JP2005138001A - Manufacturing method of aqueous hypochlorous acid - Google Patents

Manufacturing method of aqueous hypochlorous acid Download PDF

Info

Publication number
JP2005138001A
JP2005138001A JP2003375668A JP2003375668A JP2005138001A JP 2005138001 A JP2005138001 A JP 2005138001A JP 2003375668 A JP2003375668 A JP 2003375668A JP 2003375668 A JP2003375668 A JP 2003375668A JP 2005138001 A JP2005138001 A JP 2005138001A
Authority
JP
Japan
Prior art keywords
water
raw water
electrolytic treatment
hypochlorous acid
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003375668A
Other languages
Japanese (ja)
Inventor
Toyohiko Doi
豊彦 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2003375668A priority Critical patent/JP2005138001A/en
Publication of JP2005138001A publication Critical patent/JP2005138001A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an manufacturing apparatus of aqueous hypochlorous acid capable of easily adjusting pH after dilution to a slight acidic region, and a manufacturing method of aqueous hypochlorous acid. <P>SOLUTION: This manufacturing apparatus 1 of aqueous hypochlorous acid is equipped with a main electrolytic cell 5 for electrolyzing hydrochloric acid-added raw water, an intermediate dilution means 6 for diluting a primarily electrolytically treated liquid being the electrolytically treated liquid discharged from the main electrolytic cell 5 and a sub-electrolytic cell 7 for electrolyzing an intermediate diluted liquid diluted by the intermediate dilution means 6. After the hydrochloric acid-added raw water is electrolytically treated (primary electrolytic treatment process), the obtained electrolytically treated liquid (primary electrolytically treated liquid) is diluted with raw water (intermediate dilutionj process) and electrolytic treatment is again performed after dilution (secondary electrolytic treatment process). Since a chlorine simple substance remaining in the primary electrolytically treated liquid is reacted with water to produce hydrochloric acid which is, in turn, electrolytically treated, the remaining chlorine simple substance is extremely reduced and aqueous hypochlorous acid easily adjustable to a slight acidic region can be manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、次亜塩素酸(HOCl)を含有する水である次亜塩素酸水を製造するための次亜塩素酸水の製造装置および製造方法に関する。さらに詳しくは、次亜塩素酸水中に含まれる塩素(元素として)に対する塩素単体や塩酸の割合が少なく、微酸性次亜塩素酸水の調製に適した次亜塩素酸水の製造装置および製造方法に関する。   The present invention relates to an apparatus and a method for producing hypochlorous acid water for producing hypochlorous acid water that is water containing hypochlorous acid (HOCl). More specifically, the apparatus and method for producing hypochlorous acid water suitable for the preparation of slightly acidic hypochlorous acid water with a small ratio of chlorine alone or hydrochloric acid to chlorine (as an element) contained in the hypochlorous acid water About.

近年、原水に塩酸を添加してなる塩酸添加水を電解槽中で電解処理することにより、次亜塩素酸水を生成する技術が開発されている(例えば特許文献1、2参照)。
この技術では、下記化学反応式に示すように、塩酸の電離(式1)によって生じる塩化物イオンが酸化されて塩素単体が生じ(式2)、塩素単体が水と反応して次亜塩素酸を生じる(式3)ものである。これら反応において、塩素単体と水との反応で副生する塩酸は、再び電解されるので、理論的には、塩酸はすべて次亜塩素酸に変換されうる。
In recent years, a technique for generating hypochlorous acid water by electrolytic treatment of hydrochloric acid-added water obtained by adding hydrochloric acid to raw water in an electrolytic cell has been developed (see, for example, Patent Documents 1 and 2).
In this technology, as shown in the following chemical reaction formula, chloride ions generated by the ionization of hydrochloric acid (formula 1) are oxidized to produce simple chlorine (formula 2), and the simple chlorine reacts with water to produce hypochlorous acid. (Equation 3). In these reactions, hydrochloric acid produced as a by-product of the reaction between simple chlorine and water is electrolyzed again, so that theoretically, all hydrochloric acid can be converted to hypochlorous acid.

HCl → H + Cl ・・・・(1)
2Cl → Cl + 2e ・・・・(2)
Cl +HO → HOCl + HCl ・・・・(3)
HCl → H + + Cl (1)
2Cl → Cl 2 + 2e (2)
Cl 2 + H 2 O → HOCl + HCl (3)

この技術によって得られる次亜塩素酸水は、水で適当な濃度に希釈して殺菌剤として用いることができる。前記電解処理液は、例えば、次亜塩素酸ソーダなどの次亜塩素酸塩の水溶液に比して、低塩素濃度であっても殺菌効果が高く、また、毎回使用する度に微妙な濃度調整を行なう必要がないので、殺菌剤として好適である。
特開平10−128336号公報 特開2000−5757号公報
Hypochlorous acid water obtained by this technique can be diluted with water to an appropriate concentration and used as a disinfectant. The electrolytic treatment solution has a high bactericidal effect even at a low chlorine concentration, for example, compared to an aqueous solution of hypochlorite such as sodium hypochlorite, and a fine concentration adjustment every time it is used. Therefore, it is suitable as a bactericidal agent.
JP-A-10-128336 JP 2000-5757 A

上述した従来の製造方法によって製造された次亜塩素酸水は、希釈前のpHが1以下と極めて低く、塩素濃度が10000ppm前後と極めて高いので、電解処理中に上記式(3)の反応が充分には右方向に進行せず、かなりの量の塩素単体が残留してしまう。残留した塩素単体は、希釈後に式(3)の反応を起こし、塩酸が生成される。水道水や地下水、伏流水等、通常の原水を用いた場合には、CaやMgなどの硬度成分が含まれているので、硬度成分の中和緩衝能により、希釈後のpHを微酸性域(pH5〜6.5)に調整することが容易である。   The hypochlorous acid water produced by the above-described conventional production method has an extremely low pH before dilution of 1 or less and a very high chlorine concentration of around 10,000 ppm. Therefore, the reaction of the above formula (3) occurs during the electrolytic treatment. It does not travel rightward enough, leaving a significant amount of chlorine alone. The residual chlorine alone undergoes the reaction of the formula (3) after dilution, and hydrochloric acid is generated. When normal raw water such as tap water, groundwater, underground water, etc. is used, hardness components such as Ca and Mg are included, so the neutralized buffering capacity of the hardness components makes the pH after dilution slightly acidic. It is easy to adjust to (pH 5 to 6.5).

しかし、原水として、超軟水やRO水(逆浸透膜によって精製した水)、蒸留水のように、硬度成分の極めて少ない水を用いた場合には、希釈後のpHが低くなりすぎ、微酸性域に調整されない場合があるという問題があった。この場合、pHが微酸性域となるまで希釈すると、十分な殺菌力が得にくい程度まで次亜塩素酸の濃度が低下してしまう。
上記特許文献2では、中和剤として、水酸化ナトリウム等、アルカリ性のアルカリ金属塩を用いて、希釈後の次亜塩素酸水のpHを調整する方法も記載されている。しかし、中和剤を用いて次亜塩素酸水のpHを調整した場合、中和により生じた塩分(塩化ナトリウムなどの塩類)のため、使用可能な場所や方法等に制約を受けることが考えられる。
However, when raw water, such as ultra-soft water, RO water (water purified by reverse osmosis membrane), or distilled water, is used, the pH after dilution is too low and slightly acidic. There was a problem that it may not be adjusted to the area. In this case, if it dilutes until pH becomes a slightly acidic range, the density | concentration of hypochlorous acid will fall to such an extent that sufficient disinfection power is hard to be acquired.
Patent Document 2 also describes a method of adjusting the pH of diluted hypochlorous acid water using an alkaline alkali metal salt such as sodium hydroxide as a neutralizing agent. However, when the pH of hypochlorous acid water is adjusted using a neutralizing agent, it is conceivable that the place where it can be used and the method may be restricted due to the salt content (salts such as sodium chloride) generated by neutralization. It is done.

