JPH05208044A - Natural hydroxyapatite porous body and its manufacture - Google Patents

Natural hydroxyapatite porous body and its manufacture

Info

Publication number
JPH05208044A
JPH05208044A JP4042078A JP4207892A JPH05208044A JP H05208044 A JPH05208044 A JP H05208044A JP 4042078 A JP4042078 A JP 4042078A JP 4207892 A JP4207892 A JP 4207892A JP H05208044 A JPH05208044 A JP H05208044A
Authority
JP
Japan
Prior art keywords
natural
bone
gas hole
hydroxyapatite
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4042078A
Other languages
Japanese (ja)
Inventor
Naohisa Takano
直久 高野
Katsuyoshi Ina
克芳 伊奈
Takuji Yoshimura
卓二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku Kogyo Co Ltd
Kanebo Ltd
Original Assignee
Taiyo Kagaku Kogyo Co Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Kogyo Co Ltd, Kanebo Ltd filed Critical Taiyo Kagaku Kogyo Co Ltd
Priority to JP4042078A priority Critical patent/JPH05208044A/en
Publication of JPH05208044A publication Critical patent/JPH05208044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To improve the biocompatibility of the natural hydroxyapatite with a living body by controlling the gas hole rate of the natural hydroxyapatite porous body which is obtained by baking the natural bone and the gas hole diameter to each specified range. CONSTITUTION:The natural hydroxyapatite powder which is obtained by mixing the natural bone such the bone of the fish as walleye pollack and the gas hole forming material such as nylon, polyester, and acryl group to from granular bodies and then to mold a green body through the drying process. The obtained green body is degreased at a low temperature of 500 deg.C or so by using a gas furnace or electrical furnace, and then heated at a high temperature of 800-1400 deg.C, and calcined. The gas hole diameter is controlled to 10-100mum according to the dimension of the mixed gas hole forming material. Further, the opened gas hole rate is controlled to 40-80% by properly restricting the baking contraction according to the mixing ratio fo the natural hydroxyapatite and the gas hole forming material or baking temperature. Accordingly, the biocompatibility with living body can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は骨充填材、人工骨、人工
歯根等生体材料に適した天然ヒドロキシアパタイト多孔
体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a natural hydroxyapatite porous body suitable for a biomaterial such as a bone filling material, artificial bone and artificial tooth root, and a method for producing the same.

【0002】[0002]

【従来の技術】ヒドロキシアパタイトは脊椎動物の骨や
歯を構成する生体硬組織の主要成分である。その為、生
体親和性に優れたセラミックス材料として注目されてお
り、人工骨、人工歯、人工歯根、骨充填材等生体材料へ
の応用が活発に進められている。中でもそれを多孔体に
仕上げたヒドロキシアパタイト多孔体は、生体内組織と
ヒドロキシアパタイトとの接触面積が大きい為、生体内
での活性が高く、人工骨等に適しているとされてきた。
しかしながらこれらのヒドロキシアパタイト多孔体は、
開気孔率が高々30%と低く、しかも気孔径が均一に制
御されていない為、生体内に埋設した場合ヒドロキシア
パタイト多孔体の気孔内を血管が成長せず、新骨の生成
が助長されない。しかもこれらのヒドロキシアパタイト
は合成物を使用している為、天然骨、歯牙等の硬組織に
含有されるカルシウム及びリン以外の微量元素を含有し
ていない。従って、生体適合性について未だ満足できる
ものはない。そして、生体内に埋設後、新骨と埋設する
ヒドロキシアパタイト多孔体が一体化する生体適合性に
優れたヒドロキシアパタイト多孔体の開発が望まれてい
る。
2. Description of the Related Art Hydroxyapatite is a major component of living hard tissues constituting bones and teeth of vertebrates. Therefore, it has been attracting attention as a ceramic material having excellent biocompatibility, and its application to biomaterials such as artificial bones, artificial teeth, artificial tooth roots and bone fillers has been actively promoted. Among them, a hydroxyapatite porous body obtained by finishing it into a porous body has a large contact area between a tissue in the living body and hydroxyapatite, and thus has a high activity in a living body and is considered to be suitable for an artificial bone or the like.
However, these hydroxyapatite porous materials are
Since the open porosity is as low as 30% and the pore diameter is not uniformly controlled, blood vessels do not grow in the pores of the hydroxyapatite porous body when embedded in a living body, and generation of new bone is not promoted. Moreover, since these hydroxyapatites are synthetic, they do not contain trace elements other than calcium and phosphorus contained in hard tissues such as natural bones and teeth. Therefore, nothing is still satisfactory regarding biocompatibility. Further, it is desired to develop a hydroxyapatite porous body having excellent biocompatibility in which new bone and the embedded hydroxyapatite porous body are integrated after being embedded in the living body.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、既存の
天然ヒドロキシアパタイト多孔体の有する上記諸問題点
について鋭意研究を続けた結果天然骨を焼成して得られ
る天然ヒドロキシアパタイト多孔体の気孔率、気孔径を
制御することにより上記問題点が解決し得ることを見出
し本発明を完成したものであってその目的とするところ
は、生体適合性に優れた天然ヒドロキシアパタイトを提
供するにある。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive studies on the above-mentioned problems of the existing natural hydroxyapatite porous body, and as a result, the pores of the natural hydroxyapatite porous body obtained by firing natural bone. It has been found that the above problems can be solved by controlling the rate and the pore diameter, and the present invention has been completed and the purpose thereof is to provide natural hydroxyapatite having excellent biocompatibility.

