the slurry. Examples of the antioxidant include organic acids (eg, ascorbic acid (vitamin C), citric acid, malic acid, particularly ascorbic acid) and salts thereof. 01-10 mass% is common, and 0.1-3 mass% is preferable. Furthermore, since it is a slurry form, when manufacturing a soil purification agent, there exists an advantage that mixing with another material is easy.

上記鉄微粒子スラリーを含む本発明の土壌浄化剤は、さらに鉄以外の金属でも、還元作用を有する金属であるMn、Mg、Zn、Al、Ti等を併用することができる。これらの金属も。その平均粒径はできるだけ小さいことが好ましい。   The soil purification agent of the present invention containing the iron fine particle slurry can be used in combination with metals other than iron, such as Mn, Mg, Zn, Al, and Ti, which have a reducing action. These metals too. The average particle size is preferably as small as possible.

微粒子の鉄粉は、表面積が大きく表面に酸化(不働態化)され易いため、本発明ではこれを防止するため親水性バインダー及び/又は金属ハロゲン化物を併用することが好ましい。   Since the fine iron powder has a large surface area and is easily oxidized (passivated) on the surface, it is preferable to use a hydrophilic binder and / or a metal halide together in the present invention to prevent this.

金属ハロゲン化物は、NaCl、KCl、MgCl2、CaCl2等を挙げることができ、特にNaClが好ましい。金属ハロゲン化物は、鉄の水酸化物、酸化物を金属鉄に還元する働きがある。その使用量は、鉄微粒子に対して0.5〜200質量%が一般的で、0.5〜50質量%が好ましい。 Examples of the metal halide include NaCl, KCl, MgCl 2 and CaCl 2 , and NaCl is particularly preferable. Metal halides have the function of reducing iron hydroxide and oxide to metallic iron. The amount used is generally 0.5 to 200% by mass, preferably 0.5 to 50% by mass, based on the iron fine particles.

親水性バインダーは、鉄微粒子の表面を覆い、有機ハロゲン化物を還元作用を示すまでに酸化されないように保護する機能を有する。親水性バインダーの例としては、スクロース等の二糖類、スクロース誘導体(例、スクロース高級脂肪酸エステル)、グルコース等の単糖類、アルギン酸;プルラン、PVA(ポリビニルアルコール)、CMC(カルボキシルメチルセルロース)、ポリアクリルアミド、グアガム、メチルセルロース、ヒドロキシエチルセルロース等の水溶性樹脂を挙げることができる。プルラン(水溶液にした際の粘度が低く特に好ましい)、ヒドロキシエチルセルロース、スクロース、グルコース、PVAが好ましい。親水性バインダーとして生分解性ポリマーを用いると二次的な環境汚染に対して特に有効である。その使用量は、鉄微粒子に対して0.01〜200質量%が一般的で、0.01〜100質量%が好ましい。   The hydrophilic binder has a function of covering the surface of the iron fine particles and protecting the organic halide from being oxidized before exhibiting a reducing action. Examples of hydrophilic binders include disaccharides such as sucrose, sucrose derivatives (eg, sucrose higher fatty acid esters), monosaccharides such as glucose, alginic acid; pullulan, PVA (polyvinyl alcohol), CMC (carboxyl methylcellulose), polyacrylamide, Mention may be made of water-soluble resins such as guar gum, methylcellulose and hydroxyethylcellulose. Pullulan (particularly preferred because of its low viscosity when made into an aqueous solution), hydroxyethyl cellulose, sucrose, glucose, and PVA are preferred. The use of a biodegradable polymer as the hydrophilic binder is particularly effective against secondary environmental pollution. The amount used is generally 0.01 to 200% by mass, preferably 0.01 to 100% by mass, based on the iron fine particles.