本発明は、上記事情に鑑みてなされたものであり、使用のため次亜塩素酸水を希釈した後のpHを容易に微酸性域に調整可能な次亜塩素酸水の製造装置及び製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an apparatus and method for producing hypochlorous acid water capable of easily adjusting the pH after diluting hypochlorous acid water for use to a slightly acidic range It is an issue to provide.

前記課題を解決するため、本発明は、塩酸添加原水を電解処理する主電解槽と、この主電解槽から排出された電解処理液である一次電解処理液を原水により希釈する中間希釈手段と、この中間希釈手段によって希釈された中間希釈液を電解処理する副電解槽とを具備することを特徴とする次亜塩素酸水の製造装置を提供する。
本発明の次亜塩素酸水の製造装置においては、さらに、前記副電解槽から排出された電解処理液である二次電解処理液を原水により希釈する最終希釈手段を具備することができる。
また、本発明は、塩酸添加原水を電解処理する一次電解処理工程と、前記一次電解処理工程によって得られた電解処理液である一次電解処理液を原水により希釈する中間希釈工程と、前記中間希釈工程によって得られる中間希釈液を電解処理する二次電解処理工程を有することを特徴とする次亜塩素酸水の製造方法を提供する。
本発明の次亜塩素酸水の製造方法においては、さらに、前記二次電解処理工程によって得られた電解処理液である二次電解処理液を原水により希釈する最終希釈工程を有することができる。
中間希釈電解処理液の有効塩素濃度は、1000ppm以下にすることが好ましい。
In order to solve the above problems, the present invention comprises a main electrolytic tank for electrolytically treating hydrochloric acid-added raw water, and intermediate diluting means for diluting a primary electrolytic treated liquid that is an electrolytic treated liquid discharged from the main electrolytic tank with raw water, An apparatus for producing hypochlorous acid water is provided, comprising: a sub-electrolysis tank that electrolyzes the intermediate diluted solution diluted by the intermediate dilution means.
The apparatus for producing hypochlorous acid water according to the present invention may further comprise a final diluting means for diluting a secondary electrolytic treatment liquid, which is an electrolytic treatment liquid discharged from the sub-electrolysis tank, with raw water.
The present invention also includes a primary electrolytic treatment step of electrolytically treating hydrochloric acid-added raw water, an intermediate dilution step of diluting a primary electrolytic treatment solution obtained by the primary electrolytic treatment step with raw water, and the intermediate dilution There is provided a method for producing hypochlorous acid water, comprising a secondary electrolytic treatment step of subjecting an intermediate dilution obtained by the step to electrolytic treatment.
The method for producing hypochlorous acid water of the present invention may further include a final dilution step of diluting a secondary electrolytic treatment solution, which is an electrolytic treatment solution obtained by the secondary electrolytic treatment step, with raw water.
The effective chlorine concentration of the intermediate diluted electrolytic treatment liquid is preferably 1000 ppm or less.

本発明によれば、中間希釈により、一次電解処理液中の塩素単体を水と反応させて次亜塩素酸と塩酸を生成させ、生じた塩酸を再度電解処理することにより、次亜塩素酸まで酸化することができる。すなわち、最終的に製造される次亜塩素酸水中の次亜塩素酸に対する塩酸の比率を効果的に低減して、pHのより高い次亜塩素酸水を得ることができる。得られる次亜塩素酸水は、CaやMgなどの硬度成分の含有率の低い超軟水やRO水、蒸留水などを原水として用いた場合であっても、希釈後のpHを微酸性域(pH5〜6.5)に調整することを確実にできる。中和剤を用いることなく希釈して微酸性域に調整できるので、希釈後の微酸性次亜塩素酸水は、塩分の含有量が極めて低いものとなり、使用可能な場所や使用方法の自由度が広がり、利用性に優れたものとなる。   According to the present invention, by intermediate dilution, chlorine alone in the primary electrolytic treatment solution is reacted with water to produce hypochlorous acid and hydrochloric acid, and the resulting hydrochloric acid is subjected to electrolytic treatment again, thereby reducing hypochlorous acid. Can be oxidized. That is, it is possible to effectively reduce the ratio of hydrochloric acid to hypochlorous acid in the hypochlorous acid water to be finally produced, thereby obtaining hypochlorous acid water having a higher pH. Even if the obtained hypochlorous acid water uses ultra-soft water, RO water, distilled water or the like having a low content of hardness components such as Ca and Mg as raw water, the pH after dilution is slightly acidic ( It can be reliably adjusted to pH 5 to 6.5). Since it can be diluted to a slightly acidic range without using a neutralizer, the slightly acidic hypochlorous acid water after dilution has a very low salt content, and the degree of freedom in the place where it can be used and the method of use Will spread and become highly usable.

以下、最良の形態に基づいて本発明を説明する。
本発明において、塩酸添加原水は、塩酸を添加した水又は化学物質が溶解した水溶液に塩酸を添加したものとして定義されるが、本発明の効果を最大限に発揮するためには、比較的高濃度の塩酸を水に添加した塩酸添加原水を用いることが望ましい。換言すれば、塩化水素のみを含有する塩酸添加原水を用いることが望ましい。
塩酸添加原水の塩酸(塩化水素)濃度は、一次電解手段(主電解槽)中で適切な反応を起させるためには0.01%(質量%。以下、特に断りのない限り同じ。)以上であることが望ましく、特に0.1%以上であることが推奨される。ただし、経済性を追及する場合には、塩化水素濃度は、1.0%以上、21.0%以下であることが望ましい。即ち、塩化水素濃度が1.0%以上であれば、工業的に安定した反応を得ることが可能であり、また21.0%以下であれば、常温で発煙することがなく、保管、取扱いの点で望ましいからである。
The present invention will be described below based on the best mode.
In the present invention, hydrochloric acid-added raw water is defined as hydrochloric acid-added water or an aqueous solution in which a chemical substance is dissolved, and hydrochloric acid is added, but in order to maximize the effects of the present invention, it is relatively high. It is desirable to use hydrochloric acid-added raw water obtained by adding hydrochloric acid having a concentration to water. In other words, it is desirable to use hydrochloric acid-added raw water containing only hydrogen chloride.
The concentration of hydrochloric acid (hydrogen chloride) in the raw water added with hydrochloric acid is 0.01% (mass% or less, the same unless otherwise specified) in order to cause an appropriate reaction in the primary electrolysis means (main electrolytic cell). It is desirable that it is 0.1% or more. However, when pursuing economy, the hydrogen chloride concentration is desirably 1.0% or more and 21.0% or less. That is, if the hydrogen chloride concentration is 1.0% or more, an industrially stable reaction can be obtained, and if it is 21.0% or less, no smoke is generated at room temperature, and storage and handling are possible. This is desirable.