【0004】[0004]

【課題を解決するための手段】上述の目的は、(1)気
孔径が10〜100μm、開気孔率が40〜80%の連
通気孔を有する天然骨由来の天然ヒドロキシアパタイト
多孔体。並びに(2)気孔形成材が20〜60重量%、
純分換算で天然骨が40〜80重量%からなるグリーン
体を成型し、これを800〜1400℃で焼成する天然
ヒドロキシアパタイト多孔体の製造方法。により達成さ
れる。
Means for Solving the Problems The above-mentioned objects are as follows: (1) A natural hydroxyapatite porous body derived from natural bone having open pores having a pore diameter of 10 to 100 μm and an open porosity of 40 to 80%. And (2) 20 to 60% by weight of the pore-forming material,
A method for producing a natural hydroxyapatite porous body, which comprises molding a green body composed of 40 to 80% by weight of natural bone in terms of pure content and firing the green body at 800 to 1400 ° C. Achieved by.

【0005】本発明の骨格部をなすヒドロキシアパタイ
トは天然骨を出発原料とする。天然骨由来のヒドロキシ
アパタイトには、カルシウム塩およびリン塩から合成さ
れる所謂合成ヒドロキシアパタイトには含有されていな
いカルシウム、リン以外の微量元素を含んでいる為、合
成ヒドロキシアパタイトより坑化膿性、骨誘導性に優
れ、且つ異物反応が少ない等、生体適合性に優れる。天
然骨は一旦仮焼或は酵素処理などを経て残存有機物を極
力減らし、その粒子径が50μm以下、好ましくは10
μm以下に粉砕し、その後気孔形成材と共に成型し、焼
成工程を経て天然ヒドロキシアパタイト多孔体とする。
本発明に用いる天然骨としては、牛、豚、鶏等の家畜骨
やスケトウダラ、イワシ、サバ、サンマ等の魚骨が挙げ
られるが、それらのうち、生育海域が清浄な魚骨が好ま
しく、特に有害成分がほとんどなく、原料供給量が安定
しているスケトウダラの魚骨が好ましい。
The hydroxyapatite forming the skeleton of the present invention uses natural bone as a starting material. Natural bone-derived hydroxyapatite contains trace elements other than calcium and phosphorus that are not contained in so-called synthetic hydroxyapatite synthesized from calcium and phosphorus salts. It has excellent biocompatibility such as excellent inducibility and little foreign body reaction. Natural bone is subjected to calcination or enzyme treatment once to reduce the residual organic matter as much as possible, and the particle size is 50 μm or less, preferably 10 μm.
It is pulverized to a size of less than or equal to μm, and then molded together with a pore-forming material, and a natural hydroxyapatite porous body is obtained through a firing step.
Examples of the natural bone used in the present invention include livestock bones such as cows, pigs and chickens, walleye pollock, sardines, mackerel, fish bones such as saury, and among them, fish bones in which the growing sea area is clean are preferable, and particularly, Walleye pollack fish bones, which have a stable supply of raw materials with few harmful components, are preferable.