本発明の土壌浄化剤は、上記鉄微粒子スラリーに、所望により酸化防止剤、金属ハロゲン化物又は水溶性ポリマー、又は金属ハロゲン化物及び親水性バインダーとを加えて、懸濁、あるいは分散させて得られるものである。更に適宜水を加えて所望の濃度にすることができる。また必要により分散時に界面活性剤を使用することもできる。上記親水性バインダーの代わりに生分解性ポリマー(例、生分解性ポリカプロラクトン)を用いると二次的な環境汚染に対して特に有効である。   The soil purification agent of the present invention is obtained by adding an antioxidant, a metal halide or a water-soluble polymer, or a metal halide and a hydrophilic binder to the above iron fine particle slurry, if desired, and suspending or dispersing it. Is. Further, water can be appropriately added to obtain a desired concentration. If necessary, a surfactant can be used at the time of dispersion. The use of a biodegradable polymer (eg, biodegradable polycaprolactone) instead of the hydrophilic binder is particularly effective against secondary environmental pollution.

上記水性懸濁液の土壌浄化剤は、さらに還元剤として金属硫酸塩(特に硫酸第一鉄)を含有することが好ましい。これは空気中の酸素と反応するため、金属鉄微粒子の表面の酸化を防ぐことができる。   It is preferable that the soil purification agent of the aqueous suspension further contains a metal sulfate (particularly ferrous sulfate) as a reducing agent. Since this reacts with oxygen in the air, it is possible to prevent the surface of the metal iron fine particles from being oxidized.

上記水性懸濁液は、さらに無機炭酸塩又は炭酸塩系鉱物を含有していることが好ましい。これらの例としては、炭酸カルシウム、沈降性炭酸カルシウム、炭酸マグネシウム、珊瑚化石石灰岩、石灰岩、ドロマイトを挙げることができ、特に沈降性炭酸カルシウムが好ましい。本発明の土壌浄化剤は微粒子の鉄を使用しているため、土壌内の土壌粒子の間隙に注入することが可能である。しかしながら、微粒子にすることにより地下水等に溶出する可能性も高くなることから、本発明では上記炭酸塩を用いて、溶出した鉄イオンを固定し、これを防止することが好ましい。   The aqueous suspension preferably further contains an inorganic carbonate or carbonate-based mineral. Examples of these include calcium carbonate, precipitated calcium carbonate, magnesium carbonate, fossil limestone, limestone, and dolomite, and precipitated calcium carbonate is particularly preferable. Since the soil purification agent of the present invention uses fine particle iron, it can be injected into the gap between soil particles in the soil. However, since the possibility of leaching into groundwater and the like is increased by using fine particles, it is preferable in the present invention to fix the eluted iron ions and prevent this by using the carbonate.

本発明の水性懸濁液の土壌浄化剤は、前述のように、上記鉄微粒子スラリー、及び所望により水溶性ポリマー、金属ハロゲン化物又は金属ハロゲン化物及び親水性バインダーを添加して、懸濁、あるいは分散させて得られるものである。その際分散に用いる水としては、鉄の酸化を極力抑制する観点から、還元性電解水(pH=7〜12が好ましい)を用いることが好ましい。分散剤として、ナフタレンスルホン酸系等の界面活性剤を使用しても良い。分散剤の使用量は、鉄微粒子に対して0.01〜10質量%が一般的で、0.1〜5質量%が好ましい。また前述の酸化防止剤を前記範囲内にてさらに使用しても良い。   As described above, the soil-cleaning agent of the aqueous suspension of the present invention is suspended by adding the iron fine particle slurry, and optionally a water-soluble polymer, metal halide or metal halide and a hydrophilic binder, or It is obtained by dispersing. In this case, it is preferable to use reducing electrolyzed water (preferably pH = 7 to 12) from the viewpoint of suppressing iron oxidation as much as possible. A surfactant such as naphthalene sulfonic acid may be used as the dispersant. The amount of the dispersant used is generally 0.01 to 10% by mass and preferably 0.1 to 5% by mass with respect to the iron fine particles. Moreover, you may further use the above-mentioned antioxidant within the said range.