本発明に用いられる原水は、水道水、地下水、伏流水、脱塩水、蒸留水、精製水(RO水、膜処理水)、これらの混合水等であって、実質的に塩化ナトリウムを含有しない水である。ここで、「実質的に塩化ナトリウムを含有しない」とは、原水に人為的なナトリウムの添加等が無く、ナトリウムイオン濃度が200ppm以下であることを意味している。
本発明は、水道水、地下水、伏流水などのように、CaイオンやMgイオンなどの硬度成分が含まれている(硬度が10以上)の原水に適用できるが、とりわけ、超軟水やRO水(逆浸透膜によって精製した水)、蒸留水のように、硬度成分の含有量が極めて少ない水(硬度が10未満)を原水として利用する場合に、微酸性域(pH5〜6.5)への調整が容易になり、特に適している。
The raw water used in the present invention is tap water, groundwater, underground water, desalted water, distilled water, purified water (RO water, membrane treated water), mixed water thereof, and the like, and substantially does not contain sodium chloride. It is water. Here, “substantially no sodium chloride” means that there is no artificial addition of sodium to the raw water and the sodium ion concentration is 200 ppm or less.
The present invention can be applied to raw water containing hardness components such as Ca ions and Mg ions, such as tap water, ground water, underground water, etc. (hardness is 10 or more). (Water purified by reverse osmosis membrane), like distilled water, when water with very low hardness component content (hardness less than 10) is used as raw water, to slightly acidic range (pH 5 to 6.5) Is easy to adjust and is particularly suitable.

塩酸添加原水は、第1の電解手段(主電解槽)において電解処理される。
一般に電解槽において、電極を、複数の電極板で構成して通電する場合には、通電の方法として、従来、単極式及び複極式の二種類の形式が公知である(社団法人電気化学協会編、「電気化学便覧」、第510ペ−ジ、丸善、昭和29年)。単極式とは、電極板の全てが陰極又は陽極のいずれかである形式であり、複極式とは、例えば、複数の電極を一定間隔で相互に絶縁して重ね合わせた構造を有し、電源の陽極に接続された電極板と、電源の陰極に接続された電極板との間に、いずれの極とも接続されない電極(以下、中間電極と記載する。)が、少なくとも1枚存在する形式である(本明細書では、単極式の通電方法を行う電極を単極式電極、複極式の通電方法を行う電極を複極式電極と記載する)である。前記特許文献2のように、複極式電極は単極式電極に比べて様々な利点があり、特許文献2に記載のように、電解槽として無隔膜電解槽、電解用の電極として複極式電極を採用することで、電解効率の向上、それによるランニングコストの低減、電極の長寿命化等の様々な効果が得られる。
The hydrochloric acid-added raw water is subjected to electrolytic treatment in the first electrolysis means (main electrolytic cell).
In general, when an electrode is composed of a plurality of electrode plates and is energized in an electrolytic cell, conventionally, two types of methods, known as a monopolar type and a multipolar type, are known (Electrochemical Co., Ltd.). Association, "Electrochemical Handbook", page 510, Maruzen, 1959). The monopolar type is a type in which all of the electrode plates are either a cathode or an anode, and the bipolar type has, for example, a structure in which a plurality of electrodes are insulated from each other at a constant interval and stacked. Between the electrode plate connected to the anode of the power source and the electrode plate connected to the cathode of the power source, there is at least one electrode (hereinafter referred to as an intermediate electrode) that is not connected to any electrode. (In this specification, an electrode for performing a monopolar energization method is referred to as a monopolar electrode, and an electrode for performing a bipolar energization method is referred to as a bipolar electrode). As described in Patent Document 2, a bipolar electrode has various advantages over a monopolar electrode. As described in Patent Document 2, a diaphragm electrode is used as an electrolytic cell, and a bipolar electrode is used as an electrode for electrolysis. By adopting the type electrode, various effects such as improvement of electrolysis efficiency, reduction of running cost, and extension of electrode life can be obtained.

第1の電解手段(主電解槽)では、塩酸添加原水中の塩素イオンとして存在する塩素のほとんど(90%以上)が電解酸化される。例えば塩酸添加原水の塩酸濃度が1.0%であれば、主電解槽5で塩酸添加原水が電解処理されることによって得られる一次電解処理液は、pHが1前後と極めて低く、有効塩素濃度が100,000ppm前後と極めて高い液となる。
電解処理液中の塩素単体の濃度がこれほどまでに高くなると、塩素単体と水との反応(上記式3)が十分には右方向に進行しなくなり、塩酸(Clの酸化数は−I)が次亜塩素酸(Clの酸化数は+I)まで酸化される割合が低下して、塩素単体(Clの酸化数は0)が残ってしまう。
本発明者の鋭意検討の結果、従来の製造方法において、電解処理液を希釈したときにpHが微酸性域よりも低くなってしまう場合があり、pHの調整が容易でないのは、電解処理液中に残留した塩素単体と水との反応により、塩酸が生じるためであることが分かった。
In the first electrolysis means (main electrolytic cell), most of the chlorine (90% or more) present as chlorine ions in the hydrochloric acid-added raw water is electrolytically oxidized. For example, if the hydrochloric acid concentration of the hydrochloric acid-added raw water is 1.0%, the primary electrolytic treatment solution obtained by electrolytic treatment of the hydrochloric acid-added raw water in the main electrolytic cell 5 has an extremely low pH of around 1 and an effective chlorine concentration. Becomes a very high liquid of around 100,000 ppm.
When the concentration of chlorine alone in the electrolytic treatment solution becomes so high, the reaction between chlorine alone and water (formula 3 above) does not proceed sufficiently to the right, and hydrochloric acid (Cl oxidation number is -I). However, the rate of oxidation to hypochlorous acid (the oxidation number of Cl is + I) decreases, and chlorine alone (the oxidation number of Cl is 0) remains.
As a result of intensive studies by the present inventors, in the conventional production method, the pH may be lower than the slightly acidic range when the electrolytic treatment solution is diluted. It was found that hydrochloric acid was produced by the reaction between the chlorine alone remaining in the water and water.

そこで本発明者は、塩酸添加原水を電解処理(第1の電解工程)した後に、一次電解処理液を原水で希釈(中間希釈工程)して、一次電解処理液中に残留した塩素単体を塩素と次亜塩素酸とに不均化させ、これによって生じた塩酸を再度電解処理(第2の電解工程)することにより、塩素単体の残留が極めて少なく、希釈(最終希釈工程)したときにpHを微酸性域に調整することが容易な次亜塩素酸水を製造できることを見出し、本発明を完成させた。   Therefore, the present inventor conducted an electrolytic treatment (first electrolysis step) of the hydrochloric acid-added raw water, and then diluted the primary electrolytic treatment solution with the raw water (intermediate dilution step) to remove the chlorine alone remaining in the primary electrolytic treatment solution. And hypochlorous acid disproportionate, and the resulting hydrochloric acid is again subjected to electrolytic treatment (second electrolysis step), so that the residual chlorine alone is extremely small, and the pH when diluted (final dilution step) It was found that hypochlorous acid water that can be easily adjusted to a slightly acidic region can be produced, and the present invention was completed.