【0006】本発明の気孔径及び開気孔率は、骨生成能
即ち生体内に埋設後、血管の成長、新骨の生成に不可欠
な要素である。つまり、この適切な気孔径を有する連通
気孔の存在により血管は成長でき、新骨が生成される。
本発明の気孔径は、血管生成に適した気孔径に制御する
必要がある。気孔径は、10〜100μm、好ましくは
30〜80μmである。気孔径が10μm未満であると
血管生成は生じ難い。一方、100μmを越えると天然
ヒドロキシアパタイト多孔体の強度が低くなる問題が生
じる。本発明の気孔は連通気孔である必要がある。閉気
孔では血管は生成されない。本発明の開気孔率は40〜
80%、好ましくは50〜70%である。開気孔率40
%未満であると血管生成の効果が少なく、一方、80%
を越えると強度が低く成る問題が生じる。前述の如く、
本発明の気孔は連通気孔であるが、その形状は球状連
通、管状連通等あらゆる形状を取ることが出来るが、得
られる天然ヒドロキシアパタイト多孔体の強度が高い球
状気孔が好ましい。その開気孔率は、40〜80%と極
めて高い事が必要である。こうした高気孔率を得る為
に、本発明では気孔形成材を用いる。気孔形成材は焼成
工程で焼却除去されて、気孔を形成する。気孔率及び気
孔径は気孔形成材の寸法及び量を適宜選定する事により
厳密に制御できる。気孔形成材としては、例えば、ナイ
ロン、ポリエステル、アクリル、ポリエチレン、ポリプ
ロピレン等の有機質繊維、アクリル、スチレン、ポリエ
ステル、ポリエチレン、フェノール、ウレタン、エポキ
シ等の有機質樹脂粒子などを挙げる事が出来るが、勿論
こられに限定されるものではない。
The pore diameter and open porosity of the present invention are essential factors for bone formation ability, that is, for growth of blood vessels and generation of new bone after being implanted in a living body. That is, blood vessels can grow and new bone is generated due to the presence of the continuous vents having the appropriate pore diameter.
The pore diameter of the present invention needs to be controlled to a pore diameter suitable for blood vessel formation. The pore diameter is 10 to 100 μm, preferably 30 to 80 μm. When the pore diameter is less than 10 μm, blood vessel formation is unlikely to occur. On the other hand, when it exceeds 100 μm, there arises a problem that the strength of the natural hydroxyapatite porous body is lowered. The pores of the present invention need to be continuous vents. No blood vessels are created in closed pores. The open porosity of the present invention is 40 to
It is 80%, preferably 50 to 70%. Open porosity 40
% Is less than the effect of blood vessel formation, while 80%
If it exceeds, there arises a problem that the strength becomes low. As mentioned above,
Although the pores of the present invention are continuous pores, the shape can be any shape such as spherical communication, tubular communication, etc., but spherical pores having high strength of the obtained natural hydroxyapatite porous body are preferable. The open porosity needs to be extremely high at 40 to 80%. In order to obtain such a high porosity, a pore forming material is used in the present invention. The pore-forming material is incinerated and removed in the firing process to form pores. The porosity and pore diameter can be strictly controlled by appropriately selecting the size and amount of the pore forming material. Examples of the pore-forming material include organic fibers such as nylon, polyester, acryl, polyethylene, polypropylene, etc., organic resin particles such as acryl, styrene, polyester, polyethylene, phenol, urethane, epoxy, etc. It is not limited to this.