土壌浄化剤を用いる本発明の汚染土壌の浄化方法は、有機ハロゲン化物で汚染された土壌(地盤)に上記土壌浄化剤を浸透するように付与することにより行われる。好ましくは、土壌浄化剤の浸透を、土壌浄化剤を散布することにより行う方法(1);あるいは有機ハロゲン化物で汚染された土壌に、上記の土壌浄化剤を供給するための注入管を挿入し、該土壌浄化剤をその注入管に注入することからなる方法(2)を挙げることができる。   The method for purifying contaminated soil of the present invention using a soil purification agent is performed by applying the soil purification agent so as to penetrate into the soil (ground) contaminated with an organic halide. Preferably, the soil purification agent is permeated by spraying the soil purification agent (1); or an injection pipe for supplying the soil purification agent is inserted into the soil contaminated with the organic halide. And a method (2) comprising injecting the soil purification agent into the injection tube.

上記方法(2)は、例えば下記のように行うことができる。   The said method (2) can be performed as follows, for example.

有機ハロゲン化物で汚染された表面にボーリングにより土壌浄化剤を供給するための注入管を設ける。注入管は必要により間隔を隔てて複数設けることができる。土壌浄化剤を供給用注入管に注入する。これにより、汚染土壌内に鉄微粒子等が浸透し、有機ハロゲン化物と徐々に接触し、有機ハロゲン化物を分解除去する。注入管で注入する前に、注入管から地下水を排出し、その後土壌浄化剤を注入しても良い。注入液が土壌表面からあふれ出ないように土壌表面に不透水性シート(例、ベントナイトシート)で覆っても良い。あるいは土壌内にシートを埋め込んでも良い。   An injection pipe for supplying soil cleaner by boring is provided on the surface contaminated with organic halides. If necessary, a plurality of injection tubes can be provided at intervals. Inject the soil cleaner into the supply tube. As a result, iron fine particles or the like penetrate into the contaminated soil and gradually come into contact with the organic halide to decompose and remove the organic halide. Before injecting with an injection pipe, ground water may be discharged from the injection pipe and then a soil purification agent may be injected. The soil surface may be covered with a water-impermeable sheet (eg, bentonite sheet) so that the injected solution does not overflow from the soil surface. Alternatively, a sheet may be embedded in the soil.

上記浄化方法を例えば下記のように行っても良い。即ち、図2に示すように、汚染土壌の周囲を、地下の不透水性地盤11に至る不通気層12で遮断し、その内側の土壌中に注入管9、必要により通気性柱状部2及び水平通気層4を設置し、これらの上に不通気性のシート6で覆い、その周縁部を不通気層の外側で糊材を混入させた埋め戻し土砂からなる不通気層7によって遮断することができる。上記水平通気層4内には、通気性材3を透過しない大きさの孔の多数からなる多孔管である吸気管5が埋設されている。   You may perform the said purification | cleaning method as follows, for example. That is, as shown in FIG. 2, the periphery of the contaminated soil is blocked by an air-impermeable layer 12 that reaches the underground impermeable ground 11, and the injection tube 9 and, if necessary, the air-permeable columnar portion 2 and The horizontal ventilation layer 4 is installed, covered with an air-impermeable sheet 6 on these, and the periphery thereof is blocked by an air-impermeable layer 7 made of backfill earth and sand mixed with paste material outside the gas-impermeable layer. Can do. In the horizontal ventilation layer 4, an intake pipe 5, which is a porous pipe composed of a large number of holes having a size that does not transmit the air-permeable material 3, is embedded.

そして、浄化処理は、例えば、注水管を通して排水し、注入管から本発明の洗浄剤を注入し、必要により減圧して、洗浄剤の拡散と、鉄による還元作用により発生する物質を除去することができる。   And the purification treatment is, for example, draining through the water injection pipe, injecting the cleaning agent of the present invention from the injection pipe, and reducing the pressure if necessary to remove substances generated by the diffusion of the cleaning agent and the reducing action by iron. Can do.