中間希釈工程では、一次電解処理液を原水で希釈してなる液である中間希釈液を調製する。中間希釈液は、pHが2以上、有効塩素濃度が1000ppm以下となるように希釈するとよい。
第2の電解手段(副電解槽)では、pHが3以上となるまで通電を続けるのが好ましい。これにより、中間希釈液に残留した塩酸や塩素単体が極めて高い割合で次亜塩素酸まで酸化されて電解処理液のpHが高くなり、最終的に希釈した際に、次亜塩素酸水のpHを微酸性域に調整することが容易になる。
In the intermediate dilution step, an intermediate diluted solution that is a solution obtained by diluting the primary electrolytic treatment solution with raw water is prepared. The intermediate diluted solution may be diluted so that the pH is 2 or more and the effective chlorine concentration is 1000 ppm or less.
In the second electrolysis means (sub-electrolyzer), it is preferable to continue energization until the pH becomes 3 or more. As a result, hydrochloric acid and chlorine remaining in the intermediate diluted solution are oxidized to hypochlorous acid at a very high rate, and the pH of the electrolytic treatment solution becomes high. When finally diluted, the pH of hypochlorous acid water is increased. Can be easily adjusted to a slightly acidic range.

本発明の製造方法においては、第2の電解手段から排出された電解処理液である二次電解処理液は、塩酸や塩素単体の比率が少なく、次亜塩素酸の比率が極めて高い次亜塩素酸水となる。この次亜塩素酸水は、pHが微酸性域よりも低いときには、最終的に微酸性域となるように原水で希釈して用いることができる。また、第2の電解工程の後工程として、さらに最終希釈工程を設け、二次電解処理液を原水で希釈したうえで採取しても良い。
最終希釈工程において、希釈は、希釈後の電解処理液の有効塩素濃度が0.1ppm以上の値となる範囲とすれば、殺菌効果の上で好ましい。尚、一般に次亜塩素酸水の有効塩素濃度は、通電条件によって左右されるが、いずれにしても殺菌剤等として使用する際には、次亜塩素酸水の有効塩素濃度が0.1ppm以上の値となる範囲が望ましい。また、pHに着目すれば、最終希釈後の次亜塩素酸水のpHは7.5以下が好ましく、より好ましくはpH3.5以上7.0以下の範囲内であり、特に望ましいのは、pHが5以上6.5以下の範囲内である。すなわち、希釈後の次亜塩素酸水のpHがこのような範囲であれば、液中に遊離な次亜塩素酸が比較的安定して存在できるためである。
また、最終希釈後の次亜塩素酸水の有効塩素濃度は、0.1ppm以上の範囲とすれば、殺菌等の効果の面で好ましい。特に好ましい有効塩素濃度の範囲は、10〜30ppmである。なお、有効塩素濃度は、JIS K 0101に規定のヨウ素滴定法などによって測定することができる。
In the production method of the present invention, the secondary electrolytic treatment liquid that is the electrolytic treatment liquid discharged from the second electrolysis means has a low ratio of hydrochloric acid and chlorine alone, and a hypochlorous acid with a very high ratio of hypochlorous acid. It becomes acid water. When the pH is lower than the slightly acidic region, this hypochlorous acid water can be used by diluting with raw water so that it finally becomes the slightly acidic region. Further, as a subsequent step of the second electrolysis step, a final dilution step may be further provided, and the secondary electrolysis solution may be collected after being diluted with raw water.
In the final dilution step, dilution is preferable in terms of sterilization effect if the effective chlorine concentration of the electrolytic treatment solution after dilution is within a range of 0.1 ppm or more. In general, the effective chlorine concentration of hypochlorous acid water depends on the energization conditions, but in any case, when used as a disinfectant, the effective chlorine concentration of hypochlorous acid water is 0.1 ppm or more. A range of the value of is desirable. Further, when paying attention to pH, the pH of hypochlorous acid water after the final dilution is preferably 7.5 or less, more preferably in the range of pH 3.5 or more and 7.0 or less, and particularly preferably pH Is in the range of 5 or more and 6.5 or less. That is, if the pH of the diluted hypochlorous acid water is in such a range, free hypochlorous acid can be present relatively stably in the liquid.
Moreover, if the effective chlorine concentration of the hypochlorous acid water after the final dilution is in the range of 0.1 ppm or more, it is preferable in terms of effects such as sterilization. A particularly preferable range of effective chlorine concentration is 10 to 30 ppm. The effective chlorine concentration can be measured by the iodine titration method prescribed in JIS K 0101.

本発明の次亜塩素酸水の製造方法によれば、中間希釈により、一次電解処理液中の塩素単体を水と反応させて次亜塩素酸と塩酸を生成させ、生じた塩酸を再度電解処理することにより、次亜塩素酸まで酸化することができる。すなわち、最終的に製造される次亜塩素酸水中の塩酸や塩素単体の比率を効果的に低減して、次亜塩素酸として存在する塩素の比率を高め、酸性度の比較的低い次亜塩素酸水を得ることができる。得られた次亜塩素酸水は、CaやMgなどの硬度成分の含有率の低い超軟水やRO水、蒸留水などを原水として用いた場合であっても、原水で適切な濃度に希釈するだけで、pHを微酸性域(pH5〜6.5)に調整することができる。次亜塩素酸水のpHの調整に、中和剤が不要となるので、pHの調整に手間が掛からず、アルカリを使用しないので安全性を高めることができる。本発明によって製造される微酸性次亜塩素酸水は、中和剤に由来する塩分が含まれることがなく、原水に由来する塩分も実質的に含まないといえる程度であるので、施設内の錆の発生などの不都合を抑制することができる。従って、次亜塩素酸水を使用可能な場所や使用方法の自由度が広がり、利用性に優れたものとなる。   According to the method for producing hypochlorous acid water of the present invention, by intermediate dilution, chlorine alone in the primary electrolytic treatment liquid is reacted with water to produce hypochlorous acid and hydrochloric acid, and the resulting hydrochloric acid is again subjected to electrolytic treatment. By doing so, it can oxidize to hypochlorous acid. That is, the ratio of hydrochloric acid and chlorine alone in hypochlorous acid water to be finally produced is effectively reduced, the ratio of chlorine present as hypochlorous acid is increased, and hypochlorous acid having a relatively low acidity. Acid water can be obtained. The obtained hypochlorous acid water is diluted to an appropriate concentration with raw water even when ultra-soft water, RO water, distilled water or the like having a low content of hardness components such as Ca and Mg is used as raw water. The pH can be adjusted to a slightly acidic range (pH 5 to 6.5). Since a neutralizing agent is not required for adjusting the pH of hypochlorous acid water, it takes no effort to adjust the pH, and no alkali is used, so safety can be improved. The slightly acidic hypochlorous acid water produced by the present invention does not contain salt derived from the neutralizing agent, and can be said to be substantially free of salt derived from raw water. Inconveniences such as generation of rust can be suppressed. Therefore, the place where the hypochlorous acid water can be used and the degree of freedom of the use method are widened, and the utility is excellent.

