JP2005137857A - Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same - Google Patents

Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same Download PDF

Info

Publication number
JP2005137857A
JP2005137857A JP2003413951A JP2003413951A JP2005137857A JP 2005137857 A JP2005137857 A JP 2005137857A JP 2003413951 A JP2003413951 A JP 2003413951A JP 2003413951 A JP2003413951 A JP 2003413951A JP 2005137857 A JP2005137857 A JP 2005137857A
Authority
JP
Japan
Prior art keywords
apatite
rice bran
bone
raw material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413951A
Other languages
Japanese (ja)
Inventor
Hideaki Tanaka
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003413951A priority Critical patent/JP2005137857A/en
Publication of JP2005137857A publication Critical patent/JP2005137857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a raw material of apatite as a raw material of an artificial bone material containing bone-forming cells. <P>SOLUTION: A calcium phosphate raw material with much calcium phosphate, high purity, and uniformity is obtained by ashing rice bran and by removing an alkali soluble component and a carbon component. By mixing the calcium phosphate with calcium chloride, magnesium chloride, etc., kneading with water to make clay, pouring the clay into a mold, drying molded clay, and calcining in an incinerator at 800 to 1,200°C, hard artificial apatite bones are formed. A porous apatite bone forming body is made by carbonizing and ashing a mixed burnable material. A raw material of the rice bran ash is also used as a desiccant for wakame seaweed, kelp, etc., a basement for cultured seaweed for enrooting in the sea, and a nutritional supplement for fermenting bread. It is also used with plaster and as a building material of a bulking material of cement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

米糠は7〜8%の燐酸を保持し、燐酸肥料として利用されたが農薬の含有が多くなり白米の精白化が進み米糠量が更に増大し、過剰米糠の有効利用が要求された。
一方人体の組織の細胞の解明が次第に明らかとなり、幹細胞中の遺伝子の行動も明らかになり、高齢者の骨ソ症治療に対して幹細胞による造骨作用が発展してアパタイトの燐酸カルシウムとの組合せによる迅速な造骨作用を呈する事が明確となり、アパタイト原料の量的生産が問題となり、米糠焼灰化が注目される様になった。この米糠の焼却灰には燐酸分とカルシウムが多く米モミ殻には燐酸が少なく硅酸分が多いのでアパタイト原料としてはあまり興味がない。しかし米糠にはアパタイト原料として燐酸が7〜8%も入っていてカルシウムの加減で適したものができる。特に焼却灰はナノ粒子の状態で得られるので造形用に適している。アパタイトの化学式はCao−CaPoである。
Rice bran retained 7-8% phosphoric acid and was used as a phosphate fertilizer. However, the amount of pesticides increased, white rice became more refined and the amount of rice bran further increased, and the effective use of excess rice bran was required.
On the other hand, the elucidation of the cells of the human tissue has gradually become clear, the behavior of genes in the stem cells has also become clear, and the osteogenesis by stem cells has been developed for the treatment of osteoporosis in the elderly, combining apatite with calcium phosphate It became clear that it had a rapid bone-forming effect due to, and quantitative production of apatite raw materials became a problem, and rice bran ashing became a focus of attention. This incinerated ash of rice bran has a high content of phosphoric acid and calcium, and the rice fir shell has a low amount of phosphoric acid and a high content of oxalic acid, so it is not very interesting as a raw material for apatite. However, rice bran contains 7-8% phosphoric acid as an apatite raw material and can be made suitable by adjusting calcium. Incineration ash is particularly suitable for modeling because it is obtained in the form of nanoparticles. The chemical formula of apatite is Cao-Ca 2 Po 5 .

近年分子生物化学や遺伝子や蛋白質構造の解明によって、人間は造骨作用のメカニズムが明らかとなりセラミック加工の発展により人工アパタイトの成型焼成が自由に行える様になり、その人工アパタイトセラミック多孔質の人工骨の研究が盛んとなり更に幹細胞の培養が可能となり、液体ガスによる急速冷凍による保管技術の発展によって高齢者特有の人骨の摺りへりの改善加工に役立つ様になったが、この細胞の生産に合わせて人工アパタイトの粗原料の開発も必要となってきた。  In recent years, elucidation of molecular biochemistry and gene and protein structure has made it possible for humans to elucidate the mechanism of osteogenesis, and the development of ceramic processing has made it possible to freely mold and fire artificial apatite. The artificial apatite ceramic porous artificial bone In addition, the development of storage technology by rapid freezing with liquid gas has made it possible to improve the processing of human bone peculiar to the elderly. Development of raw materials for artificial apatite has also become necessary.