上記の方法のように、有機ハロゲン化物で汚染された土壌の表面を、不通気性のシートで覆うこと(一般に、シートの覆いは浄化剤注入後に設置される)が好ましく、必要により通気性柱状部(上記発生物質の除去に有用)を設けることができる。   As in the above method, it is preferable to cover the surface of soil contaminated with organic halides with a non-breathable sheet (generally, the cover of the sheet is installed after the injection of the cleaning agent), and if necessary, a breathable columnar shape. Part (useful for removal of the generated substance) can be provided.

有機ハロゲン化物以外の汚染物質で汚染された土壌も、上記と同様に行うことができる。また、汚染された土壌(特に6価クロムで汚染された土壌)を、土壌掘削法により掘削土壌を反応槽等に投入して本発明の土壌浄化剤で処理することもでき、そして、処理したクロム化合物等を除去することも有利な場合がある。   Soil contaminated with contaminants other than organic halides can be performed in the same manner as described above. In addition, contaminated soil (especially soil contaminated with hexavalent chromium) can be treated with the soil purification agent of the present invention by introducing the excavated soil into a reaction tank or the like by the soil excavation method. It may be advantageous to remove chromium compounds and the like.

土壌に注入する土壌浄化剤中の鉄微粒子の濃度は一般に0.1〜50質量%であり、1〜30質量%が好ましい。また注入量は、一般に土壌1m3当たり鉄微粒子1〜400kgであり、10〜200kgが好ましい。 Generally the density | concentration of the iron fine particle in the soil purifier inject | poured into soil is 0.1-50 mass%, and 1-30 mass% is preferable. Further, the injection amount is generally 1 to 400 kg of iron fine particles per 1 m 3 of soil, and preferably 10 to 200 kg.

また、上記土壌浄化剤の注入は、鉄微粒子の水性懸濁液の注入、及び所望により使用される親水性バインダー等を含有する水性懸濁液の注入を分けて行っても良い。   Further, the injection of the soil purification agent may be carried out separately by injection of an aqueous suspension of iron fine particles and injection of an aqueous suspension containing a hydrophilic binder or the like used as desired.

[実施例1]
(a)鉄微粒子スラリー含有水性懸濁液(土壌浄化剤)
前記図1に示す方法を用いて、下記の製造条件で鉄微粒子スラリーを得た。
[Example 1]
(A) Iron fine particle slurry-containing aqueous suspension (soil purification agent)
Using the method shown in FIG. 1, an iron fine particle slurry was obtained under the following production conditions.

製造条件:OG(oxygen gas)ガス処理方式を装備した上底吹き転炉にて製造
転炉の容量:350T/回
(T:転炉内の鋼の質量に相当し、容量で示される量)
投入銑鉄:溶銑比率70〜96%
酸素吹き込み量:吹錬時間20分程度
スラリー製造速度:250t/D(日)
Production conditions: Manufactured in a top-bottom blown converter equipped with OG (oxygen gas) gas treatment system
(T: amount corresponding to the mass of steel in the converter, indicated by capacity)
Input pig iron: Hot metal ratio 70-96%
Oxygen blowing rate: Blowing time of about 20 minutes Slurry production rate: 250 t / D (day)

上記方法により下記の細粒鉄粉スラリー得た。その組成は下記の通り。   The following fine iron powder slurry was obtained by the above method. Its composition is as follows.

Figure 2005138107
Figure 2005138107

前記細粒鉄粉の成分は下記の通り。   The components of the fine iron powder are as follows.

Figure 2005138107
Figure 2005138107

上記フィルタープレス後のスラリーに含まれる鉄微粒子は、電子顕微鏡(20000倍)による観察により球状であることを確認した。またその粒度分布は図3に示す如くであった。平均粒径は1.3μmであった。   The iron fine particles contained in the slurry after the filter press were confirmed to be spherical by observation with an electron microscope (20,000 times). The particle size distribution was as shown in FIG. The average particle size was 1.3 μm.

上記鉄微粒子の粒度分布は、下記の条件で測定した。   The particle size distribution of the iron fine particles was measured under the following conditions.