以下、本発明の次亜塩素酸水の製造装置について、図面を参照して説明する。
図1は、本発明の次亜塩素酸水の製造装置の一形態例を示す概略構成図である。
図1に示す次亜塩素酸水の製造装置1は、原水が流れる主配管2と、この主配管2の第1分岐点2aから分岐して前記主配管2を流れる原水の一部を主電解槽5に供給する一次分岐配管3と、この一次分岐配管3に塩酸を供給する塩酸供給手段4と、一次分岐配管3から供給された塩酸添加原水を電解処理する主電解槽5と、前記主配管2の第1分岐点2aよりも下流に設定された第2分岐点2bから分岐して前記主配管2を流れる原水の一部を副電解槽7に供給し、前記主電解槽5から排出された電解処理液である一次電解処理液を希釈する二次分岐配管6と、一次電解処理液を原水で希釈した液である希釈電解処理液を電解処理する副電解槽7とを具備する。
Hereinafter, an apparatus for producing hypochlorous acid water of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of a hypochlorous acid water production apparatus according to the present invention.
The hypochlorous acid water production apparatus 1 shown in FIG. 1 has a main pipe 2 through which raw water flows and a part of the raw water that flows from the first branch point 2a of the main pipe 2 and flows through the main pipe 2 through main electrolysis. A primary branch pipe 3 to be supplied to the tank 5, a hydrochloric acid supply means 4 for supplying hydrochloric acid to the primary branch pipe 3, a main electrolytic tank 5 for electrolytically treating hydrochloric acid-added raw water supplied from the primary branch pipe 3, and the main A part of the raw water branched from the second branch point 2 b set downstream of the first branch point 2 a of the pipe 2 and flowing through the main pipe 2 is supplied to the sub-electrolysis tank 7 and discharged from the main electrolytic tank 5. The secondary branch pipe 6 for diluting the primary electrolytic treatment liquid that is the electrolytic treatment liquid thus prepared, and the sub-electrolysis tank 7 for electrolytically treating the diluted electrolytic treatment liquid that is a solution obtained by diluting the primary electrolytic treatment liquid with raw water.

主配管2は、上流側から順に、一次分岐配管3が分岐する第1分岐点2aと、二次分岐配管6が分岐する第2分岐点2bと、副電解槽7から排出された電解処理液である二次電解処理液が主配管2に戻される合流点2dとを有する。主配管2の第2分岐点2bと合流点2dとの間には、主配管2を流れる原水の流量を調節する調節弁2cが設けられている。   The main pipe 2 includes, in order from the upstream side, a first branch point 2a where the primary branch pipe 3 branches, a second branch point 2b where the secondary branch pipe 6 branches, and the electrolytic treatment liquid discharged from the sub-electrolysis tank 7. The secondary electrolytic treatment liquid is a junction 2d where the secondary electrolytic treatment liquid is returned to the main pipe 2. Between the second branch point 2b and the junction 2d of the main pipe 2, an adjustment valve 2c for adjusting the flow rate of the raw water flowing through the main pipe 2 is provided.

一次分岐配管3は、主配管2の第1分岐点2aと主電解槽5とを連絡する配管であり、一次分岐配管3には、第1分岐点2aと主電解槽5との間に、塩酸供給手段4から供給された塩酸が原水に添加される合流点3bが設けられている。一次分岐配管3は、合流点3bの上流側(第1分岐点2aに接続される側)の部分3aでは原水が流れ、合流点3bの下流側(主電解槽5に接続される側)の部分3cでは塩酸添加原水が流れるようになっている。一次分岐配管3の原水が流れる部分3aには、主配管2から所望の流量の原水を吸引して主電解槽5に向けて送出する希釈水ポンプ3dが設けられている。
塩酸供給手段4は、塩酸水溶液を貯蔵する塩酸タンク4aと、この塩酸タンク4aから前記一次分岐配管3の合流点3bまでの間を接続する塩酸供給配管4bと、この塩酸タンク4aから塩酸水溶液を吸引し、塩酸供給配管4bを介して主電解槽5に向けて送出する塩酸用ポンプ4cとを備えている。
一次分岐配管3は、主配管2から供給される原水と、塩酸供給手段4から供給される塩酸とを混合して塩酸添加原水を調製し、主電解槽5に供給する塩酸添加原水供給手段として機能する。
The primary branch pipe 3 is a pipe that connects the first branch point 2 a of the main pipe 2 and the main electrolytic cell 5, and the primary branch pipe 3 includes the first branch point 2 a and the main electrolytic tank 5. A junction 3b is provided where hydrochloric acid supplied from the hydrochloric acid supply means 4 is added to the raw water. In the primary branch pipe 3, the raw water flows in a portion 3a on the upstream side (side connected to the first branch point 2a) of the junction 3b, and on the downstream side (side connected to the main electrolytic cell 5) of the junction 3b. In part 3c, hydrochloric acid-added raw water flows. A diluting water pump 3 d that sucks raw water at a desired flow rate from the main pipe 2 and sends it to the main electrolytic cell 5 is provided at a portion 3 a through which the raw water of the primary branch pipe 3 flows.
The hydrochloric acid supply means 4 includes a hydrochloric acid tank 4a for storing a hydrochloric acid aqueous solution, a hydrochloric acid supply pipe 4b connecting the hydrochloric acid tank 4a to the junction 3b of the primary branch pipe 3, and a hydrochloric acid aqueous solution from the hydrochloric acid tank 4a. There is provided a hydrochloric acid pump 4c that sucks and feeds it toward the main electrolytic cell 5 through the hydrochloric acid supply pipe 4b.
The primary branch pipe 3 serves as a hydrochloric acid-added raw water supply means that prepares hydrochloric acid-added raw water by mixing raw water supplied from the main pipe 2 and hydrochloric acid supplied from the hydrochloric acid supply means 4 and supplies it to the main electrolytic cell 5. Function.

主電解槽5は、一次分岐配管3から供給された塩酸添加原水を電解処理(電気分解)するようになっている。主電解槽5は、特に限定されるものではないが、上述したように、電解槽として無隔膜電解槽、電極として複極式電極を採用することが好ましい。
主電解槽5には、主電解槽5と二次分岐配管6の合流点6bとを連絡する配管5aが接続されている。主電解槽5における電解処理の終了後に該主電解槽5から排出される電解処理液は、配管5aを介して二次分岐配管6に送出されるようになっている。
The main electrolytic cell 5 is configured to electrolyze (electrolyze) the hydrochloric acid-added raw water supplied from the primary branch pipe 3. The main electrolytic cell 5 is not particularly limited, but as described above, it is preferable to employ a non-diaphragm electrolytic cell as the electrolytic cell and a bipolar electrode as the electrode.
The main electrolytic cell 5 is connected to a pipe 5 a that connects the main electrolytic cell 5 and the junction 6 b of the secondary branch pipe 6. The electrolytic treatment liquid discharged from the main electrolytic cell 5 after completion of the electrolytic treatment in the main electrolytic cell 5 is sent to the secondary branch pipe 6 through the pipe 5a.

二次分岐配管6は、主配管2の第2分岐点2bと副電解槽7とを連絡する配管であり、この二次分岐配管6には、第2分岐点2bと副電解槽7との間に、主電解槽5から排出される電解処理液が合流する合流点6bが設けられている。主配管2の第2分岐点2bは、前記第1分岐点2aよりも下流側に設けられている。二次分岐配管6は、合流点6bの上流側(第2分岐点2bに接続される側)の部分6aでは原水が流れ、合流点6bの下流側(副電解槽7に接続される側)の部分6cでは、前記一次電解処理液が原水で希釈されてなる前記中間希釈液が流れるようになっている。
二次分岐配管6は、主配管2から供給される原水と、主電解槽5から排出される一次電解処理液とを混合して前記中間希釈液となし、副電解槽7に供給する中間希釈手段として機能する。
The secondary branch pipe 6 is a pipe that connects the second branch point 2b of the main pipe 2 and the sub-electrolysis tank 7, and the secondary branch pipe 6 includes the second branch point 2b and the sub-electrolysis tank 7. In the middle, a junction 6b where the electrolytic treatment liquid discharged from the main electrolytic cell 5 joins is provided. The second branch point 2b of the main pipe 2 is provided downstream of the first branch point 2a. In the secondary branch pipe 6, raw water flows in a portion 6a on the upstream side (side connected to the second branch point 2b) of the junction 6b, and downstream of the junction 6b (side connected to the sub-electrolyzer 7). In the portion 6c, the intermediate diluted solution obtained by diluting the primary electrolytic treatment solution with raw water flows.
The secondary branch pipe 6 mixes the raw water supplied from the main pipe 2 and the primary electrolytic treatment liquid discharged from the main electrolytic tank 5 to form the intermediate dilution liquid, and the intermediate dilution supplied to the sub electrolytic tank 7 Functions as a means.

副電解槽7は、二次分岐配管6から供給された前記中間希釈液を電解処理(電気分解)するようになっている。副電解槽7は、特に限定されるものではないが、上述したように、電解槽として無隔膜電解槽、電極として複極式電極を採用することが好ましい。
副電解槽7には、副電解槽7と主配管2の合流点2dとを連絡する配管7aが接続されている。主配管2の合流点2dは、前記第2分岐点2bよりも下流側に設けられている。副電解槽7における電解処理の終了後に該副電解槽7から排出される電解処理液(二次電解処理液)は、前記配管7aを介して主配管2に送出され、そこで主配管2を流れる原水により希釈されるようになっている。
すなわち、第2分岐点2bよりも下流側の主配管2(以下、これを主配管の下流部という場合がある)は、副電解槽から排出された電解処理液である二次電解処理液を原水により希釈する最終希釈手段8として機能する。
The sub-electrolysis tank 7 is configured to perform electrolytic treatment (electrolysis) on the intermediate diluent supplied from the secondary branch pipe 6. The sub electrolytic cell 7 is not particularly limited, but as described above, it is preferable to employ a non-diaphragm electrolytic cell as the electrolytic cell and a bipolar electrode as the electrode.
A pipe 7 a that connects the sub-electrolysis tank 7 and the junction 2 d of the main pipe 2 is connected to the sub-electrolysis tank 7. A junction 2d of the main pipe 2 is provided downstream of the second branch point 2b. The electrolytic treatment liquid (secondary electrolytic treatment liquid) discharged from the secondary electrolytic tank 7 after completion of the electrolytic treatment in the secondary electrolytic tank 7 is sent to the main pipe 2 through the pipe 7a and flows through the main pipe 2 there. It is designed to be diluted with raw water.
That is, the main pipe 2 on the downstream side of the second branch point 2b (hereinafter sometimes referred to as a downstream part of the main pipe) is supplied with a secondary electrolytic treatment liquid that is an electrolytic treatment liquid discharged from the sub electrolytic cell. It functions as final dilution means 8 for dilution with raw water.

以上の構成をもつ本形態例の次亜塩素酸水の製造装置1は、以下のように動作する。
主配管2に原水を流し、その原水の一部を一次分岐配管3に吸引し、塩酸供給手段4から供給される塩酸を一次分岐配管3に合流させることにより、塩酸添加原水を調製する。塩酸添加原水は主電解槽5に供給されて、そこで電解処理される。主電解槽5では、塩酸添加原水中の塩素イオンとして存在する塩素のほとんど(90%以上)を電解酸化させる。主電解槽5で生成した電解処理液(一次電解処理液)は、主電解槽5から排出され、配管5aを介して二次分岐配管6に合流し、そこで二次分岐配管6中を流れる原水と混合して希釈される。二次分岐配管6では、第2分岐点2bから分岐した原水と前記一次電解処理液とが混合して希釈される。希釈後の電解処理液(中間希釈液)は、副電解槽7に供給されて、そこで電解処理される。副電解槽7では、前記中間希釈液中に残留した塩素単体や塩酸が次亜塩素酸まで電解酸化される。副電解槽7で生成した電解処理液(二次電解処理液)は、副電解槽7から排出され、配管7aを介して主配管2の下流部8に合流し、そこで主配管2中を流れる原水と混合して希釈される。
The apparatus 1 for producing hypochlorous acid water having the above-described configuration operates as follows.
Raw water is poured into the main pipe 2, a part of the raw water is sucked into the primary branch pipe 3, and hydrochloric acid supplied from the hydrochloric acid supply means 4 is joined to the primary branch pipe 3 to prepare hydrochloric acid-added raw water. The hydrochloric acid-added raw water is supplied to the main electrolytic cell 5 where it is subjected to electrolytic treatment. In the main electrolytic cell 5, most (90% or more) of chlorine present as chlorine ions in the hydrochloric acid-added raw water is electrolytically oxidized. The electrolytic treatment liquid (primary electrolytic treatment liquid) generated in the main electrolytic tank 5 is discharged from the main electrolytic tank 5 and merges into the secondary branch pipe 6 through the pipe 5a, where the raw water flows in the secondary branch pipe 6. And diluted with. In the secondary branch pipe 6, the raw water branched from the second branch point 2b and the primary electrolytic treatment liquid are mixed and diluted. The diluted electrolytic treatment liquid (intermediate dilution liquid) is supplied to the sub-electrolysis tank 7 where it is subjected to electrolytic treatment. In the sub-electrolysis tank 7, the chlorine simple substance and hydrochloric acid remaining in the intermediate diluent are electrolytically oxidized to hypochlorous acid. The electrolytic treatment liquid (secondary electrolytic treatment liquid) generated in the sub-electrolysis tank 7 is discharged from the sub-electrolysis tank 7 and merges with the downstream portion 8 of the main pipe 2 through the pipe 7a and flows in the main pipe 2 there. Diluted by mixing with raw water.

本形態例の次亜塩素酸水の製造装置1によれば、塩酸添加原水を主電解槽5で電解処理した後に、一次電解処理液を二次分岐配管6に流入させて原水と混合して中間希釈して、一次電解処理液中に残留した塩素単体を水と反応させることができる。さらに、一次電解処理液中の塩素単体と水との反応により生じた塩酸を副電解槽7内で電解処理することにより、適正な有効塩素濃度を有する上に、塩酸や塩素単体の残留が極めて少なく、希釈によってpHを微酸性域に調整することが容易な次亜塩素酸水を製造することができる。
副電解槽7から排出される二次電解処理液は、主配管2に戻されてそこで原水と混合されて希釈される。次亜塩素酸水の有効塩素濃度は、主配管2内で希釈された段階で、殺菌などの用途に適した濃度に調整することができる。
主電解槽5に向けて一次分岐配管3に供給される原水と、副電解槽7に向けて二次分岐配管6に供給される原水と、二次電解処理液を希釈するために供給される原水とが、いずれも主配管2から供給されるようになっているので、原水の供給管理が容易になり、製造装置をより単純に構成することができる。
According to the hypochlorous acid water production apparatus 1 of the present embodiment, after the hydrochloric acid-added raw water is electrolytically treated in the main electrolytic tank 5, the primary electrolytic treatment liquid is caused to flow into the secondary branch pipe 6 and mixed with the raw water. By intermediate dilution, chlorine alone remaining in the primary electrolytic treatment liquid can be reacted with water. Furthermore, the hydrochloric acid generated by the reaction between the chlorine alone and the water in the primary electrolytic treatment solution is electrolyzed in the sub-electrolysis tank 7, so that there is an appropriate effective chlorine concentration, and hydrochloric acid and chlorine alone remain extremely. It is possible to produce hypochlorous acid water that is easy to adjust to a slightly acidic range by dilution.
The secondary electrolytic treatment liquid discharged from the sub electrolysis tank 7 is returned to the main pipe 2, where it is mixed with raw water and diluted. The effective chlorine concentration of hypochlorous acid water can be adjusted to a concentration suitable for applications such as sterilization at the stage of dilution in the main pipe 2.
Raw water supplied to the primary branch pipe 3 toward the main electrolytic tank 5, raw water supplied to the secondary branch pipe 6 toward the sub electrolytic tank 7, and supplied to dilute the secondary electrolytic treatment solution Since both raw water is supplied from the main pipe 2, supply management of the raw water becomes easy, and the manufacturing apparatus can be configured more simply.

図1に示す構成の次亜塩素酸水の製造装置において、主電解槽5および副電解槽7としては、株式会社ホクエツ製の無隔壁電解槽を使用した。ポンプや調整弁等の他の設備も、株式会社ホクエツ製のものを使用した。
主配管2に原水として、pH6.9のRO水を1200L/hの流量にて流した。一次分岐配管3には、希釈水ポンプ3dによって流量150ml/hの原水を送液するとともに、塩酸用ポンプ4cを用いて塩酸タンクに貯蔵された濃度21%の塩酸を供給速度120ml/hにて一次分岐配管3に合流させ、塩酸添加原水を調製して主電解槽5に供給した。主電解槽5では、電解電圧を48Vとし、電流1.8Aの電流を通じて塩酸添加原水の電気分解を行った。電解処理終了後、主電解槽5から排出される一次電解処理液は、有効塩素濃度710,000ppm、pH1.0であった。
二次分岐配管6に流量30L/hの原水を送液することにより、一次電解処理液を希釈した。中間希釈後の処理液は、pH3.1、有効塩素濃度650ppmであった。中間希釈後の処理液を副電解槽7に供給して電気分解を行った。副電解槽7での電気分解の条件は、電解電圧48V、電流0.5Aとした。電解処理終了後、副電解槽7から排出される二次電解処理液は、pH4.2、有効塩素濃度720ppmであった。二次電解処理液を主配管2に戻して、主配管2を流れる原水と混合することにより、主配管2の出口から流量1200L/hにて微酸性次亜塩素酸水を得た。このようにして製造された微酸性次亜塩素酸水は、pH5.8、有効塩素濃度18ppmであり、有効塩素濃度は殺菌等の用途に適する程度に充分に高く、しかもpHが微酸性域に適切に調整されたものであった。
In the apparatus for producing hypochlorous acid water having the configuration shown in FIG. 1, as the main electrolytic cell 5 and the sub electrolytic cell 7, a partitionless electrolytic cell manufactured by Hokuetsu Co., Ltd. was used. Other equipment such as a pump and a regulating valve were also manufactured by Hokuetsu Co., Ltd.
RO water having a pH of 6.9 was passed through the main pipe 2 as raw water at a flow rate of 1200 L / h. The primary branch pipe 3 is fed with raw water having a flow rate of 150 ml / h by a diluting water pump 3d, and at a supply rate of 120 ml / h, hydrochloric acid having a concentration of 21% stored in a hydrochloric acid tank using a hydrochloric acid pump 4c. The primary branch pipe 3 was joined, and hydrochloric acid-added raw water was prepared and supplied to the main electrolytic cell 5. In the main electrolytic cell 5, the electrolysis voltage was set to 48V and the hydrochloric acid-added raw water was electrolyzed through a current of 1.8A. After completion of the electrolytic treatment, the primary electrolytic treatment liquid discharged from the main electrolytic cell 5 had an effective chlorine concentration of 710,000 ppm and a pH of 1.0.
The primary electrolytic treatment solution was diluted by feeding raw water with a flow rate of 30 L / h to the secondary branch pipe 6. The treatment liquid after the intermediate dilution had a pH of 3.1 and an effective chlorine concentration of 650 ppm. The treatment liquid after intermediate dilution was supplied to the sub-electrolysis tank 7 for electrolysis. The electrolysis conditions in the sub electrolysis tank 7 were an electrolysis voltage of 48 V and a current of 0.5 A. After the electrolytic treatment, the secondary electrolytic treatment solution discharged from the sub-electrolysis tank 7 had a pH of 4.2 and an effective chlorine concentration of 720 ppm. The secondary electrolytic treatment liquid was returned to the main pipe 2 and mixed with raw water flowing through the main pipe 2 to obtain slightly acidic hypochlorous acid water from the outlet of the main pipe 2 at a flow rate of 1200 L / h. The slightly acidic hypochlorous acid water produced in this way has a pH of 5.8 and an effective chlorine concentration of 18 ppm. The effective chlorine concentration is high enough to be suitable for uses such as sterilization, and the pH is in a slightly acidic range. It was adjusted appropriately.

本発明によって製造された次亜塩素酸水は、各種の産業分野において、食品、器具、設備、水等の殺菌、空気洗浄、脱臭等の目的に使用することができる。   The hypochlorous acid water produced by the present invention can be used for various purposes such as sterilization of foods, instruments, equipment, water, etc., air washing, deodorization and the like.

本発明に係る次亜塩素酸水の製造装置の一形態例を示す概略構成図である。It is a schematic block diagram which shows one example of the manufacturing apparatus of hypochlorous acid water based on this invention.

符号の説明Explanation of symbols

1…次亜塩素酸水の製造装置、5…主電解槽、6…二次分岐配管(中間希釈手段)、7…副電解槽、8…最終希釈手段。 DESCRIPTION OF SYMBOLS 1 ... Hypochlorous acid water manufacturing apparatus, 5 ... Main electrolytic cell, 6 ... Secondary branch piping (intermediate dilution means), 7 ... Sub electrolytic cell, 8 ... Final dilution means.