品質の一定したアパタイト原料粗材として米糠を焼成した焼却灰を加工して使用する事にした。
人骨の多くは過剰であっても法的制限があり、獣の骨や魚の骨にはバラツキがあり加工にもまた利用にも問題があった。また天然の燐酸砿では不要な不純物が多く含有し精製には手間がかかる欠点がある。
We decided to process and use incinerated ash obtained by baking rice bran as a raw material for apatite raw material with constant quality.
Many human bones have legal restrictions even when they are excessive, and there are variations in the bones of beasts and fishes, which have problems in processing and use. In addition, natural phosphoric acid soot contains a lot of unnecessary impurities and has a drawback that it takes time and effort for purification.

本発明は米糠の原料を使用する理由として、過剰な米糠が国内で年間1,500万トンもあり、東南アジア、中国、韓国、米国、カナダを入れると膨大な量が得られる事、燐酸含有量が多くアパタイト原料として安定している事、焼却灰より作る事で加工が容易である。  The present invention uses 15% of rice bran as the reason for using rice bran raw material in Japan, and a huge amount is obtained when Southeast Asia, China, Korea, the United States and Canada are added. It is easy to process by making it from incinerated ash because it is stable as a raw material for apatite.

このアパタイトの成型加工、特に多孔質化する事により幹細胞が吸収増殖する多孔質加工が問題となる。また加熱温度と焼成時間等が問題となり、人骨の簡要な形状や大きさ等が問題となる造骨細胞とアパタイト多孔質成型体はまた圧縮強度が150kg/cm以上の強度が必要であるから、多孔質を更に焼結する必要があり、そのためには硅酸、アルミナ、カルシウム、マグネシウム、鉄の混融が必要となるが、鉄は焼結すると収縮し且つまた、酸に弱い欠点があるからあまり使用出来ないが、焼結温度を低下し焼結しやすいこのアパタイトを動物の骨材のアパタイトを粉末化して使用する事もあるが、通常は焼成して粉末化し、塩化マグネシウムや塩化カルシウム10%水液と1%ポパール樹脂液と繊維粉で粗練りして成型したものを乾燥して800〜1000℃で焼成して硬化せしめるが、強度を高めるにはジルコニウム酸化物を1%〜5%入れると焼成温度を1000℃に高める事も出来る。
この多孔質化は造骨細胞を培養して注射して含浸せしめるにも含浸率の高い事が大切であるからこれを注意する必要がある。
This apatite molding process, particularly the porous process in which stem cells absorb and proliferate by making them porous, is a problem. In addition, the osteoclast and apatite porous molded body, which have problems such as heating temperature and firing time, and the simple shape and size of human bone, also require compressive strength of 150 kg / cm 3 or more. It is necessary to further sinter the porous material. For this purpose, oxalic acid, alumina, calcium, magnesium and iron must be mixed and melted. However, this apatite, which is easy to sinter by lowering the sintering temperature, may be used by pulverizing animal aggregate apatite, but it is usually calcined and pulverized to produce magnesium chloride or calcium chloride. What was molded by roughly kneading with 10% aqueous solution, 1% popal resin solution and fiber powder, dried and baked and cured at 800-1000 ° C. If 5% is added, the firing temperature can be increased to 1000 ° C.
In order to make this porous, it is necessary to pay attention to the fact that a high impregnation rate is important for culturing osteoblasts and impregnating them by injection.

米糠を加熱して灰化したものもアパタイトを得るが、造骨細胞が多孔質のアパタイトに含浸して造骨作用を行うためには、アパタイトの中身が均一な多孔質を作る必要がある。またアパタイト成型物が圧縮強度150kg/cm以上であることが必要であり、このために焼成温度が充分高くする必要があるが、温度が上昇し硝子化すると多孔質の一部が潰れる事がある。そのためにはカルシウムやマグネシウムやアルミナや鉄、硅酸を適度に配合して組織の結着性を高める必要がある。A rice cake is heated and incinerated to obtain apatite. However, in order for the bone-forming cells to impregnate porous apatite and perform bone-forming action, it is necessary to make the content of the apatite uniform. In addition, it is necessary that the apatite molded product has a compressive strength of 150 kg / cm 3 or more. For this reason, the firing temperature needs to be sufficiently high, but if the temperature rises and becomes vitrified, part of the porous material may be crushed. is there. For that purpose, calcium, magnesium, alumina, iron, and oxalic acid need to be appropriately blended to increase the tissue binding.