測定器:SKレーザ・ミクロン・サイザー7000S
分散媒:0.2%NaHMP
分散条件:超音波(U.S.WAVE) 5分
Measuring instrument: SK Laser Micron Sizer 7000S
Dispersion medium: 0.2% NaHMP
Dispersion condition: Ultrasound (US WAVE) 5 minutes

図3の各粒径の体積分率及びその組成を表1及び表2に示す。   Tables 1 and 2 show the volume fraction and the composition of each particle size in FIG.

Figure 2005138107
Figure 2005138107

上記フィルタープレス後のスラリー(固形分65質量%)を攪拌槽で還元性電解水を加えることにより30質量%とし、さらにアスコルビン酸0.1質量%、を加え、攪拌して鉄微粒子スラリーの土壌浄化剤を得た。   The slurry after the filter press (solid content: 65% by mass) is made 30% by adding reducing electrolyzed water in a stirring tank, and further 0.1% by mass of ascorbic acid is added, and the soil of the iron fine particle slurry is stirred. A purifier was obtained.

次いで、上記土壌浄化剤(a)を連続的にビーズミル(分散用装置)に導入し、分散後HClを後述するpHメータでpH4になるように添加し、ラインミキサで混合し、混合後pHメータでpHを測定し(これにより前記HClの添加量の調節を行う)、その後NaOHを後述するpHメータでpH7になるように添加し、更に20質量%の硝酸第1鉄及びアスコルビン酸0.1質量%を含む水分散液(前記土壌浄化剤(a)と同量で)を加え、ラインミキサで混合し、混合後pHメータでpHを測定し、分散液を得た。この分散液は連続的に製造し、得られた分散液を、トリクロロエチレンで汚染された土壌に連続的に注入した。   Next, the soil cleaner (a) is continuously introduced into a bead mill (dispersing device), and after dispersion, HCl is added to a pH meter of 4 to be described later, mixed with a line mixer, and mixed and then the pH meter is mixed. PH is adjusted with this (by adjusting the amount of HCl added), and then NaOH is added to pH 7 with a pH meter to be described later, and 20 mass% of ferrous nitrate and ascorbic acid 0.1 are added. An aqueous dispersion containing mass% (in the same amount as the soil purification agent (a)) was added, mixed with a line mixer, and after mixing, the pH was measured with a pH meter to obtain a dispersion. This dispersion was continuously produced, and the obtained dispersion was continuously poured into soil contaminated with trichlorethylene.

汚染土壌は、地面から深さ30cmの砕石の層があり、そこから深さ2mまでがシルトの層、さらに30mまでが粘土の層である土壌で、分散液の注入のため地面の上に床スラブを敷いた。床スラブには左右に3mおきに5個ずつ、合計25個の孔(直径10cm)をあけ、そこから分散液の注入を行った。注入量は4m3/時間で、48時間行った。 Contaminated soil is a soil with a crushed stone layer 30 cm deep from the ground, a silt layer up to a depth of 2 m, and a clay layer up to 30 m from there. Laid a slab. A total of 25 holes (diameter 10 cm) were made in the floor slab, 5 pieces every 3 m on the left and right, and the dispersion liquid was injected therefrom. The injection amount was 4 m 3 / hour and was performed for 48 hours.

この結果、土壌中の5カ所(ランダムに設定)のトリクロロエチレンの濃度が、注入1ヶ月後に下記のように変化した。   As a result, the concentration of trichlorethylene at 5 locations (randomly set) in the soil changed as follows one month after the injection.

シルト層(注入前→1ヶ月後(単位:ppm)):
1)1.85→0.0005未満、2)0.01→0.0005未満、
3)3.22→0.0005未満、4)1.97→0.0005未満、
5)0.08→0.0005未満。
Silt layer (before injection → 1 month later (unit: ppm)):
1) 1.85 to less than 0.0005, 2) 0.01 to less than 0.0005,
3) 3.22 → less than 0.0005, 4) 1.97 → less than 0.0005,
5) 0.08 → less than 0.0005.