Claims (5)

原水に塩酸を添加してなる塩酸添加原水を電解処理する主電解槽と、この主電解槽から排出された電解処理液である一次電解処理液を原水により希釈する中間希釈手段と、この中間希釈手段によって希釈された中間希釈液を電解処理する副電解槽とを具備することを特徴とする次亜塩素酸水の製造装置。   A main electrolytic cell for electrolytically treating hydrochloric acid-added raw water obtained by adding hydrochloric acid to raw water, an intermediate diluting means for diluting the primary electrolytic treated liquid discharged from the main electrolytic cell with the raw water, and this intermediate dilution An apparatus for producing hypochlorous acid water, comprising: a sub-electrolysis tank that electrolyzes the intermediate diluted solution diluted by the means. さらに、前記副電解槽から排出された電解処理液である二次電解処理液を原水により希釈する最終希釈手段を具備することを特徴とする請求項1に記載の次亜塩素酸水の製造装置。   The apparatus for producing hypochlorous acid water according to claim 1, further comprising a final diluting means for diluting a secondary electrolytic treatment liquid, which is an electrolytic treatment liquid discharged from the sub-electrolysis tank, with raw water. . 塩酸添加原水を電解処理する一次電解処理工程と、前記一次電解処理工程によって得られた電解処理液である一次電解処理液を原水により希釈する中間希釈工程と、前記中間希釈工程によって得られる中間希釈液を電解処理する二次電解処理工程を有することを特徴とする次亜塩素酸水の製造方法。   A primary electrolytic treatment step for electrolytically treating hydrochloric acid-added raw water, an intermediate dilution step for diluting the primary electrolytic treatment solution obtained by the primary electrolytic treatment step with raw water, and an intermediate dilution obtained by the intermediate dilution step A method for producing hypochlorous acid water, comprising a secondary electrolytic treatment step of electrolytically treating a liquid. さらに、前記二次電解処理工程によって得られた電解処理液である二次電解処理液を原水により希釈する最終希釈工程を有することを特徴とする請求項3に記載の次亜塩素酸水の製造方法。   The production of hypochlorous acid water according to claim 3, further comprising a final dilution step of diluting a secondary electrolytic treatment solution obtained by the secondary electrolytic treatment step with raw water. Method. 前記中間希釈電解処理液の有効塩素濃度を1000ppm以下にすることを特徴とする請求項3または4に記載の次亜塩素酸水の製造方法。   The method for producing hypochlorous acid water according to claim 3 or 4, wherein an effective chlorine concentration of the intermediate dilution electrolytic treatment liquid is set to 1000 ppm or less.
JP2003375668A 2003-11-05 2003-11-05 Manufacturing method of aqueous hypochlorous acid Withdrawn JP2005138001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375668A JP2005138001A (en) 2003-11-05 2003-11-05 Manufacturing method of aqueous hypochlorous acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375668A JP2005138001A (en) 2003-11-05 2003-11-05 Manufacturing method of aqueous hypochlorous acid

Publications (1)

Publication Number Publication Date
JP2005138001A true JP2005138001A (en) 2005-06-02

Family

ID=34686975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375668A Withdrawn JP2005138001A (en) 2003-11-05 2003-11-05 Manufacturing method of aqueous hypochlorous acid

Country Status (1)

Country Link
JP (1) JP2005138001A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283167A (en) * 2006-04-13 2007-11-01 Hirose Electric Co Ltd Slightly acidic water generator
KR100777395B1 (en) 2006-12-27 2007-11-28 씨제이 푸드 시스템 주식회사 Device for generating sodium hypochloride
KR100825393B1 (en) 2006-12-27 2008-04-29 씨제이 푸드 시스템 주식회사 Device for generating sodium hypochloride
WO2010135947A1 (en) * 2009-05-25 2010-12-02 百事通有限公司 Electrolytic system for producing hypochlorous acidic water
WO2011077875A1 (en) * 2009-12-25 2011-06-30 森永乳業株式会社 Electrolyzed water producing device
KR101142833B1 (en) 2010-03-29 2012-05-08 동인메디텍 주식회사 Apparatus for manufacturing of hypochlorous acid water
JP2019189887A (en) * 2018-04-18 2019-10-31 株式会社微酸研 Method for generating slightly-acidic hypochlorous acid water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283167A (en) * 2006-04-13 2007-11-01 Hirose Electric Co Ltd Slightly acidic water generator
KR100777395B1 (en) 2006-12-27 2007-11-28 씨제이 푸드 시스템 주식회사 Device for generating sodium hypochloride
KR100825393B1 (en) 2006-12-27 2008-04-29 씨제이 푸드 시스템 주식회사 Device for generating sodium hypochloride
WO2010135947A1 (en) * 2009-05-25 2010-12-02 百事通有限公司 Electrolytic system for producing hypochlorous acidic water
CN102666400A (en) * 2009-12-25 2012-09-12 森永乳业株式会社 Electrolysis water-making apparatus
WO2011077875A1 (en) * 2009-12-25 2011-06-30 森永乳業株式会社 Electrolyzed water producing device
JPWO2011077875A1 (en) * 2009-12-25 2013-05-02 森永乳業株式会社 Electrolyzed water production equipment
KR101396283B1 (en) 2009-12-25 2014-05-16 모리나가 뉴교 가부시키가이샤 Electrolyzed water producing device
JP5538431B2 (en) * 2009-12-25 2014-07-02 森永乳業株式会社 Electrolyzed water production equipment
US9403699B2 (en) 2009-12-25 2016-08-02 Morinaga Milk Industry Co., Ltd. Electrolysis water-making apparatus
KR101142833B1 (en) 2010-03-29 2012-05-08 동인메디텍 주식회사 Apparatus for manufacturing of hypochlorous acid water
JP2019189887A (en) * 2018-04-18 2019-10-31 株式会社微酸研 Method for generating slightly-acidic hypochlorous acid water
JP7093541B2 (en) 2018-04-18 2022-06-30 株式会社微酸研 Method of producing slightly acidic hypochlorous acid water

Similar Documents

Publication Publication Date Title
KR100970708B1 (en) Method and apparatus for producing slight acidic hypochlorous acid water
US20110135562A1 (en) Two stage process for electrochemically generating hypochlorous acid through closed loop, continuous batch processing of brine
EA030556B1 (en) Electrolyzed water generating method and generator
JP2004267956A (en) Method for producing mixed electrolytic water
JPH09262583A (en) Preparation of acidic water and alkaline water
KR20200079624A (en) Apparatus for manufacturing of weak-acidic hypochlorous acid water
US7695606B2 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JP2007275778A (en) Electrolytic water producer and method of manufacturing electrolyzed water
TWI646223B (en) Apparatus and method for producing chlorine dioxide
JP2009136814A (en) Preparation method of weak acidic electrolytic water
JP2005138001A (en) Manufacturing method of aqueous hypochlorous acid
JP2007301541A (en) Slightly acidic electrolyzed water generation method and apparatus
US9533897B2 (en) Method for electro-chemical activation of water
KR100943673B1 (en) Method and equipment for generating slightly acidic electrolyzed water
EP1721868A1 (en) Additive solution for use in the production of electrolyzed hypochlorous acid-containing sterilizing water
JPH0938655A (en) Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor
JP2627101B2 (en) Additive chemicals for the production of electrolytic hypochlorous acid sterilized water
JP4726821B2 (en) Method for preparing cleaning liquid for sterilization
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
JP2001191079A (en) Electrolytic water forming device
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP2892121B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP4130763B2 (en) Generation method of non-oxidizing strong acid water
JP2001246383A (en) Electrolyzed water forming device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109