課題を解決しようとする課題The challenge to solve the problem

米糠をアパタイト原料とするには生産コストを低下するために12%前後の脂肪酸を脂肪回収し、再利用する。農薬を除去するために水溶液に米糠を分散させて、電子レンジで2〜3%の農薬を揮散させた後、バチルス菌発酵を行い。蛋白細胞や脂肪細胞を単離分離し過酸化脂肪発生を防ぎ、焼却を均等に行われる様に電子レンジで加熱乾燥してロータリーキルンに導入して焼却し、同時にアパタイト原料灰を回収する。これはアルカリ性であるので浸水し塩化カルシウムや塩化マグネシウムで中和して水洗し、瀘別乾燥して粉末を作り、粉砕してアパタイト原料を作る。  When rice bran is used as an apatite raw material, about 12% fatty acid is recovered and reused in order to reduce the production cost. In order to remove pesticides, rice bran is dispersed in an aqueous solution, and 2 to 3% of pesticides are volatilized in a microwave oven, followed by Bacillus fermentation. It isolates and separates protein cells and fat cells to prevent the generation of peroxidized fat, heats and dries them in a microwave oven so that they can be evenly burned, introduces them into a rotary kiln and burns them, and simultaneously collects apatite ash. Since this is alkaline, it is soaked in water, neutralized with calcium chloride or magnesium chloride, washed with water, separated and dried to make a powder, and pulverized to make an apatite raw material.

成型するには繊維粉とポパール水液をアパタイトに加えて素練りしたものを成型機で金型中に圧縮して成型し、取り出して自然乾燥したものを焼成炉中に導入して800℃〜1200℃で焼成して成型物を作り、更に焼しめて焼成して多孔質人工骨材を作るが、これを水洗して殺菌する造骨多孔質セラミックを作る。強度を高めるにはセラミックを硝子化する必要があり、焼却温度を高めれば硝子化するが、多孔質が破れるから酸洗する必要もできるが、モミ殻の焼却灰の硅酸を高めあるいはジルコニウムを入れて圧縮強度を150kg/cmとするには硝子化して酸洗いして多孔質硝子とする事もある。For molding, fiber powder and popal water solution added to apatite and masticated are compressed into a mold with a molding machine, taken out and dried naturally and introduced into a baking furnace at 800 ° C ~ It is fired at 1200 ° C. to form a molded product, and further fired and fired to produce a porous artificial aggregate, which is washed with water to make a bone-forming porous ceramic to be sterilized. In order to increase the strength, it is necessary to vitrify the ceramic, and if the incineration temperature is increased, it will become vitrified.However, since the porous structure is broken, pickling may be necessary. In order to obtain a compressive strength of 150 kg / cm 3 , it may be vitrified and pickled to form porous glass.

発明の効果The invention's effect

米糠を原料としてこれを焼成して灰化したものは、アパタイトがナノ微粒子からできていて、脱アルカリを行った物は純度の高いアパタイトが均一のものとして得られる。
これを更に接合剤と共に水で成型するに多孔質剤を入れるには繊維質の粉末の添加がより含浸性が強くなり、これに塩化カルシウムや塩化マグネシウ厶やジルコニウム、硅酸ソーダー、コラーゲン等を使用すると圧縮強度が200kg/cm以上のものが得られ加工が容易となる。また焼結温度を多孔質の状態で上昇するので更に強度は増大し造骨細胞の住家として充分な働きをする。また米糠アパタイトは人骨に近い成分からなるので造骨の際の歪みが少ない。また溶解しても障害は少ない。
A rice bran is used as a raw material and baked to make it ashed, and the apatite is made of nano-fine particles, and the dealkalized product is obtained with a high purity apatite.
In order to add a porous agent to form this with water and a bonding agent, the addition of fibrous powder makes the impregnation more intense, and this includes calcium chloride, magnesium chloride, zirconium, sodium oxalate, collagen, etc. When used, a material having a compressive strength of 200 kg / cm 3 or more is obtained, and the processing becomes easy. In addition, since the sintering temperature is raised in a porous state, the strength is further increased, and it works sufficiently as a resident of osteoblast. In addition, rice bran apatite is composed of components close to human bones, so there is little distortion during bone formation. There are few obstacles even when dissolved.