【0007】本発明の天然ヒドロキシアパタイト多孔体
は、天然骨を処理して得た天然ヒドロキシアパタイト粉
末と気孔形成材を前以て混合し、顆粒と成し、乾式プレ
スによりグリーン体を成型する。或は、天然ヒドロキシ
アパタイト粉末と気孔形成材を有機バインダーと共に水
と混合し、スラリー若しくは杯土と成し、これを鋳込み
成型、押し出し成型、射出成型、半乾式プレス成型等に
よりグリーン体を成型する。特に気孔形成材として樹脂
粒子を用いる場合、樹脂粒子が互いに接触した開気孔を
形成させる為には成型方法は加圧工程を含む方法を用い
る。本発明において、グリーン体を形成する気孔形成材
が20〜60重量%、高温で焼却除去される有機物含有
量及び水分含有量を除く、純分換算で天然骨が40〜8
0重量%となるように原料を配合する。気孔形成材が2
0重量%以下、即ち天然骨が80重量%を越えると、形
成される多孔体の気孔率が低く、骨生成能が劣る。一
方、気孔形成材が60重量%を越える、即ち天然骨が4
0重量%未満であると、後述する得られる多孔体の作業
性が劣る。
In the natural hydroxyapatite porous material of the present invention, the natural hydroxyapatite powder obtained by treating natural bone and the pore-forming material are mixed in advance to form granules, and the green body is molded by dry pressing. Alternatively, the natural hydroxyapatite powder and the pore-forming material are mixed with water together with an organic binder to form a slurry or clay, which is then molded by extrusion, extrusion, injection molding, semi-dry press molding, etc. to form a green body. .. In particular, when resin particles are used as the pore forming material, a molding method including a pressurizing step is used to form open pores in which the resin particles are in contact with each other. In the present invention, the pore-forming material forming the green body is 20 to 60% by weight, and the natural bone content is 40 to 8 in terms of pure content, excluding the organic matter content and water content that are incinerated at high temperature.
The raw materials are blended so as to be 0% by weight. 2 pore formers
If it is 0% by weight or less, that is, if natural bone exceeds 80% by weight, the porosity of the formed porous body is low and the bone-forming ability is poor. On the other hand, the pore-forming material exceeds 60% by weight, that is, natural bone is 4%.
If it is less than 0% by weight, the workability of the porous body obtained later will be poor.

【0008】得られたグリーン体はガス炉、電気炉など
を用いて、先ず500℃程度の低温で脱脂し、次いで8
00〜1400℃、好ましくは1000〜1300℃の
高温で加熱して焼成される。800℃未満であると、得
られる多孔体の骨格部の緻密性が劣り、その結果、多孔
体の強度が極めて小さく、後述する作業性が劣る。一
方、1400℃を越えると、天然ヒドロキシアパタイト
が溶融したり、熱分解する。本発明において、気孔形成
材は脱脂工程で焼失し、その焼失部が気孔として形成さ
れる。従って気孔径は、混合する気孔形成材の大きさに
よって適宜制御できる。尚その際、上述の如く開気孔と
して残す為、焼失前の樹脂粒子は連続していることが必
要である。又、開気孔率は、天然ヒドロキシアパタイト
と気孔形成材との混合比、或は焼成温度によって焼成収
縮を適当に限定する事により適宜制御できる。本発明の
ヒドロキシアパタイト多孔体は上述の製造方法によって
作製されるが、その曲げ強度は10kg/cm2 以上が
好ましく、更に20kg/cm2 以上が好ましい。曲げ
強度が10kg/cm2 未満では、生体材料として生体
内に埋設する際壊れやすい。本発明の天然ヒドロキシア
パタイト多孔体は顆粒状或はブロック状等使用部位の形
状、形態等に合わせて適宜使用できる。
The obtained green body is first degreased at a low temperature of about 500 ° C. using a gas furnace, an electric furnace or the like, and then 8
It is baked by heating at a high temperature of 00 to 1400 ° C, preferably 1000 to 1300 ° C. If the temperature is lower than 800 ° C., the density of the skeleton of the obtained porous body is poor, and as a result, the strength of the porous body is extremely low and the workability described below is poor. On the other hand, when the temperature exceeds 1400 ° C, natural hydroxyapatite is melted or thermally decomposed. In the present invention, the pore forming material is burnt out in the degreasing step, and the burned part is formed as pores. Therefore, the pore diameter can be appropriately controlled depending on the size of the pore forming material to be mixed. At this time, the resin particles before burning are required to be continuous because they are left as open pores as described above. Further, the open porosity can be appropriately controlled by appropriately limiting the firing shrinkage by the mixing ratio of natural hydroxyapatite and the pore-forming material or the firing temperature. The hydroxyapatite porous material of the present invention is produced by the above-mentioned production method, and its bending strength is preferably 10 kg / cm 2 or more, more preferably 20 kg / cm 2 or more. If the bending strength is less than 10 kg / cm 2, it is easily broken when embedded in a living body as a biomaterial. The natural hydroxyapatite porous material of the present invention can be appropriately used according to the shape, form, etc. of the site of use, such as granular or block-like.