粘土層(注入前→1ヶ月後(単位:ppm)):
1)5.06→0.0005未満、2)1.03→0.0005未満、
3)3.08→0.0005未満、4)1.53→0.0005未満、
5)2.93→0.0005未満。
Clay layer (before injection → 1 month later (unit: ppm)):
1) 5.06 to less than 0.0005, 2) 1.03 to less than 0.0005,
3) 3.08 to less than 0.0005, 4) 1.53 to less than 0.0005,
5) 2.93 → less than 0.0005.

また、上記土壌中の5カ所のうち注入口から最も遠い位置が水平距離5m、深さ2mで、この位置でも浄化剤が有効に作用していたことから、本発明の浄化剤は土壌に対して良好な浸透性を有することが分かる。   Moreover, since the position farthest from the injection port among the five locations in the soil is a horizontal distance of 5 m and a depth of 2 m, the purifying agent was effectively acting even at this position. It can be seen that it has good permeability.

図1は、本発明の鉄微粒子スラリーの製造方法の実施形態の例を示すフローチャートである。FIG. 1 is a flowchart showing an example of an embodiment of a method for producing an iron fine particle slurry of the present invention. 図2は、本発明の浄化方法の実施形態の例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of an embodiment of the purification method of the present invention. 図3は、実施例1で得られた鉄微粒子スラリーの粒度分布を示すグラフである。FIG. 3 is a graph showing the particle size distribution of the iron fine particle slurry obtained in Example 1.

符号の説明Explanation of symbols

2 通気性柱状部
3 通気性材3
4 水平通気層
5 吸気管
6 不通気性のシート
9 注入管
11 地下の不透水性地盤
12不通気層
2 Breathable column 3 3 Breathable material 3
4 Horizontal ventilation layer 5 Intake pipe 6 Impervious sheet 9 Injection pipe 11 Underwater impermeable ground 12 Impervious layer

Claims (16)