長寿化によって骨そしょう症の多くの患者に対応出来る米糠焼却灰の利用によって多量の人工骨材の補給が可能となった。
米糠の焼却灰から作ったアパタイトは量的均等品質のものができる。また人体に使用する場合は人工骨粗材の成型セラミック加工するばかりでなくナノ粉末として健康食品として摂取する事も出来る。また幹細胞群に混合して注射する事も可能であるので、関節骨ばかりでなく脊椎骨にも利用されるほか、人工入歯の粗材に利用される。またパンやベーキングパウダー材料としても利用されその用途は広い。
この造骨細胞は常法によって培養し、流動性を保ち、増殖余剰の細胞は液体ガス中で冷凍保存すれば変化は少なくなる。
With the use of rice bran incineration ash that can be used for many patients with osteoporosis due to longevity, a large amount of artificial aggregate can be supplied.
Apatite made from incinerated ash of rice bran can be of quantitatively equivalent quality. Moreover, when using it for a human body, it can be ingested as a health food as a nanopowder as well as processed ceramics of artificial bone coarse material. In addition, since it can be mixed and injected into a stem cell group, it is used not only for joint bones but also for vertebral bones, and also for coarse materials for artificial dentures. It is also used as a bread and baking powder material and has a wide range of uses.
If this osteoblast is cultured by a conventional method, the fluidity is maintained, and the surplus cells proliferate are stored in a liquid gas in a frozen state, so that the change is reduced.

アパタイトの原料として米糠を粉砕したものを焼成灰化せしめた焼却灰にはアルカリ性のソーダーやカリを含んでいるので水洗して弱アルカリ性か中性にして灰を瀘別乾燥したものを使用する必要があり、焼却すると米糠中には7〜8%の燐酸が含有されていて、別に米糠中に自然に含浸したカルシウムやマグネシウムや鉄も焼成によって反応して一部に燐酸カルシウムも形成されるが、ソーダーやカリが存在するとカルシウムに水酸基が燐酸基と共に存在する様になる。また多孔質化するには米糠のナノ粉砕粉をこの焼却灰に混合し、多孔質形成の強化剤としてアルミナ、硅酸、マグネシウム、カルシウムを混合して融点を高める必要がある。またその多孔質化が均等に形成される必要がある。
このために多孔質化するために混合する米糠は均一に分散するように素練りするが、強度を高めるには成型を圧縮して行うと共に、結合剤として塩化マグネシウムや塩化カルシウムとポパールやコラーゲンを添加混合すると緻密な多孔質が成型され、これを焼成によって形成される。しかる時は米糠粉は高温加熱800〜1200℃に於いて炭化し、炭化後に灰化して多孔質強化膜化する。この多孔質はアパタイト結着して強化される。
この比重は2.2のものが多孔質化により1.7に軽量化される。またこの多孔気泡は連続気泡を形成する。
The incinerated ash obtained by burning and ashing the rice bran as a raw material for apatite contains alkaline soda and potash, so it must be washed with water to make it weakly alkaline or neutral, and the ash must be separated and dried. When incinerated, 7-8% phosphoric acid is contained in rice bran, and calcium, magnesium, and iron naturally impregnated in the rice bran are reacted by firing to form calcium phosphate in part. When soda and potash are present, a hydroxyl group is present in calcium together with a phosphate group. In order to make it porous, it is necessary to mix nano-ground powder of rice bran with this incinerated ash and mix alumina, oxalic acid, magnesium and calcium as reinforcing agents for forming a porous layer to increase the melting point. Moreover, the porosity needs to be formed uniformly.
For this purpose, the rice bran mixed to make it porous is kneaded so that it is evenly dispersed, but in order to increase the strength, the mold is compressed and magnesium chloride, calcium chloride, popal and collagen are used as binders. When added and mixed, a dense porous material is formed and formed by firing. At that time, the rice bran powder is carbonized at 800-1200 ° C. at high temperature and is ashed after carbonization to form a porous reinforced film. This porosity is strengthened by apatite binding.
The specific gravity of 2.2 is reduced to 1.7 by making it porous. Moreover, this porous bubble forms an open cell.