【0009】[0009]

【発明の効果】本発明の天然ヒドロキシアパタイト多孔
体及びその製造方法により生体適合性に優れた骨充填
材、人工骨、人工歯根等が得られる。
EFFECTS OF THE INVENTION The natural hydroxyapatite porous body and the method for producing the same according to the present invention can provide a bone filler, an artificial bone, an artificial dental root and the like having excellent biocompatibility.

【0010】[実施例1]スケトウダラを3枚におろ
し、得られた魚肉が付着している中骨をpH0.5の天
然酵素ディスクリンーPT水溶液に1:3の重量比とな
るよう添加し、50℃で2時間攪拌し、次いで20分間
煮沸した後、骨分を取り出して水洗した。次いでこれを
1%過酸化水素水溶液に浸漬し、2時間煮沸した後骨分
を取り出し乾燥した後、ガス炉にて、100℃/hrの
速度で昇温し、500℃で1時間仮焼して、残存有機物
を除去した。引き続いて中骨の10倍量の水と混合し、
ボールミル中に添加し、2時間粉砕し、その後、濾過、
乾燥工程を施したところ粒子径が2μmの天然ヒドロキ
シアパタイト粉末が得られた。このようにして得られた
天然ヒドロキシアパタイト粉末と直径200μmのアク
リル樹脂ビーズを重量比60:40で混合し、1%のP
VA溶液を適宜添加した後、造粒して直径約500μm
の顆粒とした後、30×40×10mmの形状にプレス
成型してグリーン体を作製した。次いで、200℃/h
rの速度で昇温し、500℃で2時間保持した後、更に
同速度で昇温して1200℃で1時間焼成した。
[Example 1] Alaska pollack was dropped into three pieces, and the obtained middle bones to which fish meat was adhered was added to a natural enzyme disculin-PT aqueous solution having a pH of 0.5 in a weight ratio of 1: 3, and 50 After stirring at 0 ° C. for 2 hours and then boiling for 20 minutes, the bone content was taken out and washed with water. Then, this is immersed in a 1% aqueous hydrogen peroxide solution, boiled for 2 hours, the bone content is taken out and dried, then heated in a gas furnace at a rate of 100 ° C./hr and calcined at 500 ° C. for 1 hour. The residual organic matter was removed. Then, mix with 10 times the amount of water of the middle bone,
Add to ball mill, crush for 2 hours, then filter,
When the drying step was performed, a natural hydroxyapatite powder having a particle size of 2 μm was obtained. The natural hydroxyapatite powder thus obtained was mixed with acrylic resin beads having a diameter of 200 μm at a weight ratio of 60:40, and 1% P was added.
VA solution is added appropriately, and then granulated to a diameter of about 500 μm
After being made into granules, a green body was produced by press molding into a shape of 30 × 40 × 10 mm. Then 200 ° C / h
The temperature was raised at a rate of r, held at 500 ° C. for 2 hours, further raised at the same rate, and fired at 1200 ° C. for 1 hour.

【0011】得られた天然ヒドロキシアパタイト多孔体
を粗粉砕し、次いで整粒して300〜800μmの顆粒
となし、犬の顎骨欠損部に埋設し、40日後その生体適
合性を観察した。尚、ここで比較の為、市販のヒドロキ
シアパタイト質の歯槽骨充填材を湿式粉砕して、粒子径
を約3μmに分級した合成ヒドロキシアパタイトの粉末
を出発原料とした場合についても同様の方法で合成ヒド
ロキシアパタイト多孔体を作製し、評価した。結果を表
1に示す。
The obtained natural hydroxyapatite porous material was roughly crushed and then sized to obtain granules having a size of 300 to 800 μm, which were embedded in the jaw bone defect portion of a dog, and the biocompatibility thereof was observed 40 days later. For comparison, a commercially available hydroxyapatite alveolar bone filling material was wet pulverized and the particle size was classified to about 3 μm, and a synthetic hydroxyapatite powder was used as a starting material. A hydroxyapatite porous body was prepared and evaluated. The results are shown in Table 1.

【0012】尚、ここで気孔径及び開気孔率は水銀圧入
法で求めた。又、生体適合性及び作業性については以下
に示す基準に従って評価した。又、曲げ強度(σ3 )は
得られたヒドロキシアパタイト多孔体を5×10×60
mmの短冊状に加工し、スパン40mm、クロスヘッド
スピード0.5mm/minの条件にて曲げ試験を行な
い次式に従って算出した。 σ3 =(3PL)/(2bh2 ) P:荷重
L:スパン b:試験片の幅 h:試験片の厚さ
Here, the pore diameter and open porosity were determined by the mercury porosimetry method. The biocompatibility and workability were evaluated according to the criteria shown below. The bending strength (σ 3 ) was 5 × 10 × 60 for the obtained hydroxyapatite porous body.
It was processed into a rectangular strip of mm, and a bending test was performed under the conditions of a span of 40 mm and a crosshead speed of 0.5 mm / min, and the value was calculated according to the following formula. σ 3 = (3PL) / (2bh 2 ) P: load
L: span b: width of test piece h: thickness of test piece

【0013】[生体適合性] ○:気孔内に血管が生成し、新骨の生成が顕著に認めら
れる。 △:気孔内に僅かに血管が生成し、新骨の生成が認めら
れる。 ×:血管は生成せず、新骨はヒドロキシアパタイト多孔
体の外周に僅かに生成する。 [作業性] 顎骨欠損部に埋設する際の作業性 ○:良好 △:強度が弱く、一部顆粒が破壊する。 ×:強度が弱く、顆粒全体が破壊する。
[Biocompatibility] O: Blood vessels are formed in the pores, and new bone is remarkably formed. Δ: Slight blood vessels are generated in the pores, and new bone is recognized. X: No blood vessel is formed, and new bone is slightly formed on the outer periphery of the hydroxyapatite porous body. [Workability] Workability when embedding in a jaw bone defect part ◯: Good Δ: Strength is weak and some granules are broken. X: The strength is weak and the entire granules are broken.

【0014】[0014]

【表1】 以上の結果から本発明のヒドロキシアパタイト多孔体は
天然骨を原料とするものに比し優れたものであることが
わかる。
[Table 1] From the above results, it can be seen that the hydroxyapatite porous material of the present invention is superior to that obtained from natural bone.

【0015】[実施例2]樹脂ビーズの直径を種々変化
させて、その気孔を表2に示す値として、焼成温度を1
100℃とする以外は実施例1と同様に天然ヒドロキシ
アパタイト多孔体を作製し、評価した。尚、ここで直径
400μm以上のビーズはスチレン製のものを用いた。
[Example 2] The diameter of the resin beads was variously changed, and the pores thereof were set to the values shown in Table 2, and the firing temperature was set to 1.
A natural hydroxyapatite porous body was prepared and evaluated in the same manner as in Example 1 except that the temperature was 100 ° C. Here, beads having a diameter of 400 μm or more were made of styrene.

【0016】[0016]

【表2】 [Table 2]

【0017】以上の結果から本発明のヒドロキシアパタ
イト多孔体の気孔径は10〜100μm、好ましくは3
0〜80μmであることがわかる。
From the above results, the pore size of the hydroxyapatite porous material of the present invention is 10 to 100 μm, preferably 3
It can be seen that the thickness is 0 to 80 μm.

【0018】[実施例3]魚肉が付着した中骨を直接ガ
ス焼成炉を用いて500℃で仮焼し、残存有機物を除去
した後、ボールミルで粉砕すること及び天然ヒドロキシ
アパタイト粉末と樹脂ビーズの混合比を表3に示す値と
する事以外は全て実施例1と同様にして天然ヒドロキシ
アパタイト多孔体を作製し、評価した。
[Example 3] Middle bones to which fish meat was adhered were calcined directly at 500 ° C in a gas firing furnace to remove residual organic matter, and then ground with a ball mill to obtain natural hydroxyapatite powder and resin beads. A natural hydroxyapatite porous material was prepared and evaluated in the same manner as in Example 1 except that the mixing ratio was set to the value shown in Table 3.