汚染された土壌を浄化するための土壌浄化剤であって、10μm未満の平均粒径を有する球状の鉄微粒子が水中に分散されてなる鉄微粒子スラリーを含む水性懸濁液からなる土壌浄化剤。   A soil purification agent for purifying contaminated soil, comprising an aqueous suspension containing an iron fine particle slurry in which spherical iron fine particles having an average particle size of less than 10 μm are dispersed in water. 前記平均粒径が0.1〜6μmである請求項1に記載の土壌浄化剤。   The soil purification agent according to claim 1, wherein the average particle size is 0.1 to 6 µm. 更に酸化防止剤を含む請求項1又は2に記載の土壌浄化剤。   Furthermore, the soil purification agent of Claim 1 or 2 containing antioxidant. 固形分が20〜80質量%である請求項1〜3のいずれかに記載の土壌浄化剤。   The soil purifier according to any one of claims 1 to 3, wherein the solid content is 20 to 80% by mass. 前記水性懸濁液が、更に親水性バインダーを含む請求項1〜4のいずれかに記載の土壌浄化剤。   The soil purifier according to any one of claims 1 to 4, wherein the aqueous suspension further contains a hydrophilic binder. 前記水性懸濁液が、さらに金属ハロゲン化物を含有している請求項1〜5のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 5, wherein the aqueous suspension further contains a metal halide. 前記水性懸濁液が、さらに還元剤として金属硫酸塩を含有している請求項1〜6のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 6, wherein the aqueous suspension further contains a metal sulfate as a reducing agent. 前記水性懸濁液が、さらに無機炭酸塩又は炭酸塩系鉱物を含有している請求項1〜7のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 7, wherein the aqueous suspension further contains an inorganic carbonate or a carbonate-based mineral. 前記汚染された土壌の汚染物質が、有機ハロゲン化物及び/または6価クロムである請求項1〜8のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 8, wherein the pollutant in the contaminated soil is an organic halide and / or hexavalent chromium. 前記汚染された土壌の汚染物質が、有機ハロゲン化物である請求項1〜8のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 8, wherein the pollutant in the contaminated soil is an organic halide. 請求項1〜10のいずれかに記載の土壌浄化剤を、汚染された土壌に浸透させることからなる土壌浄化方法。   A soil purification method comprising infiltrating the soil purification agent according to any one of claims 1 to 10 into contaminated soil. 前記土壌浄化剤の浸透を、土壌浄化剤を土壌表面の略全面に散布することにより行う請求項11に記載の土壌浄化方法。   The soil purification method according to claim 11, wherein the soil purification agent is permeated by spraying the soil purification agent over substantially the entire surface of the soil. 請求項1〜10のいずれかに記載の土壌浄化剤を供給するための注入管を挿入し、該土壌浄化剤をその注入管に注入することからなる土壌浄化方法。   A soil purification method comprising inserting an injection pipe for supplying the soil purification agent according to any one of claims 1 to 10 and injecting the soil purification agent into the injection pipe. 前記汚染土壌の表面を、更にシートで覆う請求項13に記載の土壌浄化方法。   The soil purification method according to claim 13, wherein the surface of the contaminated soil is further covered with a sheet. 前記汚染された土壌の汚染物質が、有機ハロゲン化物及び/または6価クロムである請求項11〜14のいずれかに記載の土壌浄化方法。   The soil purification method according to any one of claims 11 to 14, wherein the pollutant in the contaminated soil is an organic halide and / or hexavalent chromium. 前記汚染された土壌の汚染物質が、有機ハロゲン化物である請求項11〜15のいずれかに記載の土壌浄化方法。   The soil purification method according to any one of claims 11 to 15, wherein the pollutant in the contaminated soil is an organic halide.
JP2004350611A 2004-12-03 2004-12-03 Soil purification agent and soil purification method Expired - Fee Related JP4530824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350611A JP4530824B2 (en) 2004-12-03 2004-12-03 Soil purification agent and soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350611A JP4530824B2 (en) 2004-12-03 2004-12-03 Soil purification agent and soil purification method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000010881A Division JP3725749B2 (en) 1999-07-29 2000-01-19 Iron fine particle slurry and production method thereof, soil purification agent, and soil purification method

Publications (2)

Publication Number Publication Date
JP2005138107A true JP2005138107A (en) 2005-06-02
JP4530824B2 JP4530824B2 (en) 2010-08-25

Family

ID=34698087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350611A Expired - Fee Related JP4530824B2 (en) 2004-12-03 2004-12-03 Soil purification agent and soil purification method

Country Status (1)