図1は米糠より焼成したアパタイト粉とその成型焼成の人工多孔アパタイトの製法の工程図を示す。米糠粉(A)をコンベアー(1)によりオートクレーブ(2)の投入口(3)から投入し密閉し、ヘキサンアルコールタンク(4)からポンプ(5)によりヘキサンアルコール溶媒をオートクレーブにパイプ(6)から導入してパイプ(6’)から溶媒を循環せしめてた脱油脂を行う。必要に応じて加熱器(7)により加温して油脂分を抽出する。(9)は温度調節器を経て分溜器(8)に入り分溜油脂タンク(10)に入り溶媒はポンプ(11)からオートクレーブ(2)にパイプ(12)から導入する。
脱脂した米糠はパイプ(13)からフィルタープレス(14)で瀘別された溶媒はタンク(16)に貯溜して溶媒を回収し、米糠(A’)は移動車(17)により乾燥室(18)を経て乾燥した米糠(A’)をオートクレーブ(21)に投入して水に栄養剤を入れて発酵菌(バチルス菌)を入れて260℃で30分間発酵する。発酵した米糠(A”)をフィルタープレス(24)により瀘別し、洗滌水を(27)のポンプで押し込み洗滌した米糠(A”)を乾燥器(18)に送り込み、乾燥したものをロータリーキルン(29)のホッパー(30)に投入してバーナー(30’)により焼却する。焼却灰はタンク(31)に誘導して回収し洗滌タンク(32)に搬送して投入し、水洗ポンプ(33)フィルタープレス(34)で瀘別水洗して固形アパタイトペーストを(35)の乾燥室で乾燥したものをアパタイト粗材として回収し、フィルタープレス(34)から分離したアルカリ水は浄化器(36)(37)で中和した浄水を稀釈して放流する。フィルタープレスで脱水した米糠焼却灰はロータリーキルン(29)から取り出して水洗した焼却灰の固形物(38)を台車に搬送し、乾燥器(39)に入り乾燥させたアパタイトをホッパー(39’)に入れニーダー(40)で混合素練りしたものを金型(41)に圧入してプレス機(42)で圧縮成型し離型した後1000℃の焼成炉中で焼成して人工骨成型物を作る。
このアパタイトは常法によって陶磁器加工の要領で加工する。
FIG. 1 shows a process diagram of a method for producing an apatite powder fired from rice bran and an artificial porous apatite formed and fired. The rice bran flour (A) is charged from the inlet (3) of the autoclave (2) by the conveyor (1) and sealed, and the hexane alcohol solvent is supplied from the pipe (6) to the autoclave by the pump (5) from the hexane alcohol tank (4). The deoiled fat which introduce | transduced and circulated the solvent from the pipe (6 ') is performed. If necessary, it heats with a heater (7) and extracts fats and oils. (9) enters the fractionator (8) through the temperature controller, enters the fractionated oil and fat tank (10), and the solvent is introduced from the pump (11) to the autoclave (2) through the pipe (12).
The degreased rice bran is separated from the pipe (13) by the filter press (14) and the solvent is stored in the tank (16) to recover the solvent. The rice bran (A ′) is dried by the moving vehicle (17) (18). ), The rice bran (A ′) that has been dried through is introduced into an autoclave (21), a nutrient is added to water, fermented bacteria (Bacillus) are added, and fermented at 260 ° C. for 30 minutes. The fermented rice bran (A ″) was separated by a filter press (24), the washing water was pushed in with the pump (27), and the washed rice bran (A ″) was sent to the dryer (18). 29) is put into the hopper (30) and incinerated by the burner (30 '). The incinerated ash is recovered after being guided to the tank (31), transported to the washing tank (32), put into the washing tank (32), washed with water with a filter press (34), and the solid apatite paste is dried (35). The material dried in the chamber is recovered as a crude apatite, and the alkaline water separated from the filter press (34) is diluted with purified water neutralized by the purifiers (36) and (37) and discharged. The rice bran incinerated ash dehydrated by the filter press is taken out of the rotary kiln (29) and washed with water. The solids of the incinerated ash (38) are transported to the carriage, and the dried apatite enters the drier (39) to the hopper (39 '). What was mixed and kneaded with a filling kneader (40) is pressed into a mold (41), compression molded with a press machine (42), released from the mold, and then fired in a 1000 ° C. firing furnace to produce an artificial bone molding. .
This apatite is processed in the manner of ceramic processing by a conventional method.

この米糠を脱油脂して発酵による脱農薬を行った加工米糠の焼却灰化物は5%〜8%である。これを更に脱アルカリすると3%に減ずる。これを焼成したものはアパタイト即ち燐酸カルシウム塩が得られる。この燐酸カルシウムは砒素硫黄はなく、食品としても無害であり、パン発酵のペキングパウダー原料にも使用され、人工歯や人工骨の原料として最適である。
一般の天然燐酸砿石の様な毒性成分はないから食品用の燐酸原料としても利用される。
The incinerated ash product of processed rice bran obtained by deoiling and fat-degrading this rice bran and removing the agricultural chemical by fermentation is 5% to 8%. When this is further dealkalized, it is reduced to 3%. A product obtained by firing this is apatite, that is, a calcium phosphate salt. This calcium phosphate is free of arsenic sulfur, is harmless as a food, is used as a raw material for baked peking powder, and is optimal as a raw material for artificial teeth and artificial bones.
Since there is no toxic component like general natural phosphate, it is also used as a phosphate raw material for food.

人工骨の配合例は次の如くである。
例4 米糠灰アパタイト粉 100g
塩化カルシウム 5g
水 120g
米糠粉 7g
1%ポパール水 5g
例5 米糠灰アパタイト粉 100g
塩化アルミナ 5g
水 60g
米糠粉 10g
塩化マグネシウム粉 3g
硅酸カルシウム 3g
1%ポパール樹脂水 70g
例3 アパタイト粉 100g
3%硅酸ソーダー 30g
炭酸カルシウム 10g
米糠粉 8g
酸化マグネシウム 1g
酸化ジルコニウム 3g
水 100g
例4 アパタイト石膏ボード
石膏粉 100g
水 100g
アパタイト粉 50g
重亜燐酸カルシウム 10g
5%ポパール水 30g
例4は建材壁や地下盤に利用するアパタイト石膏ボードである。石膏のように水に溶解する事がない。
例5 乾燥ワカメ
米糠焼却灰 100g
養殖ワカメ(海草) 100g
例5の配合は海洋養殖による海草ワカメを引き上げて採集したものを乾燥する前にこの米糠焼却灰を塗着して天日で乾燥して、水洗して乾燥して乾燥ワカメを作る。
A blending example of the artificial bone is as follows.
Example 4 Rice bran apatite powder 100g
Calcium chloride 5g
120g of water
7g of rice bran powder
1% popal water 5g
Example 5 100g rice ash apatite powder
Alumina chloride 5g
60g of water
Rice bran powder 10g
Magnesium chloride powder 3g
Calcium oxalate 3g
70% 1% popal resin water
Example 3 Apatite powder 100g
3% sodium oxalate 30g
Calcium carbonate 10g
Rice flour 8g
Magnesium oxide 1g
Zirconium oxide 3g
100g of water
Example 4 Apatite gypsum board
100 g of gypsum powder
100g of water
Apatite powder 50g
Calcium biphosphite 10g
30% 5% popal water
Example 4 is an apatite gypsum board used for building material walls and basements. It does not dissolve in water like gypsum.
Example 5 Dried seaweed
Rice bran incineration ash 100g
100g of cultured seaweed (seaweed)
The composition of Example 5 is that the seaweed wakame obtained by marine aquaculture is collected and dried before applying to the rice incineration ash, dried in the sun, washed with water and dried to make a dried wakame.

図2は焼成成型した人工骨の側面図を示し、米糠から加工したアパタイト成型体(関節)(1a)である。この成型体は金型にアパタイト配合体に水を加えて素練りしたものを詰め込んで成型したアパタイト混合物を離型して天日乾燥する。この乾燥アパタイト混合成型物を焼成炉に誘導して800〜1200℃の温度で2時間加熱し、徐々に冷ましながら常温に戻したアパタイト成型体(1a)を取り出し、アパタイトの上部突起(2a)の中央に旋盤で穿孔して螺線孔を作る。また突起に面なる底部(3a)を末広として多孔質アパタイトとする。この多孔質アパタイトはナノ粒子粉とした米糠によって炭化し、炭酸ガスとなり多類穿孔を作る。米糠加工のアパタイトは比較的に圧縮強度が低いので強化剤を混合して改善する。(4a)は対照骨骼となる関節を示し、アパタイト人工成型体(1a)の下部空間(5a)に造骨細胞液(W)を注入すると造骨細胞は時間と共に増殖し拡大し、成型体(1a)の多孔質に侵入して人工的成型アパタイト骨を住家として繁殖し、人工アパタイト成型骨の平面底辺の破線を球状に造骨して摩耗した球骨代用人工アパタイト成型体の表面の造骨として円形部を作る。  FIG. 2 shows a side view of the calcined artificial bone, which is an apatite molded body (joint) (1a) processed from rice bran. This molded body is filled with a mold prepared by adding water to an apatite blend and masticated, and the molded apatite mixture is released and dried in the sun. The dried apatite mixed molded article is guided to a firing furnace and heated at a temperature of 800 to 1200 ° C. for 2 hours, and the apatite molded body (1a) returned to room temperature while being gradually cooled is taken out, and the upper protrusion (2a) of the apatite is removed. A spiral hole is made by drilling in the center with a lathe. Also, the bottom (3a) facing the protrusion is diverged to form porous apatite. This porous apatite is carbonized by the rice bran made into nano-particle powder, and becomes carbon dioxide gas, making many kinds of perforations. Apatite processed with rice bran has a relatively low compressive strength, so it can be improved by adding a reinforcing agent. (4a) shows the joint that becomes the control osteoclast. When the osteoblast fluid (W) is injected into the lower space (5a) of the apatite artificial molded body (1a), the osteoblast grows and expands with time, and the molded body ( The bone formation on the surface of the artificial apatite molded body that substitutes for the spherical bone, which invaded the porous material of 1a), propagated as a dwelling of artificially molded apatite bone, and formed by wearing the broken line at the bottom of the plane of the artificial apatite molded bone into a spherical shape As a circular part.

図3は造骨細胞とアパタイト多孔質の人工骨の側面図を示し、図2の造骨した状態を示している。増殖した人工骨の突起骨の底部は屈曲して球状化し、上突起(2a)の穿孔(2’a)に差し込み金属ステンレスボルト(7a)を螺着して上骨と連結する。
増殖した造骨(6a)は屈曲した底面を形成する。(4a)は下部関節骨で空間(5a)を人工増殖骨で埋め込む様に成長する。(8a)は関節部を示す。
FIG. 3 shows a side view of an osteoblast and an apatite porous artificial bone, and shows the bone-formed state of FIG. The bottom part of the prosthetic bone of the prosthetic bone that has proliferated is bent and spheroidized, inserted into the perforation (2′a) of the upper protrusion (2a), and screwed with a metal stainless bolt (7a) to be connected to the upper bone.
The increased bone formation (6a) forms a bent bottom surface. (4a) grows so as to embed the space (5a) with artificial proliferative bone in the lower joint bone. (8a) shows the joint.

図4は養殖海草の根付け海底基盤の側面図を示す。  FIG. 4 shows a side view of the seabed base of the cultured seaweed.

米糠には7〜8%の燐酸が含有されミネラルのカルシウム、マグネシウム、ソーダー、カリも多く含まれている。これを焼却して水洗して回収した焼却灰の精製灰は人工骨アパタイト原料として重要であり、純度が高く不純物が少ない特徴がある。また品質が比較的安定している。従って、この焼却灰を使って成型多孔質化した人工骨は、骨そしょう症による関節の炎症摩耗骨の補強改善に利用される。またこの造骨細胞液をこの多孔アパタイトに含浸する時は、人工骨材に増殖造成され障害を改善する。
またアパタイト粉に人工骨細胞を体内に注入すると骨間患部を増殖によって改善する。
また動物の骨粉のアパタイト粉と混合成型焼成によって併用したアパタイト商品が得られるばかりでなく、建材原料にも使用される。そのほかワカメなど養殖海草の根付け基盤に利用される。また石膏とアパタイトの混合物の成型物は生産性を高めると共に、燐酸カルシウ厶は服用の健康食品として利用される。
また米糠を原料として人工骨のアパタイト粉やその成型体を作るには、まず脱油脂を行って8〜10%の油脂を抽出し、これを石鹸や化粧品や薬品の原料として使用した後の抽出残渣を焼却して焼却灰を作るにあるが、これを徐燃した燻製魚畜産加工に利用し、出来た灰を焼成してアパタイトの原料として水洗して、脱アルカリ精製を行う。これを包着剤として海草の乾燥灰として利用する事も可能であり、この組合せによって生産性の合理化が可能となり、より付加価値を高める事が出来る。
Rice bran contains 7-8% phosphoric acid and is rich in minerals such as calcium, magnesium, soda and potash. The refined ash of incinerated ash recovered by incineration and washing with water is important as a raw material for artificial bone apatite, and is characterized by high purity and low impurities. The quality is relatively stable. Therefore, the artificial bone formed into a porous shape by using this incinerated ash is used for improving the reinforcement of the inflammatory wear bone of the joint due to osteoporosis. Moreover, when this bone-forming cell solution is impregnated into this porous apatite, it is proliferated and formed on an artificial aggregate to improve the obstacle.
In addition, when artificial bone cells are injected into the body into apatite powder, the bone-affected area is improved by proliferation.
In addition to apatite products used in combination with animal bone powder apatite powder and mixed-firing, it is also used as a building material raw material. In addition, it is used as a rooting base for cultured seaweed such as seaweed. A molded product of a mixture of gypsum and apatite increases productivity, and calcium phosphate is used as a health food for taking.
In addition, to make artificial bone apatite powder and its molded body using rice bran as a raw material, first deoiled oil is extracted to extract 8-10% oil and fat, which is extracted after using it as a raw material for soap, cosmetics and drugs. Incineration ash is made by incineration of the residue. This is used for smoked fish and livestock processing that gradually burns, and the resulting ash is fired and washed with apatite as a raw material for dealkali purification. This can also be used as a dry ash of seaweed as a wrapping agent, and this combination makes it possible to rationalize productivity and further increase added value.