【0019】[0019]

【表3】 [Table 3]

【0020】[実施例4]牛骨を直接ガス焼成炉で50
0℃にて仮焼し、残存有機物を除去し、ボールミルで2
時間粉砕し、その後、濾過、乾燥工程を経た粒子径7μ
mの天然ヒドロキシアパタイト粉末を得た。このように
して得られた天然ヒドロキシアパタイト粉末と直径30
0μmの発泡スチロール粒子を重量比65:35で混合
し、1%のPVA溶液を適宜添加した後、造粒して直径
400〜500μmの顆粒とした後、実施例1に準じ
て、成型を行い、種々の温度で8時間焼成して得た天然
ヒドロキシアパタイト多孔体を評価した。
[Embodiment 4] Beef bones were directly heated in a gas firing furnace to 50
It is calcined at 0 ° C to remove the residual organic matter, and it is 2 with a ball mill.
Grained for 7 hours, then filtered and dried
m natural hydroxyapatite powder was obtained. Natural hydroxyapatite powder thus obtained and a diameter of 30
0 μm expanded polystyrene particles were mixed at a weight ratio of 65:35, 1% PVA solution was appropriately added, and then granulated to give granules having a diameter of 400 to 500 μm, followed by molding according to Example 1, The natural hydroxyapatite porous material obtained by firing at various temperatures for 8 hours was evaluated.

【0021】[0021]

【表4】 尚、No21試料は、溶融が著しく、更にX線回折によ
る分析でヒドロキシアパタイトが著しく分解しているこ
とが判った。
[Table 4] The No. 21 sample was significantly melted, and it was found by analysis by X-ray diffraction that hydroxyapatite was significantly decomposed.

【0022】[実施例5]実施例1に示すNo1組成の
天然ヒドロキシアパタイト粉体、管状連通気孔を得る為
に、樹脂ビーズに変えて直径70μm、長さ10mmの
ナイロン繊維を水及び水溶性有機バインダーと共にボー
ルミル分散し、流動性を有するスラリーを作製した。ス
ラリーを石膏型に流し込み、鋳込み成型を行い、30×
40×10mmのグリーン体を得た。グリーン体を実施
例1に準じて顆粒状天然ヒドロキシアパタイト多孔体を
作製し評価した所、気孔径は63μm、開気孔率は65
%で生体適合性は○、作業性は△と判断され、曲げ強度
は21kg/cm2 であった。
[Embodiment 5] In order to obtain the natural hydroxyapatite powder of No. 1 composition shown in Embodiment 1 and tubular communicating holes, nylon beads having a diameter of 70 μm and a length of 10 mm were replaced with water and water-soluble organic material in place of resin beads. Ball mill dispersion was performed with a binder to prepare a fluid slurry. Pour the slurry into a plaster mold and cast it into a mold, 30x
A 40 × 10 mm green body was obtained. When the green body was made into a granular natural hydroxyapatite porous body according to Example 1 and evaluated, the pore size was 63 μm and the open porosity was 65.
%, The biocompatibility was judged to be ◯, the workability was judged to be Δ, and the bending strength was 21 kg / cm 2 .

【0023】[比較例1]実施例1に示すNo1組成の
ヒドロキシアパタイト粉体、樹脂ビーズを水及び水溶性
有機バインダーと共にボールミル分散し、流動性を有す
るスラリーを作製した。スラリーを石膏型に流し込み、
鋳込み成型を行い、30×40×10mmのグリーン体
を得た。グリーン体を実施例1に準じて顆粒状天然ヒド
ロキシアパタイト多孔体を作製し評価した所、気孔径4
3μm、開気孔率25%、生体適合性は×、作業性は
○、曲げ強度は37kg/cm2 であった。電子顕微鏡
で微細構造を観察した所、その気孔は球状であるが閉気
孔構造であった。
Comparative Example 1 Hydroxyapatite powder of No. 1 composition and resin beads shown in Example 1 were ball mill dispersed together with water and a water-soluble organic binder to prepare a fluid slurry. Pour the slurry into a plaster mold,
Cast molding was performed to obtain a green body of 30 × 40 × 10 mm. The green body was made into a granular natural hydroxyapatite porous body according to Example 1 and evaluated, and the pore size was 4
3 μm, open porosity 25%, biocompatibility ×, workability ◯, bending strength 37 kg / cm 2 . Observation of the fine structure with an electron microscope revealed that the pores were spherical but had a closed pore structure.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気孔径が10〜100μm、開気孔率が
40〜80%の連通気孔を有する天然骨由来の天然ヒド
ロキシアパタイト多孔体。
1. A natural bone-derived natural hydroxyapatite porous body having open pores having a pore size of 10 to 100 μm and an open porosity of 40 to 80%.
【請求項2】 気孔形成材が20〜60重量%、純分換
算で天然骨が40〜80重量%からなるグリーン体を成
型し、これを800〜1400℃で焼成する天然ヒドロ
キシアパタイト多孔体の製造方法。
2. A natural hydroxyapatite porous body obtained by molding a green body composed of 20 to 60% by weight of a pore forming material and 40 to 80% by weight of natural bone in terms of pure content, and firing the green body at 800 to 1400 ° C. Production method.
JP4042078A 1992-01-30 1992-01-30 Natural hydroxyapatite porous body and its manufacture Pending JPH05208044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042078A JPH05208044A (en) 1992-01-30 1992-01-30 Natural hydroxyapatite porous body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042078A JPH05208044A (en) 1992-01-30 1992-01-30 Natural hydroxyapatite porous body and its manufacture

Publications (1)

Publication Number Publication Date
JPH05208044A true JPH05208044A (en) 1993-08-20

Family

ID=12626024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042078A Pending JPH05208044A (en) 1992-01-30 1992-01-30 Natural hydroxyapatite porous body and its manufacture

Country Status (1)

Country Link
JP (1) JPH05208044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284898A (en) * 2003-03-24 2004-10-14 Makoto Kitamura Calcium phosphate porous body and method of manufacturing the same
CN110038164A (en) * 2019-05-13 2019-07-23 北京德得创业科技有限公司 Biologically active inorganic bone holder material of one kind and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284898A (en) * 2003-03-24 2004-10-14 Makoto Kitamura Calcium phosphate porous body and method of manufacturing the same
CN110038164A (en) * 2019-05-13 2019-07-23 北京德得创业科技有限公司 Biologically active inorganic bone holder material of one kind and preparation method thereof

Similar Documents

Publication Publication Date Title
Terzioğlu et al. Natural calcium phosphates from fish bones and their potential biomedical applications
US4654314A (en) Porous ceramic material and processes for preparing same
Tancred et al. A synthetic bone implant macroscopically identical to cancellous bone
US8303976B2 (en) Inorganic shaped bodies and methods for their production and use
JP2004033772A (en) Method for preparing porous calcium phosphate chip and particle by gelatin treatment
JP2001224679A (en) Porous ceramic body
JPH0156777B2 (en)
JP4540969B2 (en) Calcium phosphate ceramic porous body and method for producing the same
KR20140009282A (en) Bone substitute material
JP5778139B2 (en) Bone substitute material
KR101762580B1 (en) A method for preparing porous bone graft materials
KR101907408B1 (en) Manufacturing Method Of Calcium Phosphate Using Eggshell And Phosphate-ammonia solution
JPH05208044A (en) Natural hydroxyapatite porous body and its manufacture
Swain Processing of porous hydroxyapatite scaffold
JP2004284933A (en) Fibrous calcium phosphate
JP2004269333A (en) Carbon fiber reinforced composite material molding containing calcium phosphate-based material, method of manufacturing the same, and artificial bone using the same
TW200914070A (en) Porous bio-material and method of preparation thereof
JP2010137040A (en) Calcium phosphate porous material with small amount of remaining aromatic hydrocarbon
JP5939529B2 (en) Calcium phosphate porous body and method for producing the same
JP2007290952A (en) Calcium phosphate based sintered porous body, method of manufacturing the same and calcium phosphate based sintered porous body granule
JPS61127658A (en) Manufacture of porous calcium phosphate ceramics
JPH0575427B2 (en)
JPH01100048A (en) Production of calcium phosphate-based set material
JPH05208877A (en) Calcium phosphate ceramic porous material and its production
JP2003210567A (en) Functionally graded composite material of absorptive calcium phosphate derived from living body cell and manufacturing method thereof