Country Link
JP (1) JP4530824B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098317A (en) * 2005-10-06 2007-04-19 Ohbayashi Corp Insolubilization method of toxic material
JP2011251208A (en) * 2010-05-31 2011-12-15 Taisei Corp Method for recovering performance of permeable ground water purifying body
EP2921457A1 (en) * 2014-03-18 2015-09-23 Sita Remediation Method for on-site decontamination of soil or groundwater contaminated with halogenated organic compounds by using cast iron, and reactive powder for carrying out said method
KR20170105408A (en) * 2016-03-09 2017-09-19 가부시키가이샤 고베 세이코쇼 Purification treatment agent and purification treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249587A (en) * 1985-04-27 1986-11-06 Maeda Kensetsu Kogyo Kk Treatment of harmful substance-contaminated soil at home position
JPH09239339A (en) * 1996-03-06 1997-09-16 Kanegafuchi Chem Ind Co Ltd Waste treating material and treatment of waste
JPH09279258A (en) * 1996-04-16 1997-10-28 Nkk Corp Method for agglomerating iron-making dust
JPH10263522A (en) * 1997-03-27 1998-10-06 Dowa Mining Co Ltd Treatment for making organic halogen compound harmless
US5857810A (en) * 1995-11-07 1999-01-12 Battelle Memorial Institute In-situ chemical barrier and method of making
US5975798A (en) * 1997-09-02 1999-11-02 Ars Technologies, Inc. In-situ decontamination of subsurface waste using distributed iron powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249587A (en) * 1985-04-27 1986-11-06 Maeda Kensetsu Kogyo Kk Treatment of harmful substance-contaminated soil at home position
US5857810A (en) * 1995-11-07 1999-01-12 Battelle Memorial Institute In-situ chemical barrier and method of making
JPH09239339A (en) * 1996-03-06 1997-09-16 Kanegafuchi Chem Ind Co Ltd Waste treating material and treatment of waste
JPH09279258A (en) * 1996-04-16 1997-10-28 Nkk Corp Method for agglomerating iron-making dust
JPH10263522A (en) * 1997-03-27 1998-10-06 Dowa Mining Co Ltd Treatment for making organic halogen compound harmless
US5975798A (en) * 1997-09-02 1999-11-02 Ars Technologies, Inc. In-situ decontamination of subsurface waste using distributed iron powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098317A (en) * 2005-10-06 2007-04-19 Ohbayashi Corp Insolubilization method of toxic material
JP4687969B2 (en) * 2005-10-06 2011-05-25 株式会社大林組 Methods for insolubilizing hazardous substances
JP2011251208A (en) * 2010-05-31 2011-12-15 Taisei Corp Method for recovering performance of permeable ground water purifying body
EP2921457A1 (en) * 2014-03-18 2015-09-23 Sita Remediation Method for on-site decontamination of soil or groundwater contaminated with halogenated organic compounds by using cast iron, and reactive powder for carrying out said method
FR3018707A1 (en) * 2014-03-18 2015-09-25 Sita Remediation PROCESS FOR THE IN SITU DEPOLLUTION OF SOIL OR GROUNDWATER CONTAMINATED BY HALOGENIC ORGANIC COMPOUNDS BY MEANS OF ZERO-VALENCED IRON AND REACTIVE POWDER FOR CARRYING OUT SAID METHOD
KR20170105408A (en) * 2016-03-09 2017-09-19 가부시키가이샤 고베 세이코쇼 Purification treatment agent and purification treatment method
KR101896825B1 (en) 2016-03-09 2018-09-07 가부시키가이샤 고베 세이코쇼 Purification treatment agent and purification treatment method

Also Published As

Publication number Publication date
JP4530824B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
WO2001008825A1 (en) Soil purification agent and method for purifying soil
JP4069174B2 (en) Detoxification method of soil
JP3725749B2 (en) Iron fine particle slurry and production method thereof, soil purification agent, and soil purification method
JP4530824B2 (en) Soil purification agent and soil purification method
JPH11235577A (en) Detoxicating treatment of soil
JP3476192B2 (en) Steelmaking dust slurry purification method and soil purification agent
JP3612258B2 (en) Soil purification agent and soil purification method
JP4405185B2 (en) In-situ purification method for soil contaminated with organochlorine compounds
JP6359891B2 (en) Soil purification agent and method for purification of contaminated soil
JP2004025166A (en) Method of insolubilizing anions, soil cleaning agent and method of purifying soil or ground water
JP5502841B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
JP4008627B2 (en) Soil purification agent and soil purification method
JP2004292806A (en) Soil renewing agent and method for renewal of soil
JP2004105882A (en) Soil cleaning method
JP2002079232A (en) Work for cleaning soil
JP3859528B2 (en) Soil purification agent and soil purification method
JP4345493B2 (en) Soil purification agent and soil purification method
JP2004331996A (en) Sponge iron for reducing agent, its production method and its application
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP4670029B2 (en) Soil purification method
JP2005111311A (en) Soil cleaning agent and soil cleaning method
JP2005185982A (en) Method and system for cleaning contaminated soil
JP2005111312A (en) Soil cleaning agent and soil cleaning method
JP2002282834A (en) Soil purification agent and soil purification method
JP5109036B2 (en) Detoxification method of soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Ref document number: 4530824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees