JP2005138089A - Method for measuring percentage of water content - Google Patents

Method for measuring percentage of water content Download PDF

Info

Publication number
JP2005138089A
JP2005138089A JP2003380344A JP2003380344A JP2005138089A JP 2005138089 A JP2005138089 A JP 2005138089A JP 2003380344 A JP2003380344 A JP 2003380344A JP 2003380344 A JP2003380344 A JP 2003380344A JP 2005138089 A JP2005138089 A JP 2005138089A
Authority
JP
Japan
Prior art keywords
moisture content
garbage
heating element
stirring
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003380344A
Other languages
Japanese (ja)
Inventor
Ryoko Hashimoto
涼子 橋本
Hideto Shinpo
秀人 新保
Koji Matsukawa
浩司 松川
Tomihiro Taniguchi
富洋 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003380344A priority Critical patent/JP2005138089A/en
Publication of JP2005138089A publication Critical patent/JP2005138089A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the percentage of water content capable of accurately measuring the water content of a garbage disposal material stored in a disposal vessel of a garbage disposer independently from the structure of the garbage disposer. <P>SOLUTION: The method for measuring the percentage of water content for estimating the percentage of water content of the garbage disposal material in the disposal vessel 1 on the basis of relationship between temperature rise value of a heater measured in advance and the percentage of water content of the garbage disposal material by using a thermal water content sensor 42 provided with the heater which generates heat by being energized, a temperature measuring member for detecting the temperature of the heater, i.e., a thermistor comprises the steps of heating the heater and detecting the temperature of the heater by the thermistor in a state of stopping an agitating shaft 12 at the position where agitating blades 12b, 13 are not positioned in the vicinity of the water content sensor 42, and estimating the percentage of water content of the garbage disposal material on the basis of the relationship between the data and the value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生ごみ処理装置において生ごみを分解処理する処理槽内に入れられた生ごみ処理材の含水率を測定する含水率測定方法に関するものである。   The present invention relates to a moisture content measurement method for measuring the moisture content of a garbage treatment material placed in a treatment tank for decomposing garbage in a garbage treatment apparatus.

従来から、微生物の働きにより生ごみを発酵させて分解処理する生ごみ処理装置が提案されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, there has been proposed a garbage processing apparatus that ferments and decomposes garbage by the action of microorganisms (see, for example, Patent Document 1).

この種の生ごみ処理装置は、生ごみを収容する処理槽内に微生物の付着した担体を生ごみ処理材として、生ごみよりも先に入れてあり、処理槽へ生ごみを入れて攪拌手段により生ごみ処理材および生ごみを攪拌しながら微生物の働きで生ごみを発酵させて分解処理するようになっている。   This kind of garbage processing apparatus is a means for mixing garbage into a processing tank that contains microorganisms in a processing tank that contains garbage as a garbage processing material. Thus, the garbage is fermented and decomposed by the action of microorganisms while stirring the garbage treatment material and the garbage.

ところで、生ごみ処理装置に用いる微生物は主として好気性菌であり、微生物による生ごみの分解反応は、水分、温度、酸素などの要因に大きく影響され、これらの要因の1つでもそれぞれの適切な範囲を外れると分解が進みにくくなる。例えば、多量の水分を含んだ生ごみが処理槽へ入れられて生ごみ処理材が水分過多となった場合には酸素不足となって酸敗してしまい、生ごみ処理材が乾燥しすぎた場合には微生物の活動に必要な水分が不足してしまい、いずれの場合も生ごみが分解しないまま残存することとなる。   By the way, the microorganisms used in the garbage treatment apparatus are mainly aerobic bacteria, and the decomposition reaction of garbage by microorganisms is greatly influenced by factors such as moisture, temperature, oxygen, etc., and even one of these factors is appropriate for each. If it is out of range, disassembly will not proceed easily. For example, when garbage containing a large amount of moisture is put into the treatment tank and the garbage treatment material becomes excessively watery, it becomes deficient due to lack of oxygen, and the garbage treatment material becomes too dry. In this case, there is a shortage of water necessary for the activity of microorganisms, and in any case, the garbage remains without being decomposed.

そこで、上述の生ごみ処理装置では、処理槽内での微生物の活性を維持できるように処理槽内の環境を制御するようになっている。すなわち、上述の生ごみ処理装置では、処理槽内の生ごみ処理材および生ごみを攪拌する攪拌手段と、攪拌手段を駆動するモータと、生ごみ処理材へ通気する通気手段と、処理槽内の生ごみ処理材および生ごみを加熱するヒータのような加熱手段と、生ごみ処理材の含水率を検出する熱式の含水率センサと、含水率センサにより検出された含水率が微生物の活性を維持するのに適した含水率範囲内に入るように攪拌手段、加熱手段、通気手段を制御する制御手段とを設けてある。したがって、上述の生ごみ処理装置では、生ごみ処理材の含水率を、微生物の活性を維持するのに適した含水率範囲内に保つことが可能となる。含水率を測定する含水率センサとしては、熱式のものに限らず、静電容量式のものもあるが、静電容量式のものは熱式のものに比べて高価であるという問題があった。   Therefore, in the above-described garbage processing apparatus, the environment in the processing tank is controlled so that the activity of microorganisms in the processing tank can be maintained. That is, in the above-described garbage processing apparatus, the garbage processing material in the treatment tank and the stirring means for stirring the garbage, the motor for driving the stirring means, the ventilation means for ventilating the garbage processing material, and the inside of the treatment tank Food treatment material and heating means such as a heater for heating garbage, a thermal moisture sensor that detects the moisture content of the garbage treatment material, and the moisture content detected by the moisture sensor determines the activity of microorganisms. Control means for controlling the stirring means, heating means, and aeration means are provided so as to fall within the moisture content range suitable for maintaining the water content. Therefore, in the above-mentioned garbage disposal apparatus, it becomes possible to keep the moisture content of the garbage treatment material within the moisture content range suitable for maintaining the activity of microorganisms. The moisture content sensor for measuring the moisture content is not limited to the thermal type, but there is also an electrostatic type sensor. However, there is a problem that the capacitive type sensor is more expensive than the thermal type sensor. It was.

なお、微生物の働きにより生ごみを発酵させて分解処理する生ごみ処理装置では、上述の攪拌手段が処理槽に保持された攪拌軸と攪拌軸に交差する方向(例えば、攪拌軸に直交する方向)に突設された攪拌羽根とで構成されており、上記特許文献1に開示された生ごみ処理装置のように攪拌軸の中心線を横方向として配置した所謂横型の生ごみ処理装置や、攪拌軸の中心線を上下方向として配置した所謂縦型の生ごみ処理装置などが提供されている。また、縦型の生ごみ処理装置において家庭用ではなく業務用に用いられる比較的処理容量の大きなものでは、処理槽とは別に、処理槽へ収容する生ごみ処理材および生ごみを一時的に溜め置く溜置槽を設けるとともに、溜置槽に生ごみ処理材および生ごみを投入するための投入口を設け、溜置槽から処理槽へ生ごみ処理材および生ごみを搬送する搬送手段を設けたものも提供されている。また、縦型の生ごみ処理装置では、処理槽内の下から上に向かって空気が通気されるように上記通気手段を構成してあるのが一般的である。   Note that in a garbage processing apparatus that ferments and decomposes garbage by the action of microorganisms, the above-described stirring means intersects the stirring axis held in the treatment tank and the stirring axis (for example, a direction orthogonal to the stirring axis) A so-called horizontal type garbage disposal apparatus in which the center line of the agitation shaft is disposed in the horizontal direction as in the garbage disposal apparatus disclosed in Patent Document 1; There is provided a so-called vertical garbage disposal apparatus in which the center line of the stirring shaft is arranged in the vertical direction. In addition, in the vertical type garbage processing equipment, which has a relatively large processing capacity that is used not for home use but for business use, separate from the treatment tank, the garbage treatment material and garbage stored in the treatment tank are temporarily stored. In addition to providing a storage tank for storage, a storage means is provided in the storage tank for introducing garbage processing material and garbage, and conveying means for conveying the garbage processing material and garbage from the storage tank to the processing tank. A set is also provided. Moreover, in the vertical type garbage disposal apparatus, the aeration means is generally configured so that air is aerated from the bottom to the top in the treatment tank.

上述の熱式の含水率センサは、図8に示すように、通電により発熱する発熱体42aおよび発熱体42aの温度を検出するサーミスタ42bが実装された基板42cと、基板42cが収納された金属製のケース42dとを備え、ケース42dの表面に処理槽内の生ごみ処理材Aが接触するように処理槽へ取り付けてあり、発熱体42aへ規定時間だけ通電を行うとともに発熱体42aの温度をサーミスタ42bにより検出し、発熱体42aの温度上昇値から含水率を測定するものである。ここにおいて、生ごみ処理材Aの含水率が高いほど発熱体42aの熱が生ごみ処理材Aへ放熱されやすいので、サーミスタ42bによる検出温度が低くなり、生ごみ処理材Aの含水率が低いほど発熱体42aの熱が生ごみ処理材Aへ放熱されにくくなるので、サーミスタ42bによる検出温度が高くなる。したがって、上記温度上昇値は、生ごみ処理材Aの含水率が高いほど小さくなり、生ごみ処理材Aの含水率が低いほど大きくなるので、予め発熱体42aの温度上昇値と生ごみ処理材Aの含水率との関係を測定して関係データを作成しこの関係データを利用するようにしておけば、発熱体42aの温度上昇値から生ごみ処理材Aの含水率を測定することができるのである。   As shown in FIG. 8, the thermal moisture sensor described above includes a heating element 42a that generates heat when energized, a substrate 42c on which a thermistor 42b that detects the temperature of the heating element 42a is mounted, and a metal in which the substrate 42c is housed. The case 42d is attached to the treatment tank so that the garbage processing material A in the treatment tank is in contact with the surface of the case 42d. The heating element 42a is energized for a specified time and the temperature of the heating element 42a. Is detected by the thermistor 42b, and the moisture content is measured from the temperature rise value of the heating element 42a. Here, since the heat of the heating element 42a is easily radiated to the garbage treatment material A as the moisture content of the garbage treatment material A is higher, the temperature detected by the thermistor 42b is lower and the moisture content of the garbage treatment material A is lower. As the heat of the heating element 42a becomes less likely to be dissipated to the garbage disposal material A, the temperature detected by the thermistor 42b becomes higher. Therefore, the temperature increase value decreases as the moisture content of the garbage treatment material A increases, and increases as the moisture content of the garbage treatment material A decreases. Therefore, the temperature increase value of the heating element 42a and the garbage treatment material are preliminarily determined. If the relational data is created by measuring the relation with the moisture content of A and the relational data is used, the moisture content of the garbage treatment material A can be measured from the temperature rise value of the heating element 42a. It is.