米糠より焼成したアパタイト粉とその成型焼成の人工多孔アパタイトの製造の工程図  Process diagram of manufacturing apatite powder fired from rice bran and artificial porous apatite by molding and baking 成型焼成した人工骨の側面図  Side view of molded and fired artificial bone 造骨細胞とアパタイトの多孔質の人工骨の側面図  Side view of a porous artificial bone made of osteoblasts and apatite 養殖海草の根付け海底基盤の側面図  Side view of the seabed basement of cultured seaweed

Claims (1)

米糠を脱脂し、発酵によって脱農薬処理した精製米糠を瀘別し、水洗した精製米糠を乾燥して焼却した灰をアパタイト粉として回収し、これを水洗して脱アルカリ精製した米糠アパタイト及びこれを成型加工したものを焼成して人造骨材粉や人造骨セラミック多孔質の成型体と造骨細胞組合体。  The rice bran was defatted, the purified rice bran treated by degreasing by fermentation was separated, and the washed rice was dried and incinerated to recover the ash, which was recovered as apatite powder. An artificial bone powder and an artificial bone ceramic porous molded body and an osteoblastic cell combination are fired by molding.
JP2003413951A 2003-11-06 2003-11-06 Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same Pending JP2005137857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413951A JP2005137857A (en) 2003-11-06 2003-11-06 Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413951A JP2005137857A (en) 2003-11-06 2003-11-06 Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005137857A true JP2005137857A (en) 2005-06-02

Family

ID=34696962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413951A Pending JP2005137857A (en) 2003-11-06 2003-11-06 Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005137857A (en)

Similar Documents

Publication Publication Date Title
EP0430232B1 (en) Ash and paper treatment
KR100314115B1 (en) a method of producing a interior panel for construction
KR100900330B1 (en) Plant growth promoting and purifing poruos bioceramic process for its preparation recycling waste sand and dust in iron foundry
JP2005137857A (en) Bone forming material made from ash collected after rice bran incineration and method for manufacturing the same
KR20050109437A (en) Pottery for nature funeral
CN104876540A (en) Preparation method of shale sludge haydite
KR20010066711A (en) Bamboo Salt Using Veinstone
JP6064246B2 (en) Fish bone ash for bone china and method for producing the same
CN102166784A (en) Production method for forming attapulgite porous ceramic by pressing method
TWI364408B (en) A method for sintering aggregates from wasted sludge
JPH11157913A (en) Baking of baked product
CN104351070A (en) Cat litter prepared by reuse of urban garbage and preparation method of cat litter
KR20200119163A (en) Glaze Composition Comprising Urine Sludge and Method For Preparing Same
CN102180651A (en) Hollow grouting method for producing attapulgite porous ceramic
CN109437841A (en) A kind of high-compactness sludge brick and preparation method thereof
JPH05208044A (en) Natural hydroxyapatite porous body and its manufacture
KR102513620B1 (en) Substrate composition for ceramics with high bending strength, including synthetic bone ash and agalmatolite, and method for manufacturing the same
KR20010054313A (en) brick and manufacturing method thereof
SK261092A3 (en) Method of transformation of surpluses polluted with harmful substances on solid matter
JP2982124B1 (en) Artificial lightweight aggregate and manufacturing method thereof
JPH03164411A (en) Novel fired apatite
KR20230145885A (en) Contrete
JP2003026468A (en) Method of manufacturing ceramic product using sewer sludge incineration ash as raw material
JP2006008960A (en) Polyfunctional wave motion charcoal kiln
JPH06345579A (en) Soil activating agent and production thereof