ところで、上記特許文献1には、生ごみ処理材の含水率を精度良く測定するために、攪拌手段による生ごみ処理材および生ごみの攪拌を停止させて生ごみ処理材が流動していない状態で生ごみ処理材の含水率を測定するようにした含水率測定方法が提案されている。
特開平10−235328号公報(第4頁−第6頁、図1−図4参照)
By the way, in the said patent document 1, in order to measure the moisture content of a garbage disposal material accurately, the garbage disposal material by the stirring means and the stirring of garbage are stopped, and the garbage disposal material is not flowing. Has proposed a moisture content measurement method that measures the moisture content of garbage treatment materials.
Japanese Patent Laid-Open No. 10-235328 (refer to pages 4 to 6 and FIGS. 1 to 4)

しかしながら、上述のように攪拌手段による生ごみ処理材および生ごみの攪拌を停止させた状態で生ごみ処理材の含水率を測定する含水率測定方法を採用したとしても、生ごみ処理装置の構造によっては含水率の測定精度が低くなってしまうことがあり、場合によっては水分過剰により酸素不足となって生ごみの分解が停止してしまうことがあった。   However, even if the moisture content measuring method for measuring the moisture content of the garbage treatment material and the garbage treatment material in a state in which the stirring of the garbage is stopped as described above, the structure of the garbage treatment device is adopted. In some cases, the measurement accuracy of the moisture content may be lowered, and in some cases, oxygen may become insufficient due to excessive moisture, and decomposition of garbage may stop.

本発明は上記事由に鑑みて為されたものであり、その目的は、生ごみ処理装置における処理槽内に収容された生ごみ処理材の含水率を生ごみ処理装置の構造によらず精度良く測定することができる含水率測定方法を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to accurately determine the moisture content of the garbage treatment material accommodated in the treatment tank in the garbage treatment apparatus regardless of the structure of the garbage treatment apparatus. It is in providing the moisture content measuring method which can be measured.

請求項1の発明は、生ごみを分解処理する微生物が生息した生ごみ処理材および生ごみを収容する処理槽と、処理槽内の生ごみ処理材および生ごみを攪拌する攪拌手段とを備え、攪拌手段が、処理槽に回転自在に保持された攪拌軸と、攪拌軸の外周面から突設され攪拌軸の回転に伴って先端部が処理槽の内周面に沿って移動する攪拌羽根とで構成された生ごみ処理装置において、発熱体と発熱体近傍で発熱体の温度を検出する測温体とを有する熱式の含水率測定装置を処理槽内の生ごみ処理材に接触するような位置に配置しておき、予め測定した発熱体の温度上昇値と生ごみ処理材の含水率との関係データに基づいて生ごみ処理材の含水率を推測する含水率測定方法であって、攪拌羽根が含水率測定装置近傍に位置しないように攪拌手段を停止させた状態で、発熱体を発熱させて発熱体の温度を測温体により検出し、発熱体の温度上昇値から上記関係データに基づいて生ごみ処理材の含水率を測定することを特徴とする。   The invention of claim 1 includes a garbage treatment material inhabited by microorganisms for decomposing the garbage, a treatment tank containing the garbage, and a stirring means for agitating the garbage treatment material and the garbage in the treatment tank. The stirring means has a stirring shaft that is rotatably held in the processing tank, and a stirring blade that protrudes from the outer peripheral surface of the stirring shaft and whose tip moves along the inner peripheral surface of the processing tank as the stirring shaft rotates. In the garbage processing apparatus constituted by the above, a thermal moisture content measuring device having a heating element and a temperature measuring element for detecting the temperature of the heating element in the vicinity of the heating element is brought into contact with the garbage processing material in the treatment tank. The moisture content measuring method is to presume the moisture content of the garbage treatment material based on the relational data between the temperature rise value of the heating element measured in advance and the moisture content of the garbage treatment material. Stop the stirring means so that the stirring blade is not located near the moisture content measuring device. In this state, the heating element is caused to generate heat, the temperature of the heating element is detected by the temperature measuring element, and the moisture content of the garbage treatment material is measured from the temperature rise value of the heating element based on the above relational data. To do.

この発明によれば、含水率の測定時に、攪拌手段が停止していることにより生ごみ処理材が流動しておらず、且つ、攪拌手段は攪拌羽根が含水率測定装置の近傍に位置しないように停止されているので、攪拌手段の停止時に、停止前に含水率測定装置と接触していた生ごみ処理材が攪拌羽根によりかきとられて含水率測定装置と生ごみ処理材との間に空隙が発生するのを防止することができ、処理槽内に収容された生ごみ処理材の含水率を生ごみ処理装置の構造によらず精度良く測定することができる。   According to the present invention, when the moisture content is measured, the garbage treatment material is not flowing because the stirring means is stopped, and the stirring means is such that the stirring blade is not located in the vicinity of the moisture content measuring device. Therefore, when the stirring means is stopped, the garbage treatment material that has been in contact with the moisture content measuring device before the stop is scraped off by the stirring blade, and the gap between the moisture content measuring device and the garbage treatment material is removed. Generation | occurrence | production of a space | gap can be prevented and the moisture content of the garbage processing material accommodated in the processing tank can be accurately measured irrespective of the structure of a garbage processing apparatus.

請求項2の発明は、請求項1の発明において、含水率測定装置を処理槽の周方向に離間して2つ配置して攪拌手段の停止前に各含水率測定装置の発熱体を発熱させておき、含水率測定装置の近傍を攪拌羽根の先端部が通過することによる発熱体の温度低下により攪拌羽根の通過を検知して一方の含水率測定装置の近傍に攪拌羽根の先端部が位置するように攪拌手段を停止させ、他方の含水率測定装置を利用して生ごみ処理材の含水率の測定を行うことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, two moisture content measuring devices are arranged apart from each other in the circumferential direction of the treatment tank so that the heating elements of each moisture content measuring device generate heat before the stirring means is stopped. The passage of the stirring blade is detected by the temperature drop of the heating element due to the passage of the tip of the stirring blade near the moisture content measuring device, and the tip of the stirring blade is positioned in the vicinity of one moisture content measuring device. The stirring means is stopped as described above, and the moisture content of the garbage treatment material is measured using the other moisture content measuring device.

この発明によれば、攪拌手段を停止させた状態で攪拌羽根の先端部から遠い方の含水率測定装置を利用して生ごみ処理材の含水率を測定することができるので、生ごみ処理装置の構造の違いによる測定精度のばらつきを小さくすることができる。   According to this invention, the moisture content of the garbage treatment material can be measured using the moisture content measuring device far from the tip of the stirring blade in a state where the agitating means is stopped. Variation in measurement accuracy due to the difference in structure can be reduced.

請求項3の発明は、請求項1の発明において、攪拌手段を停止させるにあたって、攪拌手段の停止前にあらかじめ発熱体を発熱させておき攪拌羽根の先端部が近傍を通過することによる発熱体の温度低下により攪拌羽根の通過を検知してから所定時間が経過した後に攪拌手段を停止させることを特徴とする。   According to a third aspect of the present invention, in order to stop the stirring means in the first aspect of the invention, the heating element is heated in advance before the stirring means is stopped, and the tip of the stirring blade passes through the vicinity. The stirring means is stopped after a predetermined time has elapsed since the passage of the stirring blade was detected due to a temperature drop.

この発明によれば、攪拌手段を停止させた時に攪拌羽根の先端部を含水率測定装置から確実に離すことができ、生ごみ処理装置の構造の違いによる含水率の測定精度のばらつきを小さくすることができる。   According to this invention, when the stirring means is stopped, the tip of the stirring blade can be reliably separated from the moisture content measuring device, and variation in moisture content measurement accuracy due to the difference in the structure of the garbage treatment device is reduced. be able to.

請求項4の発明は、請求項1の発明において、含水率測定装置を複数個設けておき、各含水率測定装置それぞれの発熱体を同一条件で発熱させた時の各発熱体それぞれの温度上昇値のうちの最小値を含水率の測定に利用することを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the present invention, a plurality of moisture content measuring devices are provided, and when each of the moisture content measuring devices generates heat under the same conditions, the temperature rise of each heating element The minimum value among the values is used for the measurement of the moisture content.

この発明によれば、含水率測定装置近傍に空隙が形成されて発熱体の温度上昇値が大きくなった含水率測定装置の温度上昇値は利用されなくなるので、含水率の測定精度をより高めることができる。   According to the present invention, since the temperature rise value of the moisture content measuring device in which a gap is formed in the vicinity of the moisture content measuring device and the temperature rise value of the heating element becomes large is not used, the measurement accuracy of the moisture content is further increased. Can do.

請求項5の発明は、請求項1ないし請求項4の発明において、生ごみ処理装置には処理槽内の生ごみ処理材および生ごみへ空気を通気する通気手段が設けられており、含水率の測定を行う際には通気手段による風量を攪拌手段の動作時よりも低下させることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the garbage treatment apparatus is provided with a garbage treatment material in the treatment tank and a ventilation means for aerating air to the garbage. When the measurement is performed, the air volume by the aeration unit is reduced as compared with the operation of the stirring unit.

この発明によれば、通気手段により通気される空気の影響による含水率の測定精度の低下を抑制することが可能となる。   According to the present invention, it is possible to suppress a decrease in the measurement accuracy of the moisture content due to the influence of the air ventilated by the aeration means.

請求項1の発明では、含水率の測定時に、攪拌手段が停止していることにより生ごみ処理材が流動しておらず、且つ、攪拌手段は攪拌羽根が含水率測定装置の近傍に位置しないように停止されているので、攪拌手段の停止時に、停止前に含水率測定装置と接触していた生ごみ処理材が攪拌羽根によりかきとられて含水率測定装置と生ごみ処理材との間に空隙が発生するのを防止することができ、処理槽内に収容された生ごみ処理材の含水率を生ごみ処理装置の構造によらず精度良く測定することができるという効果がある。   In the first aspect of the invention, when the moisture content is measured, the garbage processing material is not flowing because the stirring means is stopped, and the stirring blade of the stirring means is not located in the vicinity of the moisture content measuring device. Therefore, when the stirring means is stopped, the garbage treatment material that has been in contact with the moisture content measuring device before the stop is scraped off by the stirring blades, and the gap between the moisture content measuring device and the garbage treatment material is reduced. It is possible to prevent the generation of voids in the waste water and to accurately measure the moisture content of the garbage treatment material accommodated in the treatment tank regardless of the structure of the garbage treatment apparatus.

まず、本実施形態における生ごみ処理装置の概略構成について図1を参照しながら説明した後で、含水率測定方法について説明する。   First, after describing the schematic structure of the garbage processing apparatus in this embodiment, referring to FIG. 1, the moisture content measuring method will be described.

本実施形態の生ごみ処理装置は、生ごみを分解処理する微生物が生息した生ごみ処理材および生ごみを収容し生ごみの分解処理が行われる金属製の処理槽1と、処理槽1に入れる生ごみ処理材および生ごみを一時的に溜め置く金属製の溜置槽2とを備えている。なお、溜置槽2は、図1の左右方向に直交する断面がU字状に形成された主板2aの左右両側面を側板2b,2bで塞ぎ上面を上板2cで塞いだ形状に形成し、処理槽1は、上面および下面が塞がれた円筒状に形成してある。また、溜置槽2の上板2cには生ごみ処理材、生ごみを投入するための投入口2dが開口し、投入口2dが投入扉24により開閉自在に覆われている。   The garbage processing apparatus according to the present embodiment includes a garbage processing material inhabited by microorganisms that decompose garbage and a metal processing tank 1 that accommodates the garbage and performs the decomposition process of the garbage, and the processing tank 1. A garbage disposal material to be placed and a metal storage tank 2 for temporarily storing the garbage are provided. The storage tank 2 is formed in a shape in which the left and right side surfaces of the main plate 2a having a U-shaped cross section perpendicular to the left and right direction in FIG. 1 are closed with side plates 2b and 2b and the upper surface is closed with an upper plate 2c. The treatment tank 1 is formed in a cylindrical shape whose upper and lower surfaces are closed. Further, the upper plate 2c of the storage tank 2 is provided with an input port 2d for supplying the garbage processing material and garbage, and the input port 2d is covered with an input door 24 so as to be opened and closed.

また、本実施形態の生ごみ処理装置は、図1における溜置槽2の右側の側板2bの下部に排出口を形成するとともに、処理槽1の周壁1bの下部に導入口を形成し、溜置槽2の排出口と処理槽1の導入口との間に円筒状の搬送管3を設けてあり、溜置槽2と搬送管3とに跨るように配置されて回転自在に支承されたスクリュ22の回転軸22aを正転方向へ回転させることによって溜置槽2内の内容物を処理槽1へ搬送することができるようになっている。ここに、スクリュ22の回転軸22aの外周面には螺旋状のスクリュ羽根22bが設けられている。なお、スクリュ22の回転軸22aは、中心線を図1における左右方向として配置されており、溜置槽2の外部に設けた動力源としてのモータ5からの回転力を受けて回動する。   Moreover, the garbage processing apparatus of this embodiment forms an outlet in the lower part of the right side plate 2b of the storage tank 2 in FIG. A cylindrical transfer pipe 3 is provided between the discharge port of the storage tank 2 and the introduction port of the treatment tank 1, and is disposed so as to straddle the storage tank 2 and the transfer pipe 3, and is rotatably supported. By rotating the rotating shaft 22a of the screw 22 in the forward rotation direction, the contents in the storage tank 2 can be conveyed to the processing tank 1. Here, spiral screw blades 22 b are provided on the outer peripheral surface of the rotation shaft 22 a of the screw 22. The rotating shaft 22a of the screw 22 is arranged with the center line as the left-right direction in FIG. 1 and rotates by receiving the rotational force from the motor 5 as a power source provided outside the storage tank 2.

溜置槽2の両側板2b,2b間には、スクリュ22の上方においてパドル23の回転軸23aが回動自在に支承され、回転軸23aの外周面には、溜置槽2内で回動し比較的大きな生ごみを細かく破砕するための破砕羽根23bが設けられている。パドル23は、回転軸23aが上述のモータ5からの回転力を受けて回動し、溜置槽2内に投入された比較的大きな生ごみを破砕羽根23bによって破砕する。溜置槽2は、上述のように左右方向に直交する断面がU字状に形成された主板2aを採用しているから、溜置槽2に投入された生ごみがスクリュ22の周部に集まりやすく、溜置槽2内へ投入した生ごみを処理槽1へ搬送した後に溜置槽2の内面に生ごみが残留しにくくなっている。なお、スクリュ22の回転軸22aおよびパドル23の回転軸23aの回転方向は上述のモータ5の回転方向によって正逆に切り換えられる。また、本実施形態では、2つの回転軸22a,23aを1つのモータ5で回転させるためのチェーン6を設けてある。   Between the side plates 2b, 2b of the storage tank 2, a rotating shaft 23a of the paddle 23 is rotatably supported above the screw 22, and the outer peripheral surface of the rotating shaft 23a rotates within the storage tank 2. Crushing blades 23b are provided for finely crushing relatively large garbage. In the paddle 23, the rotating shaft 23a is rotated by receiving the rotational force from the motor 5 described above, and the relatively large garbage put in the storage tank 2 is crushed by the crushing blades 23b. Since the storage tank 2 employs the main plate 2a having a U-shaped cross section orthogonal to the left-right direction as described above, the garbage thrown into the storage tank 2 is placed on the periphery of the screw 22. It is easy to gather, and it is difficult for garbage to remain on the inner surface of the storage tank 2 after the raw garbage thrown into the storage tank 2 is conveyed to the processing tank 1. The rotating direction of the rotating shaft 22a of the screw 22 and the rotating shaft 23a of the paddle 23 is switched between forward and reverse depending on the rotating direction of the motor 5 described above. In the present embodiment, a chain 6 for rotating the two rotary shafts 22a and 23a with one motor 5 is provided.

本実施形態の生ごみ処理装置は、立ち上げ時に生ごみの投入に先だって生ごみ処理材を溜置槽2へ投入し、溜置槽2へ投入された生ごみ処理材を搬送管3を通して処理槽1へ搬送するようにしてある。ここにおいて、生ごみ処理材は、コンポスト(肥料)のようなものであり、例えば、生ごみを処理した残渣(難分解性のセルロースや蛋白質の複合体)などを用いればよく、通気性改善のためのバルキング材としておがくずのような木質チップを混合したものでもよい。なお、図1中のAは処理槽1へ収容された生ごみ処理材を示し、同図中のBは溜置槽2内へ投入された生ごみを示している。   The garbage processing apparatus of this embodiment inputs a garbage processing material into the storage tank 2 prior to the input of the garbage at startup, and processes the garbage processing material input into the storage tank 2 through the transfer pipe 3. It is made to convey to the tank 1. Here, the food waste treatment material is like compost (fertilizer), for example, a residue obtained by treating food waste (persistent cellulose or protein complex) may be used. As a bulking material, wood chips such as sawdust may be mixed. In addition, A in FIG. 1 shows the garbage processing material accommodated in the processing tank 1, and B in the figure shows the garbage thrown into the storage tank 2.

処理槽1の上板1aと下板1cとの間には、攪拌軸12が回動自在に支承され、攪拌軸12には、攪拌軸12に直交し処理槽1内で回動する複数の攪拌羽根12b,12b,13,13が突設されており、各攪拌羽根12b,12b,13,13それぞれの先端部が攪拌軸12の回動に伴い処理槽1の内周面に沿って移動するようになっている。要するに、攪拌軸12は、中心線を上下方向として配置されており、処理槽1の外部に設けた動力源としてのモータ4からの回転力を受けて回動し、処理槽1内に収容されている生ごみ処理材および生ごみを攪拌する。このように、生ごみ処理材および生ごみを攪拌することにより、生ごみ処理材と生ごみの接触を促し且つ後述の通気手段から新鮮な空気を取り入れ処理槽1内の内容物の均一化を図ることができる。なお、攪拌軸12の回転方向はモータ4の回転方向によって正逆に切り換えられる。また、本実施形態では、攪拌軸12と複数の攪拌羽根12b,12b,13,13とで処理槽1内の生ごみ処理材および生ごみを攪拌する攪拌手段を構成しているが、攪拌羽根12b,13の数は特に限定するものではない。   A stirring shaft 12 is rotatably supported between the upper plate 1 a and the lower plate 1 c of the processing tank 1, and the stirring shaft 12 has a plurality of rotations orthogonal to the stirring shaft 12 and rotating in the processing tank 1. The stirring blades 12b, 12b, 13, and 13 are projected, and the respective leading ends of the stirring blades 12b, 12b, 13, and 13 move along the inner peripheral surface of the processing tank 1 as the stirring shaft 12 rotates. It is supposed to be. In short, the agitation shaft 12 is arranged with the center line as the vertical direction, is rotated by receiving the rotational force from the motor 4 as a power source provided outside the processing tank 1, and is accommodated in the processing tank 1. Stir the garbage processing material and garbage. In this way, by stirring the garbage treatment material and the garbage, the contact between the garbage treatment material and the garbage is promoted, and fresh air is introduced from the aeration means described later to uniformize the contents in the treatment tank 1. Can be planned. The rotating direction of the stirring shaft 12 is switched between forward and reverse depending on the rotating direction of the motor 4. In this embodiment, the stirring shaft 12 and the plurality of stirring blades 12b, 12b, 13, and 13 constitute the stirring means for stirring the garbage treatment material and the garbage in the treatment tank 1, but the stirring blade The numbers 12b and 13 are not particularly limited.

ところで、溜置槽2内に投入された生ごみの大部分は搬送管3を通して処理槽1へ搬送されるが溜置槽2の内面にわずかでも生ごみが残留してしまうと生ごみ自体の臭いや腐敗臭が問題となる一方で、処理槽1において生ごみの発酵分解を行うと、二酸化炭素、メタン、水などに加えて窒素化合物や硫黄化合物のような不快臭を伴うガスが発生する。そこで、本実施形態の生ごみ処理装置では、溜置槽2と処理槽1の上部同士を繋いで溜置槽2の内部空間と処理槽1の内部空間とを連通させる配管7を設けるとともに、処理槽1の上部に酸化触媒型の脱臭器(図示せず)を設け、さらに、脱臭器の出口側に排気ファン(図示せず)を設けてある。したがって、上記排気ファンを動作させることにより、処理槽1内で発生した分解ガスおよび水蒸気や、溜置槽2から配管7を通して吸気した空気が脱臭器を通して処理槽1の外部へ排出されるようになっている。また、攪拌軸12および攪拌羽根13は中空に形成されており、攪拌羽根13には複数のノズル13bが下向きに突設されている。したがって、送風機を作動させると、攪拌軸12の内部空間を通して攪拌羽根13の内部空間へ供給された空気が各ノズル13bから噴射されるので、処理槽1内の内容物に新鮮な空気を供給することができ、生ごみの発酵分解に寄与する微生物の活性を高めることができる。なお、本実施形態では、送風機と攪拌軸12と攪拌羽根13と複数のノズル13bとで生ごみ処理材へ通気する通気手段を構成している。   By the way, most of the garbage thrown into the storage tank 2 is transported to the treatment tank 1 through the transport pipe 3, but if even a small amount of garbage remains on the inner surface of the storage tank 2, While odor and rot odor become a problem, when fermenting and decomposing garbage in the treatment tank 1, in addition to carbon dioxide, methane, water, etc., a gas with an unpleasant odor such as a nitrogen compound or a sulfur compound is generated. . Then, in the garbage processing apparatus of this embodiment, while providing the piping 7 which connects the upper part of the storage tank 2 and the processing tank 1, and connects the internal space of the storage tank 2 and the internal space of the processing tank 1, An oxidation catalyst type deodorizer (not shown) is provided in the upper part of the treatment tank 1, and an exhaust fan (not shown) is provided on the outlet side of the deodorizer. Therefore, by operating the exhaust fan, the decomposition gas and water vapor generated in the processing tank 1 and the air sucked from the storage tank 2 through the pipe 7 are discharged to the outside of the processing tank 1 through the deodorizer. It has become. Further, the stirring shaft 12 and the stirring blade 13 are formed hollow, and a plurality of nozzles 13 b are projected downward from the stirring blade 13. Therefore, when the blower is operated, the air supplied to the internal space of the stirring blade 13 through the internal space of the stirring shaft 12 is jetted from each nozzle 13b, so that fresh air is supplied to the contents in the processing tank 1 And the activity of microorganisms contributing to the fermentative decomposition of garbage can be increased. In the present embodiment, the blower, the agitation shaft 12, the agitation blades 13, and the plurality of nozzles 13b constitute a ventilation means for aerating the garbage processing material.

また、処理槽1の中での発酵処理には微生物の活性が高まるような環境が必要であり、内容物の曝気だけではなく加熱が必要であるから、本実施形態の生ごみ処理では、処理槽1内の生ごみ処理材および生ごみを加熱する加熱手段としてヒータ(図示せず)を設けてあり、上記ヒータの発熱量(通電量)を制御することによって処理槽1内の生ごみ処理材および生ごみの温度調節することができる。   Moreover, since the environment in which the activity of microorganisms increases is necessary for the fermentation process in the processing tank 1, and not only aeration of the contents but also heating is required, in the garbage processing of this embodiment, the processing A heater (not shown) is provided as a heating means for heating the garbage processing material and the garbage in the tank 1, and the garbage processing in the treatment tank 1 is controlled by controlling the heat generation amount (energization amount) of the heater. The temperature of the wood and garbage can be adjusted.

また、本実施形態の生ごみ処理装置は、処理槽1内の生ごみ処理材の含水率(体積含水率)を検出する熱式の含水率センサ42、処理槽1内の生ごみ処理材の温度を検出する温度センサ43、処理槽1の外部に設けられ各センサ42,43からの入力を監視して各モータ4,5、上記ヒータ、上記排気ファンの動作を制御するコントローラ30とを備えている。ここに、含水率センサ42および温度センサ43は、処理槽1内において内容物に接触するように処理槽1に配置してある。なお、コントローラ30は、一定時間間隔で溜置槽2の内容物が処理槽1へ搬送されるようにモータ5を制御するようになっている。また、含水率センサ42は、図8に示した従来構成と同じであって、通電により発熱する発熱体42aおよび発熱体42aの温度を検出するサーミスタ42bが実装された基板42cと、基板42cが収納された金属製のケース42dとを備え、ケース42dの表面に処理槽内の生ごみ処理材Aが接触するように処理槽へ取り付けてあり、発熱体42aへ規定時間だけ通電を行うとともに発熱体42aの温度をサーミスタ42bにより検出し、発熱体42aの温度上昇値から含水率を測定するものである。なお、本実施形態では、サーミスタ42bが測温体を構成し、含水率センサ42が含水率測定装置を構成している。   Moreover, the garbage processing apparatus of this embodiment is a thermal moisture content sensor 42 that detects the moisture content (volumetric moisture content) of the garbage treatment material in the treatment tank 1, and the garbage treatment material in the treatment tank 1. A temperature sensor 43 that detects the temperature, and a controller 30 that is provided outside the processing tank 1 and monitors the inputs from the sensors 42 and 43 to control the operations of the motors 4 and 5, the heater, and the exhaust fan. ing. Here, the moisture content sensor 42 and the temperature sensor 43 are disposed in the processing tank 1 so as to contact the contents in the processing tank 1. The controller 30 controls the motor 5 so that the contents of the storage tank 2 are conveyed to the processing tank 1 at regular time intervals. The moisture content sensor 42 is the same as the conventional configuration shown in FIG. 8, and includes a heating element 42a that generates heat when energized, a substrate 42c on which a thermistor 42b that detects the temperature of the heating element 42a is mounted, and a substrate 42c. And a metal case 42d that is housed, and is attached to the treatment tank so that the garbage processing material A in the treatment tank is in contact with the surface of the case 42d. The heating element 42a is energized for a specified time and generates heat. The temperature of the body 42a is detected by the thermistor 42b, and the moisture content is measured from the temperature rise value of the heating element 42a. In this embodiment, the thermistor 42b constitutes a temperature measuring body, and the moisture content sensor 42 constitutes a moisture content measuring device.

ところで、本願発明者らは、生ごみ処理装置における処理槽1内に収容された生ごみ処理材の含水率を生ごみ処理装置の構造によらず精度良く測定するという課題の解決策を抽出するにあたって、処理槽1内の生ごみ処理材および生ごみを攪拌する攪拌手段が含水率センサ42の測定精度に与える影響に着目して、次のような複数種の実験を行った。   By the way, the inventors of the present application extract a solution to the problem of accurately measuring the moisture content of the garbage treatment material accommodated in the treatment tank 1 in the garbage treatment apparatus regardless of the structure of the garbage treatment apparatus. At this time, paying attention to the influence of the garbage treatment material in the treatment tank 1 and the stirring means for stirring the garbage on the measurement accuracy of the moisture content sensor 42, the following plural types of experiments were conducted.

まず、攪拌手段にて処理槽1内の生ごみ処理材を攪拌することによる生ごみ処理材の流動速度が含水率の測定精度に与える影響を明らかにするために、含水率センサ42を処理槽1において図2中の上側の攪拌羽根12bと略同じ高さ位置に配置して、含水率が9.7%の生ごみ処理材を処理槽1へ収容しておき、攪拌軸12を回転させながら発熱体42aへ通電して発熱体42aを発熱させた時の攪拌軸12の回転速度とサーミスタ42bにより検出した発熱体42aの温度上昇値との関係を調べたところ、図3に示す結果が得られた。図3は、発熱体42aへの通電条件は印加電圧を5.6V、印加時間を300秒で一定として、攪拌軸12の回転数を種々変化させたときの回転数と発熱体42aの温度上昇値との関係を示したものであり、横軸が攪拌軸12を駆動するモータ4の回転数(rpm)、縦軸が発熱体42aの温度上昇値ΔT(℃)を示している。なお、上記通気手段による通気風量は480L/minで一定とした。   First, in order to clarify the influence of the flow rate of the garbage treatment material by stirring the garbage treatment material in the treatment tank 1 on the moisture content measurement accuracy by the stirring means, the moisture content sensor 42 is disposed in the treatment tank. 1 is disposed at substantially the same height as the upper stirring blade 12b in FIG. 2, and a garbage treatment material having a moisture content of 9.7% is accommodated in the treatment tank 1, and the stirring shaft 12 is rotated. However, when the relationship between the rotational speed of the stirring shaft 12 when the heating element 42a is energized to heat the heating element 42a and the temperature rise value of the heating element 42a detected by the thermistor 42b is examined, the result shown in FIG. 3 is obtained. Obtained. FIG. 3 shows that the energization conditions for the heating element 42a are as follows: the applied voltage is 5.6V, the application time is constant at 300 seconds, and the number of revolutions and the temperature rise of the heating element 42a when the number of revolutions of the stirring shaft 12 is varied. The horizontal axis indicates the number of revolutions (rpm) of the motor 4 that drives the stirring shaft 12, and the vertical axis indicates the temperature rise value ΔT (° C.) of the heating element 42a. Note that the air flow rate by the vent means was constant at 480 L / min.

図3から、生ごみ処理材の含水率が一定であり且つ含水率センサ42の発熱体42aへの通電条件が一定であっても、攪拌軸12の回転数の違いによって発熱体42aの温度上昇値が異なることが分かった。この図3の結果から、生ごみ処理材の含水率が一定であり且つ含水率センサ42の発熱体42aへの通電条件が一定であっても、生ごみ処理材が流動している場合には生ごみ処理材の流動速度によって発熱体42aの温度上昇値が異なると考えられるので、処理槽1内の生ごみ処理材の含水率を精度良く測定するための方法として、生ごみ処理材の流動速度が一定となるような位置に含水率センサ42を配置して含水率を測定する方法と、攪拌手段による生ごみ処理材の攪拌を停止した状態で含水率を測定する方法との2つの方法が考えられる。そこで、前者の方法と後者の方法とのいずれを採用した方が望ましいかを判断するために、攪拌手段による生ごみ処理材の攪拌の有無および含水率センサ42の配置の違いによる含水率センサ42の発熱体42aの温度上昇値の相違について調べたところ、図4(a),(b)に示す結果が得られた。ここにおいて、図4(a)は攪拌手段による生ごみ処理材の攪拌を行いながら含水率センサ42の発熱体42aへ通電した場合の発熱体42aの温度上昇値を測定した結果、図4(b)は攪拌手段による生ごみ処理材の攪拌を停止させた状態で含水率センサ42の発熱体42aへ通電した場合の発熱体42aの温度上昇値を測定した結果である。図4(a),(b)のいずれも、横軸が処理槽1へ収容する生ごみ処理材の含水率、縦軸が含水率センサ42の発熱体42aの温度上昇値であって、「イ」は含水率センサ42を図2における処理槽1の位置X1に配置した場合の含水率と温度上昇値との関係データを示し、「ロ」は含水率センサ42を図2における処理槽1の位置X2に配置した場合の含水率と温度上昇値との関係データを示し、「ハ」は含水率センサ42を図2における処理槽1の位置X3に配置した場合の含水率と温度上昇値との関係データを示し、「ニ」は含水率センサ42を図2における処理槽1の位置X4に配置した場合の生ごみ処理材の含水率と温度上昇値との関係データを示している。なお、上述の各位置X1,X2,X3,X4は、処理槽1の内底面からの高さがそれぞれ、310mm、340mm、390mm、500mmに設定されており、位置X4が上側の攪拌羽根12bよりもやや低い高さにあり、位置X3が下側の攪拌羽根12bと略同じ高さにある。また、発熱体42aへの通電条件は、図4(a)では印加電圧を7V、印加時間を300秒で一定とし、図4(b)では印加電圧を5.6V、印加時間を300秒で一定とした。また、攪拌手段による生ごみ処理材の攪拌を行う際の攪拌軸12の回転数は1.33rpmで一定とした。   From FIG. 3, even when the moisture content of the garbage treatment material is constant and the energization condition to the heating element 42 a of the moisture content sensor 42 is constant, the temperature rise of the heating element 42 a is caused by the difference in the rotational speed of the stirring shaft 12. The values were found to be different. From the result of FIG. 3, even when the moisture content of the garbage treatment material is constant and the energization condition to the heating element 42a of the moisture content sensor 42 is constant, the garbage treatment material is flowing. Since it is considered that the temperature rise value of the heating element 42a varies depending on the flow rate of the garbage treatment material, as a method for accurately measuring the moisture content of the garbage treatment material in the treatment tank 1, the flow of the garbage treatment material Two methods, a method of measuring the moisture content by disposing the moisture content sensor 42 at a position where the speed is constant, and a method of measuring the moisture content in a state where the stirring of the garbage treatment material by the stirring means is stopped Can be considered. Therefore, in order to determine which one of the former method and the latter method should be adopted, the moisture content sensor 42 depending on the presence / absence of stirring of the garbage treatment material by the stirring means and the difference in the arrangement of the moisture content sensor 42. When the difference in the temperature rise value of the heating element 42a was examined, the results shown in FIGS. 4A and 4B were obtained. Here, FIG. 4A shows the result of measuring the temperature rise value of the heating element 42a when the heating element 42a of the moisture content sensor 42 is energized while stirring the garbage treatment material by the stirring means. ) Is a result of measuring a temperature rise value of the heating element 42a when the heating element 42a of the moisture content sensor 42 is energized in a state where stirring of the garbage processing material by the stirring means is stopped. 4 (a) and 4 (b), the horizontal axis represents the moisture content of the garbage processing material accommodated in the treatment tank 1, and the vertical axis represents the temperature rise value of the heating element 42a of the moisture content sensor 42. “A” indicates the relationship data between the moisture content and the temperature rise value when the moisture content sensor 42 is disposed at the position X1 of the treatment tank 1 in FIG. 2, and “b” indicates the moisture content sensor 42 in the treatment tank 1 in FIG. Shows the relationship data between the moisture content and the temperature rise value when arranged at the position X2, and "C" indicates the moisture content and temperature rise value when the moisture sensor 42 is arranged at the position X3 of the treatment tank 1 in FIG. "Ni" indicates the relationship data between the moisture content of the garbage treatment material and the temperature rise value when the moisture content sensor 42 is disposed at the position X4 of the treatment tank 1 in FIG. Each of the above-mentioned positions X1, X2, X3, and X4 has a height from the inner bottom surface of the processing tank 1 set to 310 mm, 340 mm, 390 mm, and 500 mm, respectively, and the position X4 is from the upper stirring blade 12b. The height is slightly lower, and the position X3 is substantially the same height as the lower stirring blade 12b. The energization conditions for the heating element 42a are as follows. In FIG. 4A, the applied voltage is 7V and the application time is constant at 300 seconds. In FIG. 4B, the applied voltage is 5.6V and the application time is 300 seconds. Constant. In addition, the number of rotations of the stirring shaft 12 when stirring the garbage treatment material by the stirring means was constant at 1.33 rpm.

図4(a),(b)から、攪拌手段による攪拌を行っている状態で発熱体42aへ通電を行う場合に比べて攪拌手段による攪拌を停止させた状態で発熱体42aへの通電を行う場合の方が、処理槽1における含水率センサ42の位置X1,X2,X3,X4の違いによる発熱体42aの温度上昇値のばらつきが小さいことが分かった。また、攪拌手段による攪拌を行っている状態で発熱体42aへの通電を行った場合の温度上昇値と含水率との関係データの一例を示した図4(a)では、位置X1,X2,X3に関して、含水率の増加に伴って温度上昇値が増減しているのに対して、攪拌手段による攪拌を停止した状態で発熱体42aへの通電を行った場合の温度上昇値と含水率との関係データの一例を示した図4(b)では、全ての位置X1,X2,X3,X4に関して、生ごみ処理材の含水率の増加に伴って温度上昇値が減少することが分かった。   4 (a) and 4 (b), the heating element 42a is energized with the stirring by the stirring means stopped as compared with the case where the heating element 42a is energized while stirring by the stirring means. In the case, it was found that the variation in the temperature rise value of the heating element 42a due to the difference in the positions X1, X2, X3, and X4 of the moisture content sensor 42 in the treatment tank 1 was smaller. Further, in FIG. 4 (a) showing an example of relational data between the temperature rise value and the moisture content when the heating element 42a is energized while stirring by the stirring means, positions X1, X2, Regarding X3, while the temperature increase value increases or decreases with the increase of the moisture content, the temperature increase value and the moisture content when the heating element 42a is energized while stirring by the stirring means is stopped. In FIG. 4B showing an example of the relationship data, it has been found that the temperature increase value decreases with an increase in the moisture content of the garbage treatment material for all the positions X1, X2, X3, and X4.

したがって、攪拌手段による生ごみ処理材の攪拌を行っている場合には、温度上昇値に対して複数の含水率が存在することとなって温度上昇値と含水率とを1対1で対応付けることができず、生ごみ処理材の含水率を誤検出してしまうことがあるのに対して、攪拌手段による生ごみ処理材の攪拌を停止している場合には、温度上昇値と含水率とを1対1で対応付けることができることが分かる。なお、攪拌手段による攪拌を行っている状態で発熱体42aへの通電を行って温度上昇値を測定した場合に含水率の増加に伴って温度上昇値が増減している原因は、含水率センサ42表面近傍では生ごみ処理材が流動しており、流動速度が生ごみ処理材の含水率によって変化するためであると考えられる。ここに、生ごみ処理材の含水率が比較的高い時には生ごみ処理材の粘度が高く生ごみ処理材が流動しにくいため発熱体42aの温度が上昇しやすくなり、生ごみ処理材の含水率が比較的低い時には生ごみ処理材の粘度が低く生ごみ処理材が流動しやすく発熱体42aで発生した熱が生ごみ処理材に奪われやすく発熱体42aの温度が上昇しにくくなるものと考えられる。   Therefore, when the garbage processing material is being stirred by the stirring means, a plurality of moisture contents exist with respect to the temperature rise value, and the temperature rise value and the moisture content are associated one-to-one. In some cases, the moisture content of the garbage treatment material may be erroneously detected, whereas when the stirring of the garbage treatment material by the stirring means is stopped, the temperature rise value and the moisture content It can be seen that can be associated one-to-one. Note that the reason why the temperature increase value increases or decreases as the moisture content increases when the heating element 42a is energized and the temperature increase value is measured while stirring by the stirring means is the moisture content sensor. It is considered that this is because the garbage treatment material flows near the surface of 42 and the flow rate changes depending on the moisture content of the garbage treatment material. Here, when the moisture content of the garbage treatment material is relatively high, the temperature of the heating element 42a is likely to rise because the viscosity of the garbage treatment material is high and the garbage treatment material does not flow easily, and the moisture content of the garbage treatment material When the temperature is relatively low, the viscosity of the garbage treatment material is low, and the garbage treatment material is likely to flow, and the heat generated in the heating element 42a is easily taken away by the garbage treatment material, and the temperature of the heating element 42a is unlikely to rise. It is done.

ところで、図4(a)において位置X1,X2,X3に関するデータは含水率の増加に伴って温度上昇値が増減しているのに対して、位置X4に関するデータは含水率の増加に伴って温度上昇値が減少しているが、位置X4に関しては含水率センサ42に生ごみ処理材が偶然こびりついていて位置X4に配置した含水率センサ42近傍では生ごみ処理材が流動していなかったためであった。ここで、含水率センサ42の発熱体42aへ上記規定時間である300秒だけ通電したときのサーミスタ42bによる検出温度の上昇カーブの一例を位置X3,X4それぞれについて図5に示す。図5は、横軸が発熱体42aへの通電開始からの経過時間、縦軸がサーミスタ42bによる検出温度を示しており、同図中の「ハ」が含水率センサ42を処理槽1における位置X3に配置していた時のデータを、同図中の「ニ」が含水率センサ42を処理槽1における位置X4に配置していた時のデータを、それぞれ示しており、同図中の矢印は攪拌羽根12bが処理槽1の周方向において含水率センサ42の位置X3,X4を通過するタイミングを示している。図5から、上述のように近傍の生ごみ処理材が流動していなかった位置X4の含水率センサ42では発熱体42aへの通電中において攪拌羽根12bの通過時にのみ検出温度の低下が見られるのに対して、近傍の生ごみ処理材が流動していた位置X3の含水率センサ42では発熱体42aへの通電中において攪拌羽根12bの通過時に温度が低下した後に一旦は温度が上昇するがその後は殆ど上昇しない。このように位置X3の含水率センサ42で位置X4の含水率センサ42に比べて温度上昇値が小さくなったのは、近傍の生ごみ処理材が流動していることにより発熱体42aで発生した熱が生ごみ処理材に奪われて温度上昇が抑制されるからであると考えられる。以上の結果から、生ごみ処理材の含水率の変動よりも生ごみ処理材の流動速度の変動の方が含水率センサ42の発熱体42aの温度上昇値の変動に大きな影響を与えているものと考えられる。   By the way, in FIG. 4 (a), the data regarding the positions X1, X2, and X3 increase and decrease as the moisture content increases, whereas the data regarding the position X4 indicates the temperature as the moisture content increases. Although the increase value decreased, the garbage processing material was accidentally stuck to the moisture content sensor 42 at the position X4, and the garbage treatment material did not flow in the vicinity of the moisture content sensor 42 arranged at the position X4. It was. Here, FIG. 5 shows an example of an increase curve of the temperature detected by the thermistor 42b when the heating element 42a of the moisture content sensor 42 is energized for 300 seconds, which is the specified time, for each of the positions X3 and X4. In FIG. 5, the horizontal axis indicates the elapsed time from the start of energization of the heating element 42 a, and the vertical axis indicates the temperature detected by the thermistor 42 b, where “C” in FIG. The data when it is arranged at X3, and the data when "ni" in the figure arranges the moisture content sensor 42 at the position X4 in the treatment tank 1, respectively, are indicated by the arrows in the figure. Indicates the timing when the stirring blade 12b passes through the positions X3 and X4 of the moisture content sensor 42 in the circumferential direction of the processing tank 1. From FIG. 5, in the moisture content sensor 42 at the position X4 where the nearby garbage treatment material did not flow as described above, a decrease in the detected temperature is observed only when the stirring blade 12b passes while the heating element 42a is energized. On the other hand, in the moisture content sensor 42 at the position X3 where the nearby garbage treatment material was flowing, the temperature once rises after the temperature is lowered when the heating blade 42b is passed while the heating element 42a is energized. After that, it hardly rises. As described above, the temperature increase value of the moisture content sensor 42 at the position X3 is smaller than that of the moisture content sensor 42 at the position X4. The temperature increase value is generated in the heating element 42a due to the flow of the nearby garbage treatment material. This is thought to be because heat is taken away by the garbage treatment material and temperature rise is suppressed. From the above results, the fluctuation of the flow rate of the garbage treatment material has a greater influence on the fluctuation of the temperature rise value of the heating element 42a of the moisture content sensor 42 than the fluctuation of the moisture content of the garbage treatment material. it is conceivable that.

また、含水率センサ42と攪拌羽根12bとの位置関係によっては、攪拌手段による攪拌を停止させた時に攪拌羽根12によってかきとられて含水率センサ42近傍に空気層が形成されることが考えられ、含水率センサ42の近傍に空気層が形成されると、含水率センサ42のケース42dの表面において生ごみ処理材Aの接触する面積が減少し、上記温度上昇値が大きくなるので、含水率センサ42により検出される含水率が実際の含水率よりも低い値となってしまうことがある。   Further, depending on the positional relationship between the moisture content sensor 42 and the stirring blade 12b, it is considered that an air layer is formed in the vicinity of the moisture content sensor 42 by being scraped by the stirring blade 12 when stirring by the stirring means is stopped. When an air layer is formed in the vicinity of the moisture content sensor 42, the area where the garbage treatment material A contacts on the surface of the case 42d of the moisture content sensor 42 decreases, and the temperature rise value increases. The moisture content detected by the sensor 42 may be lower than the actual moisture content.

そこで、本実施形態の生ごみ処理装置では、処理槽1内の生ごみ処理材の含水率を測定する含水率測定方法として次のような含水率測定方法を採用している。   Therefore, in the garbage processing apparatus of the present embodiment, the following moisture content measuring method is adopted as a moisture content measuring method for measuring the moisture content of the garbage processing material in the treatment tank 1.

すなわち、本実施形態の含水率測定方法は、予め測定した発熱体42aの温度上昇値と生ごみ処理材の含水率との関係データに基づいて生ごみ処理材の含水率を推測する含水率測定方法であって、攪拌羽根12b,12,13,13が含水率センサ近傍に位置しないように攪拌手段を停止させた状態で、発熱体42aを発熱させて発熱体42aの温度をサーミスタ42bにより検出し、発熱体42aの温度上昇値から上記関係データに基づいて生ごみ処理材の含水率を測定するようにしている。なお、本実施形態では、上述のようにサーミスタ42bが発熱体42aの温度を検出する測温体を構成している。   That is, the moisture content measurement method of the present embodiment is a moisture content measurement in which the moisture content of the garbage treatment material is estimated based on the relationship data between the temperature rise value of the heating element 42a measured in advance and the moisture content of the garbage treatment material. In this method, the heating element 42a is heated and the temperature of the heating element 42a is detected by the thermistor 42b while the stirring means is stopped so that the stirring blades 12b, 12, 13, 13 are not located near the moisture content sensor. Then, the moisture content of the garbage treatment material is measured from the temperature rise value of the heating element 42a based on the relational data. In the present embodiment, as described above, the thermistor 42b constitutes a temperature measuring body that detects the temperature of the heating element 42a.

このような含水率測定方法を採用すれば、含水率の測定時に、攪拌手段が停止していることにより生ごみ処理材が流動しておらず、且つ、攪拌手段は攪拌羽根12b,12b,13,13が含水率センサ42の近傍に位置しないように停止されているので、攪拌手段の停止時に含水率センサ42と接触している生ごみ処理材が攪拌羽根12b,12b,13,13によりかきとられて含水率センサ42と生ごみ処理材との間に空隙が発生するのを防止することができ、処理槽1内に収容された生ごみ処理材の含水率を生ごみ処理装置の構造によらず精度良く測定することができる。ところで、上述のように本実施形態の生ごみ処理装置では、溜置槽2から処理槽1へ一定時間間隔で生ごみが搬送されるので、処理槽1へ搬送されたばかりの生ごみが含水率センサ42の近傍に存在している時に含水率センサ42による含水率の測定を行うと検出精度が低くなってしまうと考えられるので、含水率センサ42による含水率の測定は例えば溜置槽2から処理槽1へ生ごみを搬送する直前に行うことが望ましい。なお、このような含水率を測定するタイミングは上述のコントローラ30によって制御するようにすればよい。   If such a moisture content measuring method is adopted, the garbage processing material is not flowing because the stirring means is stopped during the measurement of the moisture content, and the stirring means is the stirring blades 12b, 12b, 13 , 13 is stopped so as not to be located in the vicinity of the moisture content sensor 42, so that the garbage processing material in contact with the moisture content sensor 42 is scraped by the stirring blades 12b, 12b, 13, 13 when the stirring means is stopped. It is possible to prevent a void from being generated between the moisture content sensor 42 and the garbage treatment material, and the moisture content of the garbage treatment material accommodated in the treatment tank 1 is determined as the structure of the garbage treatment device. It is possible to measure with high accuracy regardless. By the way, in the garbage processing apparatus of this embodiment as mentioned above, since garbage is conveyed from the storage tank 2 to the processing tank 1 at a fixed time interval, the garbage just conveyed to the processing tank 1 is moisture content. When the moisture content is measured by the moisture content sensor 42 when it is present in the vicinity of the sensor 42, it is considered that the detection accuracy is lowered. Therefore, the moisture content measurement by the moisture content sensor 42 is performed, for example, from the storage tank 2 It is desirable to carry out immediately before conveying garbage to the treatment tank 1. In addition, what is necessary is just to make it control the timing which measures such a moisture content with the above-mentioned controller 30. FIG.

また、上述のように本実施形態の生ごみ処理装置には処理槽1内の生ごみ処理材および生ごみへ空気を通気する通気手段を設けてあるが、通気手段から処理槽1内へ通気される空気の風量(流量)が含水率センサ42の測定精度に与える影響を明らかにするために、上述の各位置X1,X2,X3,X4それぞれに含水率センサ42を配置した場合の通気手段による風量と発熱体42aの温度上昇値との関係を調べたところ、それぞれ図5(a),(b),(c),(d)に示す結果が得られた。図5(a)〜(d)は、横軸が通気手段により処理槽1内へ通気される空気の風量、縦軸が温度上昇値であり、白丸が上側の攪拌羽根12bを処理槽1の上下方向において含水率センサ42と重なる位置で停止させた場合のデータを示し、黒丸が下側の攪拌羽根12bを処理槽1の上下方向において含水率センサ42と重なる位置で停止させた場合のデータを示している。   Further, as described above, the garbage processing apparatus of the present embodiment is provided with the garbage processing material in the treatment tank 1 and the ventilation means for ventilating the air to the garbage, but the ventilation means vents the treatment tank 1 from the ventilation means. Ventilation means when the moisture content sensor 42 is arranged at each of the above-mentioned positions X1, X2, X3, X4 in order to clarify the influence of the air volume (flow rate) of the air on the measurement accuracy of the moisture content sensor 42 When the relationship between the air volume caused by the above and the temperature rise value of the heating element 42a was examined, the results shown in FIGS. 5 (a), (b), (c), and (d) were obtained, respectively. 5 (a) to 5 (d), the horizontal axis is the air volume of the air that is vented into the treatment tank 1 by the ventilation means, the vertical axis is the temperature rise value, and the white circle is the upper stirring blade 12 b of the treatment tank 1. Data is shown when the water content sensor 42 is stopped at the position overlapping the moisture content sensor 42 in the vertical direction, and data when the black circle is stopped at the position where the lower stirring blade 12b is overlapped with the water content sensor 42 in the vertical direction of the treatment tank 1 is shown. Is shown.

図5から、含水率センサ42を処理槽1の内底面からの高さが比較的低い位置X1,X2に配置した方が比較的高い位置X3,X4に配置した場合に比べて、温度上昇値のばらつきが小さく、処理槽1内への空気の通気の影響を受けにくいことが分かった。これは、処理槽1内へ供給される空気は上述の攪拌羽根13から下向きに突設されたノズル13bを通して供給されるので、ノズル13bを通して処理槽1内の下部へ供給された空気が処理槽1内を下から上に向かう際に処理槽1の内周面沿いに集まっていくため、より上側に配置された含水率センサ42ほど空気の影響を受けやすくなるためであると考えられる。   From FIG. 5, the temperature rise value is higher when the moisture content sensor 42 is disposed at positions X3 and X4 where the height from the inner bottom surface of the treatment tank 1 is relatively lower than at positions X1 and X4. It was found that the variation in the flow rate was small and hardly affected by the ventilation of air into the treatment tank 1. This is because the air supplied into the processing tank 1 is supplied through the nozzle 13b projecting downward from the stirring blade 13, and the air supplied to the lower part of the processing tank 1 through the nozzle 13b is supplied to the processing tank 1. It is considered that the moisture content sensor 42 disposed on the upper side is more susceptible to the influence of air because it gathers along the inner peripheral surface of the treatment tank 1 when going from the bottom to the top in the interior.

したがって、含水率センサ42により含水率の測定を行うにあたって通気手段による通気の影響を受けにくい位置に含水率センサ42を配置することも考えられるが、このような位置は生ごみ処理装置の構造により異なり設計が面倒になるので、通気手段による風量を攪拌手段の動作時よりも低下させることが望ましい。ここに、通気手段による風量を攪拌手段の動作時よりも低下させる場合には、通気風量を少なくしてもよいし、通気風量をなくすようにしてもよく、通気手段による風量を攪拌手段の動作時よりも低下させることにより、通気手段により通気される空気の影響による含水率の測定精度の低下を抑制することが可能となる。   Therefore, when the moisture content is measured by the moisture content sensor 42, it is conceivable that the moisture content sensor 42 is disposed at a position that is not easily affected by the ventilation by the ventilation means. Since the design is troublesome, it is desirable to reduce the air volume by the ventilation means as compared with the operation of the stirring means. Here, in the case where the air volume by the aeration means is made lower than that during the operation of the agitating means, the aeration air volume may be reduced or the aeration air volume may be eliminated. By lowering than the time, it is possible to suppress a decrease in the measurement accuracy of the moisture content due to the influence of the air ventilated by the aeration means.

なお、通気手段による通気が含水率センサ42の測定精度へ影響を与えるのを防止するために、含水率センサ42の直下に含水率センサ42近傍へ空気が流れ込むのを遮る邪魔板を配置しておけば、通気手段による通気を行っている場合でも含水率センサ42の発熱体42aの温度が通気の影響を受けにくくなるので、通気手段による通気が含水率センサ42の測定精度へ影響を与えるのを防止することができる。また、含水率センサ42を処理槽1における下部であって通気手段による通気の影響が小さい位置で且つ上記加熱手段としてのヒータ(面状のヒータ)の熱の影響を受けない位置に配置すれば、含水率センサ42の測定精度を向上できるだけでなく、上記ヒータの面積が小さくなるのを防止することができる。このような含水率センサ42の位置の例としては、例えば、図8中に×印で示すような位置を挙げることができる。図8中に×印で示した位置は、処理槽1の上下方向において攪拌羽根13と上記ヒータ(図示せず)との間で攪拌羽根13および上記ヒータそれぞれから離れており、当該上下方向において、処理槽1の内底面から上記ヒータの下端面までの距離をH1、処理槽1の内底面から含水率センサ42までの距離をH2、含水率センサ42から上記ヒータの下端面までの距離をH3とするとき、例えば、H1=300mm、H2=170mm、H3=130mmとなるような位置である。   In order to prevent the ventilation by the ventilation means from affecting the measurement accuracy of the moisture content sensor 42, a baffle plate that blocks the flow of air into the vicinity of the moisture content sensor 42 is disposed immediately below the moisture content sensor 42. If this is done, the temperature of the heating element 42a of the moisture content sensor 42 is less affected by ventilation even when ventilation is performed by the ventilation means, so that ventilation by the ventilation means affects the measurement accuracy of the moisture content sensor 42. Can be prevented. Further, if the moisture content sensor 42 is disposed at a lower position in the processing tank 1 where the influence of ventilation by the ventilation means is small and not affected by the heat of the heater (planar heater) as the heating means. Not only can the measurement accuracy of the moisture content sensor 42 be improved, but also the area of the heater can be prevented from being reduced. As an example of the position of such a moisture content sensor 42, the position as shown by x mark in FIG. 8 can be mentioned, for example. 8 are separated from the stirring blade 13 and the heater between the stirring blade 13 and the heater (not shown) in the vertical direction of the processing tank 1, The distance from the inner bottom surface of the treatment tank 1 to the lower end surface of the heater is H1, the distance from the inner bottom surface of the treatment tank 1 to the moisture content sensor 42 is H2, and the distance from the moisture content sensor 42 to the lower end surface of the heater is When H3, for example, the position is such that H1 = 300 mm, H2 = 170 mm, and H3 = 130 mm.

ところで、上述の図1に示した構成の生ごみ処理装置では、処理槽1内の含水率を測定する含水率センサ42を1つだけ備えているが、含水率センサ42を処理槽1の周方向に離間して2つ配置して攪拌手段の停止前に各含水率センサ42の発熱体42aを発熱させておき、含水率センサ42の近傍を攪拌羽根12bの先端部が通過することによる発熱体42aの温度低下により攪拌羽根12bの通過を検知して一方の含水率センサ42の近傍に攪拌羽根12bの先端部が位置するように攪拌手段を停止させ、他方の含水率センサ42を利用して生ごみ処理材の含水率の測定を行うようにすれば、攪拌手段を停止させた状態で攪拌羽根12bの先端部から遠い方の含水率センサ42を利用して生ごみ処理材の含水率を測定することができるので、生ごみ処理装置の構造の違いによる測定精度のばらつきを小さくすることができる。なお、本実施形態における生ごみ処理装置では、処理槽1内に4つの攪拌羽根12b,12b,13,13を備えており、攪拌軸12の中心線に直交する1つの平面内に4つの攪拌羽根12b,12b,13,13を投影すると、処理槽1の周方向において隣り合う2つの攪拌羽根12b,13のなす角度は90度となっているので、2つの含水率センサ42を上記平面内に投影したときに各含水率センサ42それぞれと攪拌軸12とを結ぶ2つの直線のなす角度を上記隣り合う2つの攪拌羽根12b、13のなす角度の半分である45度になるように2つの含水率センサ42を配置しておけば、2つの含水率センサ42の一方の近傍に空隙が形成されるのをより確実に防止することができる。また、同様に、上記周方向において隣り合う2つの攪拌羽根のなす角度が60度の場合には各含水率センサ42それぞれと攪拌軸12とを結ぶ2つの直線のなす角度を例えば60度の半分の30度に設定すればよく、上記周方向において隣り合う2つの攪拌羽根のなす角度が180度の場合には各含水率センサ42それぞれと攪拌軸12とを結ぶ2つの直線のなす角度を例えば180度の半分の90度に設定すればよい。   By the way, although the garbage processing apparatus having the configuration shown in FIG. 1 includes only one moisture content sensor 42 for measuring the moisture content in the treatment tank 1, the moisture content sensor 42 is arranged around the treatment tank 1. Two heating elements 42a are arranged apart from each other in the direction so that the heating element 42a of each moisture content sensor 42 is heated before stopping the stirring means, and the heat generated by the tip of the stirring blade 12b passing near the moisture content sensor 42. By detecting the passage of the stirring blade 12b due to the temperature drop of the body 42a, the stirring means is stopped so that the tip of the stirring blade 12b is positioned in the vicinity of one moisture content sensor 42, and the other moisture content sensor 42 is used. If the moisture content of the garbage treatment material is measured, the moisture content of the garbage treatment material is obtained by using the moisture content sensor 42 far from the tip of the stirring blade 12b with the stirring means stopped. Can measure , It is possible to reduce variations in measurement precision due to the difference in structure of the garbage disposal apparatus. In addition, in the garbage processing apparatus in this embodiment, four stirring blades 12b, 12b, 13, and 13 are provided in the processing tank 1, and four stirring is performed in one plane orthogonal to the center line of the stirring shaft 12. When the blades 12b, 12b, 13, and 13 are projected, the angle formed by the two stirring blades 12b and 13 adjacent to each other in the circumferential direction of the processing tank 1 is 90 degrees. So that the angle formed by the two straight lines connecting each of the moisture content sensors 42 and the stirring shaft 12 is 45 degrees which is half of the angle formed by the two adjacent stirring blades 12b and 13 when projected onto If the moisture content sensor 42 is disposed, it is possible to more reliably prevent a gap from being formed in the vicinity of one of the two moisture content sensors 42. Similarly, when the angle formed by two stirring blades adjacent in the circumferential direction is 60 degrees, the angle formed by two straight lines connecting each moisture content sensor 42 and the stirring shaft 12 is half of 60 degrees, for example. 30 degrees, and when the angle formed by two adjacent stirring blades in the circumferential direction is 180 degrees, the angle formed by two straight lines connecting each moisture content sensor 42 and the stirring shaft 12 is, for example, What is necessary is just to set 90 degree which is a half of 180 degree | times.

また、含水率センサ42による含水率の測定を行うために攪拌手段を停止させるにあたって、攪拌手段の停止前にあらかじめ発熱体42aを発熱させておき攪拌羽根12bの先端部が近傍を通過することによる発熱体42aの温度低下により攪拌羽根12bの通過を検知してから所定時間が経過した後に攪拌手段を停止させるようにしてもよく、このようにすれば、攪拌手段を停止させた時に攪拌羽根12bの先端部を含水率センサ42から確実に離すことができ、生ごみ処理装置の構造の違いによる含水率の測定精度のばらつきを小さくすることができる。なお、上記所定時間は例えば、コントローラ30においてタイマなどの時限手段により時限するようにすればよい。   Further, when the stirring unit is stopped to measure the moisture content by the moisture sensor 42, the heating element 42a is heated in advance before the stirring unit is stopped, and the tip of the stirring blade 12b passes through the vicinity. The stirring means may be stopped after a predetermined time has elapsed since the passage of the stirring blade 12b is detected due to the temperature drop of the heating element 42a. In this way, when the stirring means is stopped, the stirring blade 12b is stopped. Can be reliably separated from the moisture content sensor 42, and variation in the measurement accuracy of the moisture content due to the difference in the structure of the garbage disposal device can be reduced. Note that the predetermined time may be timed by the time limit means such as a timer in the controller 30, for example.

また、処理槽1内の生ごみ処理材の含水率を測定する含水率センサ42を複数個設けておき、各含水率センサ42それぞれの発熱体42aを同一条件で発熱させた時の各発熱体42aそれぞれの温度上昇値のうちの最小値を上記関係データに基づいた含水率の測定に利用するようにすれば、含水率センサ42近傍に空隙が形成されて発熱体42aの温度上昇値が大きくなった含水率センサ42の温度上昇値は利用されなくなるので、含水率の測定精度をより高めることができる。   Further, a plurality of moisture content sensors 42 for measuring the moisture content of the garbage treatment material in the treatment tank 1 are provided, and each heating element when the heating element 42a of each moisture content sensor 42 is heated under the same conditions. If the minimum value of the respective temperature rise values of 42a is used for the measurement of the moisture content based on the relational data, a gap is formed in the vicinity of the moisture content sensor 42, and the temperature rise value of the heating element 42a becomes large. Since the temperature rise value of the moisture content sensor 42 is no longer used, the measurement accuracy of the moisture content can be further increased.

実施形態における生ごみ処理装置の概略構成図である。It is a schematic block diagram of the garbage processing apparatus in embodiment. 同上の生ごみ処理装置の要部説明図である。It is principal part explanatory drawing of a garbage disposal apparatus same as the above. 同上の生ごみ処理装置の特性説明図である。It is characteristic explanatory drawing of a garbage disposal apparatus same as the above. 同上の生ごみ処理装置の特性説明図である。It is characteristic explanatory drawing of a garbage disposal apparatus same as the above. 同上の生ごみ処理装置の特性説明図である。It is characteristic explanatory drawing of a garbage disposal apparatus same as the above. 同上の生ごみ処理装置の特性説明図である。It is characteristic explanatory drawing of a garbage disposal apparatus same as the above. 同上の生ごみ処理装置の要部説明図である。It is principal part explanatory drawing of a garbage disposal apparatus same as the above. 熱式の含水率センサの概略構成図である。It is a schematic block diagram of a thermal moisture content sensor.

符号の説明Explanation of symbols

1 処理槽
2 溜置槽
3 搬送管
4 モータ
5 モータ
12 攪拌軸
12b 攪拌羽根
22 スクリュ
30 コントローラ
42 含水率センサ
43 温度センサ
A 生ごみ処理材
B 生ごみ
DESCRIPTION OF SYMBOLS 1 Processing tank 2 Storage tank 3 Conveying pipe 4 Motor 5 Motor 12 Stirring shaft 12b Stirring blade 22 Screw 30 Controller 42 Moisture content sensor 43 Temperature sensor A Garbage disposal material B Garbage

Claims (5)

生ごみを分解処理する微生物が生息した生ごみ処理材および生ごみを収容する処理槽と、処理槽内の生ごみ処理材および生ごみを攪拌する攪拌手段とを備え、攪拌手段が、処理槽に回転自在に保持された攪拌軸と、攪拌軸の外周面から突設され攪拌軸の回転に伴って先端部が処理槽の内周面に沿って移動する攪拌羽根とで構成された生ごみ処理装置において、発熱体と発熱体近傍で発熱体の温度を検出する測温体とを有する熱式の含水率測定装置を処理槽内の生ごみ処理材に接触するような位置に配置しておき、予め測定した発熱体の温度上昇値と生ごみ処理材の含水率との関係データに基づいて生ごみ処理材の含水率を推測する含水率測定方法であって、攪拌羽根が含水率測定装置近傍に位置しないように攪拌手段を停止させた状態で、発熱体を発熱させて発熱体の温度を測温体により検出し、発熱体の温度上昇値から上記関係データに基づいて生ごみ処理材の含水率を測定することを特徴とする含水率測定方法。   A garbage treatment material inhabited by microorganisms for decomposing the garbage and a treatment tank containing the garbage, and an agitation means for agitating the garbage treatment material and the garbage in the treatment tank, the agitation means being a treatment tank Garbage which is composed of an agitation shaft rotatably held on the outer periphery and an agitation blade which protrudes from the outer peripheral surface of the agitation shaft and whose tip moves along the inner peripheral surface of the treatment tank as the agitation shaft rotates. In the treatment device, a thermal moisture content measuring device having a heating element and a temperature measuring element for detecting the temperature of the heating element in the vicinity of the heating element is arranged at a position in contact with the garbage treatment material in the treatment tank. The moisture content measuring method for estimating the moisture content of the garbage treatment material based on the relationship between the temperature rise value of the heating element measured in advance and the moisture content of the garbage treatment material, wherein the stirring blade measures the moisture content. With the stirring means stopped so that it is not located near the device, By heating the body detected by the temperature measuring body temperature of the heating element, water content measuring method characterized by measuring the water content of the food waste material based on the relationship data from the temperature rise value of the heating element. 含水率測定装置を処理槽の周方向に離間して2つ配置して攪拌手段の停止前に各含水率測定装置の発熱体を発熱させておき、含水率測定装置の近傍を攪拌羽根の先端部が通過することによる発熱体の温度低下により攪拌羽根の通過を検知して一方の含水率測定装置の近傍に攪拌羽根の先端部が位置するように攪拌手段を停止させ、他方の含水率測定装置を利用して生ごみ処理材の含水率の測定を行うことを特徴とする請求項1記載の含水率測定方法。   Two moisture content measuring devices are arranged apart from each other in the circumferential direction of the treatment tank, and the heating elements of each moisture content measuring device are heated before stopping the stirring means, and the vicinity of the moisture content measuring device is located at the tip of the stirring blade. Detecting the passage of the stirring blade due to the temperature drop of the heating element due to the passage of the part, stopping the stirring means so that the tip of the stirring blade is located in the vicinity of one moisture content measuring device, and measuring the moisture content of the other The moisture content measurement method according to claim 1, wherein the moisture content of the garbage treatment material is measured using an apparatus. 攪拌手段を停止させるにあたって、攪拌手段の停止前にあらかじめ発熱体を発熱させておき攪拌羽根の先端部が近傍を通過することによる発熱体の温度低下により攪拌羽根の通過を検知してから所定時間が経過した後に攪拌手段を停止させることを特徴とする請求項1記載の含水率測定方法。   When stopping the agitation means, the heating element is heated in advance before the agitation means is stopped, and a predetermined time has elapsed after detecting the passage of the agitation blade due to the temperature drop of the heating element due to the tip of the agitation blade passing through the vicinity. The water content measurement method according to claim 1, wherein the stirring means is stopped after the elapse of time. 含水率測定装置を複数個設けておき、各含水率測定装置それぞれの発熱体を同一条件で発熱させた時の各発熱体それぞれの温度上昇値のうちの最小値を含水率の測定に利用することを特徴とする請求項1記載の含水率測定方法。   A plurality of moisture content measuring devices are provided, and the minimum value of the temperature rise values of each heating element when the heating elements of each moisture content measuring device are heated under the same conditions is used for measuring the moisture content. The moisture content measuring method according to claim 1, wherein: 生ごみ処理装置には処理槽内の生ごみ処理材および生ごみへ空気を通気する通気手段が設けられており、含水率の測定を行う際には通気手段による風量を攪拌手段の動作時よりも低下させることを特徴とする請求項1ないし請求項4のいずれかに記載の含水率測定方法。   The garbage processing apparatus is provided with a ventilation means for venting air to the garbage treatment material and garbage in the treatment tank, and when measuring the moisture content, the air volume by the aeration means is determined from the time when the stirring means is operated. The water content measuring method according to any one of claims 1 to 4, wherein the water content is also reduced.
JP2003380344A 2003-11-10 2003-11-10 Method for measuring percentage of water content Withdrawn JP2005138089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380344A JP2005138089A (en) 2003-11-10 2003-11-10 Method for measuring percentage of water content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380344A JP2005138089A (en) 2003-11-10 2003-11-10 Method for measuring percentage of water content

Publications (1)

Publication Number Publication Date
JP2005138089A true JP2005138089A (en) 2005-06-02

Family

ID=34690107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380344A Withdrawn JP2005138089A (en) 2003-11-10 2003-11-10 Method for measuring percentage of water content

Country Status (1)

Country Link
JP (1) JP2005138089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459044A (en) * 2018-05-23 2018-08-28 无锡森威尔化工装备科技有限公司 A kind of black wooden test equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459044A (en) * 2018-05-23 2018-08-28 无锡森威尔化工装备科技有限公司 A kind of black wooden test equipment

Similar Documents

Publication Publication Date Title
JP2013236989A (en) Garbage treatment apparatus and method
JP2007125551A (en) Apparatus for treating organic waste material
JP5048469B2 (en) Organic waste treatment equipment
JP5017533B2 (en) Waste treatment equipment
JP2005138089A (en) Method for measuring percentage of water content
JP2005185880A (en) Object to be treated treatment apparatus
JP2006281210A (en) Apparatus for treating organic waste
JP2006247653A (en) Organic waste disposer
JP3985731B2 (en) Garbage disposal equipment
JP2011194276A (en) Apparatus for degrading material to be treated
JP3991974B2 (en) Organic waste treatment equipment
KR20080048210A (en) Composting device
JP2002153845A (en) Fermentation apparatus
JP5248405B2 (en) Organic waste treatment equipment
JP4023363B2 (en) Organic waste treatment equipment
JP2018171603A (en) Photocatalyst organic waste treatment equipment without rotary axis
JP3105629U (en) Garbage processing equipment
KR20020078956A (en) Air supply device of waste food disposal system
JP3438933B2 (en) Garbage processing equipment
JPH09122622A (en) Garbage treatment apparatus
WO2019073627A1 (en) Pyrolytic treatment device
JP2004290780A (en) Method for automatically controlling aeration stirrer
JPH07328589A (en) Garbage treatment apparatus
JP2004283724A (en) Garbage-treating apparatus and garbage-treating method
JPH11309433A (en) Organic matter treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070614